
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Dressi: A Hardware-Agnostic Differentiable Renderer with Reactive
Shader Packing and Soft Rasterization

Yusuke Takimoto∗, Hiroyuki Sato∗, Hikari Takehara∗, Keishiro Uragaki,
Takehiro Tawara, Xiao Liang, Kentaro Oku, Wataru Kishimoto, and Bo Zheng

Huawei Technologies Japan K.K.

Figure 1: Applications of our differentiable renderer called Dressi. From left to right: optimization of geometry and material (a pear and a
cow), normal map, environment map and material, and hair material of the digital human. The applications work on all devices supporting
a modern graphics API Vulkan [Khr21b] such as mobiles, tablets, cloud servers, laptops, and desktop PCs.

Abstract
Differentiable rendering (DR) enables various computer graphics and computer vision applications through gradient-based
optimization with derivatives of the rendering equation. Most rasterization-based approaches are built on general-purpose
automatic differentiation (AD) libraries and DR-specific modules handcrafted using CUDA. Such a system design mixes DR
algorithm implementation and algorithm building blocks, resulting in hardware dependency and limited performance. In this
paper, we present a practical hardware-agnostic differentiable renderer called Dressi, which is based on a new full AD design.
The DR algorithms of Dressi are fully written in our Vulkan-based AD for DR, Dressi-AD, which supports all primitive oper-
ations for DR. Dressi-AD and our inverse UV technique inside it bring hardware independence and acceleration by graphics
hardware. Stage packing, our runtime optimization technique, can adapt hardware constraints and efficiently execute complex
computational graphs of DR with reactive cache considering the render pass hierarchy of Vulkan. HardSoftRas, our novel ren-
dering process, is designed for inverse rendering with a graphics pipeline. Under the limited functionalities of the graphics
pipeline, HardSoftRas can propagate the gradients of pixels from the screen space to far-range triangle attributes. Our experi-
ments and applications demonstrate that Dressi establishes hardware independence, high-quality and robust optimization with
fast speed, and photorealistic rendering.

CCS Concepts
• Computing methodologies → Rasterization; Shape inference;

1. Introduction

Inverse rendering is a long-standing problem in estimating scene
attributes from 2D images in computer graphics and computer vi-
sion fields. Differentiable rendering (DR) plays an important role
in applications, such as facial geometry reconstruction [EST*20;

∗ These authors contributed equally to this work

GPKZ19; GPKZ21] and camera pose estimation [RRR*15]. It re-
covers scene parameters by the gradient propagation of the loss
functions defined between the rendered and observed images. For
example, it is possible to estimate materials if the appearance and
other scene settings are already known [ALKN19].

DR can be grouped into two categories: ray tracing [LADL18;
NVZJ19] and rasterization [KUH18; CGL*19; VKP*19]. The ray

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

ar
X

iv
:2

20
4.

01
38

6v
1

 [
cs

.G
R

]
 4

 A
pr

 2
02

2

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

tracing-based methods consider complex effects generated by light
transport simulations, such as indirect illumination and polarization
[NVZJ19]. They achieve the best rendering quality and accuracy
with heavy computation. In contrast, rasterization-based methods
require fewer computations and provide more efficient solutions,
attracting much attention for practical scene reconstruction. We fo-
cus on the rasterization-based methods in this paper.

Most existing rasterization-based DR systems ignore hardware
dependencies. They are designed to run on high-end hardware
from specific vendors (e.g., NVIDIA), and they often implement
the DR algorithm using automatic differentiation (AD) libraries
for neural networks (e.g., PyTorch and TensorFlow) and additional
modules written in the general-purpose graphical processing unit
(GPGPU) API, which relies on CUDA for most cases. Because
some DR-specific and performance-critical functions (e.g., rasteri-
zation and texture sampling) involve pixel-wise operations, writing
them down in the DR layer using an efficient batch operation with
AD libraries is difficult. Such a tightly coupled DR system design
increases hardware dependency and limits performance. The AD
libraries are not optimized for complex computational graphs in-
herent to DR. Moreover, DR systems cannot optimize performance
at the border between the AD libraries and handwritten CUDA
modules. Therefore, it is not easy to run the existing DR systems
on graphics hardware from various vendors (e.g., Intel, AMD, and
Arm) at practical speeds, especially on low-end edge devices. Com-
municating with a remote server that has a DR system installed is
an option; nonetheless, it impairs the interactivity of real-time ap-
plications, owing to latency and raises privacy issues. Making a DR
work efficiently on low-end hardware is a challenging problem.

To obtain hardware independence for DR systems, we can use
the graphics pipeline API, which has hardware rasterizers and
shaders, instead of the GPGPU API. However, propagating gradi-
ents in a screen space under the limitations of graphics pipelines
is another challenging problem. The existing rasterization-based
DR methods generate gradients in the screen spaces using the spe-
cial rendering processes easily implemented by CUDA, which al-
lows developer descriptions with high degrees of freedom; how-
ever, their efficient implementation using a graphics pipeline is dif-
ficult. For instance, SoftRasterizer (SoftRas) [LLCL19] computes
distances between pixels and the edges of projected triangles in a
pixel-wise manner. Nevertheless, pixel-wise computation consid-
ering all triangles is not easy for hardware rasterizers. Nvdiffrast
[LHK*20] employs analytic anti-aliasing (AA), which considers
edge information among geometrically neighboring triangles. Un-
fortunately, accessing mesh topology information is also difficult
for shaders. Therefore, we cannot port the existing methods to the
graphics pipeline.

We propose Dressi, a practical rasterization-based differentiable
renderer that solves the above problems. Dressi is based on a new
design that completely separates the AD layer and DR algorithms.
DR algorithms are fully described by the AD layer and receive
hardware independence and performance optimization through the
overall system. Our AD layer is Dressi-AD, which is implemented
in Vulkan [Khr21b], a vendor-independent graphics pipeline API.
Furthermore, it is tailored to the DR to support all its primitive op-
erations, including rasterization and texture sampling. The inverse

UV technique in Dressi-AD carefully handles the backward pass of
hardware texture sampling. At runtime, our stage packing dynami-
cally converts the computational graphs into optimal execution or-
ders to the command buffers. It maximizes hardware performance
by considering the constraints for the render pass and subpass of
the running hardware. Static values on computational graphs are
often observed in DR, such as rasterization results with static ge-
ometries. Our reactive cache embedded in the stage packing au-
tomatically detects the static values and caches them to skip later
computations.

Furthermore, we propose a new rasterization-based DR method,
HardSoftRas, to realize far-range gradients from the screen space to
vertex attributes, such as SoftRas, under the limitations of a graph-
ics pipeline. In this paper, we use the term, far-range gradient, if the
DR system propagates the gradient at a rendered pixel to vertices
projected onto far positions in screen space (i.e., more than one
pixel away). Otherwise, we call it near-range gradient. The key to
the gradient backward in the screen space is the pixel-to-triangle
distance computation; however, no prior art has implemented it on
a graphics pipeline owing to the difficulty in handling the associa-
tion between pixels and triangles. Our face-wise approach, imple-
mented on an inflexible graphics pipeline, successfully updates the
pixel-wise computation of the existing methods written in flexible
CUDA. Furthermore, a new depth-shift method is proposed to fit a
few buffers generated by the hardware rasterizer, whereas the exist-
ing methods rasterize a large number of buffers using software. We
also show that HardSoftRas is a natural extension of anti-aliasing,
which is often used in real-time forward rendering.

We experimentally show that Dressi behaves identically on vari-
ous hardware shipped from different vendors (e.g., NVIDIA, AMD,
Intel, and Arm) with varying performance, ranging from servers to
mobile platforms. We also validate that our stage packing and re-
active cache increase forward and backward speeds. Moreover, we
compare our method to state-of-the-art rasterization-based differ-
entiable renderers to validate HardSoftRas and the overall system.
Dressi achieves better speed and quality with both synthetic and
real data. Finally, we show that our method can render a photore-
alistic digital human and optimize hair parameters, which are not
supported by existing DR systems.

2. Related Work

2.1. Ray Tracing-Based Differentiable Rendering

Ray tracing-based DR can simulate complex light transport models
with visibility handling. Redner [LADL18] established a method
for complex inverse problems of scene parameters based on Monte
Carlo ray tracing [Kaj86]. Mitsuba 2 [NVZJ19] can simulate the
complicated light transport phenomena such as scattering, polar-
ization, and spectroscopy. Moreover, it achieves highly efficient
computations with template meta-programming for various data
types and a retargetable just-in-time (JIT) compilation for AD. Ra-
diative backpropagation [NSRJ20] is a memory-efficient adjoint
approach that reduces the computation of backward functions in
continuous light transportation. Path-space DR [ZMY*20] shows
better efficiency using the new Monte Carlo estimators. Path re-
play backpropagation [VSJ21] proposes a ray tracing-based mega-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

kernel generation that maintains linear time complexity with con-
stant memory usage. Ray tracing-based methods focus on photo-
realistic results and accurate backpropagation. Although they have
shown remarkable speedups recently, they still require exceedingly
high computational costs for low-end devices lacking hardware
ray tracers. Some code optimization techniques that reduce heavy
computations on high-end hardware [NVZJ19; VSJ21] are related
to our stage packing process. However, ours differs from existing
techniques because it is designed to adapt to varying graphics hard-
ware constraints.

2.2. Rasterization-Based Differentiable Rendering

Rasterization-based DR [LB14; KUH18; CGL*19; VKP*19] ex-
hibits a faster computational speed than the ray tracing-based DR.
SoftRas [LLCL19] proposes shape optimization as a probabilistic
process. It computes the minimum pixel-edge distance for all pairs
of edges and pixels in the screen space. The distances and depth
values are stored in multiple buffers. Then, the distances are con-
verted to probability, and pixel colors are calculated by aggregating
the buffers based on the probability and the depth values. Although
SoftRas can propagate screen space gradients to far-range vertex
attributes, it is difficult to handle large geometries because it re-
quires as many buffers as faces. To improve the scalability against
large geometries, PyTorch3D [RRN*20] extends SoftRas by intro-
ducing thresholds for the radius of blurring in the screen space and
the number of buffers per pixel. During rasterization, PyTorch3D
enlarges each face in the screen space within the blur radius from
their edges and stores the distances and depth values per pixel in the
buffers. The pixel-edge distance computation step of SoftRas and
PyTorch3D is implemented as a pixel-wise computation to track the
triangle correspondences in CUDA. We cannot port the algorithm
to a graphics pipeline because the hardware rasterizer is based on
a face-wise calculation. Another option is to use compute shaders;
nonetheless, their computational costs are prohibitive, and they are
not supported well on mobile platforms.

Nvdiffrast [LHK*20] achieves significant acceleration, iden-
tifying modular primitives of DR. It leverages the performance
of GPUs, especially hardware rasterization using OpenGL. Nvd-
iffrast generates screen space gradients via analytic anti-aliasing.
In contrast to SoftRas and PyTorch3D, forward rendering of Nvd-
iffrast retains the original appearance of rendered images. How-
ever, its screen space gradients are propagated only within near-
range vertices, because anti-aliasing focuses on boundaries. More-
over, its anti-aliasing step handles edge-triangle correspondences in
the CUDA code. Operating edge-based data structures is difficult
for the shaders of graphics pipelines. Nvdiffmodeling [HML*21]
is an optimization method for a mesh and shading model with
physically-based shading over Nvdiffrast. Nvdiffmodeling recon-
structs transparency using depth peeling [Eve01], but depth peeling
is not used for mixing far-range triangle attributes, as in our study.
A survey paper [KBM*20] summarizes recent DR methods.

2.3. Automatic Differentiation

AD automatically calculates function derivatives. Advances in the
usability of AD [GW08; AM*10] gives rise to new concepts of

differential programming, such as DR. AD on GPU utilizes im-
plementation techniques such as shader code generation [Lat08;
Fuj08; GRF11; Mur12; DMZ*17; HFF18] and kernel fusion
[WLY10; OUN*17]. Checkpointing [Gri92] is a method that re-
duces memory usage in a reverse-mode AD. Although recent deep
learning compilers utilize compilation techniques [LLL*21], they
do not sufficiently support general differentiable programming.
Most deep networks are dense and stationary because they con-
sist of block-shaped modules. In contrast, computational graphs in
other fields, such as DR and inverse physics simulation [HAL*20],
can be complicated, sparse, and dynamic. Most rasterization-based
DRs develop DR algorithms on AD libraries for deep learning,
such as PyTorch [PGM*19] and TensorFlow [MAP*15], and ad-
ditionally implement manual CUDA modules for DR-specific ras-
terization and texture sampling. Therefore, their performance is not
well optimized. Unique JIT compilation methods are proposed in
each domain. Mitsuba 2 [NVZJ19] has proposed the computa-
tional graph simplification for DR that repeats kernel fusion before
JIT compilation. AsyncTaichi [HXKD20] proposes asynchronous
front-end JIT optimization for dynamic optimization tasks. From
the viewpoint of supporting platforms, standard AD libraries re-
quire GPGPU, particularly CUDA, and they can run on a CPU. This
indicates that they do not consider desktop PCs and laptops with
other vendors’ GPUs and mobiles. Mitsuba 2 achieves stronger
hardware independence, thanks to its own JIT compilation. It works
either on a GPU with CUDA or various CPUs with single instruc-
tion/multiple data (SIMD) operations. However, they do not con-
sider other GPU platforms. We perform a JIT compilation of AD
for DR applications that works on all modern GPUs. TensorFlow.js
[STA*19] has an OpenGL Shading Language (GLSL) backend for
cross-platform browsers, but its performance for DR is limited be-
cause it is designed for neural networks. Enzyme [MC20] supports
AD of low-level virtual machine (LLVM) codes. Enzyme with a
translator between LLVM and standard portable intermediate repre-
sentation (SPIR)-V would be an option for hardware-agnostic DR,
but SPIR-V does not contain a hardware rasterizer. Thus, it is diffi-
cult for Enzyme to establish a high-performance DR.

3. Dressi

We depict the pipeline of our proposed Dressi in Fig. 2. Dressi-AD
describes all the components of our DR algorithms. Dressi takes
inverse problems as inputs and outputs optimized results. It con-
sists of several components, such as Renderer, Optimizer, and Loss
function. The core component is Renderer, which applies HardSof-
tRas after scene updates (e.g., animation). In the following sub-
sections, we describe the goals and designs for establishing this
pipeline. Then, we introduce the implementation and validation of
our pipeline. The implementation details are provided in the sup-
plemental material.

3.1. System Goals

This paper describes Dressi, a high-performance differentiable ren-
derer for practical usage that supports a wide range of hardware.
In short, the proposed Dressi concept is “fully written in graph-
ics pipeline-based AD for DR”. As shown in Table 1, the exist-
ing rasterization-based DR frameworks use general-purpose AD

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

Output

iterations

Optimized

parameter
Scene

Function generation §3.3.1

Automatic differentiation

Forward function objects

Optimizer function objects

Backward function objects

Texture sampling §3.3.2

Inverse UV §3.3.2

Dressi

Optimizer

Dressi-AD

HardSoftRas §3.4Renderer

Update scene Rasterization Shading Blending

Loss function

Define forward functions Execution Access to results

Stage packing §3.3.3

Fast-rebuild
§3.3.3

Computational graph

Stage graph

Substage graph

Full-rebuild
§3.3.3

GPU execution §3.3.4

Command
buffer

GPU

Result

U
pdate

Scene components

Input

Inverse problem

parameters
Scene Reference

Image

Figure 2: Dressi’s pipeline. This figure shows a toy inverse problem for the optimization of the albedo texture in a set of scene parameters, Θ,
to fit the rendered result to the reference image, IGT . Dressi is written with forward functions of Dressi-AD. Dressi-AD builds a computational
graph and executes inverse rendering on the GPU via function generation and stage packing.

