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Abstract
Despite advances in display technology, many existing applications rely on psychophysical datasets of human perception gath-
ered using older, sometimes outdated displays. As a result, there exists the underlying assumption that such measurements can
be carried over to the new viewing conditions of more modern technology. We have conducted a series of psychophysical experi-
ments to explore contrast sensitivity using a state-of-the-art HDR display, taking into account not only the spatial frequency and
luminance of the stimuli but also their surrounding luminance levels. From our data, we have derived a novel surround-aware
contrast sensitivity function (CSF), which predicts human contrast sensitivity more accurately.We additionally provide a practical
version that retains the benefits of our full model, while enabling easy backward compatibility and consistently producing good
results across many existing applications that make use of CSF models. We show examples of effective HDR video compression
using a transfer function derived from our CSF, tone-mapping and improved accuracy in visual difference prediction.

Keywords: computational photography, image and video processing, high dynamic range/tone mapping

CCS Concepts: • Computing methodologies → Perception; Image compression

1. Introduction

Display technology has advanced rapidly, making the viewing expe-
rience progressively more realistic. In particular, the dynamic range
and luminance levels of modern displays have been significantly
expanded. Many perceptual studies have been conducted on many
different types of visual media, including monitor displays, projec-
tors, printing materials and so forth. These perceptual studies are
bounded by the characteristics of the experimental medium, a de-
pendency that is well understood [CIE04].

Despite the rapid development of display technology, gather-
ing psychophysical measurements using such modern displays has
barely kept up due mainly to limited accessibility to expensive dis-
play technology and calibration devices. Often new methods and
applications rely on ad hoc modifications or simple adoption of ex-
isting data and models, which were obtained with different media,
with the underlying strong assumption that they can be carried over
to the new viewing conditions.

Contrast sensitivity is a critical aspect of human vision, and has
been the subject of many research studies over decades. Many psy-

chophysical studies have been conducted to discover the response of
the human visual system (HVS) to patterns of varying spatial fre-
quencies and luminance levels; these studies, as argued before, are
bounded by the display technology used in their experiments. Most
of them report measurements using conventional displays ranging
from 0.1 to 100 cd/m2. To the best of our knowledge, there is no
reliable data of surround-aware contrast sensitivity on an HDR dis-
play, which takes into account both the luminance of the stimuli and
its surroundings.

We have conducted a series of psychophysical experiments to ex-
plore the perceptual impact in contrast sensitivity under these con-
ditions, up to 1000 cd/m2. In particular, we are interested in the
impact of the surrounding luminance on the perceptibility of con-
trast for patterns of different spatial frequencies. We have measured
perceptual thresholds of spatial frequency under different combi-
nations of stimuli and surround luminance levels. From this, we
have developed a novel surround-aware contrast sensitivity func-
tion (CSF) that predicts human contrast sensitivity better than
existing models. In addition, we provide a practical version of
our CSF, which retains the benefits of our complete model while
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facilitating the prediction of CSF values beyond our measurement
range.

Our practical surround-aware CSF model can be plugged into
many applications that make use of existing CSFmodels. This leads
to more accurate results especially in images with large luminance
contrast, given the extended luminance and contrast range explored
in our experiments. We first demonstrate effective HDR video com-
pression by coupling our CSF model to a transfer function that con-
verts HDR signals to the conventional video compression frame-
work. We then present the results of HDR tone-mapping by simply
substituting the embedded traditional CSF model in a state-of-the-
art tonemapper with our surround-aware CSF. Last, we demonstrate
improved accuracy in visual difference prediction using the HDR-
VDP-2 framework [MKRH11]. Our dataset and implementation of
both surround-aware CSF models will be available publicly.

2. Related Work

Measured CSFs. Experiments to determine contrast thresholds of
the HVS start at least as early as 1946 [Bla46]. Schademeasured and
characterized the dependency of the CSF with respect to spatial fre-
quency by asking observers to judge the visibility of sinusoidal pat-
terns, discovering the nowwell-known effect of sensitivity dropping
as the spatial frequency of the judged stimulus increases [Sch56].
Later, various studies have demonstrated that several factors and lu-
minance conditions can influence the shape of the CSF. Blakemore
and Campbell discovered that after adapting for several minutes to a
sinusoidal contrast pattern of certain frequency, sensitivity at simi-
lar frequencies decreases significantly, while sensitivity to other fre-
quencies remains unaffected [BC69].

In addition to achromatic stimuli, there is a body of work devoted
to study the chromatic CSF [KML13, Kel83, HMTN10], however,
these studies are mostly restricted to very limited conditions and lu-
minance ranges. Wuerger et al. recently studied the chromatic CSF
at a wide range of luminance, but they still treat the cases that lu-
minance of the sinusoidal pattern and outside of the pattern has the
same value [WAK*20, KAPO*20]. Other studies include the anal-
ysis of different visual conditions, such as visualization under dif-
ferent eccentricities [RVN78], or neurological conditions, such as
arousal [LBLM14], in the shape of the CSF.

