
HAL Id: hal-03185200
https://inria.hal.science/hal-03185200v2

Submitted on 19 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Closed space-filling curves with controlled orientation
for 3D printing

Adrien Bedel, Yoann Coudert-Osmont, Jonàs Martínez, Rahnuma Islam
Nishat, Sue Whitesides, Sylvain Lefebvre

To cite this version:
Adrien Bedel, Yoann Coudert-Osmont, Jonàs Martínez, Rahnuma Islam Nishat, Sue Whitesides, et
al.. Closed space-filling curves with controlled orientation for 3D printing. Computer Graphics Forum,
In press, �10.1111/cgf.14488�. �hal-03185200v2�

https://inria.hal.science/hal-03185200v2
https://hal.archives-ouvertes.fr

Volume xx (200y), Number z, pp. 1–20

Closed space-filling curves with controlled orientation for 3D
printing

A. Bedel1†, Y. Coudert-Osmont1†, J. Martínez1 , R. I. Nishat2, S. Whitesides3, S. Lefebvre1

1Université de Lorraine, CNRS, Inria, LORIA 2Ryerson University 3University of Victoria
† Joint first authors

(a) (b) (c) (d)

Figure 1: Closed space-filling curves optimized under (a) anisotropy, (b) boundary alignment (c) isotropy inside the E and boundary align-
ment inside the G. Isotropy and anisotropy are optimized in terms of distribution of angles, while alignment is specified in a vector field (here
parallel to the boundary). For the three curves, the number of transitions between the two letters of the logo is minimized. (d) Multi-material
3D printed cube, with isotropic layers optimized by our approach.

Abstract
We explore the optimization of closed space-filling curves under orientation objectives. By solidifying material along the closed
curve, solid layers of 3D prints can be manufactured in a single continuous extrusion motion. The control over orientation
enables the deposition to align with specific directions in different areas, or to produce a locally uniform distribution of orien-
tations, patterning the solidified volume in a precisely controlled manner.
Our optimization framework proceeds in two steps. First, we cast a combinatorial problem, optimizing Hamiltonian cycles
within a specially constructed graph. We rely on a stochastic optimization process based on local operators that modify a
cycle while preserving its Hamiltonian property. Second, we use the result to initialize a geometric optimizer that improves the
smoothness and uniform coverage of the cycle while further optimizing for alignment and orientation objectives.

CCS Concepts
• Computing methodologies → Shape modeling; • Applied computing → Computer-aided design;

1. Introduction

Many additive manufacturing processes solidify material within
each layer along trajectories [ALL∗18]. The way these trajectories
cover the layer has direct implications on the fabrication process
itself and the object’s final properties. In particular, the trajecto-
ries impact the quality of extrusion processes such as fused fila-
ment fabrication, silicon, ceramic, wire arc, and concrete extrusion.
Thus, it is essential to minimize the occurrence of travel moves:
motions where the material flow is interrupted while the extrusion
device moves from one point to another. Such moves take time and
introduce defects where the flow stops and resumes: the print head
traveling above the part often leaves traces and spurious deposits.

Therefore, a trend in Additive Manufacturing (AM) focuses on de-
termining trajectories that fill a layer in a single continuous mo-
tion [ZGH∗16, DSL18, PBS18, JM20]. In such cases, the trajectory
is a cyclic space-filling curve. As layers are now printed in cycles,
the start and end positions of the print head can be chosen advanta-
geously (e.g., to minimize travel times), while the extrusion flow is
only interrupted where necessary.

Another important criterion is the orientation of the trajecto-
ries. These directly impact the surface finish, as the trajectories
remain visible and induce anisotropy in surface roughness. Sev-
eral recent works also note that aligning the trajectories with
the principal stress directions improves the mechanical robust-

submitted to COMPUTER GRAPHICS Forum (4/2022).

https://orcid.org/0000-0001-8443-9624

2 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

ness [SIM16,TM17,LY17,KWW19a,XLM20,FZZ∗20]. A distinct
problem is to attempt to obtain isotropic behaviors, while the depo-
sition tends to follow specific directions (e.g., zigzag and concentric
patterns). This applies both to mechanical strength [LXM∗19] and
thermal differences during deposition [CLEC20].

Finally, another context where precise control over the trajecto-
ries is required is when switching materials during a print [PJYP14,
XJ18, SMB∗19, SSMVL19]. In such cases, the trajectories have to
cover the layer while following a target field, ensuring correct mix-
tures are achieved despite relatively slow gradients of change, min-
imizing the number of switches. We refer to this property as trajec-
tory zoning.

In this paper, we consider three different objectives: continuity,
orientation, and zoning. The requirements of 1) a smooth, closed,
and non-intersecting trajectory, 2) covering the entire surface with
everywhere the same spacing while 3) being freely orientable and
minimizing crossing between zones forms a multi-objective opti-
mization problem.

Interestingly, a similar challenge has been considered before in
the context of Computer Graphics, primarily for interactive artistic
creation of maze-like patterns [PS06, WT13]. However, a number
of limitations make these techniques less suited for optimizing our
objectives automatically across large numbers of slices. We provide
further discussion and comparisons in Section 5.2.

We depart from existing methods and approach this challenge by
decomposing the optimization into two steps, manipulating differ-
ent aspects of the problem. The first step is a combinatorial op-
timizer, exploring Hamiltonian cycles in a specially constructed
graph covering the surface. The optimizer starts from an initial cy-
cle and modifies it through operators local to the graph, improv-
ing the objective functions. The operators locally update the cycle
while preserving its Hamiltonian property. Once the global connec-
tivity is determined, our second geometric optimizer further refines
the closed curve’s geometry. The result is a smooth, evenly dis-
tributed trajectory globally optimized for all objectives.

Our trajectories’ orientation can be controlled both in terms of
global distribution of orientations (isotropy/anisotropy) and local
alignment specified as a vector field. This control may be different
in distinct zones. The trajectory can also be optimized to remain
in a designated area (zoning) for as long as possible. This objec-
tive ensures that multi-material mixtures remain stable while in a
specific area.

We consider that a cyclic curve is either a simple closed curve on
a surface (the plane) or a cycle in a graph embedded in the surface;
the context will make the meaning clear. As the cycles in the graphs
become space-filling, the two meanings approach each other.

2. Related work

Space-filling curves and Hamiltonian cycles in graphs find many
uses in Computer Graphics. In particular, they can be used to de-
fine coherent linear traversals of graphical data, such as organiz-
ing triangle and quad meshes into strips [AHMS96, Tau03, GE04,
GLLR11], or improving image compression rates [DCOM00].

Space-filling curves have unique aesthetic qualities, which led
to their use for artistic creations. Bosch et al. [BH04, Bos10] and
Kaplan et al. [KB∗05] explore continuous line drawings using TSP
solvers to find a Hamiltonian cycle. Wong and Takahashi [WT13]
stylize images, growing an initial cycle in oriented grids ob-
tained from quad meshing. A similar growth process is performed
in [DCOM00]. The approach of Pedersen and Singh [PS06] grows
space-filling curves from initial simple closed curves (e.g., circles),
driving the growth through a variety of user-driven guidance fields.
This generates beautiful and intricate patterns. The growth is per-
formed with a simulation scheme akin to a particle system, with
repulsion and attraction forces. Sharp and Krane [SC18] generate
space-filling curves as a side effect of their technique for surface
cutting through a similar growth strategy driven by a level-set op-
timization framework. Growth approaches give control over the fi-
nal trajectories by locally influencing the process, as demonstrated
in [PS06, WT13]. Thus, they are a possible option to approach
the challenges we seek to address. We discuss the difficulties this
presents in Section 5.2.

Graph theory approaches have also been proposed to find cov-
ering cycles. These combinatorial methods are very efficient since
– on specific graphs – they are supported by a linear time algo-
rithm [Tau03]. This is demonstrated in Akleman et al. [AXG∗13]
to generate Hamiltonian cycles along surfaces for various artistic
effects. We use a similar approach to initialize our optimizer.

Space-filling curves have properties that make them attractive as
deposition trajectories for Additive Manufacturing [JM20]. Chen
et al. [CLEC20] enumerate all cycles within a regular square grid,
evaluating each cycle for the resulting thermal properties during de-
position. Lin et al. [LXM∗19] explore space-filling curves to obtain
close to isotropic mechanical behaviors in the produced part – while
typical raster fill patterns (zig-zags) lead to anisotropic mechanical
responses. Papacharalampopoulos et al. [PBS18] explore the use of
Hilbert curves for continuous deposition, noting that uninterrupted
extrusion reduces print time. Continuity is also an essential factor
in final quality when extruding pastes or ceramics [HHLT19]. Gi-
annatsis et al. [GVCD15] construct space-filling curves following
a material gradient. Chen et al. [CSG∗17] vary the local density
of the trajectories following an input image. Zhao et al. [ZGH∗16]
generate contour parallel fill trajectories that form singly connected
spirals within a contour, leading to a continuous fill with smooth
trajectories. Soler et al. [SRJG17] create 3D trajectories as Hamil-
tonian cycles in grids for wireframe 3D printing. In the context of
two-photon lithography, Dahaeck et al. [DSL18] divide a surface to
be manufactured in a process akin to a Centroidal Voronoi Tessel-
lation and compute a Hamiltonian path within to obtain a contin-
uous trajectory. Other techniques use space-filling curves to define
sparse infills with density gradients (e.g., [KWW19b]); however,
our focus in this work is on dense, solid infills. These techniques
do not provide any direct control over the orientation of the gener-
ated trajectories.

3. Method

Our algorithm takes as input a polygon P ⊂ R2, a distance 𝑑 that
(indirectly) controls the spacing around the curve, an orientation
field 𝑈, a set of isotropic zones I𝑖 ⊂ P, a set of anisotropic zones

submitted to COMPUTER GRAPHICS Forum (4/2022).

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 3

Input
(P, 𝑑,𝑈, I,A,Z)

Covering the surface with a graph

Section 3.2

Finding initial cycles

Section 3.3.1

Graph refinement and initial H-cycle

Section 3.3.2

Stochastic H-cycle optimization

Section 3.3.3

Final result
Cycle geometry optimization

Section 3.4

Graph

Set of disjoint cycles

𝐻 -cycle T𝐻 -cycle T

Figure 2: General overview of our approach. We start by covering the input polygon P with a graph and finding an initial cycle. Then, we
proceed to optimize the topology of the graph. Finally, we optimize its geometry. Each frame visually represents a step of the method, and is
related to a different section.

A𝑖 ⊂ P, and a partition of P into disjoint material zonesZ𝑖 . P and
all the zones are represented as sets of oriented boundary contours
and may have holes. P specifies the area to be covered. Without
loss of generality, we assume that P is a connected set, as other-
wise, we process each connected component independently. The
orientation field 𝑈 is piecewise constant. Its underlying data struc-
ture is a regular grid 𝑉 covering P, with center vectors having a
norm of one — where an alignment is specified — or zero — where
no specific alignment is requested. Each vector defines a constant
orientation across the square grid cell area. In each of these zones,
we seek to obtain respectively a uniform and a non-uniform ori-
entation distribution. Each material zone Z𝑖 is associated with a
material that will be used during the printing process. We assume
that two adjacent material zones have different materials (other-
wise, they can be merged).

