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Figure 1: Given only a single RGB image (left) in one lighting, our method generates images of that scene in new lighting (middle / right).

Abstract

We propose a relighting method for outdoor images. Our method mainly focuses on predicting cast shadows in arbitrary novel
lighting directions from a single image while also accounting for shading and global effects such the sun light color and clouds.
Previous solutions for this problem rely on reconstructing occluder geometry, e. g., using multi-view stereo, which requires many
images of the scene. Instead, in this work we make use of a noisy off-the-shelf single-image depth map estimation as a source of
geometry. Whilst this can be a good guide for some lighting effects, the resulting depth map quality is insufficient for directly
ray-tracing the shadows. Addressing this, we propose a learned image space ray-marching layer that converts the approximate
depth map into a deep 3D representation that is fused into occlusion queries using a learned traversal. Our proposed method
achieves, for the first time, state-of-the-art relighting results, with only a single image as input. For supplementary material visit

our project page at: https : //dgriffiths.uk/outcast!
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1. Introduction

Capturing stunning photographs requires a subtle equilibrium be-
tween the subject, the composition and the lighting of a scene.
While a user can decide what subject to capture and control the
properties of the sensor, obtaining the right lighting is much more
challenging and often either requires patience and dedication, or
is simply out of the user’s control. For outdoor pictures, where
the sun and sky lighting is dominant, previous methods have pro-
posed to relight an image by removing and re-synthesizing shad-
ows TSE*04,IDRC* 15| [PGZ*19], this problem is well-
defined and known to be notably challenging in computer graphics
literature. One of the key hurdles is that occluding geometry casting
shadows can be arbitrarily far away from the point receiving the
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shadow, thus requiring a fine understanding of long-range interac-
tions between objects is necessary. The most dramatic shadow shots
e.g., a sunset illuminating architecture, are notoriously difficult
in this respect as the shading of a point can depend on arbitrarily
far geometry. In addressing this issue, we propose a method that
takes a single RGB image as input and enables a user to change its
illumination, including dominant cast shadows.

When accurate 3D geometry of a scene is available, cast shadows
can be computed precisely using ray-tracing or shadow mapping.
Alternatively, given multiple photos from varying view-points of
the scene, 3D proxy geometry can be estimated. Such geometry,
even if approximate, has been proven sufficient to produce faithful
shadows and global illumination effects [PGZ* 19, PMGDZ2I]. A
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challenge in these approaches is to adapt the light transport com-
putation to become robust to the approximate 3D geometry, e. g.,
by using a Neural Network (NN) to combine shadows with the
actual image (Fig. 2] gray arrows). In this paper we go to the ex-
treme, and show for the first time, how to cast shadows from very
approximate and incomplete geometry (a depth map), extracted
from a single RGB image alone (Fig.[2] black arrows). To do so we
demonstrate how to leverage off-the-shelf NN-based depth maps
[EFT5LIRLH*20. [YZW*21] and the limited geometric information
they provide to compute plausible cast shadows and shading for an
arbitrary sun position.

We achieve this by combining classic screen space shadowing
[RGSQ9] with a learned component to produce both attached and
cast shadows as well as more accurate shading. Our learned com-
ponent is convolutional and able to attend screen space information
relevant to casting a shadow, while conventional image-to-image
translation [ZPIE17] from depth to shading [NAM™17] is unable to
deal with such long-range interactions.

Our main contribution in this work is thus a new hybrid compo-
nent mixing image space graphics and learnt priors. This component
provides a way to compute precise long-range interaction, such as
cast shadows, from depth maps alone. This allows plausible relight-
ing in challenging outdoor environments from a single picture.
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Figure 2: Our method (black arrows) extracts a depth map from
a single view to compute cast shadows while previous work (grey
arrows) relied on a global multi view-generated 3D proxy.
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2. Previous Work

Our work builds on research in both the fields of image lighting
estimation/relighting and deep learning-based methods for image-
to-image tasks. For a general survey on (deep) lighting estimation
and relighting we refer the reader to [EGH21]].

2.1. Lighting and Shading Estimation

A key aspect to changing the lighting of an image is understanding
its original lighting conditions. For example, the source image shad-
ing can inform a relighting algorithm which shadows need to be
removed in a target image, or give important cues regarding the light
source. Early works on image-based lighting [Deb02] demonstrated
the ability to use captured lighting from images covering the hemi-
sphere to render synthetic objects under novel lighting conditions,
a technique which was further extended to high dynamic range im-
ages [STJ*04]. In contrast, many recent works attempt to directly
estimate a parametric lighting representation from a single RGB
image. Other work [LENO9] exploits cues extracted from varying

portions of the image (e. g., sky, vertical surfaces and ground), as
well as shadows, shading and approximate geometry to estimate the
sun position, which can in turn be used to generate a synthetic sun
dial.

Recent works [HGSH*17,[HGAL19,ZSHG"19] leverage ad-
vances in deep learning to estimate outdoor sky parameters. CNN-
based architectures are shown to be effective in estimating high
dynamic range or parametric outdoor illumination from low dy-
namic range image inputs [LMF*19]. The resulting environment
maps can effectively be used to directly render new synthetic objects
into the original image, as long as complex interactions between
shadows are avoided. The approaches mentioned all assume an out-
door sky model with a single source of light for illumination. Other
work [GHGS™ 19] proposes a method to estimate lighting of indoor
scenes for a single image with multiple light sources of varying
properties. The authors achieve this by defining a parametric light-
ing representation describing area lights distributed in 3D for each
pixel making the method computationally cumbersome, preventing
the computation of hard shadows due to the low resolution of the
representation. Similar work [LSR*20]] proposed an indoor network
which can estimate scene shape, spatially varying lighting (driven by
a spherical Gaussian lighting representation) and non-Lambertian
surface reflectance.

