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Geometric Sample Reweighting for Monte Carlo Integration
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Figure 1: Top row: Three integration methods using the same amount of function evaluations (i.e., 20 samples): (a) Riemann sum through
regular binning (according to right-side value) (b) MC integration using uniform random samples; (c) MC integration using samples dis-
tributed according to a pdf w.r.t. function value. Notice that in (a) and (b), the associated bin widths are equal, i.e., 1

20 . Bin widths in (c) are
adjusted according to the density linked to the sample generation. Notice the overlaps/gaps between sample bins as illustrated in (b) and (c).
Illustrations of our methods: (d) uniform random samples with our reweighting. Notice the absence of gaps/overlaps and bin widths being
adjusted according to sample positions. (e) a set of 102 i.i.d. random samples in 2D, (0,1)2. Rather than directly averaging all samples (i.e.,
weight = 10−2 for all samples), our consistent estimator uses the Voronoi volume as sample weight during the reconstruction process (f).
Notice that the weights here are inversely proportional to the density.

Abstract
Numerical integration is fundamental in multiple Monte Carlo rendering problems. We present a sample reweighting scheme,
including underlying theory, and analysis of numerical performance for the integration of an unknown one-dimensional func-
tion. Our method is simple to implement and builds upon the insight to link the weights to a function reconstruction process
during integration. We provide proof that our solution is unbiased in one-dimensional cases and consistent in multi-dimensional
cases. We illustrate its effectiveness in several use cases.

CCS Concepts
• Computing methodologies → Ray tracing;

Keywords: Sampling and Reconstruction, Monte Carlo Integration, Sample Reweighting, Rendering

1. Introduction

Monte Carlo (MC) techniques form the foundation of realistic im-
age synthesis for decades [CPC84]. The principle is simple: a func-
tion is sampled and the samples are combined to approximate its
integral. Standard MC is often referred to as brute-force because
of the easy implementation and guaranteed convergence to the cor-
rect solution, but often suffers from high variance and slow conver-
gence. The integral approximation can be improved by reconstruct-
ing the underlying function from the samples and previous work fo-
cused on several particular cases (e.g., shadows [ETH∗09] or depth

† Author email: J.Guo-3, E.Eisemann@tudelft.nl

of field [SSD∗09]). In this work, we focus on one-dimensional nu-
meric integration and revisit the function reconstruction process.

Our observation is that standard sample weights are often less ac-
curate for lower sampling rates because they do not reflect the inte-
gration domain nor the local sample density well. Our contribution
is to propose a weighting scheme that considers all samples of a
given set and defines weights based on their Voronoi cells. This re-
sults in a consistent estimator that outperforms standard weighting
schemes. Additionally, we render the estimator unbiased for sets of
independent and identically distributed (i.i.d) uniform random sam-
ples. While the proof of unbiasedness is complex, the algorithm is
easy to implement.

While our work focuses on the one-dimensional case, the derived
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theory shows that the bias of the consistent estimator is expected to
be low. We can therefore expect also good performance for low-
dimensional problems and provide a numerical evaluation.

Our solution can be easily integrated in existing rendering
pipeline. It provides an immediate benefit over existing schemes
for various rendering problems and builds upon a solid theoretical
analysis.

After covering prior work and MC integration (Sec. 2), we mo-
tivate our approach (Sec.3) and explain the core of our method
(Sec. 4). We then evaluate its numerical performance and show ap-
plications to rendering (Sec. 5) before concluding (Sec. 7).

2. Background

MC methods Since the 80s [CPC84], MC integration plays a ma-
jor role in rendering complex distribution effects, such as motion
blur, depth of field, soft shadows and global illumination. The com-
plete light transport is described by the rendering equation [Kaj86],
which can be solved using path tracing as an associated MC solu-
tion.

Standard Monte Carlo (MC) methods solve a definite integration
I =

∫
Ω

f (x)dx of a function f over a finite support Ω⊂Rd by using
a random sample set ({xi ∈Ω}). The resulting estimator is

ÎMC =
1
N

N

∑
i=1

f (xi). (1)

Nevertheless, not all samples taken during the evaluation of an in-
tegral contribute strongly to the result.