Analytical CSFs. Daly’s model is one of the most popu-
lar [Dal92], and has been used in many applications; unfortunately
details of the derivation of the model are not provided. Barten de-
veloped a physical model [Bar92] to serve as background to his
previously proposed formula to evaluate image quality [Bar89].
This model provides a good fit for many historical CSF measure-
ments; however, later works have suggested that its validity may
decrease out of photopic (cone-mediated) vision [KML13]. Barten
also proposed a more sophisticated model taking into account a
larger number of physical quantities, which yielded a better fit with
measured data at the cost of becoming cumbersome to use as a stan-
dard [Bar99]. Mantiuk et al. developed a customCSFmodel for pre-
dicting visible differences in images. They observed that the mod-
els proposed by Barten and Daly did not yield accurate fits to their
experimental data, and hypothesized that these functions may cap-
ture conditions that are different from visual inspection of static im-

ages [MKRH11]. Recently, Mantiuk et al. [MKA*20] proposed a
chromatic CSF model with consideration of a wide range of lumi-
nance based on recent perceptual measurement datasets including
[WAK*20, KAPO*20]. Although all these models treat the influ-
ence of spatial frequency and stimulus luminance, they do not focus
on the joint influence of stimulus and surrounding luminance.

Background/surround impact. The effect of background or sur-
rounding luminance was studied for the first time in the 60s [Wes60,
VNB67]. These first studies discovered that the contrast sensitiv-
ity function changes when it is measured at different mean back-
ground intensities. This effect is particularly relevant for modern
display technology, which usually allows for high dynamic range.
Some recent works have focused on characterizing the effect of
surrounding luminance [KK10, BKP14]; however, this effect was
studied on isolation and for limited luminance ranges. In general,
little is known about the interplay between background luminance
and stimuli luminance in contrast sensitivity. Vangorp et al. stud-
ied the effect of background or surrounding luminance [VMGM15].
They measured and modelled the threshold-versus-intensity (TVI),
which denotes just-noticeable-difference of luminance between
two small uniform-luminance patch, taking background luminance
into account. They treated the two different luminance values
as variables of their model. However, their work is based on
TVI, which does not have spatial frequency as a variable unlike
CSF.

In addition to studies about detection thresholds, such as con-
trast sensitivity and TVI, there are some works that study the effect
of background or surround luminance on various factors, such as
the effect on perceived brightness [BB67, YLT*19], perceived dy-
namic range [HTM*19] and chromatic adaptation [WZIC19]. Back-
ground or surround luminance may also influence several aspects
when perceiving natural images, such as perceived contrast of im-
ages measured by adjusting gamma [Bor17], subjective quality of
tone mapping operators [MBDC15] and user preferences for HDR
displays [RHLM09].

It is important to note that the CIECAM97model [Mor00] defines
stimuli, background and surround of the adapting field separately. It
defines stimuli as a 2◦ region in the centre of view, background as a
10◦–12◦ region around the stimuli, and surround as the remainder of
the visual field (ambient illumination). The surrounding luminance
taken into account for our measurements and model (described in
Sections 3 and 4, respectively) then covers the luminance of the en-
tire background and a part of surround as defined in CIECAM97.
Although for smaller display devices, the surrounding luminance of
our model can correspond fully to ambient illumination, our model
does not focus on modelling the reflection of ambient illumination
on the display screen, which has been previously studied in several
works [CF14, KVR15].

Recently, Daly et al. [DKE*19] presented a study about the ef-
fect of surround luminance on contrast sensitivity. However, the sur-
round luminance described in their experiment refers to the lumi-
nance level outside a display that covers a field of view of 33◦ × 20◦,
so the variables of their study are substantially different from those
of our experiment, as described in Section 3. Additionally, their
work does not provide a full CSF model since only a single level
of spatial frequency was tested.

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



S. Yi et al. / Modelling Surround-aware Contrast Sensitivity for HDR Displays 3

Lossy compressed frame (closeup)

Reference video frame(closeup)

Reference HDR video frame (with our tone-mapping) vs. lossy compressed frame

Reference

Compressed

(QP=22)

Figure 1: We compare a reference HDR video frame and a lossy compressed frame using our surround-aware contrast sensitivity function
(CSF) model. We compress the original video by three orders of magnitude without perceivable artifacts.

Barten’s [Bar03] is the only existing CSF model that takes into
account the influence of the surrounding luminance from the display
and its interplay with stimuli luminance. This model is an extension
to a previous model [Bar92]. The extended model takes into account
the measurements obtained by Rogers et al. [RC73], who measured
contrast sensitivity only for three subjects, while analysing the vis-
ibility of airplane dashboards under very specific viewing condi-
tions. Such measurements are therefore not representative of an av-
erage user under typical viewing conditions on a modern display.
In contrast to this work, our measurements cover a large range of
background and stimuli luminances, which allows us to model con-
trast sensitivity both in mesopic and scotopic viewing conditions.
Our experiments are performed with a state-of-the-art HDR display
with an array of independently controlled high power LEDs as back
lighting system, which has been rigorously calibrated.

3. Measurement of Contrast Sensitivity

In order to measure a surround-aware contrast sensitivity function
for wide luminance ranges, we have conducted a perceptual experi-
ment using a state-of-the-art HDR display. Our experiment follows
the method of adjustment, in which subjects are presented with si-
nusoidal patterns at different luminance levels, and they have to
adjust the contrast until they start recognizing the spatial modula-
tion patterns. This method has been used extensively in the litera-
ture [GM68, BB71], and allows us to obtain absolute contrast dis-
crimination thresholds for each of our different stimuli. Figure 1
shows our experimental setup, and the stimulus for an example trial.

3.1. Experimental setup

HDR display. Our input images consist of greyscale HDR images
with linear intensity encoded. We used a 47-inch SIM2 display
(HDR47ES4MB) with a resolution of 1920 × 1080 pixels, a peak
luminance of over 4000 cd/m2 and amaximum luminance for a full-
white screen of approximately 1600 cd/m2. Note that the spatial res-

olution of the backlight LED unit in the display is lower than that
of the front LCD unit. However, the visual stimuli within the field
of view require the contrast levels achievable by the high-resolution
LCD unit alone; therefore, the resolution of the backlight unit is not
a limiting factor in our experiments. Subjects were presented with
sinusoidal patterns of luminance L in a centre region of the screen,
surrounded by a background of luminance Ls. Note that L is the av-
erage luminance over the sinusoidal pattern.