These major steps forward in lighting estimation, unfortunately,
only formulate part of the solution to the relighting problem. For
instance, Li et al., [LSR*20] estimate intrinsic parameters such as
normals and albedo, allow object insertion and some level of scene
editing but not relighting. Even with this rich information, altering
the entire image illumination is not straightforward, as one also
needs to define a coherent lighting, shading and shadows for the
novel illumination.

Another essential component of the relighting problem is the
automatic removal of source shadows. Even with access to accurate
shadow masks, this is a challenging task. Such algorithms must
adjust the shadow pixel intensities, whilst also inferring semantic
understanding of the scene to handle fine shading details. Deshad-
owNet [QTH*17b] is a multi-branch CNN which learns both local
and global features of the input image. Wang et al., [WLY 18] pro-
pose a novel approach where separate shadow detection and removal
networks can mutually benefit from each other by introducing ad-
versarial losses. In this work we jointly perform shadow removal,
re-casting and relighting in a single unified network. Whilst this
demands considerably more from the network, we demonstrate em-
pirically these tasks can be learned together.

Intrinsic decomopsition of images can also be a useful technique
for extracting shadows from RGB images [BKPB17]. Such methods
can identify (and subsequently remove [QTH™ 17al)) source shadows
and shading in the scenes and can now run at an interactive frame
rate [MSZ"21]. Many early works adopted this approach [ISR12]
to enable some form of lighting editing. Unfortunately, it is not
obvious how these methods can be extended to produce the inverse,
shadow generation, especially with long range interaction.
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2.2. Relighting

Prior work on image relighting typically relies on scene geom-
etry, light and reflectance models to accurately relight using in-
verse rendering [YDMH99, [LFD"99,[MG97]. Having access to
the full scene representation (geometry, materials, lighting) al-
lows traditional rendering and shading methods to be used and
gives promising results, however, requires a highly complex cap-
ture process. The capture process can be simplified through tech-
niques such as semiautomatic vision-based geometry reconstruc-
tion [LDROO], or by computing scene parameters through viewing
the same scene under varying lighting conditions [ED04] [LFD*99],
however, a high level of technical competency is still required.
Furthermore, lighting and material information requirements can
be relaxed using Inverse Path Tracing JALKNI9], however, a
full and accurate scene geometry is still essential for high qual-
ity rendering. If very high quality results are required (e. g., for
film production), sophisticated capture sets ups such as the Light
Stage [DHT*00,WGT*05,IMHP*19,|GLD"19/|SXZ*20] can be
employed. Whilst such methods give impressive results, they re-
quire expensive rigs and trained professionals to operate them.

Advancements in deep learning have resulted in fram-
ing full scene representation as an optimization problem
[SMB*20,MST"20]. An implicit representation of the scene is
jointly optimized for geometry but can also be optimized for
surface characteristics such as albedo and normals, enabling re-
rendering under new lighting conditions using traditional render-
ing pipelines [BXS*20al[ZSD*21,BBJ*21,BXS*20blISDZ*21].
More recent work such as PixelNeRF [YYTK21] show that with
appropriate conditioning reasonable results can be obtained from
single-image inputs. Unlike our method, these works are restricted to
objects, rather than entire scenes and require multiple views as input
or require strong preconditioning and assumptions of the scene.

For scene scale relighting, deep learning has enabled signifi-
cant advances in the performance of multi-view relighting sys-
tems [PGZ*19,[PMGD?21]. Typical approaches employ a NN to
map from one of the input images and a set of approximate guide
maps (depth, normals, shadow images) to a novel illumination con-
dition. 2D image NN are used to jointly remove the old shadow
and shading and change it to the new lighting and shadow with-
out attempting to recover an explicit shadow-free image [SSL12]|
or an albedo map [LM71]], requiring only geometry to guide the
relighting. However, the quality of the results still comes at the
cost of the capture process. To allow for a proxy geometry, pho-
togrammetric pipelines can be utilized, requiring tens or hundreds
of images of the scene from varying view-points. In many practical
applications, multi-image data acquisition is not possible. Whilst
impressive results have been achieved using only image sets with
as little as five images [XSHRIS] [RDL*15]], these approaches are
typically constrained to objects or simple scenes.

It is specifically this constraint we aim to relax in our work. We
build on the work of Philip et al,. [PGZ"19]], however, only require
a single-image input. Despite this, we achieve a visually compa-
rable performance on challenging real-world test cases (Fig. [I2).
Key to our method is the use of an off-the-shelf depth estimator
[EFT5LIRLH*20, [YZW*21] as a source of approximate geometry
and a novel 3D module to become robust to such inputs.

©2022 The Author(s)

Single-image relighting is not a new problem. Many stud-
ies focus on relighting limited subjects such as human faces
[PTMDO7| [WZL* 09} ISYH* 17, [ZHSJT9} ISBT* 19, NLML20] and
bodies [KEI8,ILSY*21]. On these restricted classes deep priors
are easier to build, allowing for very impressive results such as
recently demonstrated in Total Relighting [POEL"21]]. Regarding
more general scenes, Wu et al., [WS17] obtain realistic relighting
results from single images, but at the cost of significant user interac-
tions to annotate the scene and estimate the geometry. Ture et al.,
[TCE*21]] focus mostly on sky relighting. Similar to our method,
monocular depth estimation is used, however, their approach can
only handle shadows cast by clouds. Single-view relighting methods
[YME*20,LGZ*20] have also recently built on image-to-image
translation methods [ZPIE17, WLZ"18]]. One of the key missing
components of these methods is their ability to generate accurate
and convincing cast shadows in the target image which is our main
contribution. Liu et al., [LGZ*20] show some level of shadow cast-
ing, but these are overly smooth and soft and the method is restricted
to cities.