SoftRas [LLCL19] PyTorch3D [RRN*20] Nvdiffrast [LHK*20] Ours
Graphics Hardware NVIDIA NVIDIA NVIDIA NVIDIA, AMD, Intel, Arm, ...
AD PyTorch PyTorch PyTorch and TensorFlow Dressi-AD

Implementation / Backend API

Math AD / CUDA AD / CUDA AD / CUDA AD / Vulkan
Rasterization Manual / CUDA Manual / CUDA Manual / CUDA + OpenGL AD / Vulkan
Texture sampling Manual / CUDA AD / CUDA Manual / CUDA AD / Vulkan

Table 1: Comparison of rasterization-based DR frameworks. Thanks to our full AD approach with Dressi-AD based on Vulkan, ours can
work on various graphics hardware and have high performance.

and supplement DR-specific functions using handwritten modules
in the GPGPU API. This typical design is not scalable to various
graphics hardware and can cause performance degradations owing
to a lack of optimization across the entire system. To solve these
problems, we set the design goals of Dressi as follows:

• G1: Hardware-agnostic. To democratize DR and explore the
possibility of its practical application in everyday life, the DR
system must be hardware-independent. People use various hard-
ware, including low-end mobile devices, but existing DR sys-
tems do not support most of them.
• G2: Hardware-accelerated. Acceleration by graphics hardware

is practically essential for handling massive DR computations.
• G3: Adaptivity. Automatic and dynamic adaptation to running

hardware to boost performance is desirable for a practical DR
system. Naive implementation with a static pipeline can cause
deterioration of efficiency for some hardware.
• G4: Ease of modification. A practical DR system should be eas-

ily customized with APIs that support all primitive operations for
DR. Unlike traditional renderers, many optimization settings, not
just shaders, must be set for each DR application. DR algorithms
should be easily customized as well to incorporate the latest DR
techniques.
• G5: Independent. Practical DR systems should support in-

dependent edge devices without communicating with remote
servers. For real-time applications with user interaction, the la-

tency caused by communications should be avoided. Moreover,
DR plays a vital role in appearance modeling using personal in-
formation (e.g., human face). Such modeling algorithms should
be performed on edge devices with local data to protect user pri-
vacy.
• G6: Optimization friendly. Optimization with images is a prim-

itive purpose of DR. DR should be capable of robust and fast
optimization.

3.2. System Design

To achieve our goals, we make the following design choices:

• C1: Graphics pipeline only (⇒ G1 and G2). We build all com-
ponents of our system on a standard graphics pipeline. Conse-
quently, our Dressi obtains cross-platform properties and accel-
eration by graphics hardware.
• C2: Monolithic system (⇒ G4 and G5). We design our AD and

Dressi as a monolithic system. Considering only our AD, users
can quickly develop DR applications and update Dressi itself.
An independent device completes the DR execution.
• C3: Runtime optimization (⇒ G3). Hardware capability varies

across devices (e.g., the number of input attachments of Vulkan).
Our system dynamically generates and optimizes shader codes at
runtime and maximizes the performance of each device.
• C4: Fully written in AD (⇒ G2, G3 and G4). Our DR algo-

rithms are fully written in our AD for DR. Thus, the DR al-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

gorithms are wholly separated from the AD. The APIs of our
AD provide all primitive operations for DR, such as rasteriza-
tion and texture sampling. Our AD globally optimizes Dressi’s
performance. Users can extend Dressi simply to write forward
passes with the functions of the AD.
• C5: Far-range gradient (⇒ G6). Our rendering process is de-

signed to deliver far-range gradients from the screen space to
vertex attributes. It enhances fast and robust convergence.

Based on the design choices above, Dressi is materialized with
the following implementations:

• I1: Dressi-AD in Section 3.3 (⇒ C1, C2, C3 and C4). A new AD
library for DR is proposed. The backend of Dressi-AD is a cross-
platform graphics pipeline API, Vulkan. Dressi-AD describes all
components of Dressi; therefore, Dressi obtains hardware inde-
pendence and acceleration.
• I2: Inverse UV in Section 3.3.2 (⇒ C1 and C4). Regarding the

backward computation of texture sampling with hardware in our
AD, we propose an inverse UV texture.
• I3: Stage packing in Section 3.3.3 (⇒ C2 and C3). We pro-

pose a JIT compilation technique for Vulkan’s hierarchy to map
multiple subpasses to a render pass. Shader codes on the com-
putational graph are automatically packed into optimal GPU ex-
ecution units, considering hardware constraints. Reactive cache
is integrated to skip redundant computation.
• I4: HardSoftRas in Section 3.4 (⇒ C1 and C5). Contrary to

most DR systems, ours is fully implemented under the limitation
of a graphics pipeline. HardSoftRas is a novel rendering process
enabling far-range gradient with graphics hardware.

3.3. Dressi-AD: A Vulkan-Based AD Library for DR

Dressi-AD, a hardware-agnostic AD for DR built on Vulkan, is the
foundation of our system. OpenGL was another candidate for the
graphics pipeline, but it is too abstract to exploit the performance of
modern hardware. OpenCL and compute shaders may not be sup-
ported well on mobile devices, and they cannot use hardware ras-
terizers. Moreover, their performances are limited since there is no
correspondence to Vulkan’s subpasses. We prefer Vulkan because
of its low-level APIs and the potential to increase the rendering
speed. Unlike multi-dimensional tensors used in most existing AD
libraries, we choose 2D images as the primitives of our AD, consid-
ering compatibility with graphics pipeline and DR. Dressi-AD has
all primitive operations for DR, including rasterization and texture
sampling. Dressi-AD is written in C++17.

Dressi-AD adopts its own variable and function objects for
reverse-mode AD. The APIs provided in general languages are
the preferred design for developers [MGAK03]. Developers write
mathematical problems with the APIs, then Dressi-AD builds a
computational graph and executes it on GPUs using the define-
and-run scheme. An example of a user program is shown in the
supplemental material. The bottom part of Fig. 2 is the build and
execution pipeline of Dressi-AD after users define the problems.
In this subsection, we explain three key operations in the pipeline:
function generation, stage packing, and GPU execution. We use
Vulkan terms to introduce a specific implementation.*

∗ VkImage is a structure that handles 2D arrays in Vulkan. VkRenderPass

3.3.1. Function Generation

Dressi-AD instantiates function objects and variable objects in pro-
grams written by users. Each forward function object has the GLSL
representation that is compatible with a fragment shader, and it has
a method to generate backward function objects. This GLSL code
generation step roughly follows TensorFlow.js [STA*19]. Some
function objects for DR cannot be defined using the built-in GLSL
functions. One such exception is the backward functions of texture
sampling, which will be explained in Section 3.3.2.

The variable object is a data structure for the inputs and outputs
of the functions. For reasons described later, we need to split the
shaders and output the intermediate variables from them. Vertex
shaders cannot export intermediate variables, and compute shaders
are not well optimized for graphics purposes. Therefore, we prefer
fragment shaders with dummy vertex shaders as much as possible,
which are commonly used in deferred rendering. In our implemen-
tation, we convert the variables into VkImage. They can contain
any 2D array resources, such as textures, vertex buffers, and blend
weight matrices. Note that the variables can represent higher di-
mensional tensors as stacked 2D arrays.

3.3.2. Inverse UV: Backward for Hardware Texture Sampler

Existing rasterization-based DR systems implement texture sam-
pling with software, for instance, by tensor operation in general-
purpose AD libraries [RRN*20] and handwritten CUDA modules
[LHK*20]. In contrast, our texture sampling is a function of our
AD based on a graphics pipeline. Thus, we are interested in directly
handling textures of graphics pipeline. We use texture(), which
is a function for texture sampling in GLSL with hardware acceler-
ation, as a forward function object to map texture space to screen
space. Forward texture sampling with linear interpolation generates
a pixel value from four neighboring pixels. In the backward pass,
the gradients from the four neighbors should be summed up. How-
ever, a naive implementation is difficult because the current APIs
of Vulkan do not fully support atomic float add operations.

Therefore, we propose an inverse UV texture, the lookup table
for converting gradients from the screen space into texture space.
Algorithm 1 calculates it in a compute shader in Vulkan. The in-
verse UV texture can only maintain the last updated values for each
texel, and a constant sampling order may lead to an imbalance.
Some texels kept in the inverse UV are updated in every frame,
whereas others are never updated. Consequently, artifacts may ap-
pear in an optimized texture. To solve this imbalance, we disrupt the
sampling order by adding quasi-random numbers generated from a
Sobol sequence [Sob67] to pss

i for each frame. The gradient can
be propagated into four texels during iterative optimization. An in-
verse UV map that samples 3D scenes efficiently for ray tracing-
based DR [NDJK21] was recently proposed. In contrast, ours is
designed to handle the backward pass with a hardware texture sam-
pler.

is a structure that contains subpasses, I/O structures, and dependencies be-
tween subpasses. The details are provided in https://www.khronos.
org/registry/vulkan/specs/1.2-extensions/man/html/

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/
https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

Algorithm 1 Calculating an inverse UV texture

Input: the size (Wss,Hss) of screen space, a rasterized UV image
Iuv ∈ RWss×Hss×2 in screen space, the size (Wtex,Htex) of tex-
ture space

Output: an inverse UV texture, Iinv_uv ∈ RWtex×Htex×2

1: for all pixel indices, i = 1,2, ...,Wss×Hss do
2: calculate a pixel position in screen, pss

i
3: fetch and normalize UV value, ptex at pss

i from Iuv
4: Store pss

i as a pixel value at ptex in Iinv_uv
5: end for

Vulkan render pass

Vulkan subpass
Input attachments

void main(){
 vec4 v0 = subpassLoad(inputs[0]);

 vec4 v1 = subpassLoad(inputs[1]);
 vec4 v2 = v0 / v1;

 vec4

Subpass

Stage

v0

In

Out

Subpass

v1

Output attachments

In

Out

v0 v1

v3

v3

v4

v3

Environment map

Shading

Backward

Optimizer

Rasterization

outputs[0] = v3;
v3 = v0 + v2;

}

Function
[Division]

Substage

Function
[Add]

v4

v0 v1

v3

v2

Substage

sampling

Stage graph

Figure 3: Stage packing visualization. An example of a stage graph
is shown on the left. A stage of rasterization is magnified from the
middle to the right. Function objects are packed into a substage,
and substages are packed into a stage. v0, ..., v4 are variable ob-
jects. A substage corresponds to a subpass, and a stage is converted
into a render pass in Vulkan. One subpass has one fragment shader,
whose code is generated from the function objects in a substage.
Variable objects, which are the input and output of a substage, are
treated as attachments to a subpass. A render pass depends on input
and output attachments among subpasses as Vulkan specification.

3.3.3. Stage Packing

All variable objects and function objects for the forward pass, the
backward pass, and optimizers to connect them constitute a single
directed graph structure called a computational graph. The graph
is not executable in a single fragment shader for the following rea-
sons: (1) Inverse UV computation by a compute shader and ras-
terization by a hardware rasterizer cannot be executed on fragment
shaders. (2) A single shader cannot have different sizes for the out-
put images. (3) There are limitations in the number of input and out-
put variables in one shader. These are typical limitations of graph-
ics pipelines. Therefore, we employ hierarchical shader packing to
efficiently execute the graph in a reactive manner.

First, function objects in a computational graph are packed into
substages, which represent fragment shaders, rasterizations, and
compute shaders. Each substage except a compute shader is com-
patible with a subpass of Vulkan. Substages construct an oriented
graph, substage graph. At the construction process, substage pack-

F
ul

l-
re

bu
il

d

F
as

t-
re

bu
il

d

Function Substage Stage Variable (clean) Variable (dirty)

0

1

2

3

4

0

1 3

4

0

1

4

Figure 4: Two-phased caching methods fast-rebuild and full-
rebuild to use clean variable objects as cache. Fast-rebuild packs
substages with dirty (i.e., not clean) variable objects as I/O into
stages. Full-rebuild packs function objects with dirty variable ob-
jects as I/O into substages and constructs stages again. Full-rebuild
is slower because it involves updating the shader code, but the
graphs reconfigured with full-rebuild run faster than with fast-
rebuild.

ing, a runtime optimization for each GPU model to minimize the
number of substages with a greedy strategy, is performed. Substage
packing searches for a good combination of function objects to re-
solve hardware constraints and reduce bandwidth consumption. As
a result, it brings fewer read/write operations and improved mem-
ory efficiency. Our method is inspired by the shader partitioning
used in multipass rendering [CNS*02], which was proposed only
for the forward pass.

After the construction of the substage graph, substages are
merged into stages. A stage graph is built from the stages for
execution as a render pass of Vulkan (i.e., VkRenderPass). The
two-level hierarchy between a render pass and multiple sub-
passes allows drivers to improve memory efficiency. Although our
graphs may contain compute shaders, Vulkan executes the compute
shaders outside the hierarchy. Vulkan has some constraints for ren-
der passes. For example, subpasses in the same render pass must
have the same image size. Therefore, under these constraints, we
apply stage packing to search for a better combination of substages.
Stage packing is done similarly as substage packing. Fig. 3 shows
the relationship among the function object, substage, and stage.

Our AD instantiates VkImage objects only from variable objects
exposed beyond the substages, including all scene parameters Θ.
Subpasses use the instances as input and output attachments of
Vulkan. Function objects in a substage are expanded into GLSL
code by adding loading and saving VkImage. As shader code sim-
plification [MSPK06], we implement standard optimization tech-
niques such as duplicated function removal and automatic reuse
of VkImage to reduce memory consumption. Additionally, a two-
phased reactive cache is implemented to efficiently handle DR’s
complex graph structure and partially unchanged values on it. In-
spired by reactive programming [BCC*13] and sub-graph culling
in a modern game engine [ODo17], our reactive cache automati-
cally detects clean graph nodes that are not updated through opti-
mization and skips their recalculation with cached values that have

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

been computed once. It is especially effective for large blocks such
as irradiance sampling and rasterization for a static scene, although
they can also work for small snippets. Fig. 4 presents details of
our reactive cache. Although we have described the Vulkan imple-
mentation, our stage packing can be implemented for any graphics
API with a hierarchical structure by minor modifications. Our stage
packing is a unique JIT compilation technique for DR because it (1)
is designed for AD including backward, (2) handles the two-level
hierarchy, and (3) has an embedded reactive cache.

3.3.4. GPU Execution

After stage packing, Vulkan objects are created according to a stage
graph and substage graphs. The order of stage execution is recorded
into GPU command buffers. Thanks to multiple subpasses in a ren-
der pass, Vulkan may automatically reduce bandwidth consump-
tion, depending on the GPU vendor’s implementation.

3.4. HardSoftRas: A Hardware Accelerated Soft Rasterizer

We propose a novel rendering process called HardSoftRas to prop-
agate gradients from the screen space to far-range vertex attributes
using hardware rasterizers. Moreover, thanks to our full AD ap-
proach, the backward step is more efficient than prior art. Dressi-
AD can pack shader codes throughout HardSoftRas, although prior
art cannot be optimized through common AD libraries and hand-
written modules (see Table 1). HardSoftRas consists of three main
steps: rasterization, shading, and blending.