Calibration. We found that the luminance of the centre region
where the stimuli are shown is affected by the luminance of the sur-
rounding area of the display due to the characteristics of the HDR
display technology, but not the other way around. Thus, we mea-
sured calibration functions, which maps control signals at the cen-
tre region luminance to output luminance values at that region, for
each surrounding luminance levels [KK08a]. We used a Specbos
Jeti 1200 spectroradiometer, and measured the calibration functions
c(L, Ls) for more than 150 fine levels of L for each of five levels of
Ls, to accurately produce all our combinations of stimuli luminance
and surrounding luminance. Then we have generated stimuli image
files with taking the inverse functions of these calibration functions
to produce intended pixel luminance. Refer to Section 1.1 in the
supplementary material for more details.

Stimuli. The area subtended by the sinusoidal patterns of the
stimuli is set to Xo = 2◦ of visual angle that covers the fovea region
on the retina, which corresponds to 81 × 81 pixels from a viewing
distance of d = 1.25m. The visual angle subtended by the screen at
that distance is 45.14◦ × 26.32◦, which is used to control the adap-
tation level while focusing on the frequency stimuli.

The spatial modulation of the sinusoidal pattern is
the cosine function of the pixel position, with a ran-
dom offset φ. We sample two directions of the stimu-
lus D = {horizontal, vertical}, five stimulus luminances
L = {0.56, 2.69, 27.87, 282.91, 1065.25} cd/m2, five surrounding
luminances Ls = {0.55, 2.75, 28.53, 288.09, 1072.61} cd/m2 and
five spatial frequencies u = {1.26, 2.52, 5.04, 10.08, 20.16} cpd.

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



4 S. Yi et al. / Modelling Surround-aware Contrast Sensitivity for HDR Displays

This yields a total of 250 (2 × 5 × 5 × 5) different stimuli to exploit
the entire available combinations of luminance ranges on the dis-
play. To avoid the undersampling problem by the display resolution,
the values of u were chosen so that the periods of the sinusoidal
function are exactly 32, 16, 8, 4 and 2 pixels, respectively.

3.2. Experimental procedure

Thirteen subjects (ten males and three females) with an age range
of 20–45 years took part in the study. They all reported trichromatic
normal or corrected-to-normal vision. Subjects performed the ex-
periment in a dark room. There was no illumination except for the
display device The experiment was divided in five sessions; in each
one, a single surrounding luminance value Ls was tested. The or-
der of the five sessions was randomized for each participant. Before
starting the experiment, subjects spent 5 min adapting to the dark
room viewing conditions. Then, for each surrounding luminance
value tested, subjects adapted for two additional minutes. During
each session, subjects were presented with a total of 50 (2 × 5 × 5)
combinations of (D, u, L) in random order to avoid ordering effects.
In each trial, the stimulus was initially fixed to zero contrast. Sub-
jects were asked to adjust the contrast of the stimuli until they could
barely perceive the displayed pattern. They could use the right or
left keyboard arrows to increase or decrease contrast in steps. In the
case when the given stimuli has a zero contrast, when the partic-
ipants press the right arrow key, the first contrast change is set to
a precomputed extremely small value, which is designed to be in-
visible ranging from 0.0003 to 0.0066. In subsequent key presses,
the right arrow increases the stimulus contrast with 1.3× contrast
intervals. They then had to register whether the shown pattern was
horizontal or vertical by pushing the h or v keys, respectively. To
increase reliability of our measured values for sensitivity, if a user
identified a wrong direction, the same stimuli was displayed again
at a random order until the answer was correct.

Validation. Fifteen random samples of the 250 stimuli were mea-
sured twice without any notification to participants. We compute
the root-mean-square-error (RMSE) of the twomeasurements in the
decibel contrast unit, following Watson and Ahumada Jr. [WA05]
and Mantiuk et al. [MKRH11]. The average of differences of short-
term repeatability over the entire pool of participants is 4.70 dB. The
inter-participant difference is 5.37 dB, i.e. the average of 1-sigma er-
rors of each contrast sensitivity function (CSF) measurement. This
means that the short-term repeatability error for each participant is
less than inter-participant error of our experiment.

4. Surround-aware Contrast Sensitivity

Our surround-aware CSF depends mainly on three variables: spatial
frequency u, stimulus luminance L and surrounding luminance Ls,
and it can be expressed as S(u, L, Ls).We have not observed a signif-
icant trend for the horizontal and vertical directions of the sinusoidal
pattern; this is in accordance with previous work [Bar03]. Figure 2
shows our CSF measurements for the rest of conditions, with the
vertical and horizontal directions averaged, together with the fit-
ted models that we will describe in this section. Refer to Section 2
in the supplementary material for the individual measured data for
the two directions. We found that, due to a hardware limitation in

Figure 2: (Left) Our experimental setup. (Right) The main vari-
ables of the stimuli are the stimulus luminance L, the surrounding
luminance Ls, the spatial frequency u and the direction of the pat-
tern.

the SIM2 display, quantization artifacts appear on the brightest si-
nusoidal patterns (L = 1065.25 cd/m2) when displayed against the
darkest surround levels (Ls = 0.55, 2.75 cd/m2). We therefore dis-
card these two cases for the modelling.