Other works deal with shadows by assuming video / time-
lapse input [SMPRO7], terrain data [KNC*08] or object templates
[KSES 14, IKHEHI11]. The outdoor scenes and the capture modal-
ity we target do not match such requirements. Attempts at pre-
dicting cast shadows are also made using traditional 2D CNNs
[CVIRI9, [ZIW19, ILLZ* 20\ [SZB21]), allowing to cast approximate
shadows of individual objects with limited quality especially when
fine, long-range, interactions are needed, such as with hard cast
shadows. Still, we study 2D CNNs as a baseline for our method,
demonstrating they are insufficient to solve our task. This is be-
cause a typical U-net [REB135], or even more advanced architectures
[WLZ*18]], while being able to aggregate information at multiple
scales, have no inductive bias to attend the information for long-
range shadow interactions, which is in the direction of the light.

2.3. Epipolar Geometry

The shortcoming of 2D Convolutional Neural Networks (CNNs) to
explicitly collect relevant features across an image has been identi-
fied in prior work. Most notably epipolar Transformers [HYFY?20]
create feature volumes by sampling along the Epipolar line of 2
images of the same scene with a known transformation. Explicitly
sampling along a known ray boosted performance for 3D human
joint localization. Similar conclusions have been drawn for depth
regression [PDB18]|, data-adaptive interest points [YMB*19] and
keypoint detection [JYP18]. Shin et al., [SRSF19|] further adapt
epipolar transformers for the task of 3D scene reconstruction for
single-view RGB images. Our 3D shadow network (Fig.[9) takes
inspiration from such networks. However, instead of our sampling
direction being determined by epipolar geometry, the direction is
determined by the position of the light source. Furthermore, the
above methods sample in feature space, whereas we directly sample
the input RGBZ image.

3. Background

Our work is based on a method proposed by Philip et al., [PGZ" 19,
which relights an RGB image Co, captured in an (unknown) original



D. Griffiths, T. Ritschel, J. Philip / OutCast: Outdoor Single-image Relighting with Cast Shadows

light condition characterized by the sun direction Mo, to a novel light
direction my. A particular strength of their method is the ability to
render accurate cast shadows. This is achieved through the use of
shadow images which are represented as gray-scale images S, and
Sn that hold the shadow information in the old and new light direc-
tion, respectively. These intermediate maps are not used in a classic
inverse rendering setting, but instead serve as guides to an image-to-
image translation network to perform the final relighting. However,
constructing these shadow images relies on global 3D geometry,
acquired with multi-view reconstruction [[Ul79]], necessitating tens
to hundreds of images.

In this work, we keep the overall structure of the system propsed
by Philip et al., but relax the requirement of multi-view images as
input. Instead, we produce the shadow images from the original color
image C, alone. To enable this, we assume access to an approximate
depth estimation process Z(Co) with only scale-invariance, e. g., an
off-the-shelf NN [YZW*21]. Alternatively, depth estimation could
come from an active depth sensor [Zhal2,IBCD*21|], which are
becoming increasingly popular on smartphones.

Casting shadow from such approximate geometry, is more chal-
lenging than casting shadows from exact geometry via shadow map-
ping or ray-tracing. This is largely due to high levels of occlusions,
resulting in incomplete geometry. A depth map only provides the
geometry of the visible surface when computed from a single view-
point of the scene. A depth map does not provide information regard-
ing what is behind an object thus direct shadow casting across its
back will incorrectly report in no shadows (Fig.[6) or too much shad-
ows (Fig.[] second column). Our main contribution is a learnable
module that takes as input samples obtained from a depth-based
shadow casting approach, and outputs a shadow mask, robust to
approximate and incomplete geometry.

Formally, the system proposed by Philip et al., [PGZ"19] is a
relighting operator L£(Co,So,Sn,®o,0n). Where C, is the image
which we want to relight, So and Sy are the respective old and new
shadow images computed thanks to the mulit-image derived 3D
proxy geometry, and where 0o and oy represent the old and new
sun directions respectively. In this work we focus on removing the
requirement for the multi-image derived 3D geometry proxy that
allows the computation of old and new shadow images S, and Sn
as system inputs, resulting in a new operator £(Co, 0o, ®n), relying
only on the color image C, and the input light direction . Details
on how we obtain ®, can be found in Sec. .2}

4. Image Relighting using Approximate Depth Maps

Our new relighting approach (£) shares the high level architecture
of the one proposed by Philip et al., [PGZ*19] (£) using shadow
images directly computed from the color image C, alone as input:

Cn = L(Co, o, 0n) = L(Co,S(Co,00),D(Co, 0n), o, 0n)),
where S produces the new shadow image (Sec.[4.1)) and D produces
the old shadow image (Sec. [4.2) that are combined in the final
relighting step (Sec.[4.3). Fig. 3] shows an overview of our approach.
Fig.[I0]shows an example of the intermediate buffer maps on test
data.

Depth and normal estimation We make use of a depth estimation

method based on MiDaS [RLH*20], denoted as Z = Z(C). As the
initial MiDaS implementation is trained to produce disparity maps
that are not only scale-invariant, but also shift-invariant, an unknown
non-linear distortion would be applied to depths values if we were
to use it directly, leading to poor normals and distorted geometry
[YZW?*21]||. We therefore use a version of MiDaS [RLH*20] trained
without using the shift-invariant losses so it recovers the scene with
an unknown scale but no additional shift. This is achieved by training
on data that is either synthetic, LiDAR sensed, or from stereo camera
pairs with known calibration, meaning there is no shift ambiguity in
the data. We do not refine the weights of Z during training.

We compute an approximate normal image N, by first converting
the depth map to a 3D position map containing for each pixel its
x,,z coordinates according to the camera frame of reference (oper-
ator p) and then taking the normalized cross product between the
horizontal and vertical components, u and v, of the gradient of the
position map. This gradient is computed using a Sobel filter.