3.4.1. Differentiable Rendering

DR is a method that optimizes parameters of a 3D scene by mini-
mizing user-defined metrics between rendered images and ground
truth (GT) images. We formulate the scene parameters, Θ, with a
set of 3D model, camera, θC, lighting, θL, and environment, θE ,
parameters. The 3D model parameters are derived from the geo-
metric, θG, and material, θM , parameters. As Nvdiffrast indicates,
rendering is regarded as a function composed of rasterization, shad-
ing, and post-processing, which can convert a 3D scene into 2D
images. We define the rendering function as follows:

I(Θ) = frender(Θ) (1)

= fpp(fshade(frasterize(θG,θC),θM ,θL,θE)). (2)

where frender, frasterize, fshade, and fpp are rendering, rasteriza-
tion, shading, and post-processing (e.g., anti-aliasing, blending,
gamma correction, and masking), respectively. I(Θ) ∈ RW×H×C

denotes the rendered image, where W, H, and C are the width,
height, and channel of the image. To make the function differ-
entiable with all parameters of the scene components, the gradi-
ents of all the functions, frasterize, fshade, and fpp, should be cal-
culated using the chain rule. For example, given a loss function,
L : RW×H×C×RW×H×C→R, to calculate the difference between
the rendered, I(Θ), and reference, IGT ∈RW×H×C images. An op-
timization problem for Θ can be defined as argminΘ L(I(Θ),IGT).

Then, the gradient of Θ can be calculated as ∂L
∂Θ

= ∂L
∂I

∂I
∂Θ

. The opti-
mization problem can be iteratively solved using a gradient-based
method.

Algorithm 2 Rasterization of HardSoftRas

Input: The blur radius r ∈ [0,1], #buffers K ≥ 1, #faces F ≥ 1,
face indices j ∈ F, and faces f j

Output: signed distance distk
i , depth value depthk

i , and the other
G Buffers gbk

i at each buffer, k ∈ [1,K] and pixel position pi
1: for k = 1,2, ...,K do
2: for all face indices j = 1,2, ...,F do
3: f′j← Enlarge(f j,r)
4: Hardware rasterization to generate pixels on f′j
5: for pixel indices i ∈ f′j do
6: disti j← SignedDist(pi, f j)
7: Compute depth′i j and gbi j
8: depthi j← Shift(depth′i j,disti j)
9: Handle occlusion by depth peeling and depth test

10: Update distk
i , depthk

i , and gbk
i

11: end for
12: end for
13: end for

3.4.2. Rasterization

The pixel-edge distance is essential for propagating far-range gradi-
ents. SoftRas families handle correspondences between pixels and
triangles in pixel-wise CUDA code. Such complex pixel-wise pro-
cesses cannot be implemented on graphics pipelines. Based on the
finding that the pixel-edge distance can be oppositely obtained from
enlarged triangles, HardSoftRas utilizes face-wise calculations in
the graphics pipeline.

The rasterization step of HardSoftRas is described in Algo-
rithm 2. The outer most loop is for depth peeling with K buffers.
The second outer loop with j rasterizes faces f j with geometry
shaders, and the inner most loop updates the values at a pixel po-
sition, pi, with index i by fragment shaders. Our key contributions
are Enlarge(), which enlarges the triangles in the screen space, and
Shift(), which updates the depth values of the enlarged face region
(soft face), considering the original face region (hard face).

Enlarge() makes the projected f j larger to reach r from their
edges in the geometry shaders. r ∈ [0,1] defines the range of blur-
ring in the screen space ∈ [0,1]2. Fig. 5 (a) depicts this process.
For acute projected triangles, we stretch their vertices in the oppo-
site direction of their centroids (see Fig. 5 (a) left). However, this
approach does not work well for obtuse triangles because the re-
sulting triangle may become too sharp to cause shaggy boundaries.
Thus, we expand the bounding boxes to cover r if the triangles are
obtuse. The expanded bounding boxes are split into pairs of trian-
gles for hardware rasterization (see Fig. 5 (a) right). This paper re-
gards a triangle as obtuse if the smallest angle is less than 30°. Our
strategy is less computationally expensive and more robust than the
conservative rasterization [HAO05] by keeping the number of tri-
angle primitives as small as possible and avoiding precision errors
of floating-point computation in the obtuse triangles. Fig. 6 (a), (b),
and (c) show how our Enlarge() works. For pi on the expanded
face, f′j, we compute the signed distances, disti j, from the original

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

(a) Enlarge() (b) SignedDist() (c) Shift()
Figure 5: Subroutines used in the rasterization step of HardSoft-
Ras. Triangles in dark blue and red are original hard faces, and
triangles in light blue and red are soft faces expanded from the
hard faces, respectively. (a) Left: Enlarge() for acute triangles.
Right: Enlarge() for obtuse triangle. (b) SignedDist() to compute
the signed distance between the pixel position and the edge of a
face. (c) Occlusion handling by Shift(). The dark blue hard face
is in front of the dark red hard face. Soft faces are pushed behind
the hard faces, and those closer to the hard faces have closer depth
values.

faces, f j , by SignedDist(), as shown in Fig. 5 (b). These distances
are used to deliver gradients in the screen space during the blending
step.

If we expand a soft face by interpolated depth values from its
hard face, the soft face may cause artifacts that occlude the neces-
sary hard faces around it. We refer to this problem as pseudo oc-
clusion in this paper (see Fig. 6 (d), for instance). In fact, SoftRas
and PyTorch3D also have pseudo occlusions; however, this is not
a significant problem for them because their blending with numer-
ous buffers (hundreds or thousands) cancels out the artifacts. We
want to keep K small at a maximum of five, due to the linear or-
der of depth peeling. To avoid pseudo occlusions with few buffers,
we should assign more importance to hard faces than soft faces. If
distk

i ≥ 0, pi at the kth buffer comes from the hard faces that are in-
side the original faces. Otherwise, it is located on soft faces. Hence,
our depth modification, Shift(), is defined as follows:

Shift(depth,dist) =

{
0.5∗depth if dist ≥ 0,
0.5∗ |dist|+0.5 if dist < 0.

(3)

With depth ∈ [0,1] and dist ≥ −1, Shift() places all hard faces in
front of all the soft faces. Moreover, soft faces close to the hard
faces with a high probability should be rasterized in the buffers. To
prioritize such soft faces, we update the depth values of soft faces
based on dist. Fig. 5 (c) and the top row of Fig. 6 show how Shift()
works. We describe the forward pass above. We do not need special
care for the backward pass, thanks to our full AD approach.

3.4.3. Shading and Blending

After rasterization, deferred shading is applied to each G buffer
gbk

i to generate a shaded buffer. Dressi supports a variety of shad-
ings such as physically-based shading (PBS), image-based lighting
(IBL), skin, and shadows.

Finally, we blend the shaded buffers per pixel to determine the
final pixel colors of a shaded image. Our blending is based on Soft-
Ras but we update it in several aspects. First, we calculate the prob-
abilityDk = sigmoid(distk/σ),σ> 0, at pi of the kth buffer. We use

(a) (b) (c) (d)
Figure 6: Enlarge() and Shift() effects. The top row shows the oc-
clusion handling of two adjacent triangles, the blue triangle has a
closer depth than red one, and the bottom row shows the blended
images with K = 2. (a) w/ Enlarge() and w/ Shift(). Smoother
soft faces than acute only, (c). This setting is the default. (b) w/o
Enlarge(). Normally shaded image. (c) w/ acute only Enlarge()
and w/ Shift(). In the magnified red rectangle, boundaries of soft
faces are shaggy. (d) w/ Enlarge() but w/o Shift(). Suffering from
pseudo-occlusions. In this case, we visualize all faces without an
edge mask.

σ = r/7, unless otherwise noted. To deal with the numerical insta-
bility of sigmoid computation, we remove the square for dist i

k in
SoftRas.

Our blending function is generally composed similarly to tradi-
tional alpha blending as follows:

I(Ie, Ine) = EIe +(1−E)Ine. (4)

where I denotes a pixel value at pi, and E is a binary edge mask. Ie

and Ine are the blended pixel values for the edges and non-edges,
respectively. Our formulation explicitly distinguishes blending for
edges, which involve many vertical surfaces from a view and have
a strong signal for optimization. Thus, Ie should have transparency
and far-range gradients. In contrast, non-edges have a weak signal,
and transparency for Ine is not necessary in most cases. We compute
E from SH , which is a stencil mask of hard faces in the frontal
buffer by edge detection and dilation. Therefore, its width, δ ≤ r,
of E is adjustable. We set δ = r, unless otherwise noted.

To compute a color pixel value, Ic, we use weighted averaging
for edges, Ie

c , and keep the most frontal shaded color, C1, for non-
edges, Ine

c .

Ic = I(Ie
c , I

ne
c), Ie

c =
∑kDkCk

∑kDk
, Ine

c = SHC1. (5)

where Ck denotes the shaded color of the kth buffer. We do not
use depth values for our color blending as SoftRas because trans-
parency tuning is difficult.

For a silhouette pixel value, Is, we use binary occupancy blend-
ing for edges, Ie

s , and flat intensity for non-edges, Ine
s .

Is = I(Ie
s , I

ne
s), Ie

s = 1−∏
k
(1−Dk), Ine

s = SH . (6)

Our formulation above generalizes and bridges anti-aliasing and
SoftRas. A comparison of HardSoftRas with some settings and

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

(a) Ours (AA mode) (b) Ours (c) Ours (SoftRas mode)

(d) Nvdiffrast (e) PyTorch3D (#buf=150) (f) SoftRas
Figure 7: Comparison of HardSoftRas with several settings and
existing methods with bunny model (#face=5k) of image size 512×
512. We use r = 0.1,σ = 0.0285 for (c) and set the corresponding
parameters to (e) and (f). Red rectangles for (a), (b), and (d) show
blurring range differences.

Figure 8: Cross-platform DR application running on various de-
vices: a desktop PC with NVIDIA, laptop with Intel, and smart-
phones with Arm.

the existing DR techniques is shown in Fig. 7. For example, Nvd-
iffrast is inspired by distance-to-edge AA [Mal18] and geometric
post-process AA [Emi11]. It detects edges in the screen space ge-
ometrically, computes pixel-to-edge distances for pixels closer to
the edges of less than one pixel in the most frontal buffer, and
blends colors for them. When we set δ to one pixel equivalent with
K = 1, our method can approximate Nvdiffrast with a subtle vi-
sual difference ((a) and (d)). One difference is that we blur all edge
pixels, whereas Nvdiffrast selects a part of the edge pixels to be
blended. Moreover, our edge detection employs image processing
for silhouette edges, but Nvdiffrast’s geometric method may detect
inside edges on depth discontinuity. On the other hand, SoftRas
and PyTorch3D blend the non-edge region besides the edge region.
By setting E(pi) = 1|pi ∈ ∀i, our formulation approaches them by
blending faces inside silhouettes ((c), (e), and (f)). Our appearance
is slightly different, owing to the updated blending function and
edge-pixel distance computing region of the face-wise approach.
Our moderate and preferred setting (b) with r = 0.01,K = 3 main-
tains a sharp texture inside silhouettes and generates far-range gra-
dients around the edges. In general, far-range settings like SoftRas
converge faster, while near-range settings like AA are useful to ac-
curately optimize complex scenes with many overlaps. A recent
optimization technique [NJJ21] can be combined with our method.

Iterations

(a) Optimization process (b) GT
Figure 9: Cross-platform DR application on a mobile platform. It
optimizes the vertex positions and albedo texture of a white sphere
to fit the rendered result to the green pear images. (a) Optimization
process. From left to right: rendered images with an initial sphere
geometry with a white albedo texture, optimized geometry, and op-
timized geometry and texture. (b) Rendered GT pear model.

4. Validation

4.1. Cross-Platform Validation

To demonstrate the hardware independence, we ran the same geom-
etry and texture optimization application on four major platforms:
NVIDIA for workstations and servers, AMD for desktops, Intel for
laptop PCs, and Arm for smartphones. Fig. 8 depicts the application
running on various hardware. The application optimizes an initial
sphere with a white albedo texture, bringing images rendered in
six views closer to synthetic pear images. Rendering image size
per view and albedo texture size are 256× 256. First, the applica-
tion optimizes the vertex positions by silhouettes with the L2 loss
and Laplacian regularization. After the geometry is aligned to the
pear silhouettes, we optimize the diffuse albedo texture, minimiz-
ing color L2 loss. We use the Adam optimizer for both optimization
processes, and the camera parameters are fixed as the ground truth.
The same parameters are used for all the platforms. Fig. 9 shows
screenshots of the application on a mobile platform with Arm.

Table 2 shows our detailed experimental settings, stage packing
effects and performance. The maximum number of input attach-
ments for each hardware type, obtained from the Vulkan API, is a
constraint used for stage packing. Although more constraints are
considered, we omit other constraints for need of space. Our stage
packing faithfully generates optimized stages for each platform:
fewer stages for less constraint hardware (i.e., NVIDIA and AMD).
Our reactive cache reduces more stages for texture optimization by
skipping constant rasterization results. The two rightmost columns
are the average optimization time per iteration of the platforms.
NVIDIA RTX2080 for gaming workstations shows the best num-
ber. TeslaT4 for deep learning servers is slightly slower than the
RTX2080 because it is not optimized for graphics purposes. The
second is an Intel for laptops, the third is an AMD for office desk-
tops, and the last is an Arm for smartphones. The stages reduced by
our reactive cache make texture optimization faster than geometry
optimization in all the platforms.

Fig. 10 shows the error curves against GT. We take the aver-
ages of over 10 trials to handle the non-deterministic behaviors

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

#Substage / #Stage (Before → After cache) Time per iter. (ms)

Vendor Model Usage Used OS
Maximum

#input attach.
Geo. opt. Tex. opt. Geo. opt. Tex. opt.

RTX2080 Workstation Windows 1048576 218/129 → 206/122 187/160 → 86/69 3.0 2.0
NVIDIA

TelsaT4 Server Ubuntu 1048576 220/131 → 207/124 186/160 → 88/70 6.1 4.1
AMD RadeonR9M360 Desktop Windows N.A. 219/129 → 206/122 187/160 → 86/69 51.4 28.8
Intel UHDGraphics620 Laptop Windows 8 348/134 → 336/128 212/181 → 111/84 38.3 23.5
Arm Mali-G76 Smartphone Android 4 687/142 → 670/132 278/187 → 192/86 420.0 189.5

Table 2: Stage packing and performance evaluation of the cross-platform DR application on various hardware. As an example of the
hardware constraints for our stage packing, we show the maximum number of input attachments taken from the Vulkan API. The larger
the value of the input attachment is, the fewer the number of stages, and the more efficient the execution. The hardware constraint is a
concept orthogonal to the hardware performance (e.g., clock). The time taken for optimization depends on both hardware constraints and
performance.

0 50 100 150 200

Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

3D
eu

cl
id

ea
n

di
st

an
ce NVIDIA RTX2080

NVIDIA TeslaT4
AMD RadeonR9M360
Intel UHDGraphics620
Arm Mali-G76

(a) Geometry optimization

0 20 40 60 80 100

Iterations

0.00

0.02

0.04

0.06

0.08

0.10

C
ol

or
L2

lo
ss

NVIDIA RTX2080
NVIDIA TeslaT4
AMD RadeonR9M360
Intel UHDGraphics620
Arm Mali-G76

(b) Texture optimization
Figure 10: Error against GT on several platforms. Errors converge
to almost the same value for all platforms, which indicates that our
method is hardware-agnostic. (a) 3D distance (not used as a loss)
between GT and optimized geometry in geometry optimization. (b)
Color L2 loss during texture optimization.

Optimization target: Vertex position Albedo texture
Ours full 58.441 30.874

-stage pack 110.686 47.462
-reactive cache 317.814 306.594
-stage pack, reactive cache 364.524 315.741

baseline 1780.90 1652.14
Table 3: Performance validation for stage packing and reactive
cache. The average time (ms) of 1,000 iterations to optimize vertex
positions and albedo texture on Arm Mali-G76. Avocado geometry
is optimized with a single view. Ours full on the top is combined
with stage pack, substage pack and reactive cache. Lower lines with
"-" remove individual components. The baseline is naive shader
implementation, and "-stage pack, reactive cache" (substage pack
only) is a similar case to traditional kernel fusion technique.

of GPUs. For geometry optimization, we show 3D distance error
curves against GT geometry. They converge at approximately 150
iterations on all platforms. Converged error values are very similar
for all platforms. For texture optimization, all platforms converge
around 50 iterations. The AMD shows larger values than others in
the middle of geometry optimization. Although graphics pipeline
API is common, its implementation (e.g., floating-point precision)
depends on vendors. Therefore, optimization results may have a
little numerical difference among hardware.