We have discovered a strong dependency of contrast sensitivity on
the surrounding luminance. As Figure 2 shows, when a darker stim-
ulus is surrounded by brighter luminance levels (L < Ls), contrast
sensitivity drops significantly across all spatial frequency bands.
This can be clearly appreciated specially in the first two plots. In
particular, the measured CSF of the darkest stimuli surrounded by
the brightest luminance level presents the lowest sensitivity level.
On the other hand, when the presented stimulus is brighter than the
surrounding luminance level (L > Ls), sensitivity is barely affected
by the surrounding luminance level. This can be seen specially in
the last three plots in the figure. These are the key insights that we
take into account in this section for modelling our CSF.

4.1. A full surround-aware CSF model

We base our derivation of a surround-aware CSF on the for-
mulation of Barten’s CSF model [Bar92], which is of one of
the common CSF models, widely used in several applications
such as video coding [MND13], medical imaging [DIC04] and
tone-mapping [FPSG96]. This will allow us to provide backward
compatibility for many existing applications. However, Barten’s
model [Bar92] is independent of the surround luminance Ls. To
take Ls into account, we introduce a relative scaling function R =
S(u, L, Ls)/S(u, L,Ls = L), whichwe term the relative contrast sen-
sitivity. (In the following, we refer to S(u, L, Ls = L) as S(u, L,L)
for convenience.) Our surround-aware CSF model can then be ex-
pressed as:

S(u, L, Ls) = R(u, L∗)SB(u,L), (1)

where L∗ = Ls/L, and SB corresponds to Barten’s CSF model, opti-
mized to our measured data. Refer to Section 3.1 in the supplemen-
tary material for more details about Barten’s original CSF model.

The function R can be regressed from our measurements as:

R(u, L∗) = Sdata(u, L,Ls)

Sdata(u, L, L)
. (2)

We observe a non-linear trend of the relative factor R with respect
to the luminance ratio L∗ as shown in Figure 3. Choosing adequate
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S. Yi et al. / Modelling Surround-aware Contrast Sensitivity for HDR Displays 5

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5

lo
g

10
 c

on
tr

as
t s

en
si

tiv
ity

L=0.56

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=2.69

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=27.87

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=282.91

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=1065.25

Ls=1072.61

Ls=288.09

Ls=28.53

Ls=2.75

Ls=0.55

Our model

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5

lo
g

10
 c

on
tr

as
t s

en
si

tiv
ity

L=0.56

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=2.69

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=27.87

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=282.91

100 101

spatial frequency (cycle/degree)

-1

-0.5

0

0.5

1

1.5

2

2.5 L=1065.25

Ls=1072.61

Ls=288.09

Ls=28.53

Ls=2.75

Ls=0.55

Our model

Figure 3: Our surround-aware contrast sensitivity function (CSF) models (solid line) compared with our measurement data (dashed line with
a circle marker), for different surround luminances Ls. Top: Our full CSF model. Bottom: Our practical CSF model. Each of the five colours
for both dashed and solid lines indicates the five levels of surrounding luminance Ls as shown in the legend. Refer to Figure 7 to compare the
predicted contrast sensitivity by HDR-VDP-2.2 with our perceptual measurements.

modelling functions to describe our observed behaviour and fitting
them to our data (refer to Section 3.2 in the supplementary material
for complete model derivation details), our resulting model for the
relative contrast sensitivity becomes:

R(u,L∗) = 10r(u,log10 L
∗ ), (3)

with r given by the following expression:

r(u, l∗; a, b, c, d) = −a(l∗)2 + bl∗ − a(l∗ + c)
√
(l∗ + c)2 + d

−ad ln(
√
(l∗ + c) + d + l∗ + c)

+a[c
√
c2 + d + d ln(

√
c2 + d + c)], (4)

where l∗ = log10 L
∗. Defining all parameters a, b, c and d as func-

tions of the spatial frequency u would provide the most accurate
results, at the risk of overfitting our measurements. To avoid this
overfitting, we first define b′ := b+ 2ac, which represents the par-
tial derivative of rwith respect to l∗ so that b′ = liml∗→−∞ dr

dl∗ (u, l
∗).

We then model only b′ and c as functions of u, and fit a and d as con-
stants:

b′(u; q1, q2, q3) = q1
1 + eq2(log10 u−q3 )

,

c(u; p1, p2) = p1 log10 u+ p2, (5)

where q1,2,3 and p1,2 are model parameters for b′ and c, respec-
tively. The first four plots in Figure 3 show how the the slope of
the sensitivity flattens as frequency increases, for negative values of
log10(Ls/L).

In our regression results, the parameter d is always close to zero
(approximately d = 2 × 10−14); we thus set d = 0 so that r be-
comes:

r(u, l∗; a, b, c) = −a(l∗)2 + bl∗ − a(l∗ + c)|l∗ + c| + ac|c|. (6)

The optimized parameters are presented in Table 1.

4.2. A practical surround-aware CSF model

For many applications (e.g. HDR video coding, tone mapping or
visual difference predictors), a univariate CSFmodel S(L), dropping
dependency of u, is typically used to adjust the perceived luminance
level L for a specific frequency band u or a maximum argument
of u. In our full model S(u,L, Ls), both R(u,L∗) and SB(u, L) does
depend on the frequency u. However, in such practical applications,
a simpler model facilitates the prediction of CSF values beyond the
original measurement range, with less potential risks of overfitting
than more complex models. We thus propose a practical relative
contrast sensitivity model Sp(u, L,Ls) by dropping the dependency
with the frequency u in R(u,L∗), yielding a simpler Rp(L∗).