The algorithm outputs a smooth, non-intersecting closed trajec-
tory T covering P. T is composed of 𝑁 vertices (𝑣𝑣𝑣𝑖)16𝑖6𝑁 and
𝑁 straight line segments between consecutive points. We assume
that the trajectory is oriented such that each vertex of index 𝑖 has a
successor 𝑖+ and a predecessor 𝑖−. A per-segment area 𝐴(𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣𝑖+) is
defined for each segment; it represents the area around the segment.
Multiplied by layer height, it gives the volume to extrude. Dividing
𝐴(𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣𝑖+) area by the segment length gives a notion of the average
spacing around.

We optimize the trajectory T to achieve a space-filling property
with an interspace close to a nominal value. Intuitively, the trajec-
tory meanders throughout P while covering it uniformly. Formally,
this is achieved by minimizing the distance from any point of P to

T (coverage) while constraining T to have a specific length. The
length indirectly controls the nominal spacing around the curve, as
given more length, the curve will get closer to points in P.

We further incorporate the alignment, orientation, and zoning
objectives. The alignment objective is specified as non-zero vectors
in the field 𝑈 and encourages T to follow these directions where
specified. The orientation objective controls the edge orientations’
distribution, minimizing or maximizing the distance to a uniform
distribution. This optimizes for either isotropy or anisotropy. Zon-
ing minimizes the number of crossings between T and the bound-
ary between adjacent polygons Z𝑖 ,Z 𝑗 . All these objectives can be
freely combined; the orientation objective is independently con-
trolled in every zone. We detail all objectives and their computa-
tions in Section 3.1 and the Appendix. An open-source implemen-
tation of our approach can be found at https://github.com/
mfx-inria/controllable-space-filling-curve.

Our approach operates in three main steps (see Figure 2):

• (Section 3.2) We build a graph embedded in P, so that the nodes
are evenly spaced, have exactly degree three, and so that the edge
orientations are biased towards any local alignment specified in
the input.

• (Section 3.3) After building an initial Hamiltonian cycle in the
graph, we perform a stochastic combinatorial optimization of the
alignment, orientation, and zoning objectives.

• (Section 3.4) We further optimize its geometry for even cover-
age, smoothness, orientation, and zoning, starting from the re-
sulting space-filling curve while targeting a specific curve length.

submitted to COMPUTER GRAPHICS Forum (4/2022).

https://github.com/mfx-inria/controllable-space-filling-curve
https://github.com/mfx-inria/controllable-space-filling-curve

4 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

3.1. Objectives

We formulate our objective functions along the segments of a
Hamiltonian cycle T (H-cycle for brevity) covering P.

The objectives we define here are used by both the combina-
torial optimizer and the continuous geometry optimizer. They are
combined in a weighted sum, always using the same weights.

In the following, E denotes the objective terms, and 𝛾 denotes
the weights of the objective terms. We start by giving an intuitive
definition of each objective.

• The space-filling objective produces a space-filling curve within
the surface of P. It comprises the ECVT and ELen objectives.

• ECVT is the Centroidal Voronoi Tessellation objective induced
by the segments of T , restricted to the polygon P. It encourages
T to be as close as possible to every point of P, maximizing the
surface coverage.

• ELen controls the length 𝐿 of T . This indirectly controls the
spacing between the folds of T , as given more length, the ECVT
will redistribute the curve to be close to all points of P.

• ELap encourages T to be smooth; it is a Laplacian term applied
to the vertices of T .

• EAli aligns T with the input vector field 𝑈 that specifies align-
ment vectors (vectors with the unit norm, while zero vectors in-
dicate that no specific alignment is requested).

• EOri controls the distribution of edge orientations, either max-
imizing (anisotropy) or minimizing (isotropy) the distance to a
uniform distribution.

• EZon discourages edges from crossing between zones using dif-
ferent materials.

We optimize with two different approaches, one combinato-
rial and the other geometric. The combinatorial optimizer chooses
which edges T uses in a fixed graph obtained from ECVT, ELen.
It optimizes for EAli, EOri, EZon. In this optimizer, the multi-
objective equation parameterized by the cycle T is:

EComb (T) = EZon +𝛾Comb (EAli +EOri) (1)

The geometric optimizer takes this output as initialization and fur-
ther optimizes T for ECVT, ELen, ELap, EAli, EOri, while trying
to keep EZon unchanged. It directly manipulates the vertices and
segments of T . The corresponding multi-objective equation is:

EGeo (T) = ECVT +𝛾LapELap +𝛾LenELen +𝛾Obj (EAli +EOri) (2)

Each optimizer performs the following optimization:

min
T
E(T) (3)

with E being either EComb or EGeo.

A detailed definition of each optimization term and its weights
is provided in the Appendix, where we also derive the objective
gradients, as these are required for the geometric optimizer.

There are several original aspects in the way we formulate our
objectives. First, we formulate ECVT on the segments of T . This
results in robust and precise optimization, naturally avoiding self-
intersections without requiring a point resampling of T at every
solver iteration. Equipped with the gradient, we optimize ECVT

with the quasi Newtonian solver L-BFGS [LN89]. Second, we for-
mulate the orientation objective in terms of the distribution of an-
gles along T . By minimizing the distance to a uniform distribution,
we obtain isotropic trajectories; by maximizing it, we encourage
anisotropy – without choosing an a priori orientation. This leads
to an optimal transport problem in the geometric solver context
through the Wasserstein distance [Vil03]. Third, we consider the
alignment objective by discrete integration of the target directions
over the cells of the diagram of segments. This is achieved precisely
and efficiently through a pre-computed table.

The objectives maintain their formulations in both the combina-
torial and geometric optimizers.

3.2. Covering the surface with a graph

The first step of our approach is to construct a graph on which the
combinatorial cycle optimizer will later operate. We seek to pro-
duce a planar graph embedded in P. We know from [GE04] that
a Hamiltonian cycle can be efficiently computed in a bridgeless
graph of degree three, where bridgeless means that the graph does
not have any edge whose deletion would increase the number of
connected components. Besides, we seek to obtain a graph with
edges distributed evenly over P.

From these two requirements, we choose to create the graph from
the vertices and edges of a Centroidal Voronoi Tessellation (CVT).
We generate initial seeds by intersecting a triangular tiling with our
polygon P (see Figure 3).

The spacing 𝑑 between adjacent vertices parameterizes the tiling.
Each seed position is perturbed by a random offset, sampled in a
disc of radius 𝑑

20 , in order to get rid of co-circular cases. The value
of 20 was determined empirically. Tiling vertices inside P will be
the initial seeds of our Voronoi diagram.

The spacing 𝑑 is the driving parameter for the curve interspace
in the final result: with a lower 𝑑, the number of seeds 𝑆 increases,
producing a longer cycle, which leads to a smaller curve interspace.
However, choosing 𝑑 to obtain a specific interspace is not simple,
as this also depends on the polygon P and the objectives we are
minimizing (see Figure 13). In practice, 𝑑 is adjusted empirically
by restarting the process with a lower 𝑑 when the interspace is too
high and higher 𝑑 when the interspace is too low. After the Voronoi
tessellation, the graph is composed of the Voronoi edges of the di-
agram, clipped by the polygonal contour whose boundary is also
part of the graph, see Figure 4. A CVT graph is extremely likely
to have nodes of degree three everywhere, as co-circular cases are
extremely rare. Actually, we have never observed a node with a de-
gree greater than three. The graph is bridge-less by construction, as
each edge belongs to a cyclic cell.

However, directly using a point CVT graph would yield poor re-
sults under alignment objectives. Indeed, during the combinatorial
optimization, we select which edges belong to the cycle. If the user
controls alignments through the vector field 𝑈, we can only hope
to find a cycle with aligned edges if they exist in the graph. There-
fore, the graph has to ideally contain some edges aligned along the
non-zero vectors of𝑈.

To align the edges, we introduce anisotropy in the Voronoi dia-
gram. Instead of casting this as a metric distortion problem [LB13],

submitted to COMPUTER GRAPHICS Forum (4/2022).

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 5

P

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • •

• • • • •

• • • • • •

• • • • •

• • • • •

𝑑

𝑑

Figure 3: Initial seeds (in green) are created by intersecting a tri-
angular grid (side length 𝑑) with P.

Figure 4: Obtaining aligned edges with the needles. Top: vector
field: the green, yellow, and red zones have alignment vectors spec-
ified. Middle: standard point Voronoi tessellation. Bottom: Voronoi
tessellation obtained using needles. Many of the diagram edges
now follow the input vector field.

we consider a diagram of many small segments – called needles.
The lengths and orientations of the needles induce cells that are
elongated and oriented with respect to the control field 𝑈, see
Figure 4. Each needle is centered on a supporting seed. The nee-
dle lengths and orientations are implicitly defined by the (point)
Voronoi diagram of their supporting seeds. Let us consider the nee-
dle centered on a seed 𝑝, whose Voronoi cell we denote as C𝑝 .

In order to obtain cell edges aligned with the vector field 𝑈, we
want the needle to be aligned with the average of the direction field
𝑈 inside its own cell C𝑝 . However, such a field has symmetry: a
vector and its opposite represent the same direction. To break the
symmetry, one can double the angle of𝑈 (denoted by ∠𝑈), leading
to a new vector field 𝑉 . In that way, two opposite vectors in 𝑈
become equal in 𝑉 , and integration inside a cell is then possible.

𝑉 =

{ (
cos (2∠𝑈) sin (2∠𝑈)

)
if𝑈 ≠ (0,0)(

0 0
)

otherwise
(4)

Now the angle of the needle can be expressed as 1
2 ∠V𝑝 , half the

angle ofV𝑝 , the integral of 𝑉 inside C𝑝 , as defined in the appendix
equation (32).

The needle length is computed as L𝑝 =
| |V𝑝 | |

area(C𝑝) ·
√︃

area(P)
𝜋𝑆

,
where the square root term is a global scaling factor based on the
total area covered with 𝑆 seeds and area(.) computes the area of a
polygon. To ensure that needles never cross L𝑝 is clamped so that
the needle is fully contained in C𝑝 .

We optimize for the seeds’ positions under a segment CVT ob-
jective, using the L-BFGS algorithm [LN89]. We use the simplify-
ing assumption thatV𝑝 undergoes only small changes at each itera-
tion. Therefore, we only optimize seed positions, recomputingV𝑝 ,
L𝑝 at every iteration of the L-BFGS algorithm. The gradient of the
segment CVT objective is computed at the needle extremities and
used to compute the supporting seed positions’ gradient. After con-
vergence, we extract the graph as the edges of the segment Voronoi
diagram and clip it with the boundary of P. The above procedure
gives us an initial graph satisfying our requirements (see Figure 4).

3.3. Combinatorial optimization

Once a bridge-less planar graph with nodes of degree three is ob-
tained, we proceed with the combinatorial cycle optimization. Our
combinatorial optimizer’s core principle is to start from a valid H-
cycle and perform local operations on its edges, modifying the cy-
cle while preserving its Hamiltonian property. These local changes
allow us to perform an efficient stochastic exploration, optimizing
the alignment, orientation, and zoning objectives. The use of local
operations is inspired by recent graph theory results that reconfig-
ure H-cycles in regular grids [NW17, Nis20]. We introduce a dif-
ferent set of operations as our graphs are irregular and use them in
a stochastic optimization framework (Section 3.3.3).