Wp(2) ., p(2)
Jdu dv
This process does not need to be differentiable, it only allows to

use an approximate depth Z or normals N whenever working with a
color image C. All operations are performed in camera space.

N=

Loss Our relighting Lg is a tunable mapping, a function with
learnable parameters 6 which are trained end-to-end, minimizing a
cost function of four terms:

f=Asfs+Apfp+hcfo+rafa. )

where A scales each loss, respectively. We will explain the new-
shadow, old-shadow, relighting and adversarial loss terms fs, fp,
fr and f 4 in the following respective Sections . 1] [F.2]and 3]

4.1. Producing a new shadow

Problem analysis The main challenge we address in this paper
is how to cast shadows using an imperfect depth map. A depth
map differs from the global proxy 3D geometry in two important
aspects: it is more inaccurate and it is incomplete. Therefore, directly
applying shadow casting to obtain detached shadow-images will
produce unsatisfactory results.

It is inaccurate, because a NN-based depth estimator is never able
to perfectly match the true depth. It lacks details and often suffers
from distortion. For example, an even ground plane or a side wall of
a building facing away from the light typically does not come out
as a proper plane, rather it would appear bumpy and curved. These
effects are particularly strong for texture objects in a phenomenon
known as “texture copying”. Such bumps, when used to compute
attached shadows will lead to several false positives: normals com-
puted from bumpy depth will make surfaces sporadically face away
from the light, i. e., darker. When used during the computation of
detached shadows, they cast small shadows known as “shadow acne”
in the shadow mapping literature [DYK" 14], this phenomenon is
illustrated in the first column of Fig. 4] Severity of these difficul-
ties varies from method to method and from sensor to sensor but
are clearly present in the state-of-the-art depth estimator we use in
our experiments as well as in low-cost active depth sensors (e. g.,
LiDAR sensors).

© 2022 The Author(s)
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Figure 3: The main network architecture of our approach. Input is outlined in orange, output in green. Pink lines indicate the cost functions
we optimize for. Blocks with learnable parameters are double-wedges, and a dotted line indicates siamese training / weight sharing. The
scissor symbol is where the gradients are detached from the network graph, to prevent further back propagation of the gradient.

Figure 4: [llustration of the inaccuracy and the incompleteness
problems when casting shadows from a depth map. The top row
shows a scene in ideal conditions with complete global geometry.
The bottom row shows shadows resulting from a high threshold
direct shadow casting with approximate depth map geometry.

Secondly, even if an oracle NN would reconstruct depth values
perfectly, these will remain incomplete, because a 2D depth map
can only store a single depth for every pixel. If we see a frontal
RGB image of a box, we cannot know how far it extends behind
every pixel. This information, however, is critical to cast a proper
shadow. A thin box will cast a thin shadow, a thick box will cast a
thick shadow. Hence, ideally we would not only need to know the
depth of the surface, but also have a notion of thickness. This is
illustrated in Fig. |Z| (Col. 2), where we visualize a shadow obtained
by naively intersecting a surface created by a depth map if we
assume all geometry extends indefinitely away from the camera. We
show the shadow obtained by naively intersecting the surface created
by the depth if we meshed it, that is, whenever a ray pass behind an
observed surface it is considered in shadow. Other possibilities to
compute shadows from depth maps using thresholding are shown in
Fig.[3

While the task is ill-posed (Fig. 5] last row), NNs have demon-
strated a great ability at building deep priors to infer 3D geometry
from only a single view-point [HMR19, [NPLT*19], given a large
enough set of examples. We often use such priors ourselves, for
instance, a vertically elongated object like a lamp post might be an
“accidental” view of a very long wall from the side (Fig. [3]last row),
but in expectation over a dataset, it is just what it is, a lamp post,
casting a lamp post shadow. Similarly, when observing the front of

©2022 The Author(s)
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Figure 5: Diﬁ‘erent geometries (row) and the respective cast shad-
ows under different direct shadow casting thresholds (columns). The
camera is to the left and the light in the back. The top two geometries
are common cylinders, but there is no single threshold (pink) that
would result in the correct value for both cases. Our method learns
to make the decision adapted to the color and depth context. The
last row shows that the solution is ambiguous, as the depth map
observed from the camera is identical to the wide cylinder. Our
network would likely learn to cast a shadow similar to a cylinder.
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a building, we assume a thick filled volume behind it; we could be
observing a movie set with fake buildings, but this is very unlikely.

Possible solutions The most straightforward way to take into ac-
count the long-range interactions caused by occluding geometry
given a depth map would thus be to ray-march the depth buffer to
compute shadows [RGS09]. More precisely, to shade a point, all pix-
els that fall on the ray toward the light source are considered. If the
depth buffer is sufficiently close (e. g., under a specified threshold)
to the corresponding depth of the 3D ray for any of these pixels, the
point is considered in shadow. Using a small threshold works well
as long as the light direction is relatively orthogonal to the camera
plane as most of the useful information is contained in the depth
map. However, these methods cannot properly deal with unobserved
thickness when the light is coming from the side or the top of the
image as, there, the threshold plays an important role (Fig.[5). A
real example illustrates this issue in Fig.[6] The top of the aqueduct
not being observed leads to underestimation of shadow regions. We
later refer to this approach as DIRECT.
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On the other hand, if we were to accept shadow prediction to be
a task worth learning, the most straightforward way would be to
employ an image-to-image translation network from the depth and
color image to the shadow image [NAM™ 17]]. We will indeed study
this ablation (2D), but it has limited quality due to two main reasons.
Firstly, convolutions in an encoder-decoder take into account the 2D
context at different scales, but for a shadowing task, the context that
matters from a query point, in a certain direction, is 1D, along a ray.
Meaning that the relevant information can be arbitrarily far from the
shadowed point. Secondly, it does not make use of the physics of
shadows. They are a combination of attached shadows (also known
as self shadows), which depends on local surface orientation and
cast shadows, that are produced by the presence of an occluder that
can be arbitrarily distant.