4.2. Stage Packing Validation

We performed an ablation study to validate that our stage packing
and reactive cache contribute to the fast speed. As a baseline of
stage packing off, we used a naive method to assign each function
object to a single stage without the greedy strategy.

We performed the validation on Arm Mali-G76 for two reasons.
First, it is designed for mobile devices and has limited hardware ca-
pability. Dressi should accelerate the DR on such weak hardware.
Second, it is based on a tile-based GPU architecture and suitable for
confirming speed improvement by substages and the corresponding
subpasses. A subpass in Vulkan is designed for tile-based render-
ing, and its proper utilization reduces bandwidth use [addoc21].
Table 3 shows the comparison with several settings. Our proposed
approaches successfully accelerate forward and backward render-
ing speeds.

4.3. HardSoftRas Validation

We analyze our optimization capability with several sets of hyper-
parameters. We optimize vertex positions of a coarse sphere ge-
ometry to make it visually similar to a dense synthetic GT model,
which is a skull geometry with a complex and uneven shape. At
each iteration, a random view with a random point light in Lam-
bertian shading is rendered. The L1 loss for the rendered GT with
the same configuration is minimized with the scheduled Laplacian
regularization term. We ran 2,500 iterations in 256 × 256 image
resolution. As a reference, we compared ours with Nvdiffrast, us-
ing the same parameters and settings. We ran this experiment on a
desktop PC with NVIDIA RTX2080, and the average 3D distance
of vertices to the closest GT surface was used as an evaluation met-
ric.

Fig. 11 shows the validation as a heatmap with K and r com-
binations. At 500 iterations (a), wide blurring settings with large
K and r show better results. In contrast, at 2,500 iterations (b), a
small r yields a better convergence. The results show that far-range
gradients are preferred at the early stages of optimization because
the object being optimized is far from the target. However, at the
latter stages of the process, it is better to use near-range gradients
to refine the details.

Next, we compare the error curves of our method and Nvd-
iffrast in Fig. 12. For our method, we plotted three configurations

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

1 2 3 4 5

K

1p
ix

2p
ix

3p
ix

5p
ix

7p
ix

r

0.04468 0.03991 0.03867 0.03846 0.03790

0.04426 0.04072 0.03946 0.03889 0.03854

0.04456 0.03973 0.03798 0.03749 0.03682

0.04395 0.03964 0.03755 0.03661 0.03602

0.04439 0.04007 0.03814 0.03751 0.03565
0.036

0.038

0.040

0.042

0.044

(a) At iter. 500

1 2 3 4 5

K

1p
ix

2p
ix

3p
ix

5p
ix

7p
ix

r

0.01304 0.01278 0.01304 0.01286 0.01280

0.01310 0.01276 0.01268 0.01268 0.01270

0.01289 0.01278 0.01293 0.01297 0.01307

0.01321 0.01336 0.01372 0.01408 0.01421

0.01361 0.01457 0.01519 0.01567 0.01666 0.0130

0.0135

0.0140

0.0145

0.0150

0.0155

0.0160

0.0165

(b) At iter. 2,500
Figure 11: Validation heatmaps for hyper parameters. The 3D dis-
tances against the GT with several K (horizontal) and r (vertical)
combinations are shown. The upper left with small r and K is a
near-range gradient setting, and the lower right with large r and
K is for far-range gradients. (a) After 500 iterations. Settings with
larger r and larger K show better distances. (b) After 2,500 itera-
tions. Settings with smaller r show better distances.

0 500 1000 1500 2000 2500
Iterations

0.05

0.10

A
ve

ra
ge

di
st

an
ce

to
G

T

Nvdiffrast
Ours (r=1 pixel, K=1)
Ours (r=2 pixel, K=3)
Ours (r=7 pixel, K=5)

Figure 12: 3D distance against GT per iteration of ours with se-
lected parameters and Nvdiffrast. Ours shows similar tendency to
the heatmap and shows faster convergence than Nvdiffrast.

based on the validation heatmaps: (1) the best parameter at iteration
2,500 (r = 2pix,K = 3), (2) parameters for a very far-range gra-
dient (r = 7pix,K = 5), and (3) parameters for a very near-range
gradient (r = 1pix,K = 1). The error curves show the same ten-
dency as the heatmaps. Our convergence is faster in all the settings
than Nvdiffrast. Regarding accuracy, the final distance in 2,500 it-
erations, excluding the very far-range setting, is better than that of
Nvdiffrast.

Finally, we apply normal map optimization to the optimized ge-
ometries to refine the appearance closer to the GT. We used almost
the same setting for geometry optimization but increased the size
of rendered images to 1024 × 1024. The size of a normal map was
also set to 1024 × 1024. We visually compare our method with
the configuration (1) and Nvdiffrast in Fig. 13. Our method shows
better convergence to the GT with a closed ring shape on the side.

5. Experiments

In this section, we evaluate our Dressi by comparing existing meth-
ods. All experiments were run on a single NVIDIA GeForce RTX
2080, Intel(R) Core(TM) i7-9700K, and 32GB RAM.

5.1. Performance Comparison

To validate that the performance of our renderer is robust against
several parameters, we measured the computational costs to calcu-
late forward and backward functions in two settings. We compare

(a) Nvdiffrast (b) Ours (c) GT
Figure 13: Visual comparison of optimized results with wire frame.
(a) Nvdiffrast, (b) Ours, and (c) GT

#Vertices 406 7107 25697
#Triangles 682 14208 51414

Window res. Fwd + bwd time per frame (ms)
256x256 0.304 0.308 0.364

Ours 512x512 0.442 0.480 0.502
1024x1024 1.034 1.106 1.104
2048x2048 3.301 3.545 3.469

256x256 1.060 0.480 0.646
Nvdiffrast 512x512 1.305 0.929 0.853
[LHK*20] 1024x1024 2.371 2.523 2.086

2048x2048 5.403 8.010 5.518
256x256 8.054 10.272 9.393

PyTorch3D 512x512 12.570 15.354 14.919
[RRN*20] 1024x1024 32.136 39.034 36.382

2048x2048 105.823 134.795 121.624
Table 4: Performance comparison with non-textured meshes to
optimize vertex positions. Ours and Nvdiffrast render silhouettes.
For PyTorch3D, we apply Gouraud shading.

Dressi with Nvdiffrast and PyTorch3D. Because none of the meth-
ods supported the same shaders, we used shaders as similar as pos-
sible. We show the average rendering time of 1,000 frames, remov-
ing outliers outside the 95% confidence interval for all recorded
data.

First, we evaluated the performance against the number of tri-
angles and the resolution of window sizes. To consider the effect
of view-dependent geometry complexity, we rendered the meshes
in six views with white vertex color and averaged the time spent
on rendering. Table 4 shows the performance of our method out-
performs those of Nvdiffrast and PyTorch3D for all meshes and
window resolutions.

Next, we demonstrate the scalability against the texture resolu-
tions with shaders that map diffuse albedo textures [Dem21] to the
meshes. We changed the texture resolutions for each mesh with the
fixed window resolution of 2048× 2048. Table 5 shows that our
performance is at least twice as fast as the others for all texture
resolutions.

5.2. 3D Reconstruction with Real Data

We also performed practical 3D reconstruction with Dressi and
Nvdiffrast. We used a real dataset for multi-view object recon-
struction, DTU dataset [AJV*16], and its supplemental silhouettes

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

#Vertices 31027 7232
#Triangles 55704 14217
Texture res. Fwd + bwd time per frame (ms)
1024x1024 2.929 2.893

Ours 2048x2048 3.965 3.953
4096x4096 8.148 8.045
1024x1024 6.584 6.254

Nvdiffrast 2048x2048 8.922 8.653
[LHK*20] 4096x4096 18.676 18.635

1024x1024 137.681 118.184
PyTorch3D 2048x2048 143.237 119.267
[RRN*20] 4096x4096 141.667 120.017

Table 5: Performance comparison with textured-meshes to opti-
mize diffuse albedo textures. Ours and Nvdiffrast render color im-
ages with unlit shading. We apply Phong shading for PyTorch3D.

Figure 14: The top row: box plot for 3D object reconstruction task
with real data. Statistics with 10 trials of Chamfer distance are
shown vertically, and the horizontal numbers are object IDs. Ours
shows smaller variances and better distances for all objects. The
bottom row: visual comparison with a reference GT image. We vi-
sualize optimized models corresponding to median Chamfer loss.
Nvdiffrast and ours are rendered by GT camera parameters.

[YKM*20]. A big difference from the HardSoftRas validation is
the limited number of views. Only 49 or 64 views are available for
each object. Another challenge is the color discrepancy between
the views caused by the lack of perfect control over the camera set-
tings. We fix the camera parameters as GT and minimize the L2 loss
of color and silhouettes in 200× 150 resolution with unlit shading
using the Adam optimizer. Vertex positions and diffuse albedo tex-
ture are jointly optimized. We start the optimization with a white
sphere, and a Laplacian regularizer with scheduling is used.

The top row of Fig. 14 is a box plot with five real objects for our

(a) Ours (HardSoftRas)

(b) Nvdiffrast (c) Geometric anti-aliasing of Nvdiffrast
Figure 15: Sphere rendering comparison. (a) Our HardSoftRas
blurs all edge pixels. (b) Nvdiffrast updates only two edge pixels
in red circles. (c) How the geometric AA of Nvdiffrast works on a
white curved surface with a black background. We show a slice of a
simplified sphere in the upper right. Geometric edges are in contin-
uous normalized device coordinate (NDC) space and are projected
onto discrete pixels. Red pixels are target edge pixels, and the cor-
responding blue geometric edges are located on the pixel center
and have the closest depth. See left red rectangle pixel affected by
AA. Blue edge occludes a neighboring green edge at the pixel cen-
ter. Thus, its color is blended into gray, and the gradient for the
pixel is generated accordingly. In contrast, the pixel in the right
red rectangle is not affected by AA because the corresponding blue
edge does not occlude a neighboring green edge.

method and Nvdiffrast with 10 trials to consider non-determinism
of GPUs. The chamfer distance (lower is better) was used as the
evaluation metric in this experiment. First, we tuned the hyperpa-
rameters (learning rate and regularization factors) for Nvdiffrast
with an object called “118". Then other four objects were opti-
mized with the same hyperparameters. Our method used the com-
mon hyperparameters tuned for Nvdiffrast and r = 2pix,K = 1 for
all five objects. During optimization, we sometimes observed sud-
den shape collapse for Nvdiffrast, which is reflected as a large vari-
ance in the box plot. In contrast, ours never suffers such collapse
with slight variance among the trials.

To analyze these behaviors, we show the initial white sphere
rendered by each method and how the AA of Nvdiffrast works in
Fig. 15. Although (a) ours shows uniformly blurred edges, (b) Nvd-
iffrast selectively blurs the edge pixels. As shown in (c), Nvdiffrast
follows conventional geometric anti-aliasing criteria to select a lim-
ited number of edge pixels for color blending and gradient gen-
eration. Therefore, the gradients of Nvdiffrast in the screen space
are sparse and discontinuous, and optimization using it is unstable.
Our HardSoftRas, which blends all edge pixels, ensures dense and
smooth far-range gradients, achieving more robust optimization.

The bottom row of Fig. 14 shows a visual comparison of the
reconstruction results with the median accuracy and GT. The re-
sults of Nvdiffrast suffer from shape artifacts. Our method can suc-
cessfully reconstruct real objects with complex high-curvature sur-
faces.

6. Applications

The proposed differentiable renderer, Dressi, has the potential to
support many applications. We demonstrate that Dressi can ren-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

Figure 16: High quality digital human rendered by Dressi in real-
time. It contains skin, hair, eyeball, teeth shaders, and shadowing.

(a) (c)(b)

Figure 17: Hair optimization: (a) rendered with initial parame-
ter, (b) appearance after optimization of biophysical parameters,
and (c) target image of the optimization. In the biophysical param-
eters, melanin components (melanin and melanin redness) affect
hair color, and roughness parameters (radial and azimuthal rough-
ness) control the highlight size, and IOR is for the highlight posi-
tion. The parameters are shared over all strands. We optimized the
parameters under the constraints of melanin and roughness from
0.0 to 1.0 and IOR in the range of from 1.0 to 2.0.

der a photorealistic facial model with complex shaders for human
skin, eyeballs, and hair materials. The supplemental material shows
more applications: environment map optimization, normal map op-
timization and human face modeling with 3D morphable model.

6.1. Practical Graphics Rendering with Complex Shaders

We show that our system can support practical complex shaders,
including hair, skin, eyeballs, and teeth shaders like recent game
engines [Epi21; Uni21]. Fig. 16 shows the rendering results of our
high-quality digital human model with them. Moreover, our engine
supports the backward pass for the complex shaders.

To demonstrate inverse rendering with the complex shaders,
we performed optimization of hair shading with the Marschner
shader [MJC*03], which is a well-known physically-based reflec-
tion model for hair materials. Biophysical parameters, including
melanin, melanin redness, radial and azimuthal roughness, and in-
dex of refraction (IOR), were optimized. The geometry and camera
parameters were known, and an image from only one viewpoint
was used. Fig. 17 shows (a) the initial, (b) optimized, and (c) target

images. The optimized image (b) has the same appearance as the
target image (c).

7. Conclusion and Future Work

In this paper, we proposed Dressi, a hardware-agnostic and highly
efficient rasterization-based differentiable renderer to support var-
ious graphics hardware. Dressi is based on a new design in which
DR algorithms are completely written by AD for DR. Our Dressi-
AD realizes hardware independence by Vulkan API and an inverse
UV technique. Dressi-AD employs stage packing, a runtime opti-
mization method with a reactive cache to accelerate computational
graph executions and adapt hardware constraints. HardSoftRas, our
proposed rendering process entirely implemented on Dressi-AD,
is the first DR algorithm to generate screen space far-range gradi-
ents under the limitation of graphics pipelines. We demonstrated
that our approach successfully works on a variety of graphics hard-
ware (i.e., NVIDIA, AMD, Intel, and Arm). We validated that our
stage packing is adaptive to hardware constraints and contributes to
speed. Our Dressi has the potential to realize a wide range of practi-
cal applications in various devices. Our experiments with synthetic
and real data demonstrated that the speed and quality of our ren-
derer outperform those of other state-of-the-art methods. Our ren-
dering for a digital human is of high quality and can run backward
passes. We show the optimization of hair color, which is not sup-
ported by other rasterization-based DR frameworks.

We leave two research topics for more practical problems in our
framework. The first topic is about the propagation of gradients of
vertex attributes. HardSoftRas employs depth peeling to consider
gradients of triangles occluded in screen space. However, the com-
putational cost increases in proportion to many z-buffers. Although
we prioritize important triangles to reduce the number of z-buffers,
other order-independent transparency methods may realize more
efficient gradient propagation. The second topic is the further flexi-
bility of our renderer. Combinations of DR and neural networks are
often used, such as optimization with identity loss [GPKZ19]. We
do not introduce operators of neural networks into our framework.
Connecting common AD libraries through the CUDA interface is
possible, but this approach sacrifices hardware independence. We
can define the standard operators of neural networks in basic oper-
ations of GLSL functions, and they provide more flexible solutions
for practical problems. We believe that Dressi contributes to the
further improvement of rasterization-based DR, including the solu-
tions of the referred two topics.