The optimizer proceeds in three main steps. The first obtains a
set of cycles fully covering the input graph but not yet connected
in a global H-cycle (Section 3.3.1). For this, we rely on existing
techniques. The second operates a graph refinement and reconnects
the cycles into a single Hamiltonian cycle using local operations
(Section 3.3.2). The graph refinement is a crucial step that enriches
the local operations performed on cycles in general and H-cycles in
particular. The third is the optimization process (Section 3.3.3).

3.3.1. Finding initial cycles

As a starting point, we follow the principles established in Gopi
and Eppstein [GE04]. We compute a perfect matching on the
graph [Edm65]: a selection of edges such that every node is ad-
jacent to exactly one selected edge. This can be done in linear time
on bridge-less planar graphs of degree three [BBDL01]. Then, a
set of cycles covering all graph nodes is obtained by inverting this
edge selection. However, these cycles are not connected in a single
Hamiltonian cycle (see Figure 5).

Gopi and Eppstein [GE04] reconnect the cycles through two
strategies. The first is to identify specific configurations of edges
allowing to split and reconnect neighboring cycles – however, such
configurations are relatively rare in three-connected planar graphs.
The second is to create double edges connecting cycles, which is
always possible but locally creates a strong deviation from the even
spatial distribution of edges we seek to achieve.

submitted to COMPUTER GRAPHICS Forum (4/2022).

6 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

Figure 5: Closeup on two cells 𝐴 and 𝐵 of a three connected,
bridge-less planar graph. Left: a perfect matching of edges (thick
black lines). Right: inverting the perfect matching creates cycles
covering all graph nodes. Here two cycles (in green and orange
color) are produced from which we see only a few edges.

3.3.2. Graph refinement and initial H-cycle

Our combinatorial optimizer relies on local modifications of a
Hamiltonian cycle. We follow a similar approach to reconnect the
initial cycles into a single H-cycle. The three-connected planar
graph’s low connectivity and mostly hexagonal faces make it chal-
lenging to perform simple modifications: any change impacts many
edges at once.

Therefore, we propose refining the graph, increasing the density
of edges, and making it easier to find opportunities for local, sim-
pler modifications. In the following, we refer to the faces of the
three-planar graph as cells as they originated from Voronoi cells.
We insert one additional node at the barycenter of every cell, split-
ting it into triangular faces. This offers a much richer set of oppor-
tunities to perform local manipulations of cycles.

After introducing a center node and splitting the cells into trian-
gular faces in the graph (Figure 6), we update the cycles obtained
from perfect matching to end up in a similar situation: a set of cy-
cles covering all nodes.

We examine each cell in turn. In each cell, we choose one of the
boundary edges (𝑎, 𝑏) that is part of the cycle. This edge is then
split to go through the added center node 𝑛 as (𝑎,𝑛) → (𝑛, 𝑏). The
cycle now goes through 𝑛 in addition to (𝑎, 𝑏); see dashed lines in
Figure 6, top right.

Note that all cells have at least two cycle edges along their
boundary by construction. Indeed, we started from a perfect match-
ing (Section 3.3.1) and inverted the selection, ensuring that every
node is connected to two-cycle edges and a third edge not in the cy-
cle. Thus, we cannot have two successive edges that do not belong
to the cycle. Consequently, a cell made up of 𝑘 edges has at least
d𝑘/2e of them in a cycle. Since a cell is made up of at least three
edges, this implies that all cells have at least two edges in a cycle.

As we connect boundary cycle edges to cell centers, we may end
up with a cell that no longer has any cycle edge along its boundary,
making the new node 𝑛 unreachable (Figure 6, top right). When
this happens, the cell steals this edge back from its neighbor, and
the cell is tagged as frozen: no other cell can steal this edge from it.
The neighbor now needs to connect its center again. It will either
use another available boundary cycle edge or will have to steal it
from another neighbor. The process propagates until all cases are
resolved. This is illustrated in Figure 6. In all our experiments, the
process terminates successfully, with minimal propagation.

Figure 6: Top left: the insertion of nodes 𝑛1, 𝑛2, 𝑛3, and 𝑛4 (in
red color) produces new triangular faces. We seek to reconnect the
new nodes with the two cycles passing around (in green and yellow
color) while covering all nodes. Top right: we remove edges 𝑒6, 𝑒10
and 𝑒11 and reconnect their endpoints with 𝑛1, 𝑛3 and 𝑛4, respec-
tively. However, we need to find an alternative since the resulting
cycles do not cover the node 𝑛2. Bottom: here we remove edges 𝑒5
and 𝑒6 and reconnect their endpoints with nodes 𝑛1 and 𝑛2 respec-
tively. This leads to a satisfactory result covering all nodes.

Figure 7: Connecting cycles through split-and-reconnect. Here we
have two different cycles (in green and yellow), and we identify an
opportunity to split-and-reconnect using edges 𝑒1, 𝑒2, 𝑒3 and 𝑒4
(inside red quad). Left: initial configuration, the edge 𝑒1 belongs
to the yellow cycle, and the edge 𝑒2 belongs to the green cycle.
Right: the two cycles are joined by removing 𝑒1, 𝑒2 and adding 𝑒3,
𝑒4.

Finally, once the new graph and cycles are obtained, we search
for split-and-reconnect configurations to merge the cycles, as illus-
trated in Figure 7: an edge from a different cycle across two free
edges. The much more densely connected graph provides a larger
number of reconnection opportunities. The algorithm visits all cy-
cle edges, searching for the candidate configuration. As soon as a
split-and-reconnect operation is discovered, it is applied, joining
the two cycles. The algorithm continues until no further split-and-
reconnect operation is possible.

At this stage, if multiple cycles remain, double edges are added,
as illustrated in Figure 8. The algorithm goes along the cycles
again, searching for the first free edge connecting another cycle and
doubling it. Typically, only very few double edges are necessary, as
experimentally verified in Table 1. In practice, doubling an edge is
not so problematic as the geometric optimizer will quickly recover
the proper interspace.

At this point, we have a valid initial H-cycle. This entire process
is efficient: perfect matching is linear in the number of nodes, the
cycle reconnection linear in the number of edges.

submitted to COMPUTER GRAPHICS Forum (4/2022).

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 7

Figure 8: Connecting cycles through edge doubling. Left: an un-
used edge 𝑒1 (in red quad) between two different cycles (in green
and yellow). Right: the two cycles are joined together after dou-
bling the edge 𝑒1 and its endpoints, adding an extra edge 𝑒1𝑏𝑖𝑠 .

hourglass android balljoint

Model With refinement Without refinement

s.a.r db. edges s.a.r db. edges
hourglass 1323 0 558 768
android 3589 16 1421 2186
balljoint 1552 47 649 955

Table 1: Comparison of the number of different operations used to
reconnect cycles — either split-and-reconnect (s.a.r) or edge dou-
bling (db. edges) — when graph refinement is used or not. Models
contain between 100 and 200 layers. Statistics are aggregated over
all of them.

3.3.3. Stochastic H-cycle optimization

Objectives. Given an H-cycle, we evaluate the objectives
EAli,EOri, and EZon along the edge that belongs to the cycle. Please
refer to Appendix A for their exact computations. However, some
differences have to be clarified. For the alignment objective, as it
would be very costly to compute a Voronoi diagram each time we
update the score, the vector field integrals are no longer computed
inside segment Voronoi cells but inside small rectangles surround-
ing edges. For the orientation objective, we track the angle distribu-
tion in a histogram having 𝑛 bins (𝑛 = 100 in our implementation).
This histogram enables the computation of the objective value in
constant complexity. The combinatorial optimization does not con-
sider the surface-filling objectives (ECVT,ELen, ELap). The vertices
are fixed, and the surface filling property is enforced by construc-
tion of the initial graph and the Hamiltonian nature of the cycle.

We update all objectives’ current values as we locally modify the
cycle by removing/adding edges. The objectives are weighted and
combined as discussed in Section 3.1.

Evolving an H-cycle: local operations. The local operations we
perform on the H-cycle are shown in Figure 9. There is a start-
ing configuration and an updated configuration in each operation
template. The starting configuration considers a set of nodes with
a specific configuration of edges. The thick green edges are those

that belong to the cycle; the thin black edges are those that do not
currently belong to the cycle. Other edges may exist between the
nodes and may belong to the cycle or not – these do not influence
the operation.

Given a configuration that matches the template starting config-
uration, we can, in each case, modify the edges into the updated
configuration while preserving the H-cycle. Each operation modi-
fies the set of edges belonging to the cycle and thus the value of
the objectives. We search for configurations by selecting a node
at random and then considering the edges surrounding it. Matching
the templates can be achieved in constant time for all operations but
one (rightmost in Figure 9). A global connectivity check is required
between two of the nodes, indicated in Figure 9 by a dashed green
curve. We perform it in constant time using an auxiliary data struc-
ture. However, this data structure requires a linear time update after
each actual modification of the graph – these only happen when a
local change is accepted, typically when it improves the objective
function’s value.

Optimization loop. Our algorithm follows a standard stochastic
optimization framework. Starting from an initial H-cycle, we pro-
duce a population of 𝐾 ×𝐶 cycles, cloning the initial one. Each of
these H-cycles is evolved with the shuffle algorithm 1.

Algorithm 1 The shuffle algorithm applies local operators to
evolve and explore input H-cycle improvements with respect to our
objectives.
algorithm Shuffle(HCycle T) {

for (shuffle = 0 to ShuffleIter) {
T′ = applyRandomOp(T)
if (EComb (T′) <= EComb (T)) {
T = T′

} else if (EComb (T′) < EComb (T) + ThreshHigh)) {
if ((1 + 𝑁 * (EComb (T′) - EComb (T))) * rand() < ThreshLow)
T = T′

} else if (shuffle % Mod == 0) {
T = T′

}
}

}
for (improve = 0 to ImproveIter) {
T′ = applyRandomOp(T)
if (EComb (T′) <= EComb (T)) {
T = T′

}
}
return T;

}

We next select 𝐾 champions from the 𝐾 ×𝐶 cycles, promoting
diversity. We measure the distance between two H-cycles as the
number of edges they do not have in common. We initialize the set
of champions with the H-cycle having the best objective. Then we
iteratively add the H-cycles that are the most distant from the al-
ready selected champions (Hochbaum-Shmoys algorithm [HS85])
until 𝐾 are selected.

We then enter the main optimization loop, where champi-
ons are iteratively improved. At each iteration, each cham-
pion is cloned into 𝐶 candidates evolved with Algorithm 1.
The champion is replaced by the best of its candidates, but
only if it improves the objective compared to the champion.
This is performed for a fixed number of iterations 𝐼. In prac-
tice, we use ShuffleIter=ImproveIter=8𝑁 , Thresh-
High=0.5, ThreshLow=1, Mod=400 and 𝐶 = 2,𝐾 = 12, 𝐼 = 3.

submitted to COMPUTER GRAPHICS Forum (4/2022).