Accounting for the duality of shadows (self and detached shad-
ows), the partial effectiveness of ray-marching and recent advances
in deep learning inspired our solution.

Figure 6: Illustration of the problem caused by casting shadows
using ray-marching directly in the depth map. Left: an input image.
Right: a schematic representation of surface-based shadow cast-
ing. While the plain brown zone is correctly classified as shadow,
casting rays from the hatched one toward the sun does not produce
intersections with the observed surface resulting in the incorrect
classification of this zone as non-shadow.

Our solution Our solution computes both the attached and the
detached shadow in a single network. Instead of predicting binary
shadow images, we use the product of the binary mask with the
cosine term (that we later refer to) as the new shadow image Spy.

As shown in Fig.[7] this has three main advantages. Firstly, it
prevents creating arbitrary high frequency cut-offs on smooth sur-
faces as the cosine term smoothly goes to zero before the mask does.
Secondly, it contains part of the surface shading, giving cues about
direct light intensity change. Finally, as we have two different light-
ing conditions, we also have information regarding the difference
of intensity between shadow and non-shadow regions. When the
light is at a grazing angle (bottom row Fig.[7), our representation
encodes that the difference between shadow and non-shadow region
is smaller than when the light is at a higher angle (top row Fig.[7).

To predict a shadow image we first observe that we can provide to
the network an approximation of the cosine term, thus helping with
attached shadows, by computing the clamped dot product of the
light direction and the approximate normal image max (0, (N, ®)).
This guide is therefore as inaccurate as the normal map and is a prior
that will need to be refined by the network. To do so we concatenate
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Figure 7: From left to right: A rendering of an example scene,
binary shadow images and our proposed representation: cosine
terms times shadow images. We show two illumination directions, a
high lighting (top) and lighting at a grazing angle (bottom).
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this term with the original RGB image. We later refer to this four
channels image as the “2D features”:

2Dfeat =cat [Co,max(O, <Na (.0n>)] (2)

As discussed, shadows cast from arbitrarily distant occluders are
more difficult to handle. The key insight of this paper is that the
information to be considered for deciding if a point is in cast shadow
relies on all the image positions, and their respective local neighbors,
that fall onto a ray from that point in the direction to the light, i.e.,
the same pixels used for casting shadows with ray-marching.

Figure 8: A cylinder casting a shadow and its projection. The red
line shows the depth of the ray while the blue line shows the depth
sample in 2D ray-marching.

Fig.[8]shows a cylinder and two associated depths along a light
ray, the one from the observed surface (blue) and the one from the
3D ray (red). To answer if a point is in shadow, we have to consider
all points on a ray from that point to the light. The most relevant
information available to evaluate this is in the depth and color image
along the geometry of that ray. An ideal method would classify
points as occluded or not occluded, but using depth information
directly, results in the errors previously mentioned seen in Fig.
if ray-marching against the implied surface. Instead, we also rely
on color, as well as on nearby depth values to account for the full
spatial arrangement. Below we detail this process.

For every image pixel, we ray-march z = 256 steps in the 2D
direction, defined by the projection of the 3D light direction. We

© 2022 The Author(s)
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Figure 9: Our ray-marching procedure. Left (a), we show 4 pixels marched in the RGB and depth map into the direction of the light with 8
steps. For that row, this results in a 3D image of 8 layers, one for each ray-marching step. This epipolar volume is fed into a 3D encoder
branch that reduces all dimensions by half in three steps while doubling feature count (b). We opt for this approach to allow the network
to take into account immediate local neighbors near the ray but restrict the network from computing spatially global features across the
image plane. This is followed by steps that keep spatial resolution in the volume height and width, but reduce the depth dimension to 1. This is
decoded into a 2D image. An additional 2D branch is provided the approximate Lambertian term, that is 2D-encoded. On the decoding step
the 2D and 3D branches share features Orange lines indicate skip connections.

sample the input pixel depth and color values at that position and
store them into separate channels. Color values are stored as they
have been shown to aid learning a per-pixel object thickness value
which is important for shadow estimation [NCL19]. Instead of stor-
ing depth directly, we store the ratio between the depth in the depth
map (Fig. [8] blue line) and the depth of the point along the ray
(Fig. |§|red line). This ratio is attractive as it is the quantity that a
normal ray-marching would use to decide occlusion. When this ratio
is very close to 1, it means that the ray intersects the surface, when
it is greater than one it means the ray is in front of the observed
surface and behind it when the ratio is smaller than one, which is
the case for the points on the cylinder in Fig.[8] Second, this ratio is
scale-invariant. Scale-invariance is very important in our scenario
as depth-estimators learn disparity, and not absolute depth values,
so are themselves also scale independent.

We stack all z features, resulting from the z steps of the ray-
marching, into a volume of size x X y X z X 4, the four channels
being RGB and depth ratios. We refer to this volume as the 3D fea-
tures 3D g, - Similar ideas have been used to find correspondences
between pairs of images, where for each point in one image, the
epipolar line in the other image is marched [HYEY?20]. Instead, here
we march the epipolar image line of a point with respect to the light.

Finally, a new 3D-2D encoder-decoder with two encoder heads
maps the x X y X z X 4 3Dy, volume to a bottleneck size of x’ x
y’ x 1 x n using 3D convolution in the 3D head. Intuitively, applying
3D convolution to the proposed volume allows to traverse along the
ray direction while also accounting for local context.

In parallel, the 2D features 2Dy are also encoded to ax’ x y' x n
image using standard 2D convolutions.