Moreover several existing CSF models, such as Barten’s [Bar92]
or Daly’s [Dal92] model, are used commonly in various applica-
tions [MKRH11, MDK08, MND13]. However, these models do not
take into account the effect of the surrounding luminance Ls. A de-
sirable property of our model is backward compatibility, so that it
can be easily incorporated into such existing perception-based mod-
els and applications. We can achieve this compatibility by designing
new relative contrast sensitivity that does only require a scaling fac-
tor λ to adapt existing models to our measurements.

© 2022 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



6 S. Yi et al. / Modelling Surround-aware Contrast Sensitivity for HDR Displays

Table 1: Optimized parameters for our full surround-aware R (Section 4.1), and our practical Rp (Section 4.2). Here, σ0, η and k are parameters from the
original Barten’s 1992 model. Refer to Section 3 in the supplementary material for more details.

R model a p1 p2 q1 q2 q3 σ0 η k
0.078 −0.50 0.12 30.92 0.00033 −19247 0.0102 0.0155 10.44

Rp model a b c λ

0.076 0.073 −0.13 0.24

Table 2: Typical parameters values for Barten [Bar92]’s CSF model SOB , which is used in previous work such as [Bar99] and [Bar03]. However, the value of
Xo = 2◦ is taken from our experimental setup.

SOB model �0 Cab T Xmax Nmax p
3 × 10−8 s deg2 0.08 arcmin/mm 0.1s 12◦ 15 cycles 1.2 × 106/s/deg2/Td

u0 σ0 η k Xo
7 cycles/deg 0.5 arcmin 0.03 3.0 2◦

Taking the two previous considerations into account, this new
practical model can be written as:

Sp(u,L, Ls) = λRp(L
∗; a, b, c)SoB(u, L), (7)

where Rp(L∗; a, b, c) is the u-independent, practical relative
sensitivity function, SoB(u, L) refers to Barten’s original CSF
model [Bar92] without optimization to our measured data, and λ is
a multiplicative scalar parameter that adjusts the scale of SoB(u, L).
Note that Rp is still Ls dependent, so it yields a surround-aware CSF,
but has less potential risks of overfitting beyond the original mea-
surement range of u. Also, SoB provides a backward compatibility
to the conventional CSF model. The values of the parameters a, b, c
and λ are written in the bottom row of Table 1. Note that, despite our
simpler Rp function, frequency-dependent effects are still captured
by SoB.

4.3. Summary of CSF models

Here, we provide a brief summary of our CSF models for the con-
venience of reproduction. Barten [Bar92]’s CSF model SOB (u,L) is:

SoB(u,L) = Mopt (u)/k√
2
T

(
1
X2
o

+ 1
X2
max

+ u2

N2
max

)(
1

ηpE + �0

1−e−(u/u0 )
2

) , (8)

where

Mopt (u) = e−2π2σ 2u2 ,

σ =
√

σ 2
0 + (Cabd)2,

d = 5 − 3 tanh (0.4 log10 L),

E = πd2

4
L

(
1 −

(
d

9.7

)2

−
(

d

12.4

)4
)

, (9)

and each parameter takes values specified in Table 2.

Our full surround-aware CSF model S is:

S(u, L, Ls) = R(L∗; a, b(u), c(u))SB(u,L), (10)

where L∗ = Ls/L and SB indicates Barten’s CSF described in Equa-
tion (8) with three fitted parameters σ0, η and k shown in the first
row of Table 1. Our log–log-scaled relative sensitivity model r(l∗ =
log10 L

∗) = log10 R(L
∗) is:

r(l∗; a, b, c) = −a(l∗)2 + bl∗ − a(l∗ + c)|l∗ + c| + ac|c|. (11)

Here, b and c are functions of u:

c(u; p1, p2) = p1 log10 u+ p2,

b(u; q1, q2, q3) = q1
1 + eq2(log10 u−q3 )

− 2ac(u). (12)

Our practical surround-aware CSF model Sp is:

Sp(u, L,Ls) = λRp(L
∗; a, b, c)SoB(u, L), (13)

where the log–log scale of Rp uses the same formula as Equa-
tion (11), but a, b and c are constant shown in the second row of
Table 1.

4.4. Validation of the models

To validate the accuracy of our models, we evaluate generalization
errors by randomly separating the entire measurements into training
and test datasets. We have used 85% of our data for training, and
15% for testing.

Our resulting full CSF model is shown in Figure 2 (top). The
training and test errors of our fitting are RMSE = 2.69 dB and
RMSE = 3.93 dB, respectively. The fitting results of our practical
CSF model are shown in Figure 2 (bottom). Its training and test er-
rors are RMSE = 3.16 dB and RMSE = 4.11 dB, respectively.

To avoid the risk of overfitting, we carefully designed our
model with combinations of monotonically increasing or decreasing
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Figure 4: The first four plots show our relative sensitivity R(u,L∗) as a function of the ratio between surround luminance Ls and stimulus
luminance L. From left to right (increasing spatial frequency u), it can be seen how the slope flattens for negative values of Ls/L. The rightmost
plot shows our practical relative sensitivity Rp(L∗), which does not depend on u.

functions for each parameter, rather than using a high-order poly-
nomial regression. For instance, we model our relative sensitivity
function Equation (4) as a linear function when the luminance ratio
decreases in the log–log domain and model it as a simple quadratic
function when the luminance ratio increases. Moreover, in Equa-
tion (5), we include additional parameters to b and c using mono-
tonically decreasing functions. The choice of ourmodel components
enforces the local smoothness in the predicted values, implicitly
avoiding overfitting.