8 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

Operation 1 Operation 2 Operation 3 Operation 4

Figure 9: Illustration of the four local operations evolving an H-cycle while preserving its Hamiltonian property. Thick green edges belong
to the cycle; solid black edges do not belong to the cycle. The state of other edges (gray dashed) has no influence. Operation 1: two triangles
given by the edges (𝑒1, 𝑒2, 𝑒3) and (𝑒4, 𝑒5, 𝑒6) share one node. We change the cycle edges from (𝑒2, 𝑒3, 𝑒6) to (𝑒1, 𝑒4, 𝑒5). Operation 2:
two triangles given by the edges (𝑒1, 𝑒3, 𝑒4) and (𝑒2, 𝑒3, 𝑒5) share one edge 𝑒3. We change the cycle edges from (𝑒4, 𝑒3, 𝑒2) to (𝑒1, 𝑒3, 𝑒5).
Operation 3: two rhombuses enclosed by edges (𝑒1, 𝑒2, 𝑒3, 𝑒4) and (𝑒3, 𝑒5, 𝑒6, 𝑒7) share a common edge 𝑒3. We change the cycle edges from
(𝑒2, 𝑒3, 𝑒4, 𝑒6) to (𝑒1, 𝑒3, 𝑒5, 𝑒7). Operation 4: two rhombuses enclosed by edges (𝑒1, 𝑒2, 𝑒3, 𝑒4) and (𝑒5, 𝑒6, 𝑒7, 𝑒8) share a common node
and there exists a path in the green cycle (indicated by the green dashed curve) that connects two nodes and that does not traverse any other
node in the illustration. We change the cycle edges from (𝑒1, 𝑒4, 𝑒5, 𝑒7) to (𝑒2, 𝑒3, 𝑒6, 𝑒8).

Here, 𝑁 is the number of nodes inside the cycle. The algorithm
uses some randomness through the function rand() that returns a
uniform number between 0 and 1. Finally, this is easily parallelized;
we use one thread per champion.

3.4. Cycle geometry optimization

The input of the geometry optimization is the H-cycle T obtained
by the combinatorial optimizer. Our goal is now to optimize the
position of the vertices of T in order to obtain smooth trajectories
evenly distributed while following all our other objectives (align-
ment, orientation, zoning).

Initialization An important question for the geometric optimizer
is which length to target for the cycle with ELen. Let us recall that
the total length indirectly controls the final spacing between folds
of the trajectory.

The cycle produced by the combinatorial optimizer has a global
directionality in agreement with the alignment and orientation ob-
jectives. However, it also has many local corners (high frequencies)
coming from the initial tessellation. Now that the cycle connectivity
is determined, the geometric optimizer can smooth out these higher
frequencies. The smoothing objective ELap achieves this.

However, the high frequencies coming out of the combinatorial
optimizer artificially lengthens the cycle. Therefore, we apply a few
explicit smoothing steps before computing the target length. This
results in a filtered cycle whose length is more representative of
our spacing objective.

We apply 5 times the following smoothing operator to each ver-
tex 𝑣𝑣𝑣𝑖 , while ensuring that no self-intersections appear:

𝑣𝑣𝑣𝑖 ← 𝑣𝑣𝑣𝑖 +
1
10

(
𝑣𝑣𝑣𝑖+ + 𝑣𝑣𝑣𝑖− −2𝑣𝑣𝑣𝑖

)
(5)

After applying (5), the target length 𝐿0 becomes the length of T .
The geometric optimizer starts from this smoothed cycle.

Optimization We then minimize the geometric objective EGeo de-
fined in (2). We encourage the reader to have a look at the different
terms of this objective in the appendix. Our geometric optimizer is
supported by a quasi Newtonian solver L-BFGS [LN89]. This is an

Before smoothing (5) After smoothing (5) After optimization

Figure 10: Result of our geometry optimization over the brain
model with an isotropy objective.

iterative solver that only needs to compute the value of the objec-
tive and the gradient or at least an approximation of it to minimize
the objective. The solver then approximates the Hessian using the
gradient of the last 𝑀 iterations. 𝑀 is fixed before optimization and
has a value generally less than 10; we use 7 in our implementation.
Figure 10 illustrates the impact of the initial smoothing (5) and the
optimizer over the cycle geometry.

Computing the per-segment area After the process has con-
verged, we are ready to compute the per-segment area along T .
Once multiplied by a thickness, it represents the volume of material
that has to be extruded around the segment. This enables the depo-
sition to adapt to each segment’s surroundings (see Section 4.2).
The area is computed from the segment’s Voronoi cell, which is
added half the area of the point Voronoi cells of its extremities.

4. Results

This section presents numerical evaluations and experimental re-
sults, including plates 3D-printed with multiple materials.

4.1. Numerical evaluations

Figure 11 shows the evolution of the two optimization stages (com-
binatorial and geometrical). As can be seen, both optimization
solvers operate effectively to reduce the value of the objectives.
For the geometrical optimization, 𝛾LenELen acts as a regularizer of
the total length of T , and the optimizer attempts to maintain its
value. Figure 12 shows the effect of disabling the optimization of
global terms (EOri,EAli). As can be seen, these terms are critical in
obtaining a trajectory well aligned with the target field.

submitted to COMPUTER GRAPHICS Forum (4/2022).

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 9

Combinatorial optimization Geometric optimization

0 20 40 60 80 100
0

8

16

24

32

40

Step (×103)

W
ei

gh
te

d
ob

je
ct

iv
e

EZon
150 · 𝛾CombEAli
150 · 𝛾CombEOri

0 20 40 60 80
0

30

60

90

120

Step

W
ei

gh
te

d
ob

je
ct

iv
e

EGeo
ECVT
𝛾LapELap
10 · 𝛾LenELen
50 · 𝛾ObjEAli
50 · 𝛾ObjEOri

Figure 11: Two-stage optimization of shape depicting a brain. The trajectory of the left part is under an alignment objective, while the
trajectory in the right part follows an isotropy objective. The plots depict the evolution of the value of each objective function during the
optimization steps. Note that some values are multiplied by a constant factor in order to improve the visualization.

Figure 12: Radial vector field in a disc. Left: Our result. Right:
Without any global optimization of orientation (initial graph con-
struction directly followed by geometric optimizer without EAli,
EOri). The result no longer closely follows the desired orientation.

Figure 13 reveals the link between the parameter 𝑑 controlling
the initial spacing between adjacent seeds (see Section 3.2), and
the interspace 𝜏 encountered along the cycle. The interspace 𝜏 is
computed from the Voronoi cells, taking the distance between both
sides across the trajectory. The relationship between 𝑑 and the final
interspace behaves consistently across examples and can be pre-
dicted reasonably well using the curve of Figure 13. We can also
observe that the variation across models is slight (within ±0.1 mm
of each other’s).

In addition, Figure 14 shows that the interspace values follow
a (tilted) Gaussian distribution. This simplifies pushing a varying
flow (by adjusting motion speed) during fabrication. Interestingly
we observe a change in statistics between the objective. However,
they all remain within small bounds, as their means are all within
0.05 mm of each other. One can also notice that the variance of the
anisotropy is lower, as it is easier to obtain a constant interspace
with zigzags.

Figure 15 demonstrates the effect of the Laplacian term 𝛾Lap (see
Section A). While both results are compelling, using the Laplacian
term avoids sharp turns, effectively smoothing the cycle.

Figure 16 shows some timing results. Both optimizers can ex-
ecute iterations in a reasonable time, with a roughly polynomial
correlation with respect to 𝑑.

0.90.80.70.60.50.40.30.2

0.1

0.2

0.3

0.4

𝑑 (mm)

𝜏
(m

m
)

Figure 13: Correlation between 𝑑 (controlling the seed density –
see Figure 3) and the interspace 𝜏 around the optimized cycle. The
thick curve is the mean observed over 30 models using different
objectives. The top and bottom curves are the reported min/max
values of the mean across models.

0.0 0.09 0.18 0.27 0.36 0.45

0

50

100

150

200

250

Deposition width (mm)

L
en

gt
h

in
th

e
pa

th
(m

m
) 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

𝐼𝑠𝑜𝑡𝑟𝑜𝑝𝑦

𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦

Figure 14: Interspace distribution over the brain model with 𝑑 =

0.5𝑚𝑚, for different objectives.

4.2. 3D printed results

We carried out 3D printing of parts optimized with our method. We
employed filament fused fabrication with PLA.

Multi-material illustrations We fabricated multi-material plates
with complex trajectory patterns. These prints were fabricated us-
ing a constant deposition width to highlight the trajectory better.
We typically print five layers.

submitted to COMPUTER GRAPHICS Forum (4/2022).

10 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

𝛾Lap = 0 𝛾Lap ≠ 0

Figure 15: Optimization results showing the effect of using or not the smoothing term 𝛾Lap.

0.4 0.6 0.8 1.0
0

3

6

9

12

𝑑 (mm)

Sh
uf

fle
tim

e
(s

)

0.4 0.6 0.8 1.0
0.3

0.6

0.9

1.2

𝑑 (mm)

G
eo

.o
pt

im
.s

te
p

tim
e

(s
)

Figure 16: Timings of the brain model (see Figure 11). Left: com-
puting time of the function Shuffle (Fig. 1) with respect to 𝑑.
Right: computing time of a single iteration of the L-BFGS solver in
the geometric step.

We use a 3-way Diamond nozzle by Reprap.me. This nozzle
takes three different filaments as input, mixed into the nozzle cham-
ber, and exit from a single hole. The mixture is passive, so the ma-
terials are co-extruded in a toothpaste-like pattern at a small scale.
Our printer is a Prusa-like assembly, with three feeders for each
of the three filaments. The printer firmware accepts special GCode
instructions defining the mixing ratio at each extrusion move. In
our experience transitioning from one mixture to another requires
pushing at least 6.1𝑚𝑚3, resulting in a relatively long transition,
e.g., 76 mm of deposition trajectory for a 0.4 mm nozzle at 0.2
layer height. In this context, the zoning and alignment objectives
are important to minimize the number of transitions and align them
along zone boundaries. We printed at a speed of 10 mm/sec, using
colored translucent PLA filament.

Figure 17 shows the brain model 3D printed with a variety of
materials (colors) under different objectives combined (see Figure
caption for details). Two versions were printed with different spac-
ings 𝑑. As can be seen, the 3D printed versions closely follow the
input specifications, with clearly defined zones both in material and
alignment/orientation objectives. The single continuous deposition
produces an even, reliable material flow, leading to nearly optimal
operational conditions for the extrusion process.

The leaf model shown printed in Figure 18 has many narrow
regions, and an internal skeletal structure. This shows that despite
being a single cycle, the trajectory can fill narrow regions orthogo-
nally to their main directionality – this would be difficult to achieve
with growth techniques that have to fit an even number of trajec-
tories everywhere (see Section 2). The skeleton is well captured
despite the multi-material transitions.

Figures 19 and 20 show other examples of shapes with nar-
row spaces and multi-material transitions. The batman logo uses
an alignment objective parallel to the boundaries. The zebra uses
anisotropy for the background and alignment along boundaries
within the zebra stripes.

Dense plates We compared two methods on an isotropic cycle
filling a square to evaluate how dense our prints can be. Isotropy
results in a high number of turns. The first method uses our per-
segment area computation, varying the amount of deposited ma-
terial along the cycle. Note that the material’s feed rate was kept
constant (the speed of the motor pushing the filament) while the
XY motion speed was varied. The second method extrudes at a
constant speed an average amount of material, computed from the
plate’s total area – this is equivalent to considering that the average
’width’ along the cycle is the total area divided by cycle length.
The print speed is slightly impacted by the type of infill due to the
acceleration limits. Comparing on a CR10S, printing a 40x40 mm
square with a speed target of 20mm/sec, the isotropic infill reaches
an average deposition speed of 19.75 mm/sec versus 19.94 mm/sec
for an anistropic one.