Importance sampling The sampling process can be influenced
with a probability distribution function (pdf) p : Ω→ R [VG95].
Its unbiased estimator is:

Îp =
1
N

N

∑
i=1

f (xi)

p(xi)
, (2)

which effectively weighs samples differently, given non-uniform
sample input.

Importance sampling is interesting when having knowledge
about the scene. For instance, importance sampling the light source
works better in scenes with small or point light sources [DBB06,
Deb08]. Sampling according to the BSDF works better with glossy
to highly glossy surfaces [Shi91, LFTG97]. Multiple importance
sampling (MIS) combines different sampling strategies [VG95].

One strategy to modify subsequent sample choices is to rely
on previous samples, i.e., a Markov process. Metropolis sam-
pling [VG97] can handle complex light-path configurations by ex-
tensively exploring contributing paths once they are discovered.
Multidimensional k-d trees [HJW∗08] can update a global struc-
ture with samples, which can then be used as a means to control
future sample placement.

Reweighting Specialized weight definitions have proven benefi-
cial for rendering, e.g., derived in Sobolev spaces [MBB18]. How-
ever, these previous solutions target hemispherical illumination
integrals and are not generally applicable to other problems. A

reweighting scheme was also proposed for addressing firefly ar-
tifacts [ZHD18] but the solution is biased and limited to narrow
application scenarios.

Recently Bitterli et. al. present a reweighting process following
resampling from reservoir sampling (ReSTIR) [BWP∗20]. Reser-
voir sampling [Vit85] generates fix size samples that follows certain
population distribution. The reweighting as proposed in the work is
biased but leads to significant variance reduction.

Other specialized reconstruction techniques exist, including so-
lutions for soft shadows [ETH∗09], defocus blur [SSD∗09], and
motion blur [EHDR11], which lead to significant improvements.
More complex reconstructions for environment maps illumina-
tion [ARBJ03] and light fields [LAC∗11] have proven very success-
ful but are biased (though consistent). Our method handles general
functions and is independent of the application scenario.

General weighted reconstruction during MC integration has ini-
tially been investigated: a trapzoidal rule and a nearest-neighbor
rule have been proposed by Yakowitz et. al. [YKS78]. Our novelty
lies in supporting domains with open boundaries and a new weight
definition. This is different from using the Euclidean distance be-
tween nearest neighbors [YKS78]. Additionally, our method results
in an unbiased estimator. As this approach pursues similar goals,
we will analyze the difference in Sec.4.1.

Our approach links sample weights to Voronoi cell sizes. The
latter has also been studied in the context of anti-aliasing prob-
lems [Mit90], for which the two-dimensional area of Voronoi cells
bounded by the pixel are directly used as sample weights. This
leads to improved anti-aliasing, but the theory has not been further
developed for unbiased solutions, nor generalized to other contexts.
Voronoi cell size has been used as weights for Monte Carlo inte-
gration by Vorechovsk et. al. [VSE16]. They treat domain bound-
aries by either clipping to them or by extending them periodically
by adding auxiliary samples next to the opposing domain border.
While both solutions improve numerical performance of MC inte-
gration, we show that such a solution is biased in Sec.4.

3. Formulation and Problem Statement

Riemann integration approximates an integral using function values
f (xi) times a weight w(xi):

Î =
N

∑
i=1

w(xi) f (xi). (3)

The Riemann weights are constant and stem from a partitioning of
the support Ω into equally-sized hypervolumes - in 1D, these are in-
tervals - each containing exactly one sample at the center. Referring
to Eq. 2, the estimator using samples following distribution p is also
a sum of function values f (xi) times a weight w(xi) =

1
N p(xi)

, which
are typically easy to compute but cannot be associated to a hyper-
volume partitioning of Ω. They are scaled versions of 1

N according
to a per-sample density p(xi); corresponding volumes would over-
lap or introduce gaps. Only when the sample count is increased to
densely cover the support Ω, due to the stochastic nature of the
process, the difference in the weight definitions becomes negligi-
ble. See Fig. 1 (a), (b) and (c) for an illustration. In consequence,
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especially for low sample counts, the weights 1
N p(xi)

do not lead to
a good function approximation [TCE05].