Acknowledgments

We thank the anonymous reviewers for their constructive com-
ments, which have helped us improve the manuscript. We also
want to thank Toshiya Hachisuka for helpful discussions. We are
grateful to Naoya Iwamoto for designing visual materials. We ap-
preciate Morales Espinoza Carlos Emanuel and Zhengqing Li for
discussing related work and their thoughtful comments. We thank
Naoya Hirai and Chun Geng for the appearance of skin shading. We
are also grateful to Baris Gecer, Athanasios Vogiannou, Stylianos
Moschoglou, Stylianos Ploumpis, Alexandros Lattas, and Stefanos
Zafeiriou for the evaluation of GANFit [GPKZ19] and GANFit++
[GPKZ21].

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

References
[addoc21] Arm developer DOCUMENTATION. Tile-Based Rendering.

2021. URL: https : / / developer . arm . com / documentation /
102662/latest/ 10.

[AJV*16] AANÆS, HENRIK, JENSEN, RASMUS RAMSBØL, VOGIATZIS,
GEORGE, et al. “Large-Scale Data for Multiple-View Stereopsis”. Inter-
national Journal of Computer Vision (2016), 1–16 11.

[ALKN19] AZINOVIC, DEJAN, LI, TZU-MAO, KAPLANYAN, ANTON,
and NIEBNER, MATTHIAS. “Inverse Path Tracing for Joint Material and
Lighting Estimation”. CVPR. 2019 1.

[AM*10] AGARWAL, SAMEER, MIERLE, KEIR, et al. Ceres Solver. 2010.
URL: http://ceres-solver.org 3.

[BCC*13] BAINOMUGISHA, ENGINEER, CARRETON, ANDONI LOM-
BIDE, CUTSEM, TOM VAN, et al. “A Survey on Reactive Programming”.
ACM Computing Surveys 45.4 (2013) 6.

[BLC*21] BAO, LINCHAO, LIN, XIANGKAI, CHEN, YAJING, et al. “High-
Fidelity 3D Digital Human Head Creation from RGB-D Selfies”. ACM
Transactions on Graphics (2021) 22, 23.

[CGL*19] CHEN, WENZHENG, GAO, JUN, LING, HUAN, et al. “Learning
to Predict 3D Objects with an Interpolation-based Differentiable Ren-
derer”. NIPS. 2019 1, 3.

[CNS*02] CHAN, ERIC, NG, REN, SEN, PRADEEP, et al. Efficient parti-
tioning of fragment shaders for multipass rendering on programmable
graphics hardware. Tech. rep. STANFORD UNIV CA, 2002 6.

[Cra21] CRANE, KEENAN. Keenan’s 3D Model Repository. 2021. URL:
https : / / www . cs . cmu . edu / ~kmcrane / Projects /
ModelRepository/ 21.

[Dem21] DEMES, LENNART. CC0 TEXTURES. 2021. URL: https://
cc0textures.com/ 11.

[DMZ*17] DEVITO, ZACHARY, MARA, MICHAEL, ZOLLHÖFER,
MICHAEL, et al. “Opt: A Domain Specific Language for Non-Linear
Least Squares Optimization in Graphics and Imaging”. ACM Trans.
Graph. 36.5 (2017). ISSN: 0730-0301 3.

[Emi11] EMIL, PERSSON. Geometric Post-Process Anti-Aliasing. 2011.
URL: https://www.humus.name/index.php?page=3D&ID=86 9.

[Epi21] EPIC GAMES INC. Unreal Engine. 2021. URL: https://www.
unrealengine.com/ 13.

[EST*20] EGGER, BERNHARD, SMITH, WILLIAM A. P., TEWARI,
AYUSH, et al. “3D Morphable Face Models - Past, Present, and Future”.
ACM Trans. Graph. 39.5 (2020). ISSN: 0730-0301 1, 22.

[Eve01] EVERITT, CASS. “Interactive order-independent transparency”.
White paper, nVIDIA 2.6 (2001), 7 3.

[Fuj08] FUJITA, SYOYO. MUDA (MUltiple Data Accelerator) language
compiler. 2008. URL: https://github.com/syoyo/mudalang 3.

[GPKZ19] GECER, BARIS, PLOUMPIS, STYLIANOS, KOTSIA, IRENE,
and ZAFEIRIOU, STEFANOS. “Ganfit: Generative adversarial network
fitting for high fidelity 3d face reconstruction”. CVPR. 2019 1, 13, 23.

[GPKZ21] GECER, BARIS, PLOUMPIS, STYLIANOS, KOTSIA, IRENE,
and ZAFEIRIOU, STEFANOS. “Fast-GANFIT: Generative Adversarial
Network for High Fidelity 3D Face Reconstruction”. IEEE Transactions
on Pattern Analysis & Machine Intelligence 01 (May 2021), 1–1. ISSN:
1939-3539. DOI: 10.1109/TPAMI.2021.3084524 1, 13, 23.

[GRF11] GUENTER, BRIAN, RAPP, JOHN, and FINCH, MARK. Symbolic
differentiation in GPU shaders. Tech. rep. Citeseer, 2011 3.

[Gri92] GRIEWANK, ANDREAS. “Achieving Logarithmic Growth Of Tem-
poral And Spatial Complexity In Reverse Automatic Differentiation”.
Optimization Methods and Software 1.1 (1992) 3.

[GSY*17] GARDNER, MARC-ANDRÉ, SUNKAVALLI, KALYAN, YUMER,
ERSIN, et al. “Learning to Predict Indoor Illumination from a Single
Image”. ACM Trans. Graph. 36.6 (Nov. 2017). ISSN: 0730-0301 22.

[GW08] GRIEWANK, ANDREAS and WALTHER, ANDREA. Evaluating
Derivatives. Society for Industrial and Applied Mathematics, 2008 3.

[HAL*20] HU, YUANMING, ANDERSON, LUKE, LI, TZU-MAO, et
al. “DiffTaichi: Differentiable Programming for Physical Simulation”.
ICLR (2020) 3.

[HAO05] HASSELGREN, JON, AKENINE-MÖLLER, TOMAS, and OHLS-
SON, LENNART. “Conservative rasterization”. GPU Gems 2. Addison-
Wesley, 2005, 677–690 7.

[HFF18] HE, YONG, FATAHALIAN, KAYVON, and FOLEY, TIM. “Slang:
language mechanisms for extensible real-time shading systems”. ACM
Transactions on Graphics (TOG) 37.4 (2018), 1–13 3.

[HML*21] HASSELGREN, JON, MUNKBERG, JACOB, LEHTINEN,
JAAKKO, et al. “Appearance-Driven Automatic 3D Model Simplifica-
tion”. Eurographics Symposium on Rendering. 2021 3.

[HXKD20] HU, YUANMING, XU, MINGKUAN, KUANG, YE, and
DURAND, FRÉDO. “AsyncTaichi: Whole-Program Optimizations for
Megakernel Sparse Computation and Differentiable Programming”.
(2020). arXiv: 2012.08141 [cs.PL] 3.

[Kaj86] KAJIYA, JAMES T. “The Rendering Equation”. Proceedings of the
13th Annual Conference on Computer Graphics and Interactive Tech-
niques. SIGGRAPH ’86. New York, NY, USA: ACM, 1986, 143–150.
ISBN: 0-89791-196-2 2.

[KB14] KINGMA, DIEDERIK P. and BA, JIMMY. “Adam: A Method for
Stochastic Optimization”. (2014) 21, 22.

[KBM*20] KATO, HIROHARU, BEKER, DENIZ, MORARIU, MIHAI, et
al. “Differentiable Rendering: A Survey”. (2020). arXiv: 2006.12057
[cs.CV] 3.

[Khr21a] KHRONOS GROUP. glTF Sample Models. 2021. URL: https:
//github.com/KhronosGroup/glTF-Sample-Models 21.

[Khr21b] KHRONOS GROUP. Vulkan. 2021. URL: https : / / www .
khronos.org/vulkan/ 1, 2.

[KUH18] KATO, HIROHARU, USHIKU, YOSHITAKA, and HARADA, TAT-
SUYA. “Neural 3D Mesh Renderer”. CVPR. 2018 1, 3.

[LADL18] LI, TZU-MAO, AITTALA, MIIKA, DURAND, FRÉDO, and
LEHTINEN, JAAKKO. “Differentiable Monte Carlo Ray Tracing through
Edge Sampling”. ACM Trans. Graph. 37.6 (2018). ISSN: 0730-0301 1,
2.

[Lat08] LATTNER, CHRIS. “LLVM and Clang: Next generation compiler
technology”. The BSD conference. Vol. 5. 2008 3.

[LB14] LOPER, MATTHEW M. and BLACK, MICHAEL J. “OpenDR: An
Approximate Differentiable Renderer”. ECCV. 2014 3.

[LHK*20] LAINE, SAMULI, HELLSTEN, JANNE, KARRAS, TERO, et al.
“Modular Primitives for High-Performance Differentiable Rendering”.
ACM Trans. Graph. 39.6 (2020). ISSN: 0730-0301 2–5, 11, 12.

[LLCL19] LIU, SHICHEN, LI, TIANYE, CHEN, WEIKAI, and LI, HAO.
“Soft Rasterizer: A Differentiable Renderer for Image-based 3D Rea-
soning”. ICCV. 2019 2–4.

[LLL*21] LI, MINGZHEN, LIU, YI, LIU, XIAOYAN, et al. “The Deep
Learning Compiler: A Comprehensive Survey”. IEEE Transactions on
Parallel and Distributed Systems 32.3 (2021), 708–727 3.

[Mal18] MALAN, HUGH. “Edge Antialiasing by Post-Processing”.
(2018), 33–58 9.

[MAP*15] MARTÍN ABADI, ASHISH AGARWAL, PAUL BARHAM, et al.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2015. URL: http://tensorflow.org/ 3.

[MC20] MOSES, WILLIAM and CHURAVY, VALENTIN. “Instead of
Rewriting Foreign Code for Machine Learning, Automatically Syn-
thesize Fast Gradients”. Advances in Neural Information Processing
Systems. Ed. by LAROCHELLE, H., RANZATO, M., HADSELL, R.,
et al. Vol. 33. Curran Associates, Inc., 2020, 12472–12485. URL:
https : / / proceedings . neurips . cc / paper / 2020 / file /
9332c513ef44b682e9347822c2e457ac-Paper.pdf 3.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://developer.arm.com/documentation/102662/latest/
https://developer.arm.com/documentation/102662/latest/
http://ceres-solver.org
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
https://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/
https://cc0textures.com/
https://cc0textures.com/
https://www.humus.name/index.php?page=3D&ID=86
https://www.unrealengine.com/
https://www.unrealengine.com/
https://github.com/syoyo/mudalang
https://doi.org/10.1109/TPAMI.2021.3084524
https://arxiv.org/abs/2012.08141
https://arxiv.org/abs/2006.12057
https://arxiv.org/abs/2006.12057
https://github.com/KhronosGroup/glTF-Sample-Models
https://github.com/KhronosGroup/glTF-Sample-Models
https://www.khronos.org/vulkan/
https://www.khronos.org/vulkan/
http://tensorflow.org/
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

[MGAK03] MARK, WILLIAM R, GLANVILLE, R STEVEN, AKELEY,
KURT, and KILGARD, MARK J. “Cg: A system for programming graph-
ics hardware in a C-like language”. ACM SIGGRAPH 2003 Papers.
2003, 896–907 5.

[MHM*13] MCAULEY, STEPHEN, HILL, STEPHEN, MARTINEZ, ADAM,
et al. “Physically based shading in theory and practice”. ACM SIG-
GRAPH Courses. 2013, 1–8 21.

[MJC*03] MARSCHNER, STEPHEN R., JENSEN, HENRIK WANN, CAM-
MARANO, MIKE, et al. “Light scattering from human hair fibers”. ACM
Trans. Graph. 22.3 (2003) 13.

[MSPK06] MCGUIRE, MORGAN, STATHIS, GEORGE, PFISTER,
HANSPETER, and KRISHNAMURTHI, SHRIRAM. “Abstract shade
trees”. Proceedings of the 2006 symposium on Interactive 3D graphics
and games. 2006, 79–86 6.

[Mur12] MURANUSHI, TAKAYUKI. “Paraiso: An Automated Tuning
Framework for Explicit Solvers of Partial Differential Equations”. Com-
putational Science & Discovery 5.1 (2012), 015003 3.

[NDJK21] NIMIER-DAVID, MERLIN, DONG, ZHAO, JAKOB, WENZEL,
and KAPLANYAN, ANTON. “Material and Lighting Reconstruction for
Complex Indoor Scenes with Texture-space Differentiable Rendering”.
(2021) 5.

[NJJ21] NICOLET, BAPTISTE, JACOBSON, ALEC, and JAKOB, WENZEL.
“Large Steps in Inverse Rendering of Geometry”. ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia) 40.6 (Dec. 2021). DOI: 10.
1145/3478513.3480501 9.

[NLGK18] NAM, GILJOO, LEE, JOO HO, GUTIERREZ, DIEGO, and KIM,
MIN H. “Practical SVBRDF Acquisition of 3D Objects with Unstruc-
tured Flash Photography”. ACM Trans. Graph. 37.6 (2018). ISSN: 0730-
0301 22.

[NSRJ20] NIMIER-DAVID, MERLIN, SPEIERER, SÉBASTIEN, RUIZ,
BENOÎT, and JAKOB, WENZEL. “Radiative Backpropagation: An Ad-
joint Method for Lightning-Fast Differentiable Rendering”. ACM Trans.
Graph. 39.4 (2020). ISSN: 0730-0301 2.

[NVZJ19] NIMIER-DAVID, MERLIN, VICINI, DELIO, ZELTNER, TIZIAN,
and JAKOB, WENZEL. “Mitsuba 2: A Retargetable Forward and Inverse
Renderer”. ACM Trans. Graph. 38.6 (2019). ISSN: 0730-0301 1–3.

[ODo17] O’DONNELL, YURIY. “FrameGraph: Extensible Rendering Ar-
chitecture in Frostbite”. GDC. 2017 6.

[OUN*17] OKUTA, RYOSUKE, UNNO, YUYA, NISHINO, DAISUKE, et al.
“CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations”.
Proceedings of Workshop on Machine Learning Systems (LearningSys)
in The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS). 2017 3.

[PGM*19] PASZKE, ADAM, GROSS, SAM, MASSA, FRANCISCO, et al.
“PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. Advances in Neural Information Processing Systems 32. Curran
Associates Inc., 2019, 8024–8035 3.

[PVZ15] PARKHI, OMKAR M, VEDALDI, ANDREA, and ZISSERMAN,
ANDREW. “Deep face recognition”. (2015) 22.

[RRN*20] RAVI, NIKHILA, REIZENSTEIN, JEREMY, NOVOTNY, DAVID,
et al. “Accelerating 3D Deep Learning with PyTorch3D”. (2020). arXiv:
2007.08501 [cs.CV] 3–5, 11, 12.

[RRR*15] RHODIN, HELGE, ROBERTINI, NADIA, RICHARDT, CHRIS-
TIAN, et al. “A Versatile Scene Model with Differentiable Visibility Ap-
plied to Generative Pose Estimation”. Proceedings of the 2015 Interna-
tional Conference on Computer Vision (ICCV 2015). 2015 1.

[SF16] SCHÖNBERGER, JOHANNES LUTZ and FRAHM, JAN-MICHAEL.
“Structure-from-Motion Revisited”. CVPR. 2016 23.

[Sob67] SOBOL’, I.M. “On the distribution of points in a cube and the
approximate evaluation of integrals”. USSR Computational Mathematics
and Mathematical Physics 7.4 (1967), 86–112. ISSN: 0041-5553 5.