As shown in Figure 21 the per-segment area achieves a denser
result, leaving a few gaps. These examples are fabricated at 0.2
mm layer height, with two layers, using a 0.6 mm nozzle at an
average speed of 20 mm/sec on a Prusa i3 printer. They are printed
in sequence and at the same bed location. Both use the same total
volume of material: 281 𝑚𝑚3 for the squares, 1955 𝑚𝑚3 for the
leaves. The average spacing around the cycle is around 1.3 mm.

Note that we printed at an increased temperature (215 degrees)
to allow the molten plastic to spread more easily. The nozzle width
must also be within reasonable margins of the nominal spacing (ob-
tained as total area divided by cycle length).

submitted to COMPUTER GRAPHICS Forum (4/2022).

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 11

Figure 17: Left: input specifying zones and objective selection in each. Parallel vec field means that we align the path with a vector field
parallel to the zone border and ortho vec field means that we use alignment with a vector field orthogonal to the border. Middle: cycle
optimized for a width of 1.7𝑚𝑚. Right: cycle optimized for a width of 0.8𝑚𝑚.

Figure 18: Left: Single material leaf printed with a constant width smaller than nominal to appreciate the cycle folds. Note how the cycle
goes around holes with a single folded trajectory in the center part. Middle: Multi-material version using a narrower spacing, with the inner
skeleton in a different material. Right: Closeup. Note how the cycle locally has a single trajectory around the holes. Such cycles cannot be
obtained by growing from a small circle to invade the surface: this always gives an even number of paths in between outer contours.

3D parts Beyond plates, we print 3D objects using our technique.
Figure 22 compares three printed versions of the CuteOcto model,
where our method is used in isolation and compared with a standard
zigzag infill, also used in isolation. We print the CuteOcto first us-
ing our isotropic fill and next using a vector field that encourages
the deposition to conform to the surface. In both cases, we obtain
a solid object that prints with no travel moves beyond those strictly
necessary (layers with two disjoint areas, e.g., front paw).

As we use the infill in isolation, we can see that the turns
along the surface produce small depressions. However, even in the
isotropic case, the surface quality remains better than that produced
by a standard zigzag infill, creating turns everywhere along the
boundary. Using the vector field (Figure 22, middle) further en-
courages the paths to circulate along the part boundary.

In standard practice, to obtain a smooth surface, an external con-
tour (perimeter) is used, with the infill hidden behind. Since our
infill is a cycle, and since external contours would also be cyclic, it

would be simple to reconnect everything in a global cyclic trajec-
tory, still producing a continuous extrusion.

Our technique is also useful on multi-material parts, as shown
in Figure 23. Here, we use zoning to transition a cyclic isotropic
infill between two material mixtures. The extrusion is continuous,
and the transition between mixtures occurs in a user-specified zone
(Figure 23, bottom left). In contrast, a two nozzle print on an Ulti-
maker 3 requires switching every layer and printing an extra tower
to prime the nozzles, wasting material and time. Finally, an advan-
tage of using mixtures is to print with none of the original colors:
as long as the mixture is stable (e.g., 30% - 70% mix), a consistent
color is produced [SMB∗19].

4.3. Performance

We measure performance on a Core i7-10750H laptop (2.6GHz)
with 16 GB of RAM. Our implementation is a non-optimized re-
search prototype.

submitted to COMPUTER GRAPHICS Forum (4/2022).

12 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

Figure 19: Multi-material printing of the Batman logo following
the parallel vector field.

Figure 20: Zebra printed with black and white filaments.

We report in Table 2 some timings. The combinatorial optimizer
runs several threads in parallel (12). On CuteOcto, timings are the
total for all layers (noting that CuteOcto has a large base followed
by smaller layers above). Init and geometric optimizers are paral-
lelized when multiple slices are computed. In all cases, the total
computation time is below fabrication time. The algorithm could
be streamed as slices are processed and sent to the printer and mul-
tiple slices processed on different cores. The stopping criteria offer
a time-quality tradeoff (see Figure 16). We use two settings: one for
cases with zoning and one for single objective cases (the combina-
torial optimizer typically converges faster on these).

In terms of complexity, initializing the graph is 𝑂 (𝑁), where 𝑁
is the number of cycle vertices, 𝑁 =𝑂 (𝑎𝑟𝑒𝑎 (𝑃)

𝑑2). Each iteration of

the combinatorial optimizer is 𝑂 (𝑁2). The 𝑁2 is due to the worst
linear case of updating the connectivity check data structure of the
transpose operator (Figure 9, rightmost). Each iteration of the geo-
metric optimizer iteration is 𝑂 (𝑁𝑙𝑜𝑔(𝑁)).

Name init combinatorial geometric dimensions
Section (3.2-3.3.2) (3.3.3) (3.4)
Brain
(Fig. 11)

4 sec 8 sec 12 sec 65x52mm

Leaf
(Fig. 18, mid.)

54 sec 73sec 242 sec 146x160mm

CuteOcto
(282 layers)

9 sec 462 sec 220 sec 82x81x56mm

Table 2: Timings of different models (averaged, five runs).

5. Discussion

In this section, we provide comparisons and additional discussion.

5.1. Comparisons

Figure 24 compares extrusion quality between a zigzag infill and
our technique in a single layer, printed with flexible filament. The
travel moves required by the standard zigzag produce artifacts, as
the print head leaves marks and material oozes along with some
travel moves. In contrast, our cyclic infill produces a similarly ori-
ented deposition without travel moves. Other examples of near
zigzag anisotropic fills are visible in Figure 1, (b). Figure 22 also
compares our infill to a standard zigzag on full 3D prints. Figure 25
provides a visual comparison to [ZGH∗16] and [PS06], two tech-
niques producing cyclic trajectories.

Fermat spiral. The method of [ZGH∗16] constructs a concentric
spiral explicitly. Our approach produces a trajectory that is well
aligned with the concentric field and also exhibits a more even
inter-spacing. In particular, the offsetting used during the Fermat
spiral construction tends to accumulate gaps along the medial axis,
a defect that would repeat and align throughout layers. Thanks to
their randomized nature, our trajectories are less subject to defect
accumulation across layers. We can also produce a cyclic trajec-
tory following the direction orthogonal to the concentric field (the
green region in Figure 25, see also Figure 12 left), which cannot be
achieved with Fermat spirals.

Labyrinths and mazes. Our technique produces an outcome simi-
lar to that of Pedersen and Singh [PS06], following the field closely.
It can also be seen that our result crosses between the three zones
four times (two between green and orange – once around the arms,
once around the feet – and two between orange and gray) which
is the minimum possible. A growth approach will always cross at
least six times (see also Figure ??).

5.2. Limitations of growth approaches

Growth approaches offer multiple controls, some of which are sim-
ilar to our goals, anisotropy, and zoning in particular. However, we
are not aware of any method explicitly targeting isotropy.

In particular, the method of Pedersen and Singh [PS06] demon-
strates impressive artistic results using these controls. This tech-
nique is primarily designed as an interactive authoring tool. Some
of its properties do not translate to the automatic generation of tra-
jectories in a large number of layers, as we discuss now.

submitted to COMPUTER GRAPHICS Forum (4/2022).

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 13

(a) (b) (c)

Figure 21: (a): plate printed using the per-segment area. (b): plate printed with a constant flow all along the cycle. Both use the same total
volume of filament, are printed at the same bed location. (c) top: closeup on the leaf model shown in Figure 18. (c) bottom: closeup on the
same leaf printed without the per-segment area.

Figure 22: CuteOcto model 3D printed with our isotropic (left),
our vector concentric fills (middle), and standard zigzag for com-
parison (right). Please note that in standard prints, the infill ’sides’
are usually hidden beneath an external contour parallel perimeter,
but in this example we compared the infills in isolation.

In the discussion below, we compare the number of iterations
between methods. The growth process starts from a circle, and our
method starts from our combinatorial initialization that takes𝑂 (𝑁)
with 𝑁 number of points along the trajectory. Our geometric op-
timizer and the growth process of Pedersen and Singh both have
an 𝑂 (𝑁 log(𝑁)) complexity per iteration. However, our approach
performs a quasi-Newton optimization that converges towards a
(local) minima in a few iterations. In contrast, the growth pro-
cess does not converge: in our experience, the result keeps moving
even after invading the entire domain. For the growth process, we
used the implementation https://github.com/twentylemon/

organic-labyrinth that we improved and extended.

A drawback of growth processes is to take significant amounts
of time to evolve the curve, especially as the growth rate has to
be limited to a fraction of the target inter-spacing to guarantee a
stable growth [PS06]. To alleviate this issue, the growth is first per-
formed with a larger inter-space that is then progressively reduced,
as shown in Figure 26a. This is done manually in an interactive set-
ting. In Figure 26a we decreased the interspace at manually selected
points. In contrast, our technique immediately starts at the chosen
inter-space. As a result, in Figure 26b our approach converges in
170 iterations versus 1700 for the multi-scale growth process.

Figure 23: Multi-material cube. Top: Views of the print obtained
with a mixing extruder, the transition occurs within the part. Note
the isotropic infill pattern on the top. Bottom-left: The white zone
has to be traversed when going from blue (mixture A) to red (mix-
ture B), and is where mixture transition occurs. The user can freely
place it within each layer. Bottom-right: same model using a zigzag
infill, printed on a two-extruders Ultimaker 3. Note the prime tower,
requiring extra movements at each layer.

This advantage is further increased in geometries with narrow
passages. These hinder the use of a decreasing inter-space: with a
large inter-space, the curve cannot invade past the narrow regions.
This is illustrated in Figure 26c. Here the growth has to start with
an inter-space smaller than the minimal feature size to reach every
location. A more elaborate initialization – beyond a simple circle
– would alleviate this issue. However, doing so in a general setting
where the shape contains holes is not trivial and is what our combi-
natorial optimizer provides. As a result, in Figure 26d our approach
converges in 260 iterations versus 110000 for the growth process.

submitted to COMPUTER GRAPHICS Forum (4/2022).

https://github.com/twentylemon/organic-labyrinth
https://github.com/twentylemon/organic-labyrinth

14 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

Figure 24: Comparing a standard zigzag strategy and our
anisotropic infill. Left: While the zigzag is perfectly regular, it does
not allow for continuous extrusion. Travel moves create marks and
oozing, that damage the final part. Right: None of these issues are
present on our fully continuous 3D prints.

Please also observe that continuously growing from a simple closed
curve limits the cycles that can be achieved. For instance, this im-
plies there will always be an even number of trajectories between
two outer contours, making trajectories such as the closeup shown
in Figure 18 unfeasible. This further limits following specific ori-
entations in narrow features, such as the folds in Figure 18 which
would not be possible with two trajectories side by side.

Finally, it is worth noting that after combinatorial initialization,
we could use the optimizer of Pedersen and Singh [PS06]. How-
ever, the dynamic evolution process of the curve relies on a number
of parameters that are difficult to tune to achieve specific proper-
ties (e.g., anisotropy, isotropy). This is not a major issue in an in-
teractive setting where adjustments are performed live but proves
difficult for trajectory computations where the parameters cannot
be easily adjusted for every single situation. In contrast, our curves
are globally optimized.

5.3. Influence of orientation on mechanical properties

Multiple factors affect the mechanical properties of the fabricated
layers. Among the most important are the bonding strength, ex-
trusion temperature, printing speed, extrusion rate, nozzle and fila-
ment diameter, viscosity, and thermal expansion coefficient of the
deposition material [ATB∗18, CdSC19]. A tightly controlled man-
ufacturing environment and protocols are necessary to obtain con-
sistent mechanical results.