4. Geometric Sample Reweighting

Our goal is to associate integration weights to samples that relate to
an improved function reconstruction. We will first define a consis-
tent solution, inspired by Riemann integration (Sec. 4.1). It is inde-
pendent of the sampling pattern and can be applied on any sample
set in a postprocess to improve the integral approximation. While
consistent, it is not unbiased for all sampling strategies (Sec. 4.2).
We then propose a modification to obtain an unbiased estimator
for 1D cases (Sec. 4.3). We treat uniform random samples that are
independent and identically distributed (i.i.d.). Sec subsection 4.4
discusses the possibility to generalize our method for samples gen-
erated with a non-uniform pdf, and we propose a simple solution
for piecewise-constant importance sampling, which is not uncom-
mon in the context of computer graphics.

4.1. Consistent Estimator

Riemann integration typically assumes a regular partitioning of the
domain. Using a Voronoi tessellation of the sample points, it is pos-
sible to partition the domain Ω to take the actual sample density into
account. A Voronoi tessellation is a partition into regions such that
the points in each region share the same closest sample location. It
can be shown that the Voronoi cell corresponds to the intersection
of half spaces defined by hyperplanes that are equidistant to two
sample points. The theory of Voronoi diagrams is beyond the scope
of this paper but details can be found in works by Aurenhammer et.
al. and De Berg et. al. [Aur91, DBVKOS97].

For a D dimensional problem setting, the diagram will be
bounded by the hypercube (0,1)D, the domain from which sam-
ples are drawn. The volume of each Voronoi cell determines the
corresponding sample weight. Given that the cells are intersections
of half-spaces, these Voronoi cells are convex and their volume can
be easily computed. The resulting estimator of this approach is:

ÎC =
N

∑
i=1

wC(xi) f (xi),where wC(xi) =
|Vi|
|Ω| (4)

Such an estimator is consistent, as this construction implicitly
approximates the integrand via a piecewise-constant representa-
tion. Fig. 1 (d) and (f) show an illustration of this strategy for a
one-dimensional and two-dimensional case, respectively. In princi-
ple, even more advanced approximations could be used. However,
as we will show, it turns out that such weight definitions, while
consistent, lead to a biased estimate. In the following, we will show
the reasons and derive an unbiased estimator for i.i.d. uniform sam-
pling and stratified sampling for our use case with D = 1.

4.2. Bias Analysis

The problem of integrating over a given set of samples brings some
changes to the classic MC integration process: given a set of sam-
ples {xi|xi ∼ U(0,1)}, we want to work with a specific set {xi}
such that 0 < x1 < x2 < · · · < xN < 1. This will ease the deriva-
tion of the weights in our method. From Order Statistics [DN04],

we know that the probability of a set fulfilling this condition is
P({xi}) = N!∏

N
i=1 p(xi). Intuitively, a random set of samples with

N elements can be ordered in N! ways.

To ease understanding of our bias analysis, we first illustrate the
derivation with classic MC ÎMC (i.e., equal weight for all samples).
We denote the composed operation as F({xi}) = ∑

N
i=1

1
N

f (xi)
p(xi)

. Con-

veniently, P({xi}) = N! and F({xi}) = ∑
N
i=1

1
N f (xi) for uniform

sampling (p(x) = 1). The expectation of integration using such a
set of samples is:

E
[
ÎMC
]
=

∫
(0,1)N

F({xi})P({xi})d{xi}

=
∫ 1

0

∫ 1

0
· · ·

∫ 1

0

[
N

∑
i=1

1
N

f (xi)

p(xi)

]
N!