Note that, although our practical model is slightly less accurate
than the full model according to the training error, the generaliza-
tion error of the practical model (�RMSE=RMSEtest −RMSEtrain)
is smaller for the practical model (�RMSE = 0.95 dB), compared
with the full model (�RMSE= 1.34 dB). This means that our prac-
tical model can be better generalized and thus provides a good trade-
off between accuracy and ease of use with less parameters.

Comparison with ModelFest dataset. We compare our CSF
model with an existing dataset that contains constrast sensitivity
thresholds for different stimuli to validate our experiment and
model. We use the ModelFest dataset [WA05], which contains 43
stimuli with various sizes (at most 2.133◦) and different shapes.
We only use the first ten stimuli since, similarly to the ones in our
experiment, they are composed of sinusoidal shapes with fixed
sizes and a single frequency, while stimuli 11–43 have varying sizes
of stimuli, mixed frequencies or complex images, which cannot be
directly predicted by our CSF model. As shown in Figure 4, our
CSF prediction qualitatively follows the trend of the ModelFest
dataset. The RMS prediction error of our model to the ten stimuli
is 3.98 dB, which is smaller than the standard deviation of the
ModelFest measurements (4.18 dB), which intuitively indicates a
good fit to our experimental data.

Comparison with other CSF models. We show in Figure 5
our measured CSF at L = Ls compared with Barten [Bar92],
Daly [Dal92]’s and Mantiuk et al. [MKRH11]’s CSF models. Note
that these previous models do not account for surrounding lumi-
nance, therefore, we can only compare to them for the particular
case L = Ls. First, we observe that themeasured sensitivity saturates
for each frequency as the luminance of the stimulus increases. This
is in accordance with previous models [Dal92, Bar92, MKRH11].
Second, we also find that the measured sensitivity tends to increase
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Figure 5: (a) First ten stimuli of the ModelFest dataset, which con-
sist of Gabor patterns of fixed sizes, and (b) comparison of our full
CSF model’s prediction with the ModelFest dataset.

as the luminance level of the stimuli rises, with the exception of L
= 28.53 cd/m2. This luminance level produces the highest sensitiv-
ities for low spatial frequencies (u= 1.26, 2.52, 5.04 cpd), as also
observed in the data collected by Mantiuk et al. [MKRH11] (Fig-
ure 5, bottom). BothMantiuk et al.’s and our observations found the
highest sensitivity levels of low frequency bands to span luminance
levels between 20 and 28.53 cd/m2. This may be related to the in-
terplay between cones and rods at mesopic vision levels (10−1 to
101 cd/m2 [Ska16]).

To our knowledge, there is only one other CSF model that takes
into account the influence of the surrounding luminance Ls [Bar03].
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Figure 6: Our surround-aware CSF measurements from the low-
est to brightest luminance levels of stimuli. The length of one side
of the error bar indicates one standard deviation of participants’
responses. Our measured contrast sensitivity functions (CSFs) at
L = Ls compared with Barten [Bar92]’s, Daly [Dal92]’s, Mantiuk
et al. [MKRH11]’s, and our full CSF models. Dashed lines with
circles markers represent our measurement and solid lines rep-
resent the CSF models. Each of five colours of both dashed and
solid lines indicates five levels of surrounding luminance Ls as
shown in the legend. The CSF scales of each model are different
and thus are adjusted manually to compare both trends. The ‘ ’
marks mean that such properties partially hold, explicitly, Mantiuk
et al. [MKRH11]’s CSF model and our measured CSF increase as L
increases except for L=20–30 cd/m2, while ‘ ’ indicates consistent
agreements.

Barten’s surround-aware CSF is based on measurements from a
technical report by Rogers and Carel [RC73], who measured just
three subjects while analysing dashboard visibility in airplanes.
Both Barten’s 2003 model and our practical model rely on Barten’s
1992 model, and in particular on the function SoB. The key differ-
ence is the inclusion in our model of the relative contrast sensi-
tivity term Rp(L∗). As shown in Figure 6, as Ls/L decreases, our
model decays linearly with a small slope in log–log scale, whereas
Barten’s model decays quadratically. The dataset acquired by Roger
and Carel [RC73] differs from our dataset significantly when the
surround luminance Ls is low. A potential explanation is the large
difference in experimental environments.While we use for our mea-
surements a modern HDR display, their measurements were taken
using an airplane dashboard with a function generator and white
masks to produce their stimuli [RC73]. Additionally, their measure-

Figure 7: Comparison of our relative sensitivity Rp of our prac-
tical model and Barten’s [Bar03], as function of Ls/L. As the lu-
minance ratio decreases, our model decays linearly with a small
slope, whereas Barten’s model decays quadratically. We speculate
that this is due to the two different viewing conditions used to gather
data in both models: HDR display (ours) versus airplane dashboard
(Barten).

ments may be affected by phosphor persistence and video band-
width of CRTs [PGP00]. We show in the following section that this
key difference has a strong impact in resulting applications.

Comparison with HDR-VDP-2.2. Whereas our CSF model di-
rectly handles surrounding luminance as a variable, other works
such as HDR-VDP-2.2 [MKRH11, NMDSLC15] and the work of
Vangorp et al. [VMGM15] have handled the effect of surround us-
ing models of glare, which is caused by intra-ocular light scatter-
ing. In this context, in order to show the usefulness of our model,
we show predictions of our measured stimuli using HDR-VDP-2.2,
which contains both models of glare and (not surround-aware) CSF.