Fortunately, several prior works studied this and indicate that the
orientation of the deposition paths plays a role in the mechanical
properties of each layer. For instance, Villacres et al. [VNA18]
found the orientation of parallel paths with an infill density close
to 100% has a monotonic relationship with stiffness: Young’s mod-
ulus is highest for the parallel direction and lowest for the orthogo-
nal direction. Recent studies have also been interested in producing
paths that exhibit transversely isotropic mechanical properties, as
they offer mechanical advantages compared to the traditional par-
allel paths [LXM∗19]. Other examples of works using the mechan-
ical influence of trajectory orientations are [SIM16, TM17, LY17,
KWW19a, XLM20, FZZ∗20].

A promising direction is to increase the influence of orienta-
tion, for instance, using on-purpose non-optimal deposition flow
and temperature. This would potentially make bonding between
neighboring paths weaker, increasing flexibility in these directions.

5.4. Limitations

To obtain denser plates, our approach requires printing while con-
trolling motion speed for a varying flow deposition (as has been
successfully demonstrated in recent works [HKD∗20]). However,
some tiny porosities remain in challenging cases (see the leaf in
Figure 21).

Our current graph construction tends to create edges that take
many orientations, even when biased by the needles. This puts more
pressure on the geometric optimizer. Other graph constructions,
perhaps inspired by quad-meshing, could alleviate this issue.

6. Conclusions

Our technique offers control over material deposition orientation
while manufacturing a solid layer along a strictly continuous ex-
trusion trajectory. It globally optimizes a space-filling trajectory for
isotropy, anisotropy, vector field alignment, and zoning. As we have
demonstrated, this is of particular interest for multi-material prints
and aesthetic purposes. Continuity is also an essential consideration
for clay, ceramics, silicon, and concrete materials.

Our framework also supports a wide range of optimization objec-
tives. We believe this will prove helpful for Additive Manufactur-
ing processes using challenging materials, such as the fabrication
of plates having isotropic elastic behavior [LXM∗19].

Acknowledgements

This research was initiated at the 18th Bellairs Workshop on Com-
putational Geometry, February 16-22, 2019, co-organized by S.
Lazard and S. Whitesides. We thank the other workshop partici-
pants for stimulating conversations and Pierre-Alexandre Hugron
for his help with 3D printing. This work was partly supported by
Lorraine Université d’Excellence, ANR-15-IDEX-04-LUE, ANR-
17-CE10-0002, and NSERC Discovery Grant.

References
[AHMS96] ARKIN E. M., HELD M., MITCHELL J. S., SKIENA S. S.:

Hamiltonian triangulations for fast rendering. The Visual Computer 12,
9 (1996), 429–444. doi:10.1007/bf01782475. 2

[ALL∗18] ATTENE M., LIVESU M., LEFEBVRE S., FUNKHOUSER T.,
RUSINKIEWICZ S., ELLERO S., MARTÍNEZ J., BERMANO A. H.: De-
sign, representations, and processing for additive manufacturing. Syn-
thesis Lectures on Visual Computing: Computer Graphics, Animation,
Computational Photography, and Imaging 10, 2 (2018), 1–146. doi:
10.2200/s00847ed1v01y201804vcp031. 1

[ATB∗18] ABBOTT A., TANDON G., BRADFORD R., KOERNER H.,
BAUR J.: Process-structure-property effects on ABS bond strength in
fused filament fabrication. Additive Manufacturing 19 (2018), 29–38.
doi:10.1016/j.addma.2017.11.002. 14

[AXG∗13] AKLEMAN E., XING Q., GARIGIPATI P., TAUBIN G., CHEN
J., HU S.: Hamiltonian cycle art: Surface covering wire sculptures and
duotone surfaces. Computers & graphics 37, 5 (2013), 316–332. doi:
10.1016/j.cag.2013.01.004. 2

submitted to COMPUTER GRAPHICS Forum (4/2022).

https://doi.org/10.1007/bf01782475
https://doi.org/10.2200/s00847ed1v01y201804vcp031
https://doi.org/10.2200/s00847ed1v01y201804vcp031
https://doi.org/10.1016/j.addma.2017.11.002
https://doi.org/10.1016/j.cag.2013.01.004
https://doi.org/10.1016/j.cag.2013.01.004

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 15

Figure 25: Left: Result from our technique, with different objectives: vector field orthogonal to border (green), isotropic (orange) and
concentric vector field (gray). Note the single crossing near the arms and the feet. The gray part is the one optimized to match the orientation
of the two other methods. Middle and right: Results from respectively [ZGH∗16] and [PS06] (images from papers).

it. 10 it. 800 it. 1400 it. 1700
Time: 90s

(a) Multi-scale growth process

it. 1 it. 25 it. 50 it. 170
Time: 73s

(b) Our approach

it. 10 it. 55000 it. 110000
Time: 23h 51m

(c) Growth process

it. 1 it. 30 it. 260
Time: 22m

(d) Our approach

Figure 26: Comparison between a growth process (a,c) and our approach (b,d). Please refer to the text for details.

submitted to COMPUTER GRAPHICS Forum (4/2022).

16 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

[BBDL01] BIEDL T. C., BOSE P., DEMAINE E. D., LUBIW A.: Effi-
cient algorithms for Petersen’s matching theorem. Journal of Algorithms
38, 1 (2001), 110–134. doi:10.1006/jagm.2000.1132. 5

[BH04] BOSCH R., HERMAN A.: Continuous line drawings via the trav-
eling salesman problem. Operations research letters 32, 4 (2004), 302–
303. doi:10.1016/j.orl.2003.10.001. 2

[Bos10] BOSCH R.: Simple-closed-curve sculptures of knots and links.
Journal of Mathematics and the Arts 4, 2 (2010), 57–71. doi:10.
1080/17513470903459575. 2

[CdSC19] COSTA A. E., DA SILVA A. F., CARNEIRO O. S.: A study on
extruded filament bonding in fused filament fabrication. Rapid Prototyp-
ing Journal (2019). doi:10.1108/rpj-03-2018-0062. 14

[CLEC20] CHENG P., LIU W. K., EHMANN K., CAO J.: Enumeration
of additive manufacturing toolpaths using Hamiltonian paths. Manufac-
turing Letters 26 (2020), 29–32. doi:10.1016/j.mfglet.2020.
09.008. 2

[CSG∗17] CHEN Z., SHEN Z., GUO J., CAO J., ZENG X.: Line drawing
for 3D printing. Computers & Graphics 66 (2017), 85–92. doi:10.
1016/j.cag.2017.05.019. 2

[DCOM00] DAFNER R., COHEN-OR D., MATIAS Y.: Context-based
space filling curves. Computer Graphics Forum 19, 3 (2000), 209–218.
doi:10.1111/1467-8659.00413. 2

[DSL18] DEHAECK S., SCHEID B., LAMBERT P.: Adaptive stitching for
meso-scale printing with two-photon lithography. Additive Manufactur-
ing 21 (2018), 589–597. doi:10.1016/j.addma.2018.03.026.
1, 2

[Edm65] EDMONDS J.: Paths, trees, and flowers. Canadian
Journal of mathematics 17 (1965), 449–467. doi:10.1007/
978-0-8176-4842-8_26. 5

[FZZ∗20] FANG G., ZHANG T., ZHONG S., CHEN X., ZHONG Z.,
WANG C. C.: Reinforced FDM: multi-axis filament alignment with
controlled anisotropic strength. ACM Transactions on Graphics 39, 6
(2020), 1–15. doi:10.1145/3414685.3417834. 2, 14

[GE04] GOPI M., EPPSTEIN D.: Single-strip triangulation of manifolds
with arbitrary topology. Computer Graphics Forum 23, 3 (2004), 371–
379. doi:10.1145/997817.997888. 2, 4, 5

[GLLR11] GURUNG T., LUFFEL M., LINDSTROM P., ROSSIGNAC
J.: LR: compact connectivity representation for triangle meshes. In
ACM SIGGRAPH 2011 Papers (2011). doi:10.1145/1964921.
1964962. 2

[GVCD15] GIANNATSIS J., VASSILAKOS A., CANELLIDIS V., DE-
DOUSSIS V.: Fabrication of graded structures by extrusion 3D print-
ing. In 2015 IEEE International Conference on Industrial Engineer-
ing and Engineering Management (IEEM) (2015), pp. 175–179. doi:
10.1109/ieem.2015.7385631. 2

[HHLT19] HERGEL J., HINZ K., LEFEBVRE S., THOMASZEWSKI
B.: Extrusion-based ceramics printing with strictly-continuous depo-
sition. ACM Transactions on Graphics 38, 6 (2019). doi:10.1145/
3355089.3356509. 2

[HKD∗20] HORNUS S., KUIPERS T., DEVILLERS O., TEILLAUD M.,
MARTÍNEZ J., GLISSE M., LAZARD S., LEFEBVRE S.: Variable-width
contouring for additive manufacturing. ACM Transactions on Graphics
39 (2020). doi:10.1145/3386569.3392448. 14

[HS85] HOCHBAUM D. S., SHMOYS D. B.: A best possible heuristic for
the k-center problem. Mathematics of Operations Research 10, 2 (1985),
180–184. doi:10.1287/moor.10.2.180. 7

[JM20] JIANG J., MA Y.: Path planning strategies to optimize accuracy,
quality, build time and material use in additive manufacturing: a review.
Micromachines 11, 7 (2020), 633. doi:10.3390/mi11070633. 1,
2

[KB∗05] KAPLAN C. S., BOSCH R., ET AL.: TSP art. In Renais-
sance Banff: Mathematics, music, art, culture (2005), Bridges Confer-
ence, pp. 301–308. doi:10.1515/9780691197036. 2

[KWW19a] KUBALAK J. R., WICKS A. L., WILLIAMS C. B.: De-
position path planning for material extrusion using specified orientation
fields. Procedia Manufacturing 34 (2019), 754–763. doi:10.1016/
j.promfg.2019.06.209. 2, 14

[KWW19b] KUIPERS T., WU J., WANG C. C.: CrossFill: foam struc-
tures with graded density for continuous material extrusion. Computer-
Aided Design 114 (2019), 37–50. doi:10.1016/j.cad.2019.
05.003. 2

[LB13] LÉVY B., BONNEEL N.: Variational anisotropic surface meshing
with Voronoi parallel linear enumeration. In Proceedings of the 21st
international meshing roundtable. Springer, 2013, pp. 349–366. doi:
10.1007/978-3-642-33573-0_21. 4

[LN89] LIU D. C., NOCEDAL J.: On the limited memory BFGS method
for large scale optimization. Mathematical programming 45, 1-3 (1989),
503–528. doi:10.1007/bf01589116. 4, 5, 8

[LXM∗19] LIN S., XIA L., MA G., ZHOU S., XIE Y. M.: A maze-like
path generation scheme for fused deposition modeling. The International
Journal of Advanced Manufacturing Technology 104, 1-4 (2019), 1509–
1519. doi:10.1007/s00170-019-03986-7. 2, 14

[LY17] LIU J., YU H.: Concurrent deposition path planning and
structural topology optimization for additive manufacturing. Rapid
Prototyping Journal 23, 5 (2017), 930–942. doi:10.1108/
rpj-05-2016-0087. 2, 14