Finally, a decoder maps the max of the encoded 2D and 3D
features back to an image of size x X y with a single channel using
2D convolutions. Our network architecture is illustrated in Fig. [9]
and outlined in detail in the supplementary material. For the skip
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connections from the 3D branch to the 2D decoder we use a linear
upsampling layer to match the volume sizes. This network is asked
to match the ground truth new shadow image:

fS(CmO)n) :A(SG(C07(DH)>SH) (3)

as the loss function A we use E-LPIPS [KHL19], it led to more
plausible outputs as it is much more resilient to small errors in
shadow boundaries than Mean-square Error (MSE) which led to
smooth shadow when we tested it.

4.2. Extracting the original shadow

In order to get the source image shadow in the source light direction
o, we could simply execute S for that direction i.e., D = S. Unlike
the target direction my that is user defined, the original light direction
), is unknown. To obtain it at test time, we rely on a simple user
interface which shows the output of S. The user is asked to roughly
align the predicted shadows with the ones in the input image. We
show a demonstration of this process in the supplemental video.
The interface could also be initialized with outdoor light estimation
methods such as [HGALT9, [LMF* 19]. Furthermore, during training
we artificially add noise to the ground truth light direction to make
the model more robust to inaccuracies from the user. Whilst running
the input and guide images through the S gives us a shadow image,
it misses the opportunity to refine the shadow with the assumption
that the very shadow we look for are present in the color image
Co, albeit entangled with albedo. In light of this, to make use of
both the shadow in the image, and the shadow predicted by the
network, a separate network R is trained, with the sole purpose of
refining the output of S, while also accessing the color image, such
that D(Co, o) = R(S(Co, o), Co, ). R is supervised, with RGB
MSE as here the shadow boundaries are available in the original
image and this image needs to be accurate for better shadow removal
rather than just plausible:

fp(Co,@0) = A(DS(C07(°0)7SO)- C))
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4.3. Relighting

With both shadow images at our disposal, we can now perform a
relighting closely inspired by Philip et al., [PGZ*19] which is a rich
image(s)-to-image translation.

Input to the relighting network £ are the two shadow images Sy
So, the old color image C,, the computed normals N, as well as
the old and new light direction ®, and oy along a direction map ¥
containing the x,y, z direction from the camera center towards each
pixel center. The depth is not an input to the relighting network. Out-
put is the final color image Cy. Fig. [3|shows the complete network
architecture.

The loss function penalizes the color image in the new light
condition £(Co, ®o®n) to match a known reference color image Cp
in the new light conditions, so

f£(Co,®o,0n) = A(L?(Co, 00, @n),Cn) )
where A is E-LPIPS [KHL19].

4.4. Generating realistic images and shadows

Additionally, we employ a Patch-based Least-squares GAN
(LSGAN) [MLX™17|] with a 64 square pixel receptive field to en-
force the results to align with the distribution of natural images.
Instead of conditioning it only on the output image, we also condi-
tion it on the original RGB image C, and the new shadow image
Sn. This adversarial loss has three main effects. Firstly, it helps with
the overall visual quality and sharpness of the images. Secondly,
it improves shadow removal. Our intuition is that by seeing the
input and output image the discriminator should be able to detect
bad shadow removal. Lastly, having the shadow image as part of
the conditioning helps with shadow details and coherency between
predicted shadows and the output image.

4.5. Training data

Creating a real-world training dataset for our method with the full
distribution of lighting conditions our model accounts for would
be exceptionally challenging. Instead, we train our method entirely
on synthetic scenes. This enables us to simulate the full spectrum
of lighting conditions in a large variety of settings. We utilize 40
Evermotion Archexterior [eve21] scenes for geometry, material and
texture of the scenes.

For each scene a camera path is manually created, from which we
sample 256 view-points. For each view-point we select an object for
the camera to look at, a random focal length and render the scene
under 16 lighting conditions at 1024 x 768 resolution. In total we
render 164k images from the 40 scenes at 128 samples per pixel
using the Cycles [Com18] path tracer. For lighting, all images are
rendered using the Nishita sky model [NSTN93] which implements
atmospheric scattering to which we added volumetric clouds to
handle their relighting in real images. Using this realistic sky model,
clouds and the direction map ¥ allows the relighting network to
implicitly detect and relight the sky. ¥ is particularly helpful in
removing and synthesizing the sun when it is directly visible in the
image as the network can match the old or new sun direction ®o
and o, with the direction towards which each pixel points, which is

given by W. An illustration of such synthesis and cloud handling is
visible in Fig.[T] “Relighting A”.

On top of the path-traced RGB image, each individual sample
contains a ground truth depth map, normal image and its correspond-
ing shadow image. This shadow image is rendered by computing
single bounce direct illumination of the scene, replacing all the
materials with white Lambertian BRDEF, as shown in Fig.[7] third
column. Training examples are are also shown in the supplemental
materials.

Out of screen shadow casters Our ray-marching based model is
not able to handle shadows cast by objects that are not visible in the
image. Thus, we cull all the geometry outside of the screen before
rendering each training image. This means none of our training
examples exhibits shadows cast by out of screen objects. While at
test time the original image may contain such shadows, we found
that the network has learnt to remove them correctly. As for the new
shadows, we empirically find that synthesizing shadows cast only
by the visible content provides sufficient realism in most cases.

4.6. Training strategy and details

Training procedure At train time we sample a viewpoint from the
dataset of rendered scenes and a random pair of lighting conditions
to define the input C, and target image Cy. These images are stored
in linear space and similar random exposure, saturation and gamma
tone-mapping augmentations are applied to both C, and Cy.

Learning to trust the depth As previously mentioned, predicted
depth maps are often distorted. This means that shadows cast by
predicted depth maps are often miss-aligned with the ground truth
ones, though they may look realistic. When training our cast shadow
network only with predicted depth maps, this phenomenon led to
very noisy gradients and poor convergence quality. Trying to correct
this distortion would be equivalent to trying to beat the best monoc-
ular depth estimator. Instead, we teach the cast shadow network to
trust the depth maps by training it with a combination of ground
truth and NN estimated depth maps. Each training step flips a 80 %-
to-20 %-biased coin to determine if it learns new cast shadows from
ground truth or estimated depth respectively. Both the old shadows
and normals are always computed on the estimated depth maps. In
doing this, our cast shadow network learns geometrically founded
features (e. g., the relationship between surface normals, light direc-
tion and attached shadows), however, is also robust to noisy normals
and inaccurate cast shadows computed for the old light direction ®o
and allows to transfer to real data more easily.