HDR-VDP predicts visibility differences between test and refer-
ence images, which are the inputs to the method. The method then
outputs detection maps consisting of the prediction probability of
each pixel Pmap and single scalar detection probabilities Pdet , which
are computed by pooling the detection maps. In order to run HDR-
VDP-2.2 with our measured data, we assign the stimuli described
in Figure 1 with zero contrast of sinusoidal patterns as the reference
images and the stimuli with non-zero contrast of sinusoidal patterns
as the test images. We adjust the contrast of the test images until we
reach a probability of detection Pdet = 0.5. Then the adjusted con-
trast becomes a contrast threshold, which is the inverse of contrast
sensitivity. The predicted contrast sensitivities of our experimental
variables are reported as solid lines in Figure 7(a). Figure 7(b) shows
several examples of detection maps. While HDR-VDP-2.2, which
implements the glare model, roughly predicts the trend of our mea-
sured surround-aware CSF, the prediction errors with our train and
test sets (RMSE = 7.36 dB and RMSE = 7.90 dB) are considerably
higher to those of our CSF models. Additionally, our models pro-
vide analytic surround-aware CSF functions, which can be easily
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Figure 8: Predicted contrast sensitivity of our experimental stimuli using HDR-VDP-2.2. The top row (a) shows our measurements (dashed
lines with circle markers) and the predicted contrast sensitivity by HDR-VDP-2.2 (solid lines). Each of the five colours of both dashed and
solid lines indicates each of the levels of surrounding luminance Ls as shown in the legend. The bottom row (b) shows several examples of
detection maps obtained by HDR-VDP-2.2, which correspond to the red arrows markers in (a). It intuitively shows how HDR-VDP-2.2 detects
contrast. Note that the detection maps are cropped at the centre. Refer to Figure 2 for the predicted contrast sensitivity by our model.

computed, as opposed to predicting contrast sensitivity by itera-
tively running HDR-VDP-2.2 as described above.

5. Applications of the CSF Model

Our practical CSF can be plugged into many HDR display appli-
cations that rely on a CSF model. We illustrate examples of HDR
video compression, tone-mapping and prediction of visual differ-
ences using our practical CSF1.

5.1. HDR video compression

Current compression methods rely on the traditional integer-based
framework; this requires that float-based HDR video content be
converted to integers before compression. Quantization artifacts
are thus inevitable in the existing video compression workflow
described by the ITU-R recommendation [ITU17]. The transfer
function of the ITU-R standard compression pipeline is derived
fromBarten’s CSFmodel [Bar92], and determines which luminance
levels are allocated larger bit rates to avoid visible quantization arti-
facts. Miller et al. [MND13] later presented the perceptual quantizer
(PQ), which has been used as a standard transfer function in HDR
video coding. The values of the PQ transfer function are again de-
rived from Barten’s CSF model [Bar92]. Here, we demonstrate how
HDR video compression can also benefit from our new CSF model.

We work on YCbCr space for colour space conversion, 10-bit
quantization, 4:2:0 chroma subsampling and HEVC encoding. For
determining the compression level, we adjust the quantization pa-
rameter (QP) in HEVC encoding, which takes integer values 0–51.

For more details, including the derivation of a transfer function from
our CSF, please refer to Section 4.1 in the supplementary mate-
rial. Figure 8 compares the results of our video compression with
the standard video compression (ITU-R), and using Barten’s sub-
sequent model [Bar03]. Using our CSF allows to preserve details
better, thus reducing visible artifacts. Another example frame of our
compression is shown in Figure 9. We compress the original video
by three orders of magnitude without perceivable artifacts (from
2491,838 to 2099 kbps, for QP = 22). Refer to the supplementary
material for the video examples.

5.2. HDR tone mapping

Tone mapping is related to human contrast sensitivity as it tries to
preserve the perception of HDR content after remapping to a low-
luminance display [RWPD05, KK08b]. Many tone-mapping opera-
tors adopt existing CSFs such as Daly’s [Dal92] or Barten’s [Bar92].
As a proof-of-concept application, we apply our practical CSF
model to Mantiuk’s operator [MDK08], which relies on Daly’s CSF
to estimate contrast sensitivity. This is one of the most widely used
tone-mapping operators, and has been ranked by recent surveys as
one of the best performing algorithms [MBDC15, EMU17]. Ad-
ditionally, we also apply Barten’s CSF model to this tone-mapper
to show that our surround-aware CSF is more suitable for this task.
Figure 10 shows how Barten’s model [Bar03] fails to produce good
tone mapping results, due to its excessive drop in contrast sensitiv-
ity for scenes with dark surround luminance (shown in Figure 6).

1For all applications, the surrounding luminance Ls of scenes is estimated as
the geometric mean of the pixel values of the input HDR image.
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Figure 9: HDR video compression results, using Barten’s models
[Bar92, Bar03], and our surround-aware contrast sensitivity func-
tion (CSF) for QP = 37. Our novel CSF allows to preserve details
better, thus reducing visible artifacts. Refer to the supplementary
video.

Figure 10: Comparison of tone mapping results using Barten’s
surround-aware contrast sensitivity function (CSF) [Bar03] and our
practical model. Barten’s CSF heavily drops for scenes with dark
surround luminances (Figure 6), yielding results with very low con-
trast.

Figure 11 shows the results, compared to the latest implementa-
tion of Mantiuk’s operator [Man20]. As discussed in Section 3, for
dark surrounding environments, our CSF presents a lower sensitiv-
ity than Daly’s CSF, therefore it preserves contrasts better, resulting
in cleaner images with less residual haze.

Figure 11: Tone mapped images using Mantiuk’s [MDK08] orig-
inal tone mapping operator (left), and plugging our CSF model
(right). For scenes with dark surround luminances, our CSF
presents a low sensitivity, therefore it compresses contrast better
leading to cleaner images with less residual haze (better seen in
the digital version).