N

∏
i=1

p(xi)d{xi}

=
∫ 1

0

∫ 1

x1

· · ·
∫ 1

xN−1

[
N

∑
i=1

1
N

f (xi)

]
N!d{xi}

= N!
∫ 1

0

∫ 1

x1

· · ·
∫ 1

xN−1[
1
N

f (x1)+
1
N

f (x2)+ · · ·+
1
N

f (xN)

]
dxNdxN−1 · · ·dx1

=
∫ 1

0
f (x)dx,

(5)

Line 2 expands from line 1 following the definition. Properties
p(xi) = 1 and 0 < x1 < x2 < · · · < xN < 1 are used to get line 3
from line 2. The integration domain is denoted as (0,1)N to indi-
cate domain of the sample vector. The notation d{xi} means the
differential sample set, which expands to dxNdxN−1 · · ·dx1. In Ap-
pendix A, we prove the last step, showing that classic MC is indeed
unbiased.

A similar derivation for our consistent estimator (Eq.4) yields:

E
[
ÎC
]
=

N!
∫ 1

0

∫ 1

x1

· · ·
∫ 1

xN−1[
x1 + x2

2
f (x1)+

N−1

∑
i=2

xi+1− xi−1
2

f (xi)+(
1− xN−1 + xN

2

)
f (xN)

]
dxNdxN−1 · · ·dx1

= N! ·
∫ 1

0

{
1
2
· x · (1− x)N−1

(N−1)!

+
1
2
· (1− x)N−1 [(N−1) · x+1]

N!

+
N−1

∑
i=2

[
1
2
· (1− x)N−i [(N− i) · x+1] · xi−1

(N− i+1)!(i−1)!

−1
2
· (1− x)N−i · xi

i(N− i)!(i−2)!

]
+

[
xN−1

(N−1)!
− 1

2
· xN

N(N−2)!
− 1

2
· xN

(N−1)!

]}
· f (x)dx
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=
∫ 1

0

(N−Nx− x)xN−1 +(Nx+ x−1)(1− x)N−1 +2
2

· f (x)dx.

(6)

Unfortunately, the expression is not identical to
∫

f (x)dx for N >
1. Thus, our consistent estimator as introduced in Eq.4 introduces
bias. Similarly, we can show that other correction schemes using
augmented periodic samples, as proposed in [VSE16], results in a
biased estimate (compare Appendix B). The issue is that a weight
adaptation of the boundary samples is insufficient, as inner samples
also share a weight expectation different from 1/N. Nevertheless,
as the bias is linked to the expression (N−Nx−x)xN−1+(Nx+x−
1)(1− x)N−1, we do observe that for the large part of the domain
it converges to 1 for larger N, which illustrates that the consistent
estimator can be of practical relevance.

4.3. Deriving an Unbiased Estimator

A closer look reveals that Eq.6 takes the form of
∫

g(x) · f (x), where
g(x) = [(N −Nx− x)xN−1 + (Nx + x− 1)(1− x)N−1 + 2]/2. As
g(x) 6= 0 for all x ∈ (0,1), we can define F(X) =

f (x)
g(x) . Following

the derivation of Eq.6 but considering F instead of f , we obtain the
expectation of this new estimator ÎF

C :

E
[
ÎF
C

]
=

∫ 1

0
g(x) ·F(x)dx =

∫ 1

0
g(x) · f (x)

g(x)
dx

=
∫ 1

0
f (x)dx = E

[
Î
]
.

(7)

It can be seen that sampling F yields an estimate for the inte-
gration of f . Hence, the function g can serve as a weight definition
to obtain an unbiased estimator for the integrand f (x) over a set of
N i.i.d. uniform samples with reweighting. Consequently, our unbi-
ased estimator is given as:

ÎGR =
N

∑
i=1

wGR(xi) f (xi) =
N

∑
i=1

|Vi|
|Ω|

1
g(xi)

f (xi) (8)

4.4. Working with Non-uniform Samples

The general form of MC integration follows from Eq.5, where p(xi)
is not necessarily 1 for all xi. Thus, the analytic expression for when
deriving it as in Eq.6 leads to uniform samples depending on p. As
p can be arbitrary, it is impossible to develop the expression further.