[STA*19] SMILKOV, DANIEL, THORAT, NIKHIL, ASSOGBA, YANNICK,
et al. “Tensorflow. js: Machine learning for the web and beyond”. Pro-
ceedings of Machine Learning and Systems 1 (2019), 309–321 3, 5.

[SZ13] SHAMIR, OHAD and ZHANG, TONG. “Stochastic Gradient De-
scent for Non-smooth Optimization: Convergence Results and Optimal
Averaging Schemes”. Proceedings of the 30th International Conference
on Machine Learning. Vol. 28. Proceedings of Machine Learning Re-
search 1. Atlanta, Georgia, USA: PMLR, 2013, 71–79 22.

[SZPF16] SCHÖNBERGER, JOHANNES LUTZ, ZHENG, ENLIANG,
POLLEFEYS, MARC, and FRAHM, JAN-MICHAEL. “Pixelwise View
Selection for Unstructured Multi-View Stereo”. European Conference
on Computer Vision (ECCV). 2016 23.

[Uni21] UNITY TECHNOLOGIES. Unity. 2021. URL: https://unity.
com/ 13.

[VKP*19] VALENTIN, JULIEN, KESKIN, CEM, PIDLYPENSKYI, PAVEL,
et al. “TensorFlow Graphics: Computer Graphics Meets Deep Learning”.
2019 1, 3.

[VSJ21] VICINI, DELIO, SPEIERER, SÉBASTIEN, and JAKOB, WENZEL.
“Path Replay Backpropagation: Differentiating Light Paths using Con-
stant Memory and Linear Time”. ACM Trans. Graph. 40.4 (2021),
108:1–108:14 2, 3.

[WLY10] WANG, GUIBIN, LIN, YISONG, and YI, WEI. “Kernel Fu-
sion: An Effective Method for Better Power Efficiency on Multithreaded
GPU”. 2010 IEEE/ACM Int’l Conference on Green Computing and
Communications & Int’l Conference on Cyber, Physical and Social Com-
puting. IEEE. 2010, 344–350 3.

[WMG14] WAECHTER, MICHAEL, MOEHRLE, NILS, and GOESELE,
MICHAEL. “Let There Be Color! — Large-Scale Texturing of 3D Re-
constructions”. Proceedings of the European Conference on Computer
Vision. Springer, 2014 23.

[YKM*20] YARIV, LIOR, KASTEN, YONI, MORAN, DROR, et al. “Mul-
tiview Neural Surface Reconstruction by Disentangling Geometry and
Appearance”. Advances in Neural Information Processing Systems 33
(2020) 12.

[Zaa21] ZAAL, GREG. HDRIHaven. 2021. URL: https://hdrihaven.
com/ 21.

[ZMY*20] ZHANG, CHENG, MILLER, BAILEY, YAN, KAI, et al. “Path-
Space Differentiable Rendering”. ACM Trans. Graph. 39.4 (2020),
143:1–143:19 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/3478513.3480501
https://doi.org/10.1145/3478513.3480501
https://arxiv.org/abs/2007.08501
https://unity.com/
https://unity.com/
https://hdrihaven.com/
https://hdrihaven.com/

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

Appendix A: Implementation Details

To clarify the implementation of our proposed system, we describe
class structures, API, and algorithm details in C++ code style. Con-
stant, reference, pointer, parallelization, and other less important
parts are omitted for readability.

Example of the Optimization on Dressi Renderer

The following program is an example of the vertex positions and
normal map optimization on Dressi renderer with HardSoftRas and
physically-based shading. Although Dressi code for optimization
looks similar to PyTorch, Dressi is define-and-run. At first, a ren-
derer instance is declared (details in Section A) and scene files are
loaded. Second, a forward computational graph is built for render-
ing and loss calculation. Third, the vertex positions and normal map
are specified as optimization targets by the requires-gradient flag as
in PyTorch. After these setups, a main optimization process is exe-
cuted using execStep(). Finally, the optimized results are saved.

int main(int argc, char *argv[]) {
OptimizeVertexPostionAndNormalTexture();
return 0;

}

void OptimizeVertexPostionAndNormalTexture() {
// Create renderer instance
DressiBasicRenderer renderer;
// Load scene data on CPU
renderer.loadScene("initial_scene.gltf", "target_img.png");

// Build a computational graph
uint32_t K = 2; // The number of peeling for HardSoftRas
float r = 0.01f; // Radius parameter for HardSoftRas
float sigma = r / 7.f; // Blending parameter for HardSoftRas
float delta = r; // Silhouette edge width for HardSoftRas
float lr = 0.01f; // Learning rate for optimizer
renderer.buildGraph(K, r, sigma, delta, lr);
// Mark vertex positions and a normal texture as optimization targets
renderer.setRequiresGrad("vtx_pos");
renderer.setRequiresGrad("normal");

// Optimization interations
for (int iter = 0; iter < 1000; iter++) {

renderer.execStep();
}

// Save optimized data as a GLTF file
renderer.saveScene("optimized_scene.gltf");

}

Example of the Dressi Renderer

DressiBasicRenderer is an example of rendering and optimiza-
tion based on Dressi system design. It has a DressiAD instance,
which is DR-specialized AD, and the renderer considers only the
forward pass and optimizers (e.g., SGD). The implementation de-
tails of DressiAD are described in Section A. Scene data loaded
to the CPU memory are parsed as CpuImage structure, which is
a simple buffer of a 2D image. Non-image data (e.g., vertex posi-
tions) are converted into 2D image representation for efficient ren-
dering. After CpuImages are loaded, Variable objects are created
to represent a computational graph. It is a data structure for inputs
and outputs of functions (details in Section A). Forward render-
ing and optimizer process are described by assembling operators
and namespace F functions (i.e., F::) for the Variable objects,
constructing a computational graph. The operators and F:: func-
tions wrap Function objects, which have a forward GLSL code
and backward generator. This implementation direction is similar

to common AD libraries such as PyTorch and TensorFlow. Ex-
amples of the F:: functions are described in Section A, and the
implementation details of Function are described in Section A.
BuildBasicRenderGraph() is an example of rendering functions
using HardSoftRas (details in Section A). The loss for the rendered
image and an optimizer algorithm are set to the DressiAD instance.

// DressiBasicRenderer: An example of renderer class for Dressi system.
class DressiBasicRenderer {
public:

void loadScene(std::string gltf_filename,
std::string target_img_filename) {

// Load initial scene from a file and parse to CpuImage structures
std::tie(m_img_map["vtx_pos"], m_img_map["vtx_uv"], m_img_map["faces"],

m_img_map["world_mat"], m_img_map["view_mat"],
m_img_map["prj_mat"], m_img_map["env_img"],
m_img_map["albedo"], m_img_map["metallic"],
m_img_map["roughness"], m_img_map["normal"],
m_img_map["background"]) = LoadGltfAsCpuImages(gltf_filename);

// Load target an image file and parse to a CpuImage structure
m_img_map["target"] = LoadTargetImageAsCpuImage(target_img_filename);

// Create top variables of a computational graph
m_var_map["vtx_pos"] = {VEC3, m_img_map["vtx_pos"].getImgSize()};
m_var_map["vtx_uv"] = {VEC2, m_img_map["vtx_uv"].getImgSize()};
m_var_map["faces"] = {IVEC3, m_img_map["faces"].getImgSize()};
m_var_map["model_mat"] = {MAT4, {1, 1}};
m_var_map["view_mat"] = {MAT4, {1, 1}};
m_var_map["prj_mat"] = {MAT4, {1, 1}};
m_var_map["env_img"] = {VEC3, m_img_map["env_img"].getImgSize()};
m_var_map["albedo"] = {VEC3, m_img_map["albedo"].getImgSize()};
m_var_map["metallic"] = {FLOAT, m_img_map["metallic"].getImgSize()};
m_var_map["roughness"] = {FLOAT, m_img_map["roughness"].getImgSize()};
m_var_map["normal"] = {VEC3, m_img_map["normal"].getImgSize()};
m_var_map["background"] = {VEC3, m_img_map["background"].getImgSize()};
m_var_map["target"] = {VEC4, m_img_map["target"].getImgSize()};

// Set a flag to send CPU images to GPU
m_is_sent = false;

}

void buildGraph(uint32_t K, float r, float sigma, float delta,
float lr) {

// Build a rendering computational graph
Variable rendered_img = BuildBasicRenderGraph(

m_var_map["vtx_pos"], m_var_map["vtx_uv"], m_var_map["faces"],
m_var_map["model_mat"], m_var_map["view_mat"],
m_var_map["prj_mat"], m_var_map["env_img"],
m_var_map["albedo"], m_var_map["metallic"],
m_var_map["roughness"], m_var_map["normal"],
m_var_map["background"], K, r, sigma, delta);

// Take L1 loss
Variable loss = F::Mean(F::Abs(m_var_map["target"] - rendered_img));

// Set the loss and an optimizer to DressiAD
m_dressi_ad.setLossVar(loss);
m_dressi_ad.setOptimizer([=](Variables xs, Variables gxs) {

// SGD for all inputs
Variables updated_xs;
for (size_t i = 0; i < xs.size(); i++) {

updated_xs.push_back(xs[i] - gxs[i] * lr);
}
return updated_xs;

});
}

void setRequiresGrad(std::string name) {
// Set a requires-gradient flag
m_var_map[name].setRequiresGradRecursively();

}

void execStep() {
// Send CPU images to GPU if needed.
if (!m_is_sent) {

for (auto [name, var]: m_var_map) {
m_dressi_ad.sendImg(var, m_img_map[name]);

}
m_is_sent = false;

}

// Execute one iteration of the optimization
m_dressi_ad.execStep();

}

void saveScene(std::string gltf_filename) {
// Receive all GPU images
for (auto [name, var]: m_var_map) {

m_img_map[name] = m_dressi_ad.recv(var);
}
// Save the optimized scene to a GLTF file.
SaveGltfFromCpuImages(m_img_map);

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

}

private:
// DressiAD instance for DR-specialized AD
DressiAD m_dressi_ad;
// Scene data map for CpuImage
std::map<std::string, CpuImage> m_img_map;
// Scene data map for Variable corresponding to CpuImage
std::map<std::string, Variable> m_var_map;
// Internal flags
bool m_is_sent = false;

};

Example of the Rendering Algorithm Using HardSoftRas

BuildBasicRenderGraph() describes a rendering example us-
ing the HardSoftRas algorithm. All our DR algorithms are writ-
ten in AD, and there are no special backward declarations.
BuildRasterize(), which contains Enlarge and Shift operations
and depth peeling, rasterizes triangles. BuildBlend() takes the
outputs of BuildRasterize() and shading parameters, and it per-
forms blending operations for color and silhouette images.

Variable BuildBasicRenderGraph(Variable vtx_pos, Variable vtx_uv,
Variable faces, Variables model_mat, Variable view_mat,
Variable prj_mat, Variable env_img, Variable albedo,
Variable metallic, Variable roughness, Variable normal,
Variable background, uint32_t K, float r, float sigma,
float delta) {

// Irradiance map
Variable irrad_img = BuildIrradianceSample(env_img);
// Pre-filtered environment map for glossy material
Variable pref_img = BuildPrefEnvironmentSample(env_img)
// BRDF integration map
Variable brdf_img = BuildBrdfIntegrationMap();

/******** The beginning of HardSoftRas algorithm *******/
// Rasterize and shade for each peeling plane
auto prev_prj_depth = F::Float(0.f);
Variables shaded_imgs, stencils, edge_dists;
for (uint32_t plane_idx = 0; plane_idx < K; plane_idx++) {

// Rasterize a single geometry
auto [stencil, edge_dist, world_pos, world_nor, uv, prj_depth] =

BuildRasterize(vtx_pos, vtx_uv, faces, model_mat,
view_mat, prj_mat, prev_prj_depth, r);

prev_prj_depth = prj_depth; // Update peeling depth
// Note: To rasterize multiple geometries, extra depth test is needed

// Physically-based shading
auto shaded_img = BuildPBS(stencil, world_pos, world_nor, uv,

albedo, metallic, roughness, normal,
irrad_img, pref_img, brdf_img);

shaded_imgs.push_back(shaded_img);
stencils.push_back(stencil);
edge_dists.push_back(edge_dist);

}

// Blend shaded planes
auto [blended_shaded_img, blended_silhouette_img] = BuildBlend(

shaded_imgs, stencils, edge_dists, background, K, sigma, delta);
/********* The end of HardSoftRas algorithm ********/

// Apply tone-map and gamma correction
blended_shaded_img = BuildToneMap(blended_shaded_img);

// Join silhouette image as alpha
auto rendered_img = F::Vec4(blended_shaded_img, blended_silhouette_img);

return rendered_img;
}

auto BuildRasterize(Variable vtx_pos, Variable vtx_uv,
Variable faces, Variable model_mat, Variable view_mat,
Variable prj_mat, Variable prev_prj_depth, float r) {

auto vtx_pos = F::Vec4(vtx_pos, 1.f); // Cast to homogeneous coordinate
vtx_pos = model_mat * vtx_pos; // Apply model matrix

// Compute vertex normals from positions
auto vtx_nor = BuildNormalCompute(vtx_pos);
// Apply view and projection matices
auto vtx_prj = prj_mat * view_mat * vtx_pos;

// Lookup the vertex buffer with faces to create per-triangle attributes
auto tri_prj_0, tri_prj_1, tri_prj_2 = LookupFaces(vtx_prj, faces);
auto tri_pos_0, tri_pos_1, tri_pos_2 = LookupFaces(vtx_pos, faces);
auto tri_nor_0, tri_nor_1, tri_nor_2 = LookupFaces(vtx_nor, faces);

auto tri_uv_0, tri_uv_1, tri_uv_2 = LookupFaces(vtx_uv, faces);

// Enlarge(): Enlarge triangle vertex positions by scaling ‘r‘
// Notice that the number of triangles will change, and the original
// vertex indices are stored.
auto [large_prj_0, large_prj_1, large_prj_2, original_vtx_idxs] =

BuildEnlarge(tri_prj_0, tri_prj_1, tri_prj_2, r);

// Join triangle vertex positions to rasterize the single vertex buffer
auto large_prj_flat = F::Stack(large_prj_0, large_prj_1, large_prj_2);
// Rasterize enlarged triangles, and obtain screen space vertex indices
auto screen_vtx_idxs = F::Rasterize(large_prj_flat, original_vtx_idxs);

// SignedDist(): Compute pixel-to-edge distance inside enlarged triangles
auto edge_dist = BuildEdgeDistance(tri_prj_0, tri_prj_1, tri_prj_2,

screen_vtx_idxs);

// Compute screen space barycentric coordinates
auto bary_coords = BuildBaryCoord(tri_prj_0, tri_prj_1, tri_prj_2,

screen_vtx_idxs);
// Interpolate vertex attributes to be screen space
auto prj_pos = BuildInterpolate(tri_prj_0, tri_prj_1, tri_prj_2,

screen_vtx_idxs, bary_coords);
auto world_pos = BuildInterpolate(tri_pos_0, tri_pos_1, tri_pos_2,

screen_vtx_idxs, bary_coords);
auto world_nor = BuildInterpolate(tri_nor_0, tri_nor_1, tri_nor_2,

screen_vtx_idxs, bary_coords);
auto uv = BuildInterpolate(tri_uv_0, tri_uv_1, tri_uv_2,

screen_vtx_idxs, bary_coords);

// Shift(): Depth modification
auto prj_depth = F::GetW(prj_pos);
auto soft_depth = edge_dist * 0.5f + 0.5f;
auto hard_depth = prj_depth * 0.5f;
auto is_inside = (0.f < edge_dist);
prj_depth = F::Mix(soft_depth, hard_depth, is_inside);
prj_depth = F::SetFragDepth(prj_depth); // Set depth to gl_FragDepth
// Depth peeling
auto stencil = F::PeelDepth(prj_depth, prev_prj_depth);

return {stencil, edge_dist, world_pos, world_nor, uv, prj_depth};
}

auto BuildBlend(Variables shaded_imgs, Variables stencils,
Variables edge_dists, Variable background, uint32_t K,
float sigma, float delta) {

// Compute pixel weights from edge distances
Variables weights;
Variables weighted_cols;
for (uint32_t plane_idx = 0; plane_idx < K; plane_idx++) {

auto prob = 1.f / (1.f + F::Exp(edge_dists[i] / -sigma));
auto weight = prob * stencils[plane_idx];
weights.push_back(weight);
weighted_cols.push_back(weight * shaded_imgs[plane_idx]);

}

// Blend shaded color by normalized weights
auto sum_stencils = F::SumPixelWise(stencils);
auto sum_weight = F::SumPixelWise(weights) / sum_stencils;
auto sum_weighted_col = F::SumPixelWise(weighted_cols) / sum_stencils;
auto blended_col = F::Mix(background, sum_weight, sum_weighted_col);

// Blend silhouettes
auto blended_sil = F::Float(1.f);
for (uint32_t plane_idx = 0; plane_idx < K; plane_idx++) {

blended_sil *= (1.f - weights[plane_idx]);
}
blended_sil = 1.f - blended_sil;

// Blend hard faces by an edge mask
auto is_hard = (0.f < edge_dists[0]);
auto hard_shaded = shaded_imgs[0] * is_hard; // Mask inside
auto edge_mask = BuildEdgeMask(edge_dists[0], delta);
blended_col = F::Mix(hard_shaded, blended_col, edge_mask);
blended_sil = F::Mix(is_hard, blended_sil, edge_mask);

return {blended_col, blended_sil};
}

Function and Variable Objects

Functions and Variables are the basic structures for represent-
ing the graph structure of a computational flow. They have cross-
references for constructing computational graphs. Function has a
GLSL snippet for its forward process and a generator function for
the backward pass.