[Nis20] NISHAT R. I.: Reconfiguration of Hamiltonian cycles and paths
in grid graphs. PhD thesis, University of Victoria, 2020. 5

[NW17] NISHAT R. I., WHITESIDES S.: Bend complexity and Hamil-
tonian cycles in grid graphs. In International Computing and Combi-
natorics Conference (2017), Springer, pp. 445–456. doi:10.1007/
978-3-319-62389-4_37. 5

[PBS18] PAPACHARALAMPOPOULOS A., BIKAS H., STAVROPOULOS
P.: Path planning for the infill of 3D printed parts utilizing Hilbert
curves. Procedia Manufacturing 21 (2018), 757–764. doi:10.1016/
j.promfg.2018.02.181. 1, 2

[PJYP14] P. M., J.-Y. H., P. M.: Toolpaths for additive manufacturing of
functionally graded materials (FGM) parts. Rapid Prototyping Journal
20 (2014), 511–522. doi:10.1108/rpj-01-2013-0011. 2

[PS06] PEDERSEN H., SINGH K.: Organic labyrinths and mazes. In Pro-
ceedings of the 4th International Symposium on Non-Photorealistic Ani-
mation and Rendering (2006), pp. 79–86. doi:10.1145/1124728.
1124742. 2, 12, 13, 14, 15

[RDG11] RABIN J., DELON J., GOUSSEAU Y.: Transportation distances
on the circle. Journal of Mathematical Imaging and Vision 41, 1-2
(2011), 147–167. doi:10.1007/s10851-011-0284-0. 19

[SC18] SHARP N., CRANE K.: Variational surface cutting. ACM
Transactions on Graphics 37, 4 (2018). doi:10.1145/3197517.
3201356. 2

[SIM16] STEUBEN J. C., ILIOPOULOS A. P., MICHOPOULOS J. G.:
Implicit slicing for functionally tailored additive manufacturing.
Computer-Aided Design 77 (2016), 107–119. doi:10.1115/
detc2016-59638. 2, 14

[SMB∗19] SONG H., MARTÍNEZ J., BEDELL P., VENNIN N., LEFEB-
VRE S.: Colored fused filament fabrication. ACM Transactions on
Graphics 38, 5 (2019), 1–11. doi:10.1145/3183793. 2, 11

[SRJG17] SOLER V., RETSIN G., JIMENEZ GARCIA M.: A generalized
approach to non-layered fused filament fabrication. In Proceedings of the
37th Annual Conference of the Association for Computer Aided Design
in Architecture (2017), pp. 562–571. 2

[SSMVL19] SKYLAR-SCOTT M. A., MUELLER J., VISSER C. W.,
LEWIS J. A.: Voxelated soft matter via multimaterial multi-
nozzle 3D printing. Nature 575 (2019). doi:10.1038/
s41586-019-1736-8. 2

[Tau03] TAUBIN G.: Constructing hamiltonian triangle strips on quadri-
lateral meshes. In Visualization and Mathematics III. Springer, 2003,
pp. 69–91. doi:10.1007/978-3-662-05105-4_4. 2

submitted to COMPUTER GRAPHICS Forum (4/2022).

https://doi.org/10.1006/jagm.2000.1132
https://doi.org/10.1016/j.orl.2003.10.001
https://doi.org/10.1080/17513470903459575
https://doi.org/10.1080/17513470903459575
https://doi.org/10.1108/rpj-03-2018-0062
https://doi.org/10.1016/j.mfglet.2020.09.008
https://doi.org/10.1016/j.mfglet.2020.09.008
https://doi.org/10.1016/j.cag.2017.05.019
https://doi.org/10.1016/j.cag.2017.05.019
https://doi.org/10.1111/1467-8659.00413
https://doi.org/10.1016/j.addma.2018.03.026
https://doi.org/10.1007/978-0-8176-4842-8_26
https://doi.org/10.1007/978-0-8176-4842-8_26
https://doi.org/10.1145/3414685.3417834
https://doi.org/10.1145/997817.997888
https://doi.org/10.1145/1964921.1964962
https://doi.org/10.1145/1964921.1964962
https://doi.org/10.1109/ieem.2015.7385631
https://doi.org/10.1109/ieem.2015.7385631
https://doi.org/10.1145/3355089.3356509
https://doi.org/10.1145/3355089.3356509
https://doi.org/10.1145/3386569.3392448
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.3390/mi11070633
https://doi.org/10.1515/9780691197036
https://doi.org/10.1016/j.promfg.2019.06.209
https://doi.org/10.1016/j.promfg.2019.06.209
https://doi.org/10.1016/j.cad.2019.05.003
https://doi.org/10.1016/j.cad.2019.05.003
https://doi.org/10.1007/978-3-642-33573-0_21
https://doi.org/10.1007/978-3-642-33573-0_21
https://doi.org/10.1007/bf01589116
https://doi.org/10.1007/s00170-019-03986-7
https://doi.org/10.1108/rpj-05-2016-0087
https://doi.org/10.1108/rpj-05-2016-0087
https://doi.org/10.1007/978-3-319-62389-4_37
https://doi.org/10.1007/978-3-319-62389-4_37
https://doi.org/10.1016/j.promfg.2018.02.181
https://doi.org/10.1016/j.promfg.2018.02.181
https://doi.org/10.1108/rpj-01-2013-0011
https://doi.org/10.1145/1124728.1124742
https://doi.org/10.1145/1124728.1124742
https://doi.org/10.1007/s10851-011-0284-0
https://doi.org/10.1145/3197517.3201356
https://doi.org/10.1145/3197517.3201356
https://doi.org/10.1115/detc2016-59638
https://doi.org/10.1115/detc2016-59638
https://doi.org/10.1145/3183793
https://doi.org/10.1038/s41586-019-1736-8
https://doi.org/10.1038/s41586-019-1736-8
https://doi.org/10.1007/978-3-662-05105-4_4

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 17

[TM17] TAM K.-M. M., MUELLER C. T.: Additive manufacturing along
principal stress lines. 3D Printing and Additive Manufacturing 4, 2
(2017), 63–81. doi:10.1089/3dp.2017.0001. 2, 14

[Vil03] VILLANI C.: Topics in optimal transportation. Graduate stud-
ies in mathematics. American Mathematical Society, 2003. doi:10.
1090/gsm/058. 4, 19

[VNA18] VILLACRES J., NOBES D., AYRANCI C.: Additive manufac-
turing of shape memory polymers: effects of print orientation and infill
percentage on mechanical properties. Rapid Prototyping Journal (2018).
doi:10.1108/rpj-03-2017-0043. 14

[WT13] WONG F. J., TAKAHASHI S.: Abstracting images into
continuous-line artistic styles. The Visual Computer 29, 6-8 (2013), 729–
738. doi:10.1007/s00371-013-0809-1. 2

[XJ18] XIAO X., JOSHI S.: Automatic toolpath generation for heteroge-
neous objects manufactured by directed energy deposition additive man-
ufacturing process. Journal of Manufacturing Science and Engineering
140 (2018), 1087–1357. doi:10.1115/1.4039491. 2

[XLM20] XIA L., LIN S., MA G.: Stress-based tool-path planning
methodology for fused filament fabrication. Additive Manufacturing 32
(2020), 101020. doi:10.1016/j.addma.2019.101020. 2, 14

[ZGH∗16] ZHAO H., GU F., HUANG Q.-X., GARCIA J., CHEN Y., TU
C., BENES B., ZHANG H., COHEN-OR D., CHEN B.: Connected fer-
mat spirals for layered fabrication. ACM Transactions on Graphics 35, 4
(2016), 1–10. doi:10.1145/2897824.2925958. 1, 2, 12, 15

Appendix A: Appendix

CVT objective

We perform a CVT optimization of a diagram of segments. Let 𝑥 ∈
R2 be a point and 𝑆 ⊂ R2 be a bounded set. The infimum Euclidean
distance between 𝑥 and 𝑆 is:

dist (𝑥, 𝑆) = inf
𝑦∈𝑆
‖𝑥− 𝑦‖ (6)

In order to cover the entire polygon P without keeping empty areas,
one could consider minimizing the following objective:∫

P
dist (𝑥,T)2 𝑑𝑥 (7)

Minimizing the above objective could result in new crossings be-
tween the cycle and material zone boundaries, undermining the
zoning objective. To avoid this issue, we minimize the 𝐶𝑉𝑇 ob-
jective independently for each material zone:

ECVT =
∑︁
𝑖

∫
Z𝑖

dist (𝑥,T ∩Z𝑖)2 𝑑𝑥 (8)

Computing the intersection of T with Z𝑖 leads to new vertices
at the intersections between segments of T and zone boundaries.
Consider an intersecting vertex 𝑢 laying inside a segment]𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗 [.
Then there exists a real value 𝑡 ∈]0,1[such that:

𝑢 = (1− 𝑡) · 𝑣𝑣𝑣𝑖 + 𝑡 · 𝑣𝑣𝑣 𝑗 (9)

To obtain the gradient with respect to the initial path’s vertices, we
will have to make the following chain rule update at the end of our
computations:

G (𝑖)CVT←G
(𝑖)
CVT + (1− 𝑡) · G

(𝑢)
CVT G (𝑗)CVT←G

(𝑖)
CVT + 𝑡 · G

(𝑢)
CVT

(10)
where G (𝑖)CVT, G (𝑗)CVT, and G (𝑢)CVT are respectively the gradients of
ECVT with respect to 𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗 , and 𝑢.

C𝑖 𝑗

C𝑖 C𝑗

T

𝑣𝑣𝑣𝑖 𝑣𝑣𝑣 𝑗

Figure 27: A segment cell in blue and two point cells in red.

We consider computing the objective and its gradient inside a
single zone in the following. For simplicity and not introducing
new notations, we suppose the zone to be P, and we still use the
notation T for the intersection of the path inside the zone. Notice
that T could no longer be a cycle but a set of paths having two
endpoints. In the same way, we still denote by 𝑣𝑣𝑣𝑖 the path’s vertices,
including the ones that intersect the boundary of the zone.

The segment Voronoi diagram over T gives the following parti-
tion of P into two types of Voronoi cells:

• Point cell A cell C𝑖 for each vertex 𝑣𝑣𝑣𝑖 of T , containing all points
of P that are nearest to 𝑣𝑣𝑣𝑖 than to any other point of T :

C𝑖 = {𝑥 ∈ P | ∀𝑦 ∈ T , ‖𝑥− 𝑣𝑣𝑣𝑖 ‖ 6 ‖𝑥− 𝑦‖} (11)

• Segment cell A cell C𝑖 𝑗 for each open segment]𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗 [of T that
contains all points of the shape P that are nearest to this segment
than to any other point of T :

C𝑖 𝑗 =
{
𝑥 ∈ P | ∀𝑦 ∈ T , dist

(
𝑥,]𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗 [

)
6 ‖𝑥− 𝑦‖

}
(12)

This partition is illustrated Figure 27. Once this partition is ob-
tained, the distance to the path can be obtained as a close form
inside each cell. The CVT objective is rewritten as:

ECVT =

𝑁∑︁
𝑖=1

∫
C𝑖
‖𝑥− 𝑣𝑣𝑣𝑖 ‖2𝑑𝑥 +

∑︁
(𝑖 𝑗) ∈T𝐸

∫
C𝑖 𝑗

dist
(
𝑥,]𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗 [

)2
𝑑𝑥

=

𝑁∑︁
𝑖=1
ECVT,𝑖 +

∑︁
(𝑖 𝑗) ∈T𝐸

ECVT, (𝑖 𝑗)

(13)
Where T𝐸 = {(𝑖, 𝑖+) | 𝑖 = 1, ..., 𝑁} is the set of edges of the cycle.
The boundary of a Voronoi cell consists of bisectors sections be-
tween two sites (which can be a vertex or an open segment). All
the bisectors are straight lines apart from the parabolic bisectors
between a vertex and an open segment. In order to simplify com-
putations, we approximate the section of a parabola with 𝑘 straight
line segments. In our implementation, we choose 𝑘 = 10, which
provides a fine tessellation.