Following order statistics, we need to know the joint proba-
bility density of samples following given distribution. For uni-
form distributions this is convenient as p(xi) = 1. For non-uniform
cases, deriving corresponding gp term would mean the presence of
∏

N
i=1 p(xi) that can not be easily cancelled out. For this to be un-

biased, strictly analytical approach is required. Even for a given p
with simple analytical formulation, chances are high that an ana-
lytic integration is usually too complex. Nevertheless, it is possi-
ble to adapt the uniform approach to the special case of p being a
piecewise-constant distribution, which is not uncommon in many
practical use cases. Here, we can stratify the domain according to

the distribution and reweight samples within each stratum, follow-
ing the previous solution for the whole domain. In this way, we can
estimate the final integration without introducing bias. We provide
a numerical evaluation of this strategy in Sec.5.1.

5. Results

In section 4, we developed the unbiased estimator for one-
dimensional functions (Eq.8). Nevertheless, we also illustrated that
the use of Voronoi volumes remains consistent for arbitrary dimen-
sions. As the computation of a Voronoi diagram can be costly for
higher dimensions, the method is best suited for low-dimensional
functions. In the following, we will use the unbiased estima-
tor for one-dimensional and the consistent estimator for multi-
dimensional problems. The derivation of an unbiased reweighting
scheme for arbitrary dimensions is an open challenge for future
work.

The result section is organized in two parts, first covering the nu-
merical performance (Sec. 5.1) of our estimator before applying it
to several rendering problems (Sec. 5.2). All tests compare multiple
different estimators:

1. Standard MC (i.i.d. uniform sampling)
2. Our weighted standard MC (i.i.d. uniform sampling)
3. Stratified MC (stratified sampling)
4. Our weighted stratified MC (stratified sampling)
5. Low discrepency sequences when applicable

5.1. Numerical Performance

We first test the numerical performance of MC integration in 1D
and 2D. The 1D functions were chosen to include discontinuities,
large-scale variations, and small scale changes. In the supplemen-
tary material, the reader can find many more test cases for our al-
gorithm. Here, due to their representative behavior, we analyze:

f (x) = 10×



√
−x2 +0.5x x≤ 0.25
−
√
−x2 + x−0.1875+0.25 0.25 < x≤ 0.5

20× (x−0.5) 0.5 < x≤ 0.55
1.0 0.55 < x≤ 0.65
−20× (x−0.7) 0.65 < x≤ 0.7
0.1× sin(10π · (x−0.7)) 0.7 < x≤ 0.8
0.25× sin(10π · (x−0.8)) 0.8 < x≤ 0.9
0.5× sin(10π · (x−0.9)) 0.9 < x

For the 2D consistent estimator, we take the Cameraman image
(see Fig. 3 (d)). The results are shown in Fig. 3(3). Generally, the
MSE drops as more samples are added (Column 1). Our solutions
outperform standard uniform sampling (and stratified sampling) by
several orders of magnitude and converges around 103 (102) times
in 1D and 102 (10) times faster in 2D.

We study the numerical performance of non-uniform samples
that are importance sampling the piecewise-constant distribution
in Fig.2 (actual function f (x) is plotted in dashed lines). We
take two reasonable non-uniform piecewise constant distributions.
Red: 4-piecewise distribution that does not match f (x) and blue:
10-piecewise distribution that matches f (x) perfectly. It can be
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Figure 2: Numerical performance of reweighting both uniform and
two non-uniform distributions. Integrand in test is plotted in dashed
line in the left subfigure. Uniform samples are drawn normally
while non-uniform samples are drawn from the piecewise constant
distributions to the left. Log-log scale convergence performances
are plotted in the right subfigure.

seen from the results that both reweighted estimators show simi-
lar/superior converging behaviors while a distribution that does not
match function yields no practical benefits comparing to uniform
samples. Unexpectedly, the distribution that matches the function
perfectly only slightly outperforms uniform and a non-matching
distribution. Meanwhile, all three reweighted version show similar
convergence behavior. This illustrates not only the effectiveness of
our reweighting but also how tricky importance sampling is in real-
world scenarios dealing with functions that have significant/sharp
variations. It could also be seen that in this specific experiment, a
carefully crafted distribution is much less effective when it comes
to variance reduction when comparing to our reweighting scheme.