5.3. HDR visual difference prediction

Many existing metrics to predict visible differences between im-
ages rely on a model of the HVS, including contrast sensitivity
(e.g. [Dal93, Lub95, WA05, MDMS05, KVDC17]). According to
a survey by Hanhart et al. [HBP*15], HDR-VDP-2 [MKRH11] is
one of the most reliable metrics. However, it is based on a CSF,
which does not contain surrounding luminance as a control vari-
able. We integrate our CSF model in the last version of this met-
ric (HDR-VDP-2.2 [NMDSLC15]), substituting their original CSF
with our surround-aware model. Figure 12 shows the result, using
images from Cadík et al.’s dataset [CAMS11]. Although there are
more recent user studies about visual difference of videos that mea-
sure the mean opinion scores (MOS) of scenes, such as Zerman
et al.[ZVD17], we use the dataset from Cadík et al.[CAMS11] be-
cause it provides grid-based subjective maps for each scene. This
dataset contains six images with distortion maps manually anno-
tated by users, which allows to qualitatively compare the results
predicted by the metrics. For images with high surround luminance,
our predicted map approximates more closely the subjective map
annotated by users (Figure 12, top). This is due to the wider lumi-
nance range of our experiments, which allows to model the CSF
more precisely in those cases. In low-contrast images, our results
largely converge with existing methods, as expected (Figure 12, bot-
tom). The average of the correlation coefficients of our method with
six scenes is 0.5023 while that of HDR-VDP-2.2 is 0.3807. Ad-
ditional results and correlation coefficients between the predicted
probability and subjective maps are reported in Section 4.2. in the
supplementary material.

6. Discussion

In our work, we measure and model the effect of surrounding lu-
minance in the CSF. Following conventions from the CIECAM97
model, our experiment covers the luminance of the entire back-
ground and a part of surround (ambient illumination). Some existing
works have previously modelled and taken into account this effect.
Barten [Bar03]’s surround-aware CSF is the only model that con-
siders experimental measurements of the influence of surrounding
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Figure 12: (a) Scenes from Cadík et al.[CAMS11], used for com-
parison of visible difference prediction. The images are HDR, so
they are tonemapped for visualization. (b) Predicted probability
map for detection of visual differences with HDR-VDP-2.2 (left) and
our modified version using our contrast sensitivity function (CSF)
model (centre). The rightmost image shows the subjective map of
visual differences as annotated by users [CAMS11]. Our results are
more in accordance with users’ annotations for high levels of sur-
round luminance (top), while providing similar results to state-of-
the-art predictors in other cases.

luminance and its interplay with stimuli luminance [RC73]. This
model has been used in several applications, for example, Kerof-
sky et al. [KVR15] applies this CSF model in the context of image-
qualitymetrics. HDR-VDP [MKRH11, NMDSLC15] instead incor-
porates the effect of surrounding luminance by including a model
of glare. We have shown in Section 4.4 that these two models can-
not fully account for our collected measurements, which are, to our
knowledge, the first that cover a large range of background and
stimuli luminances on a state-of-the-art HDR display rigorously
calibrated. Other works in the field of image processing have also
taken into account the perceptual effects of ambient illumination,
for example on perceived quality of tone-mapped images [KE13] or
perceived image quality on displays under energy-saving mode or
high ambient illumination [YCL16]. An interesting avenue of future
work for improving image processing methods would be to take into
account both the background and ambient illumination levels and
their interplay.

Number of participants. With the consideration of the length
of the experiments, we had to limit the number of participants.
However, note that similar experiments of colour perception have
used even less participants in the past, for instance, five and six
in [MKRH11] and [KWK09], respectively. As stated in a previous
study [AGFC12, KRK11, Kim10], there are perceivable differences
in contrast vision. Despite the fact, our measurement dataset in-
cludes an aforementioned gender bias due to the hiring limitation
of volunteering participants.

Impact of viewing distance. The viewing distance for our ex-
periment (1.25m) is close to that of several previous works, such
as 93 cm for Mantiuk et al. [MKRH11]’s CSF measurements and
1.32m forVangorp et al. [VMGM15]’s local adaptation experiment.
In order to achieve a larger surrounding region in our stimuli, our
experiment was designed with a relatively close distance. Far view-
ing distances, such as in a cinema, could affect the performance of
our CSF due to accommodation effects [HR75, Joh76].

Effect of the edge of the stimuli. Recent experiments on
CSFs [MKRH11, KML13,WAK*20] employGabor patches, which
include sinusoidal patterns inside Gaussian envelopes, in order to
avoid participants detecting the edges of the sinusoidal patterns
rather than the patterns themselves. In our experimental setup,
we assume that the potential influence of the edges of the fre-
quency stimuli is negligible. Explicitly quantifying this effect on
the surround-aware CSF using Gabor-based stimuli can be an inter-
esting avenue for future work.

7. Conclusion

We have reported a series of psychophysical experiments using a
state-of-the-art HDR display, from which we have derived a novel
surround-aware contrast sensitivity function. Our work significantly
updates existing old datasets (which involved only three users and
very different viewing conditions [RC73]), and previous attempts
to characterize the effect of surrounding luminance (which involved
very limited luminance ranges [KK10, BKP14]). From our full CSF
model, we have derived a second, more practical CSF, which can be
plugged in many existing HDR applications, and consistently pro-
vides good results across a wide range of such applications.We have
shown examples of video compression, tone mapping and predic-
tion of visual differences. Our CSF leads to improved results in im-
ages with large luminance contrasts, which is a direct consequence
of the extended luminance and contrast range covered in our per-
ceptual experiments.
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