// Variable Data Types

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

enum VType { FLOAT, VEC2, ..., MAT2, ..., INT, IVEC2, ... };

// Variable Object
class Variable {
public:

Variable(VType vtype = FLOAT, ImgSize img_size = {1, 1}):
m_vtype(vtype), m_img_size(img_size) {}

// Getters / setters
VType getVType() { ... }
void setVType(VType vtype) { ... }
ImgSize getImgSize() { ... }
void setImgSize(ImgSize img_size) { ... }
Function getCreator() { ... }
void setCreator(Function creator) { ... }
std::vector<Function> getUsers() { ... }
void addUser(Function user) { ... }
bool getRequiresGrad() { ... }
void setRequiresGrad(bool req_grad) { ... }
void setRequiresGradRecursively(bool req_grad) { ... }
bool IsDirty() { ... }
void setDirty(bool is_dirty) { ... }
void setDirtyRecursively(bool is_dirty) { ... }

private:
VType m_vtype;
ImgSize m_img_size;
Function m_creator = Empty;
std::vector<Function> m_users;
bool m_req_grad = false;
bool m_is_dirty = true;

};

// Aliases for simplification
using Variables = std::vector<Variable>;
using BwdFunc = std::function<Variable(Variables xs, Variable y,

Variable gy, uint32_t bwd_idx)>;
// Shader type
enum ShaderType { FRAG, COMP, RASTER };

// Function Object
class Function {
public:

Function(std::string code, ShaderType type, BwdFunc bwd_func) :
m_fwd_code(code), m_type(type), m_bwd_func(bwd_func) {}

// Getters
std::string getFwdCode() { ... }
ShaderType getShaderType() { ... }
Variables getInputVars() { ... }
Variable getOutputVar() { ... }

// Building forward/backward connections
Variable buildFwd(Variables xs) {

m_xs = xs;
for (auto x: xs) { x.addUser(this); }
m_y.setCreator(this);
// Infer and set variable type and image size of output
m_y.setVType(InferOutputVType(xs));
m_y.setImgSize(InferOutputImgSize(xs));
return m_y;

}
Variable buildBwd(Variable gy, uint32_t bwd_idx) {

// Create the graph for backward computation
return m_bwd_func(m_xs, m_y, gy, bwd_idx);

}

private:
std::string m_fwd_code;
ShaderType m_type;
BwdFunc m_bwd_func;
Variables m_xs;
Variable m_y;

};

// Alias for simplification
using Functions = std::vector<Function>;

Examples of the Namespace F Functions

Regarding Function and Variable objects, concrete operators/func-
tions such as addition and multiplication are defined in names-
pace F. Similar to common AD libraries, both forward native
code and backward generation are described in F:: functions. In
contrast to common AD libraries, DR-specific functions such as
F::Rasterize() and F::PeelDepth() are also included in our
AD as no-backward functions. Each function declaration contains

a GLSL snippet (e.g. {y}={x0}+{x1};). {x0} and {x1} repre-
sent the first and second inputs of the function, and {y} indi-
cates an output. The snippet is used to generate a fragment or
compute shader code in Section A. The input and output mark-
ers can be replaced by actual variable names. Most functions can
be written as shader snippets, but rasterization cannot be written
as such. Therefore, F::Rasterize function is specially marked as
ShaderType::RASTER.

// Function Operators
namespace F {

Variable Float(float fv) { // Constant float in GLSL
return Function("{y}=float(" + fv + ");", FRAG, [](xs, y, gy, bwd_idx) {

return nullptr; // No backward
}).buildFwd({});

}

Variable Add(Variable x0, Variable x1) {
return Function("{y}={x0}+{x1};", FRAG, [](xs, y, gy, bwd_idx) {

return gy;
}).buildFwd({x0, x1});

}

Variable Mul(Variable x0, Variable x1) {
return Function("{y}={x0}*{x1};", FRAG, [](xs, y, gy, bwd_idx) {

if (bwd_idx == 0) {
return gy * xs[1]; // Backward pass toward ‘x0‘

} else {
return gy * xs[0]; // Backward pass toward ‘x1‘

}
}).buildFwd({x0, x1});

}

Variable Sin(Variable x) {
return Function("{y}=sin({x0});", FRAG, [](xs, y, gy, bwd_idx) {

return F::Cos(gy);
}).buildFwd({x});

}

Variable Rasterize(Variable vtx_pos, Variable vtx_attrib) {
return Function("{y}={x1};", // Rasterizing an attribute ‘vtx_attrib‘

RASTER, // Marked as rasterization specially
[](xs, y, gy, bwd_idx) { return nullptr; } // No backward pass

).buildFwd({x});
}

Variable PeelDepth(Variable frag_depth, Variable prev_frag_depth) {
return Function("if({x0}<={x1})discard; {y}=1.0;", FRAG,

[](xs, y, gy, bwd_idx) { return nullptr; } // No backward pass
).buildFwd({frag_depth, prev_frag_depth});

}

...
}

Dressi-AD

The Dressi-AD class has interfaces to set loss variables and an
optimizer (setLossVar() and setOptimizer(), respectively),
transfer data between CPU and GPU (sendImg() and recvImg(),
respectively), and execute optimization iteration (execStep()).
execStep() contains setups for the backward pass construction
(Section A), optimizer function construction, computational graph
traversal, substage packing (Section A), stage packing (Section A),
Vulkan object creation (Section A) from stage and substage graphs,
and Vulkan command execution.

// DressiAD: DR-specialized AD library class
class DressiAD {
public:

// Optimizer function
// (takes inputs and thier gradients, and returns optimized outputs.)
using Optimizer = std::function<Variables(Variables xs, Variables gxs)>;

// Setter
void setLossVar(Variable loss_var) {

m_loss_var = loss_var;
m_init_status = InitStatus::BACKWARD; // Execute initialize process

}

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

void setOptimizer(Optimizer optim_func) { ... }

// Building status
enum InitStatus { BACKWARD, OPTIMIZER, TRAVERSE, SUBSTAGE, STAGE,

VULKAN, FINISHED};

// Execute one step of rendering and optimization
void execStep() {

// Check dirty flags of input variables
if (IsAnyVariableDirtyChanged(m_input_vars)) {

m_graph_static_cnt = 0;
}
// Check rebuild condition
if (m_graph_static_cnt == FAST_REBUILD_COUNT) {

m_init_status = InitStatus::STAGE; // Execute fast rebuild
} else if (m_graph_static_cnt == FULL_REBUILD_COUNT) {

m_init_status = InitStatus::SUBSTAGE; // Execute full rebuild
}

if (m_init_status <= InitStatus::BACKWARD) {
// 1) Traverse the forward computational graph and
// generate the backward graph by Function::buildBwd()
m_input_vars, m_input_grad_vars = BuildBackward(m_loss_var);

}
if (m_init_status <= InitStatus::OPTIMIZER) {

// 2) Build the optimizer
// to connect the forward pass with the backward pass
m_updated_vars = m_optim_func(m_input_vars, m_input_grad_vars);
m_upd_inp_map = CreateMap(m_input_vars, m_updated_vars);

}
if (m_init_status <= InitStatus::TRAVERSE) {

// 3) Traverse full computational graph
// from updated to input variables
m_all_funcs = TraverseFuncs(m_updated_vars, m_input_vars);

}
if (m_init_status <= InitStatus::SUBSTAGE) {

// 4) Pack the computational graph into SubStages
m_substages = PackDirtyFuncsIntoSubStages(m_all_funcs, m_vk_imgs);

}
if (m_init_status <= InitStatus::STAGE) {

// 5) Pack the SubStages into Stages
m_stages = PackDirtySubStagesIntoStages(m_substages, m_vk_imgs);

}
if (m_init_status <= InitStatus::VULKAN) {

// 6) Parse to Vulkan objects
m_vk_imgs, m_vk_cmd_buf, m_vk_renderpasses, m_vk_pipelines, ... =

ParseStagesAsVulkanObjects(m_stages, m_vk_imgs, m_upd_inp_map);
}

// 7) Execute a command buffer
VkQueueSubmit(m_vk_cmd_buf);

// Mark as clean recursively
for (auto v: m_input_vars) { v.setDirtyRecursively(false); }
m_init_status = FINISHED;

}

// Transfer image data between CPU and GPU.
void sendImg(Variable var, CpuImage cpu_img) {

if (m_vk_imgs.contains(var)) {
var.setDirty(true); // Mark as changed
SendHostImageToDevice(m_vk_imgs[var], cpu_img); // CPU -> GPU

}
}
CpuImage recvImg(Variable var) {

if (m_vk_imgs.contains(var)) {
return ReceiveHostImageFromDevice(m_vk_imgs[var]); // GPU -> CPU

}
return nullptr;

}

private:
InitStatus m_init_status = InitStatus::BACKWARD;
Variable m_loss_var; // Last variable of the forward pass
Optimizer m_optim_func;
uint32_t m_graph_static_cnt = 0;

Variables m_input_vars; // Top variables of the forward pass
Variables m_input_grad_vars; // Last variables of the backward pass
Variables m_updated_vars; // Last variables of the computational graph
Functions m_all_funcs; // All functions of the computational graph
std::map<Variable, Variable> m_upd_inp_map; // Map from input to updated

SubStages m_substages;
Stages m_stages;

std::map<Variable, VkImage> m_vk_imgs;
VkCommandBuffer m_vk_cmd_buf;
std::vector<VkRenderPass> m_vk_renderpasses;
std::vector<VkPipeline> m_vk_pipelines;
... // Many Vulkan objects

};

Backward Pass Construction

Backward pass construction is mostly similar to common AD li-
braries. BuildBackward() backward traverses a forward compu-
tational graph from loss variables, sums up gradient variables by
chain rule, and returns a pair of input and corresponding gradient
variables.

std::tuple<Variables, Variables> BuildBackward(Variable loss_var) {
// Mapping from a forward variable to backward gradient variables
std::map<Variable, Variables> fwd_bwds_map;
// Function queue that keeps the order of use
std::priority_queue<Function> func_queue;

// Set loss as the starting point
fwd_bwds_map[loss_var] = F::Float(1.f);
func_queue.push(loss_var.getCreator());

// Traversal loop
while (!func_queue.empty()) {

// Pop the latest-used function.
Function func = func_queue.top();
func_queue.pop()
if (IsSeenFunc(func)) continue;

// Sum up gradients.
Variable y = func.getOutputVar();
Variables gys = fwd_bwds_map.at(y);
Variable gy = F::SumPixelWise(gys);
fwd_bwds_map.erase(y);

Variables xs = func.getInputVars();
for (size_t x_idx = 0; x_idx < xs.size(); x_idx++) {

auto x = xs[x_idx];
if (!x.getRequiresGrad()) continue; // Skip no gradient path

// Build a backward connection
Variable gx = func.buildBwd(gy, x_idx);
if (!gy) {

continue; // Skip non-backwardable function
}
// Register a new gradient
fwd_bwds_map[x].push_back(gx);

// Push a creator function for recurrent traversal
Function x_creator = x.getCreator();
if (x_creator) func_queue.push(x_creator);

}
}

// Collect input and gradient of input variables
Variables input_vars, input_grad_vars;
for (auto [x, gxs]: fwd_bwds_map) {

input_vars.push_back(x);
input_grad_vars.push_back(F::SumPixelWise(gxs));

}
return {input_vars, input_grad_vars};

}

Substage Packing

In substage packing, function objects are packed into substages,
whereas clean and cached ones are skipped to reduce the computa-
tional cost. “Clean” indicates that the output Variable of a function
is marked as clean. “Cached” indicates that the Variable is used as
a substage I/O, and its data is stored on GPU as a result of previous
iteration. In our implementation, packing starts from the last output
of the computational graph using a greedy algorithm. The active
substage being currently processed is iteratively updated. At each
iteration, the function that has more edges is packed into the ac-
tive substage under Vulkan constraints in a greedy manner. If there
are no packable functions into the active substage, the substage is
switched to a new one.

struct SubStage {
Variables vtx_vars; // Vertex buffer inputs for rasterization
Variables inp_vars; // Input attachment
Variables tex_vars; // Texture sampler inputs
Variables slt_vars; // Sampler-less texture inputs
Variables uif_vars; // Uniform inputs

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

Variables out_vars; // Color attachment (outputs)
Variables gen_vars; // All generated variables including shader inside
Functions funcs;
std::string shader_code;

};
using SubStages = std::vector<SubStage>;

SubStages PackDirtyFuncsIntoSubStages(
Functions all_funcs, std::map<Variable, VkImage> cached_imgs) {

// Traverse functions, ignoring clean and cached branches.
auto dirty_funcs = RemoveCleanFuncs(all_funcs, cached_imgs);

// Graph optimization
OmitConstantFuncs(dirty_funcs); // Precompute constant values
OmitDuplicatedFuncs(dirty_funcs); // Omit same functions with same inputs

// Search suitable packing under Vulkan limitations
SubStages substages = SearchSuitableFunctionPacking(dirty_funcs);

for (auto substage: substages) {
// Generate GLSL shader codes by string manipulation as following.
// 1) Collect GLSL snippets of functions in a substage.
// ex.) "{y}={x0}+{x1};", "{y}=sin({x0});"
// 2) Join snippet lines, and replace input and output markers.
// ex.) "v7=v5+v6; v8=sin(v7);"
// 3) Add variable declaration, I/O codes of input attachments,
// main function, and description of attachments/uniforms/etc...
// ex.) "layout(...) uniform subpassInput sub_inp[2]; ...
// void main() { float v5=subpassLoad(sub_inp[0]); ...
// float v7=v5+v6; float v8=sin(v7); ... }"
substage.shader_code = GenerateShaderCode(substage);

}
return substages;