Numerical performance against common 1D low discrepency se-
quences is presented in Fig. 3 (a). As can be seen from the result,
our reweighted uniform/stratified achieves better performance than
traditional stratified and Latin Cube sequence while slightly worse
than Halton and Sobol sequence. For 2D cases (Fig. 3 (c)), both
reweighted estimators perform the best and all low discrepency se-
quences fail to make any improvement.

We next investigate the impact of distributing samples into
batches to show the unbiased convergence behavior of our
reweighting scheme in 1D cases. First, we fixate the amount of
samples to 106 (Fig.3(b)). As expected, the performance of stan-
dard uniform sampling remains invariant with respect to the amount
of samples per batch, as it is already an averaging process. In gen-
eral, more batches means a higher overall sample count and all
methods improve with the addition of batches. In all cases, the
graphs stop after reaching 106 samples. Our solution performs best
and the graphs illustrate a fast convergence.

In a direct comparison, our estimator asymptotically achieves
the same convergence rate (with a constant offset) as the estima-
tor proposed in [YKS78], which is proven to be O(N−4/D), where
D is the dimension of the function. The interested reader is referred
to the original work for the proof. Yet, in contrast, our work has
the advantage of being unbiased. We used the same functions and
configurations as in their original work. The results are plotted in
Fig. 4.

5.2. Application to Rendering

We implemented our method in Mitsuba [Jak10], targeting one
and two-dimensional integration problems, namely motion blur
(Sec. 5.2.1), dispersion (Sec. 5.2.2), depth of field (Sec. 5.2.3) and
illumination integrals (Sec. 5.2.4). We evaluate MSE and visual ap-
pearance, as well as convergence behavior. For all implementations,
our reweighting operates at a per-pixel level. Notice that some low
discrepency sequences are incompatible with certain integrators in
Mitsuba. For example, only (0,2) sequence can be used in motion
blur tests and Hammersley can not be used for direct illumination
integrator.

5.2.1. Motion Blur

To simulate motion blur, distribution rendering samples the time
domain: For a pixel (i, j), the luminance L(i, j) is given by:

L(i, j) =
∫ tclose

topen

f(i, j)(t)dt,

with topen and tclose being the shutter opening and closing time
and f incorporating the shutter function. The problem is thus one-
dimensional and we tested our implementation in two animated
scenes (Fig.5 and 6).

All temporal samples are drawn uniformly from [tclose, topen]. In
both scenes, objects are moving at high speed. The implementation
takes minimum effort as only one outer loop in the program needs
modification.

5.2.2. Spectral Rendering

Light dispersion can happen at reflective or refractive dielectric ma-
terials, leading to rainbows, resulting from different wavelengths
traveling in different directions. It requires spectral sampling to
simulate multiple wavelengths. To reduce the complexity of the
additional spectral dimension [BDM09], hero wavelength spectral
sampling [WND∗14] can be used as an approximation:

Î(i, j) =
1
N

N

∑
k=1

f(i, j)(λk)

p(i, j)(λk)

Our implementation of spectral sampling uses 15-bin wave-
lengths. Hero wavelength sampling is used with 3 shifted additional
wavelength samples [WND∗14]. We tested our method with two
scenes configured with dispersive dielectric materials (Fig. 7 and
8). As shown in the results, our method brings down color noise
significantly and dispersive regions look much smoother at a low
sampling rate.

5.2.3. Defocus Blur

A camera with aperture leads to defocus blur/depth-of-field effects.
The aperture is usually modelled as a 2D shape, e.g., a square, a
circle, or a star. The shaper is sampled to determine the origin of
each primary sample ray. These rays pass through the positions on
the focal plane corresponding to the pixels. For lens aperture A ⊂
R2, we obtain:

L(i, j) =
∫
A

f(i, j)(s)ds.

c© 2021 The Author(s)
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Figure 3: We apply our geometric sample reweighting to one and two dimensional MC integration problems. Subfigures (a) & (b) show
results for 1D case, and (c) shows a 2D integration problem where the underlying function is an image shown in (d). Performance gain of
our reweighting scheme can be observed from the faster convergence rate comparing to unweighted ones in 1D cases and all methods in 2D
cases. In 1D cases, our unbiased reweighting achieves performance that is close to low discrepency sequence (better than latin hypercube).
In 2D cases, our consistent estimator outperforms all methods in test, including all low discrepency sequences. All results are plotted in
log-log scale.