Optimization details For the optimization we use the Adam Op-
timizer [KB15] with a learning rate of le —4 both for the gen-
erator and the discriminator. We alternate five steps of generator
for one step of discriminator. The loss is weighted so each sub-
network has approximately equivalent losses at the start of training,
As = 10Ap = 2,A, = 10, the adversarial loss is set lower with
A = 0.1. We train on 384x384px images and a batch size of 4
patches.

An important detail regarding the optimization procedure is vis-
ible in Fig. 3] The small scissors denote that the gradients do not
flow backward from the refinement network D to the cast shadow

© 2022 The Author(s)
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Figure 10: Visualization of different intermediate buffers for a real image relighting example. Top row, from left to right: Input image C,,

Estimated Depth Z, Normals N. Bottom row, from left to right: Estimated Source Shadows S(Co, o), Refined Source Shadows D(Co, o),

Estimated Target Shadows S(Co,®n), Output Cy.

network S. If we were not to do this, half of the gradients of S
are from predicting the original shadows and S learns to copy the
shadows from the original image Co.

Network Architectures The 3D branch of the cast shadow net-
work S is composed of 3D convolutions with kernel sizes (4,4,4)
allowing to effectively divide by 8 the volume size after each con-
volution while we multiply the number of features by 2. After 3
down-samplings, additional convolutions with kernel size (4,3,3)
reduce the depth dimension to 1.

All other encoder and decoders are CNN inspired by the archi-
tecture from Pix2Pix HD . They are U-Net-like ,
but composed of residual blocks and residual skip connections.

A detailed blueprint of the system with network architectures is
available in the supplemental materials.

5. Experiments and Results

We test our approach on both a set of reserved synthetic scenes,
allowing for quantitative assessment on ground truth data (Sec. [5.2),
as well as qualitatively on real-world images (Sec.[3.1). Our experi-
ments are formed on a set of ablations of our method, justifying the
benefit of our proposed learned 3D ray-marching module.

5.1. Qualitative

We tested our method on a range of photos, typically of outdoor
architecture shown in Fig. [TT}

Fig. [I2] shows examples of results for all methods we compare
to, giving qualitative insight into the performance of our approach.
We perform favorably to SELF RELIGHTING in all scenarios. Most
notably is our ability to predict detached (cast) shadows and our
ability to remove source shadows. When comparing to Philip et
al., we find our method to produce stronger shadows in
the target image.

©2022 The Author(s)

In Fig.[T3] we apply our method to paintings. Despite the shad-
ows not always been physically accurate, our network still creates
plausible outputs. The ability for our network to perform well in
such a large domain of inputs highlights its generalization abilities.

5.2. Quantitative

In this section we perform an ablation study on our method. All test
samples are drawn from scenes that were not available at training
time. This eliminates the chance the network will have seen similar
view-points of the test images at train time. We describe our ablation
methods below.

PIx2PIXHD-LIKE An image-to-image translation network. The
source image C, is directly mapped to the target image C, using a
CNN U-Net architecture [IZZE17]. In practice, for fairness, we use
our relighting network £ with all its inputs except for the computed
old and new shadow images. The relighting approach is defined as
Cn = ‘C_(C‘(),(.l)()7 (Dn).

2D The above method ignores any shadow guides for training. Here,
we replace our 3D shadow estimation network S with a 2D CNN
similar to the refinement network D, its input are the input image
Co, light direction mo or @n, the corresponding cosine term and the
estimated depth map.

DIRECT We replace our 3D shadow network with a non-learnable
direct screen-space ray marching algorithm [RGS09]. Shadow im-
ages are computed directly from the estimated depth map and input
to the final relighting network. The samples collected for this method
are the same samples passed into our learnable 3D shadow network.

OUR Our full method, as described in Sec.

All methods make use of depth extracted by Z, as described
in Sec. ] and no method has access to the ground truth depth or
normals, only to RGB and source light direction .

Metrics As test data is rendered, we know the correct new image
Cpy and hence can compute the image error, here using Structural
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Figure 11: Results of our proposed approach for three novel illuminations (three right columns), on a variety of challenging real-word scenes
(first column). For more results, including full time lapse videos, please see the supplemental video.

©2022 The Author(s)
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Self Relighting

WEzn .

Figure 12: Comparison of our methods against Self-supervised Outdoor Relighting [YME*20] and [[PGZ* 19|]. OURS performs favorably over

Philip et al., 2019

P : PR

SELF RELIGHTING in all scenarios. We perform on-par to Philip et al., [PGZ*19]], however; do not require multi-view inputs. Self-relighting

is unable to remove the old shadow, as seen particularly in the top scene.

Table 1: Relighting error for different ablations across the test
dataset according to different metrics. For all methods with shadow
prediction, we also report the MSE. For all metrics, less is better.

Method Relight Shadow
DSSIM| LPIPS| MSE| MSE|
P1x2P1x 165 0170 .0427 —
2D 169 0182 .0515 187
DIRECT 157 0169 .0409 358
OUR 154 .0160 .0399 175

Dissimilarity Index (DSSIM), Mean Squared Error (MSE) and Per-
ceptual Similarity (LPIPS). To further evaluate the networks ability
to predict shadows, we also report the MSE of the predicted and
ground truth shadow images. Note, we cannot do this for PIX2P1x
as no intermediate shadows are produced.