}

SubStages SearchSuitableFunctionPacking(Functions dirty_funcs) {
SubStages substages;
SubStage active_substage;
Variables used_vars;

while (!dirty_funcs.empty()) {
// Collect functions whose outputs are not used in other functions.
Functions candidate_funcs = CollectLatestFuncs(dirty_funcs);
// Sort functions by edge numbers to the substage.
// We assume that the number of edges correlates a probability to be
// a better choice to maximize the size of substage.
candidate_funcs = SortByEdgeNumbers(candidate_funcs, active_substage);

// Try packing from the last of computational graph.
bool is_found = false;
for (auto func: candidate_funcs) {

// Try push a function into the substage
auto trial_substage = PushFrontFuncIntoSubStage(

func, active_substage, used_vars);
if (IsSubStageVkLimitsSatisfied(trial_substage)) {

active_substage = trial_substage; // Suitable packing found
dirty_funcs.erase(func);
is_found = true;
break;

}
}
if (!is_found) {

// Switch to a next substage if no more packing
substages.push_back(active_substage);
active_substage = {}; // Clear
// Mask input variables as used for substage dependency
for (auto inp_var: CollectAllInputVars(substage)) {

used_vars.push_back(inp_var);
}

}
}
return substages;

}

SubStage PushFrontFuncIntoSubStage(Function func, SubStage substage,
Variables used_vars) {

// Register function inputs
for (auto inp_var: func.getInputVars()) {

if (func.getShaderType() == RASTER) {
substage.vtx_vars.push_back(inp_var); // As vertex buffer

} else if (IsSamplerType(inp_var)) {
substage.tex_vars.push_back(inp_var); // As texture sampler

} else if (IsSamplerLessType(inp_var)) {
substage.slt_vars.push_back(inp_var); // As sampler-less texture

} else if (inp_var.getImgSize() == {1, 1}) {
substage.uif_vars.push_back(inp_var); // As uniform

} else {
substage.inp_vars.push_back(inp_var); // As input attachment

}
}

// Remove generated variables from inputs (Vertex, texture,
// and sampler-less texture must not be generated in the same substage.)
Variables out_var = func.getOutputVar();

substage.inp_vars.erase(out_var);
substage.uif_vars.erase(out_var);

// Register function output which is needed by other substages
if (used_vars.contains(out_var)) {

substage.out_vars.push_back(out_var);
}
// Register function output as generated variables
substage.gen_vars.push_back(out_var);
// Register function
substage.funcs.push_back(func);
return substage;

}

bool IsSubStageVkLimitsSatisfied(SubStage substage) {
// All output images must have same image size.
if (!AreSameImgSizes(substage.out_vars)) return false;
// All functions must have same shader type except for top rasterization.
if (!AreSameShaderTypes(substage.funcs) &&

!(substage.funcs[0].getShaderType() == RASTER &&
AreSameShaderTypes(RemoveFirst(substage.funcs)))) return false;

// Vertex/texture input must come from another substage.
if (substage.gen_vars.containsAny(substage.vtx_vars)) return false;
if (substage.gen_vars.containsAny(substage.tex_vars)) return false;
// Limited numbers of Vulkan I/O
if (MAX_VULKAN_INPUT_ATTACH < substage.inp_vars.size()) return false;
if (MAX_VULKAN_TEXTURE_SAMPLER < substage.tex_vars.size()) return false;
if (MAX_VULKAN_SAMPLED_IMAGE < substage.slt_vars.size()) return false;
if (MAX_VULKAN_UNIFORM < substage.uif_vars.size()) return false;
if (MAX_VULKAN_OUTPUT_ATTACH < substage.out_vars.size()) return false;
... // Other number limitations for combined conditions
return true;

}

Stage Packing

Stage packing, which packs substages into stages, follows the same
strategy as the substage packing.

struct Stage
{

// I/O variables as same as SubStages’
Variables vtx_vars, inp_vars, tex_vars, slt_vars, uif_vars, out_vars;
// Hierarchical structure for SubStages
SubStages substages;

};
using Stages = std::vector<Stage>;

Stages PackDirtySubStagesIntoStages(
SubStages all_substages, std::map<Variable, VkImage> cached_imgs)

{
// Traverse a substage graph, ignoring clean and cached branches.
auto dirty_substages = RemoveCleanSubStages(all_substages, cached_imgs);

// Search suitable packing under Vulkan limitations.
// Packing strategy is same as ‘SearchSuitableFunctionPacking()‘.
Stages stages = SearchSuitableSubStagePacking(dirty_substages);
return stages;

}

Vulkan Object Creation

After stage packing, stages and substages are parsed to Vulkan ob-
jects. The input and output variables of substages are allocated as
VkImage on GPU. We use only VkImage instead of VkBuffer be-
cause a graphics pipeline is more efficient than a compute pipeline
and only a fragment shader can have multiple outputs as images.
To simplify the implementation, non-image data such as vertex at-
tributes are also treated as images. Stages for rasterization and frag-
ment shaders are parsed into VkRenderPass objects, and substages
are parsed into VkPipeline to be a subpass in a VkRenderPass.
For a compute shader, one stage should have only one substage
because there is no hierarchical structure. Therefore, the stage is
parsed as one VkPipeline.

auto ParseStagesAsVulkanObjects(Stages stages,
std::map<Variable, VkImage> prev_vk_imgs,
std::map<Variable, Variable> upd_inp_map) {

// Collect image usages for substage I/O

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

std::map<Variable, VkImageUsage> usages = CollectVkImageUsage(stages);
// Create images with usages
std::map<Variable, VkImage> vk_imgs;
for (auto [var, usage]: usages) {

if (prev_vk_imgs.contains(var)) {
// Skip image creation to keep previous image data
vk_imgs[var] = prev_vk_imgs[var];

} else if (upd_inp_map.contains(var)) {
// Use the same image for input and updated variables.
// Inputs will be overwritten by updated ones for each iteration.
vk_imgs[var] = upd_inp_map(var);

} else {
// Create a new Vulkan image on GPU
vk_imgs[var] =

VkCreateImage(var.getVType(), var.getImgSize(), usage, ...);
}

}

// Create pipelines, render passes, and lots of other Vulkan objects
VkCommandBuffer vk_cmd_buf;
std::vector<VkRenderPass> vk_renderpasses;
std::vector<VkPipeline> vk_pipelines;
...
for (auto stage: stages) {

// Build a graphics or compute pipeline according to stage type.
ShaderType stage_type = GetShaderType(stage);
if (stage_type == FRAG) { // Including ‘RASTER‘ too. Rasterization and

// fragment functions were packed into one
// stage.

// Create a render pass from a stage for graphics pipelines.
auto vk_renderpass = CreateRenderPass(stage);
... // Many Vulkan setups
VkCmdBeginRenderPass(vk_cmd_buf, vk_renderpass);

// Subpass creation and recording
for (auto substage: stage.substages) {

// Create a pipeline for a substage as a subpass in the renderpass.
auto vk_pipeline = CreateGraphicsPipeline(substage, vk_renderpass);
vk_pipelines.push_back(vk_pipeline);
... // Many Vulkan setups
VkCmdBindPipeline(vk_cmd_buf, vk_pipeline);

// Record drawing call
if (substage.vtx_vars.empty()) {

// Drawing for only fragment functions.
// No vertex buffer are bound, and dummy vertex shader is
// attached to rasterize a full-screen rectangle.
VkCmdDraw(vk_cmd_buf);

} else {
// Drawing for rasterization and fragment functions.
// In order to rasterize one vertex attribute, a vertex buffer
// is bound, and a pass-through vertex shader is attached.
VkCmdBindVertexBuffers(vk_cmd_buf); // Bind vertex buffer
VkCmdDraw(vk_cmd_buf);

}
VkCmdNextSubPass(vk_cmd_buf);

}

VkCmdEndRenderPass(vk_cmd_buf);
vk_renderpasses.push_back(vk_renderpass);

} else if (stage_type == COMP) {
// Create a compute pipeline. It is slower than graphics pipelines.
// ‘substages.size() == 1‘ because of no subpass for compute shaders.
auto vk_pipeline = CreateComputePipeline(stage.substages[0]);
vk_pipelines.push_back(vk_pipeline);
... // Many Vulkan setups
VkCmdBindPipeline(vk_cmd_buf, vk_pipeline);
// Record drawing call
VkCmdDispatch(vk_cmd_buf);

}
}
return vk_imgs, vk_cmd_buf, vk_renderpasses, vk_pipelines, ...;

}

Appendix B: Additional Applications

Environment Map Optimization

To demonstrate the versatility of our renderer, we jointly opti-
mize an environment map and the physically-based shading (PBS)
[MHM*13] roughness property. We use three meshes whose mate-
rials have different metallic and roughness properties and the envi-
ronment maps provided by a public repository [Zaa21]. Fixed 20
views for 1,000 iterations are used to fit the pre-generated images
rendered with GTs. We use Adam [KB14] optimizer in the opti-
mization process. The environment map is initialized to a uniform

Result GTiterations

Figure 18: Joint optimization of the PBS roughness property and
the environment map: (a) changes in roughness through optimiza-
tion, (b) optimized results and GTs of the environment maps, and
(c) error between optimized roughness and GT for the meshes that
are torus, pot, and pig [Cra21].

gray color, and the minimum and maximum pixel intensities of the
GT environment map are clamped to avoid noisy results. Fig. 18
shows that every combination of the mesh and the environment
map converges to GT value. We observe some limitations through
this experiment. First, we cannot fit optimized values to ground
truth values such as low metallic properties, high roughness proper-
ties, or highly complicated geometries. It is impossible to optimize
the environment map correctly with the matte materials due to the
lack of visual cues in the rendered images. Second, the optimiza-
tion contains artifacts that are caused by sampling patterns. There
is room for improvement in the environment sampling method for
optimization.

Normal Map Optimization

In this section, we demonstrate that Dressi can optimize a normal
map to add fine details. We optimize the normal map of two ge-
ometries to fit the rendered image using a ground truth normal map.
According to the norm constraint, we normalize the vector corre-
sponding to each pixel every iteration. The optimization results of
the fish and boombox [Khr21a] models are shown in Fig. 19. The
normal map is initialized in a uniform light blue color which rep-
resents the normal vector pointing directly to the viewer. Then, we
rotate the camera pose in the render for every frame to cover the ge-
ometry surface as much as possible. In each frame, we calculate the
RGB rendering loss Lrbg with Adam [KB14] optimizer. The RGB
rendering loss is the `2-norm of the difference between the rendered
image using the ground truth normal map NGT and that with the op-
timized normal map Nθ parameterized by θ ∈ Θ. In the upper part
of Fig. 19, the optimized normal map shows a similar pattern with

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

D
is
s
im
il
a
ri
ty

0 200 400 600 800 1000 1200

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

(a)

Initial state Optimized result GT

(b)

(c) Dissimilarity between optimized normal map and GT

Iterations

(a)

(b)

Figure 19: Normal map optimization with fish and boombox mod-
els. The upper part shows the normal maps and rendered images
of (a) fish and (b) boombox. The lower part (c) shows the numer-
ical evaluation with cosine dissimilarity. The optimization starts
from a uniform color image and finally generates a similar pattern
with the ground truth after 1200 iterations. The cosine dissimilar-
ity decreases with each iteration. This indicates that the optimized
normal vector turns to be very close to the ground truth.

the ground truth. Considering the fin of the fish in Fig. 19 (a) and
grooves of the boombox in Fig. 19 (b) as examples, the rendered
images show the same detail with the ground truth, indicating the
effectiveness of the normal map optimization.

To evaluate the dissimilarity between the optimized normal map
Nθ and the ground truth normal map NGT , we use the cosine dis-
similarity value Ldissim as a metric. This is defined as:

Ldissim(θ) = ∑
p∈P(NGT)

(1− cos(Nθ(p),NGT (p)))/‖P(NGT)‖. (7)

where P(NGT) is a set of pixel positions in a non-flat region and p
is a pixel position in the ground truth NGT .

Based on this metric, the bottom curve of Fig. 19 illustrates that
the dissimilarity decreases in 1,200 iterations, and it finally con-
verges to a small value. The dissimilarity cannot converge to zero
due to two reasons. First, we fix the environment map as a uni-
form gray color during the optimization. The optimized normal
map will overfit this lighting condition. Second, we rotate the cam-
era pose uniformly. There is no guarantee that every tiny surface is
optimized because of the sparse views. In spite of the limitations,
the experimental results show that Dressi can optimize a pixel-wise
normal map to enhance the fine details.

Human Face Modeling with 3D Morphable Model

To illustrate practical use of our approach in computer vision tasks,
we apply Dressi to human face modeling using the 3D Morphable
Model (3DMM) [EST*20]. In this experiment, we use a public
selfie RGB-depth sequence [BLC*21] and our original sequence
captured in the same manner. Their resolution is 480×640 and the
intrinsic parameters are pre-calibrated. In those sequences, a sub-
ject performs head rotation in front of a fixed camera. Our method
chooses four frames as input images by following [BLC*21]. Be-
cause a large difference in the rendering results is caused by view-
direction, normal, and metallic-roughness components, it is good
to use multiple views to estimate the view-independent values.
Our optimization process initializes albedo, normal, and metallic-
roughness textures with flat values. We initialize the camera poses
of the four views and the scale of the 3DMM shape using the corre-
spondences of detected 3D facial landmarks. Then, we start the op-
timization of the camera poses, scale, PCA coefficients of 3DMM
as blendshape weights, and the textures. Our method uses SGD
[SZ13] to optimize the textures, and Adam [KB14] is used for the
other parameters. We use the fixed environment map as a uniform
gray color and do not blur rendered images by HardSoftRas. We
minimize the loss L as follows:

L = wlLl +wdLd +wcLc +wrLr. (8)

In this equation, Ll is a 2D landmark loss with L1 norm, Ld de-
notes a pixel-wise L1 depth loss with truncation, Lc is a pixel-
wise L2 RGB color loss, Lr represents a regularization term for
the PCA coefficients and those textures, and wl , wd , wc, and wr
are weights for the losses. To render color images for Lc, we use
PBS with albedo, normal, and metallic-roughness textures. After
the optimization, we apply simple image processing to the opti-
mized textures to alleviate noises around the partially occluded ar-
eas for multiple views. Fig. 20 shows the comparison with the ex-
isting methods. Our method shows good geometry and texture re-
construction results with high visual similarity to the input image.
However, it is difficult for our optimization-based method to de-
compose materials correctly because of the fixed lighting and lack
of data-driven priors. For example, white highlights are often baked
in albedo textures. Lighting estimation [GSY*17], learned features
[PVZ15], and material basis [NLGK18; BLC*21] can improve ma-
terial decomposition.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Takimoto, H. Sato, H. Takehara, K. Uragaki, T. Tawara, X. Liang, K. Oku, W. Kishimoto & B. Zheng / Dressi

Input
GANFit

[GPKZ19]
GANFit++
[GPKZ21]

hifi3dface
[BLC*21]

COLMAP
[SF16; SZPF16]

Ours

Figure 20: Comparison with the existing face modeling methods. The top row shows the results with a public sequence [BLC*21], and the
bottom row shows the results with our original sequence. GANFit [GPKZ19] and GANFit++ [GPKZ21] are based on generative adversarial
network (GAN) and DR. They use a single RGB input and estimate shape, texture, and lighting. hifi3dface [BLC*21] with four view inputs
minimizes a loss with 3DMM by DR and refines textures by GAN. COLMAP [SF16; SZPF16] is a traditional SfM+MVS pipeline. We input
100 uniformly sampled RGB images and use additional face region masks for COLMAP. Its output mesh is textured by MVS-texturing
[WMG14]. Ours optimizes 3DMM by DR considering the normal and metallic-roughness textures with four views. Our results show a good
similarity to subjects in the input images.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