Figure 4: Log scale MSE plot of three estimators: Monte Carlo,
[YKS78] and ours. As can be seen from the slope, our estimator is
asymtotically parallel to [YKS78] and is much superior to Monte
Carlo. In some cases, our estimator performs less as good, but that
is extra cost of remaining unbiased.

To determine our weights, we use a 2D Voronoi diagram based
on the aperture samples. We tested a simple glossy sphere illumi-
nated by an environment map (Fig. 9).

5.2.4. Direct Illumination

Leaving out irrelevant terms, the luminance Lx at a scattering point
x with one bounce is given by:

Lx = Le(x)+Ldirect +Lindirect

= Le(x)+
∫
L

fs(x)Le(l→ x)dl +
∫

Ω

fs(x,ω)Li(ω)dω,

where Le denotes light emission and l ∈L denotes all light sources.
In this application, we use light sampling instead of random rays
to ensure that the light source is always sampled. Our reweighting

achieves the best convergence and, as shown in the insets, also the
smoothest results (Fig.10∼12). Each image uses 4 primary rays per
pixel and at each scattering event 256 light samples. Our solution
is applied to these 256 samples.

6. Discussion

In all cases, our solution leads to smoother visual result and less
black pixels in the falloff regions. It improves uniform sampling
and stratified sampling comparing to unweighted ones. From the
MSE plots, we can see that standard MC with uniform sampling has
the worst performance, while our weighted stratified sampling gen-
erally performs best. In some cases where the integrand is smooth,
stratified sampling alone achieves good results. We can also see that
even with uniform sampling as input, our weighted uniform sam-
pling not only improves upon the unweighted version but also has
a performance comparable to our weighted stratified sampling.

When comparing tests with low discrepency sequences (Halton,
(0,2), Hammersley and Sobol sequences), we observe the general
trend of seemingly biased convergence, as is evidently shown in
Fig.5, Fig.6, Fig.9 and Fig.10∼Fig.12, where the MSE plot curve
shows flattening trend towards higher sample rate. This is partly
due to the fact that the correlation patterns (errors) usually take
huge amount of samples to converge, as such low discrepency se-
quences (quasi Monte Carlo, qmc) work by trading off bias and
variance [Caf98]. Moreover, most renderings with Halton, Ham-
mersley and Sobol sequences show strong correlation/aliasing in
images. In low sample rate cases, lower error could be achieved
with low discrepency sequences, at the cost of obvious correla-
tion/aliasing.

Due to the fact that we pre-compute samples and weights, the
runtime for unweighted and weighted rendering are identical and
therefore not reported. Pre-computing sample weights has a negli-
gible overhead (e.g., on a 8-core CPU: less than 2 seconds for 1024
one dimensional samples in Fig. 7, which takes few hours to render
at a resolution of 512× 512; around 5 milliseconds overhead per
pixel for 1024 two dimensional samples in Fig. 10∼Fig.12. One
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Figure 5: Four highly glossy spheres moving in different directions. In each subfigure: corresponding renderings of increasing sample rate,
difference of 1K sample rate with reference. A much brighter difference (with reference) can be observed for (0,2) sequences, which confirms
the MSE plot at the bottom left. All results are plotted in log-log scale.

Figure 6: Highly glossy Buddha moving horizontally with 128 samples per pixel. Bottom two rows: renderings of corresponding regions for
(0,2) sequences and the 1K sample rate difference of all methods. Similar behavior is observed for (0,2) sequences as in Fig.5. All results are
plotted in log-log scale.
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Figure 7: Wineglass with dispersive dielectric materials with 32 samples per pixel. As can be seen, our reweighted schemes improve upon
uniform and stratified samples and produces much smoother result in terms of color noise. Significant improvements can be observed in low
discrepency sequences. All results are plotted in log-log scale.