Results Results are summarized in Tbl. m We see that our approach
performs best according to all metrics, both in the image error, as
well as for the intermediate shadow. Additional visual evidence is
shown in Fig.[T4]and discussed in the caption.

©2022 The Author(s)

6. Limitations

Our method is subject to several assumptions. Firstly, we require
the input image light direction. While we use a manually derived
input for the results shown in this paper, the proposed system would
benefit from more reliable methods to estimate this.

In all scenarios, we assume a dominant single light source, typ-
ically, the sun. Extension to a mixture of light sources is straight-
forward (as light sums linearly) but a more refined solution, e. g., a
latent model of illumination, will certainly outperform this.

Currently, we model classic opaque shadows in our ray-marching.
Hence, all other shading effects, like reflections, colored shadows,
indirect light or caustics are not modeled explicitly, but instead
left to the final shading network to approximate. This works, as
long as such effects do not become visually dominant. Relighting a
modern office interior (mirror reflections), a church interior (colored
shadows), a glass vase (caustics) or strong indirect lighting would
require both adequate training data, but also likely require adapted
guide signals, like we provided for shadows. Whilst our method
does not allow for control of shadow softness, this would be an easy
extension, as shadow softness can be controlled in the training data.

As discussed in Sec. 3] our method assumes there are no shad-
ows cast from out of screen geometry. Although it is conceivable



D. Griffiths, T. Ritschel, J. Philip / OutCast: Outdoor Single-image Relighting with Cast Shadows

‘LM“M
i
TS

|
AIEIR

Figure 13: Application to artwork. The first column shows the original, the two left columns our result. Both inputs show strong, while not yet
entirely physically-correct shadow. The top one is “Odysseus returns Chryseis to Her Father” (ca. 1644) by Claude Lorraine (1604—1682).
The bottom one is “The square of Saint Mark’s, Venice” (ca. 1723) by Giovanni Antonio Canal (1697—1768) known as Canaletto.

that such geometries can be reconstructed from their shadows alone,
we do not address such scenarios in this work.

Finally, whilst all the results presented in this work are generated
using a single model state (including Fig.[I3), our network compo-
nents are learnt through a data-driven approach. Therefore, for some
test images where the source image is far from the training distribu-
tion our results degenerate. This is, however, more a limitation of
our training data than the system architecture.

7. Conclusion

We have shown how the classic idea of ray marching, combined
with a learned component, allows to cast shadows in RGB images
resulting in faithful outdoor relighting of single-view images. This
is made possible by using geometry provided from an oft-the-shelf
monocular object detector. Our method compares favorably to previ-
ous work as well as to strong baselines of ablations. When looking
at the evolution of screen space shading however, it appears quite
conceivable that the idea of a (differently) ray-marched guide is ap-
plicable to all of these in future work. Beyond relighting, handling
physically based long-range interactions from a single image, our
key technical innovation, might have applications in other graphics
tasks such as image material editing and even lead to novel forms
of (self) supervision using physical long-range constraints in both
vision and graphics.
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Table 2: Relighting error for different loss related ablations across
the test dataset according to different metrics. We also report the
MSE for shadow prediction. For all metrics, less is better.

Method Relight Shadow
DSSIM|. LPIPS| MSE| MSE|

MSE loss for target
shadows (no LPIPS) 171 0159 .0437 150
No PatchGAN 162 .0190 .0405 .169
Our 154 0160 .0399 175

8. Supplementary Material
8.1. Detailed Network Architecture

In Fig. [I3]we present a detailed architecture blueprint of our network
with all inputs, modules, networks, and outputs.

8.2. Training Data Examples

In Fig.[I6] we present random training examples from our dataset.
For each viewpoint we provide two lighting conditions and their
respective ground truth shadows.

8.3. Real world ground truth evaluation

We evaluate our method on a real world lighting scenario. To en-
able this we utilize separate images taken roughly from the same

viewpoint with different lighting conditions. As shown in Fig.[T7|we
observe that whilst the network output looks plausible, the shadows
are misaligned from the target ground truth. We believe this is due
to distortions in the predicted depth estimation for this scene.

8.4. Further Ablations

In addition to the ablations presented in the main paper (Sec. 5.1 and
Sec. 5.2), we also undertake further ablations specifically evaluating
the use of specific loss function components. Tbl. 2] provides the
quantitative evaluation for these ablation. As expected, the MSE loss
is smaller for shadows when used as the training metric. Overall the
pipeline appears to perform marginally better when the PatchGAN
loss term is used which seems surprising. While small variations
might be due to the randomness of the training process, it is possi-
ble that the PatchGAN loss helps escape local minima leading to
better convergence. Moreover, as shown in Fig.[T8] this loss helps in
producing complex localized effects such as high frequency reflec-
tions on tree leaves (Fig. [I8]first row) or reflection on the water and
better looking clouds (Fig. [I8]second row). Training with E-LPIPS
[KHL19] for shadows does not provide a strong advantage numeri-
cally but has a strong impact on the sharpness on elongated shadows
as can be seen in Fig.[I9] Without the E-LPIPS loss and with a more
traditional MSE loss, the shadow network tends to produce overly
smooth shadows as a slight misalignment of boundaries is strongly
penalized.
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Figure 15: Blueprint of our full relighting system. Where arrows are not included assume flow remains in the current direction. All deep
learning-based functions were implemented in the PyTorch framework (v1.9).
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Figure 16: Examples of training pairs. From left to right: Input, Ground Truth Source Shadows, Target, Ground Truth Target Shadows.
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Ground Truth

Figure 18: Ablation results when removing the PatchGAN loss. From left to right: Input, Our relighting, Ablation result.
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Figure 19: Ablation results where the E-LPIPS loss is replaced by an MSE loss. Input to the network is shown on the left. (top) Ours for target
shadow (left) and output (right). (bottom) Ablation for target shadow (left) and output (right).
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