Figure 8: Torus with dielectric materials with 64 samples per pixel. Our reweighted schemes produce smoother renderings while avoiding
aliasing that is obvious in low discreoency renderings. All results are plotted in log-log scale.

can always precompute weights and reuse for different integrals,
e.g., pixels in different render tiles.

7. Conclusion

Our reweighting scheme enables a better approximation than stan-
dard MC weights. It is general and does not require any prior
knowledge about the Riemann integrable function. Implicitly, it ap-
proximates the integrand via a reconstruction from the samples. We
presented an analysis of the introduced bias of a consistent estima-
tor based on Voronoi cell volumes and propose an unbiased 1D es-
timator. We showed the practical benefit of our solution for various
rendering problems.

Despite the system error introduced for high-dimensional inte-
gration, we observe huge improvement in terms of variance reduc-
tion. Nevertheless, it requires the computation of high-dimensional
Voronoi cell volumes, which can be costly. Still, we demonstrate
several low-dimensional application cases in this paper.

As our method makes no assumptions about the function to be
integrated, it is an attractive approach for many purposes and can
be easily integrated in existing solutions (e.g., ReSTIR [BWP∗20]).
We believe our method could be of interest beyond graphics com-
munity.
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Figure 11: An equal quality and sample rate comparison of applying our reweighting in the Livingroom scene. As can be observed from
the results, our weighted renderings achieve better convergence at equal sample rate comparing to unweighted ones and use less samples
reaching similar error level. Noticeable patterns of correlation are observed in low discrepency sequence renderings. All results are plotted
in log-log scale.
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Figure 12: An equal quality and sample rate comparison of applying our reweighting in the Necklace scene. Similar behavior can be
observed as in Fig.11. (0,2) sequences manage to produce alias-free renderings. However, brighter difference comparing to reference is
observed, which confirms the MSE plot in the right subfigure. All results are plotted in log-log scale.

Appendix A: Expectation of integration over given sample set

Here, we demonstrate the process of deriving expectation of a clas-
sic MC estimator. We make use of the following identity, common
for multiple integration:∫ 1

0

∫ 1

x1

· · ·
∫ 1

xN−1

dxNdxN−1 · · ·dx1 =
∫ 1

0

∫ xN

0
· · ·

∫ x2

0
dx1dx2 · · ·dxN .

It can be shown by induction that:

∫ xi+1

0

∫ xi

0
· · ·

∫ x2

0
dx1dx2 · · ·dxi =

xi
i+1
i!

,∫ 1

xi−1

∫ 1

xi

· · ·
∫ 1

xN−1

dxNdxN−1 · · ·dxi =
(1− xi−1)

N−i+1

(N− i+1)!
.

Plugging these results into Eq.5 gives:

E
[
ÎMC
]
= N!

∫ 1

0

∫ 1

x1

· · ·
∫ 1

xN−1[
1
N

f (x1)+
1
N

f (x2)+ · · ·+
1
N

f (xN)

]
dxNdxN−1 · · ·dx1

= N! · 1
N

[∫ 1

0
f (x1)

∫ 1

x1

· · ·
∫ 1

xN−1

dxN · · ·dx2dx1 + · · ·

+
∫ 1

0
· · ·

∫ 1

xi−1
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xN−1
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0
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]
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Appendix B: Expectation of integration with augmented periodic
samples

By augmenting samples to get a periodic sample set (one can imag-
ine this process as creating a circular domain, where the last and
first sample are hereby influencing each other’s weight):

E
[
ÎP
]
=

N!
∫ 1

0

∫ 1

x1

· · ·
∫ 1

xN−1[
1+ x2− xN

2
f (x1)+

N−1

∑
i=2

xi+1− xi−1
2

f (xi)+(
1+ x1− xN−1

2

)
f (xN)

]
dxNdxN−1 · · ·dx1,

which integrates to
∫ 1

0 ((−1)1+nn(x−1)n(n+x−2)+(x−1)(nx+
2x − 1 − (1 − x)n(n + x − 1 + (1/(1 − x))n(nx + 1))))/(2(x −
1)2) f (x)dx. Again, this process results in a biased estimator.
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