We present how we derive the objective and gradient terms in
the following. From now on, C𝑖 and C𝑖 𝑗 are assumed to be com-
posed only of straight-line segments due to the parabolic bisector
sections’ approximation.

submitted to COMPUTER GRAPHICS Forum (4/2022).

https://doi.org/10.1089/3dp.2017.0001
https://doi.org/10.1090/gsm/058
https://doi.org/10.1090/gsm/058
https://doi.org/10.1108/rpj-03-2017-0043
https://doi.org/10.1007/s00371-013-0809-1
https://doi.org/10.1115/1.4039491
https://doi.org/10.1016/j.addma.2019.101020
https://doi.org/10.1145/2897824.2925958

18 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

Point cell We want to derive the objective ECVT,𝑖 associated with
one point cell C𝑖 . First, we rewrite it as:

ECVT,𝑖 =
∫
C𝑖 ‖𝑥− 𝑣𝑣𝑣𝑖 ‖

2𝑑𝑥

=
∫
C𝑖 ‖𝑥‖

2𝑑𝑥−2
∫
C𝑖 (𝑥.𝑣𝑣𝑣𝑖)𝑑𝑥 +

∫
C𝑖 ‖𝑣𝑣𝑣𝑖 ‖

2𝑑𝑥

=
∫
C𝑖

(
𝑥2
𝑥 + 𝑥2

𝑦

)
𝑑𝑥−2

∫
C𝑖

(
𝑣𝑣𝑣𝑖,𝑥𝑥𝑥 + 𝑣𝑣𝑣𝑖,𝑦𝑥𝑦

)
𝑑𝑥 +

∫
C𝑖 ‖𝑣𝑣𝑣𝑖 ‖

2𝑑𝑥

(14)
where 𝑥𝑥 and 𝑣𝑣𝑣𝑖,𝑥 are, respectively, the 𝑥 coordinate of the point 𝑥
and the cycle vertex 𝑣𝑣𝑣𝑖 (and the same applies for the subindex 𝑦).

The gradient of ECVT,𝑖 with respect to 𝑣𝑣𝑣𝑖𝑖𝑖 is:

G𝐶𝑉𝑇 ,𝑖 = 2
[
𝑣𝑣𝑣𝑖𝑖𝑖

(∫
C𝑖

1𝑑𝑥
)
−

(∫
C𝑖
𝑥𝑑𝑥

)]
(15)

New terms that appear in Equations 14 and 15 are moments of
order 𝑛 = 0,1,2 of the point cell. The Shoelace formula allows the
computation of the signed area of a polygon (the moment of order
0) and generalizes to moments greater than 𝑛 > 0.

We denote by 𝑝 𝑗 the vertices of the polygon C𝑖 and by (𝑗 𝑘) its
edges oriented in clockwise order. For simplicity, we write (𝑗 , 𝑘) ∈
C𝑖 to iterate over the edges of the cell. Shoelace formula gives us:∫
C𝑖
𝑥𝑛𝑦𝑑𝑥 =

1
(𝑛+1) (𝑛+2)

∑︁
(𝑗𝑘) ∈C𝑖

(𝑝𝑘,𝑥 − 𝑝 𝑗 ,𝑥)
𝑛+1∑︁
𝑙=0

𝑝𝑙
𝑘,𝑦

𝑝𝑛+1−𝑙𝑗 ,𝑦

(16)∫
C𝑖
𝑥𝑛𝑥𝑑𝑥 =

1
(𝑛+1) (𝑛+2)

∑︁
(𝑗𝑘) ∈C𝑖

(𝑝 𝑗 ,𝑦 − 𝑝𝑘,𝑦)
𝑛+1∑︁
𝑙=0

𝑝𝑙
𝑘,𝑥

𝑝𝑛+1−𝑙𝑗 ,𝑥

(17)

Segment cell For (𝑖, 𝑗) ∈ T𝐸 , we want to compute the objective
associated with the segment cell C𝑖 𝑗 . First, we project our points
on a new orthogonal basis to facilitate subsequent derivations. This
basis is composed of the two following unit vectors 𝑣̂ and 𝑤̂:

𝑣̂ =
𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖
‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖

, 𝑤̂ = 𝑅𝜋/2𝑣̂ (18)

Where 𝑅𝜋/2 is the matrix of a rotation by an angle 𝜋/2. We then
consider the following affine isometric transformation 𝑚:

𝑚 : 𝑥 ↦→
(
(𝑥− 𝑣𝑣𝑣𝑖).𝑣̂ (𝑥− 𝑣𝑣𝑣𝑖).𝑤̂

)
(19)

Two functions characterize the transformed cell 𝑚
(
C𝑖 𝑗

)
: 𝑓 < 0 and

𝑔 > 0 representing the lower border and the cell’s upper border.
They are illustrated Figure 28. The support used for these two func-
tions is the interval]0,1[. We then rewrite the segment objective as:

ECVT, (𝑖 𝑗) =

∫
C𝑖 𝑗

dist
(
𝑥,]𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗 [

)2
𝑑𝑥

= ‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖
∫ 1

0

∫ 𝑔 (𝑡)

𝑓 (𝑡)
𝑦2𝑑𝑦𝑑𝑡

(20)

Gradients with respect to the two endpoints 𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗 are given by:

G (𝑖)CVT, (𝑖 𝑗) = −‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖𝑤̂
∫ 1

0
(1− 𝑡)

(
𝑔(𝑡)2 − 𝑓 (𝑡)2

)
𝑑𝑡 (21)

G (𝑗)CVT, (𝑖 𝑗) = −‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖𝑤̂
∫ 1

0
𝑡

(
𝑔(𝑡)2 − 𝑓 (𝑡)2

)
𝑑𝑡 (22)

•𝑚(𝑣𝑣𝑣𝑖) =
(
0
0

)
•𝑚(𝑣𝑣𝑣 𝑗) =

(
‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖

0

)𝑔

𝑓

Figure 28: The segment cell boundary is represented by two func-
tions 𝑓 , 𝑔.

For each vertex 𝑝𝑘 of the cell C𝑖 𝑗 , we let 𝑞𝑘 = 𝑚(𝑝𝑘) be the asso-
ciated vertex in the new transformed cell. Using the expression of
the 𝑦 moment of order 2 (see Equation 16), we get:

ECVT, (𝑖 𝑗) =
1
12

∑︁
(𝑘𝑙) ∈C𝑖 𝑗

(
𝑞𝑙,𝑥 − 𝑞𝑘,𝑥

) 3∑︁
𝑚=0

𝑞𝑚
𝑘,𝑦
𝑞3−𝑚
𝑙,𝑦

(23)

For the gradient with respect to the two endpoints we first introduce
new values:

𝑢𝑘 =
𝑞𝑘,𝑥

‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖
, 𝑢𝑙 =

𝑞𝑙,𝑥

‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖
(24)

and we then have:

G (𝑖)CVT, (𝑖 𝑗) = 𝑤̂
∑︁

(𝑘𝑙) ∈C𝑖 𝑗

𝑞𝑘,𝑥 − 𝑞𝑙,𝑥
12

3∑︁
𝑚=1
(4−𝑚𝑢𝑘 + (4−𝑚)𝑢𝑙) 𝑞𝑚−1

𝑘,𝑦
𝑞3−𝑚
𝑙,𝑦

(25)

G (𝑗)CVT, (𝑖 𝑗) = 𝑤̂
∑︁

(𝑘𝑙) ∈C𝑖 𝑗

𝑞𝑘,𝑥 − 𝑞𝑙,𝑥
12

3∑︁
𝑚=1
(𝑚𝑢𝑘 + (4−𝑚)𝑢𝑙) 𝑞𝑚−1

𝑘,𝑦
𝑞3−𝑚
𝑙,𝑦

(26)

Length preservation objective

We denote by 𝐿0 the target length. The length preservation objec-
tive keeps the length 𝐿 of T as close as possible to 𝐿0:

ELen = (𝐿− 𝐿0)2 =
©­«

∑︁
(𝑖 𝑗) ∈T𝐸

‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖ − 𝐿0
ª®¬
2

(27)

The gradient with respect to 𝑣𝑣𝑣𝑖 is given by:

G (𝑖)Len = 2 (𝐿− 𝐿0)
(
𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖+
‖𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖+ ‖

+
𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖−
‖𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖− ‖

)
(28)

Smoothing objective

In order to have a smoother trajectory T we minimize the following
Laplacian:

ELap =

𝑁∑︁
𝑖=1

𝑣𝑣𝑣𝑖 − 1
2

(
𝑣𝑣𝑣𝑖+ + 𝑣𝑣𝑣𝑖−

)

2
(29)

This objective smooths the sharp angles of T , redistributing its ver-
tices. The gradient with respect to 𝑣𝑣𝑣𝑖 is:

G (𝑖)Lap = 3𝑣𝑣𝑣𝑖 +
1
2

(
𝑣𝑣𝑣𝑖++ + 𝑣𝑣𝑣𝑖−−

)
−2

(
𝑣𝑣𝑣𝑖+ + 𝑣𝑣𝑣𝑖−

)
(30)

Normalized weights used for the two previous objectives are:

𝛾Len = 0.4 · area(P)/𝑁2 𝛾Lap = 0.3 · area(P)/𝑁 (31)

submitted to COMPUTER GRAPHICS Forum (4/2022).

Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing 19

Alignment objective

Recall that we compute a vector field 𝑉 by doubling the angle of𝑈
(Section 3.2). We then denote by V𝑖 the integral of 𝑉 over C𝑖 and
byV𝑖 𝑗 the integral of 𝑉 over C𝑖 𝑗 :

V𝑖 =

∫
C𝑖
𝑉 (𝑥)𝑑𝑥 V𝑖 𝑗 =

∫
C𝑖 𝑗
𝑉 (𝑥)𝑑𝑥 (32)

The objective function EAli seeks to minimize the angle difference
between T and the integrated vector field inside each cell:

EAli =

𝑁∑︁
𝑖=1

‖V𝑖 ‖
𝑍

(
∠
(
𝑣𝑣𝑣𝑖+ − 𝑣𝑣𝑣𝑖−

)
− ∠V𝑖

2

)2

+
∑︁
(𝑖 𝑗) ∈T𝐸

V𝑖 𝑗

𝑍

(
∠
(
𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖

)
−
∠V𝑖 𝑗

2

)2 (33)

Angles can be defined using arctan function. We also write down
its gradient for later:

∠𝑣 =


arctan(𝑣𝑦/𝑣𝑥) if 𝑣𝑥 > 0
arctan(𝑣𝑦/𝑣𝑥) + 𝜋 if 𝑣𝑥 < 0
(𝜋𝑣𝑦) / (2|𝑣𝑦 |) if 𝑣𝑥 = 0

∇∠𝑣 =
𝑅𝜋/2𝑣

‖𝑣‖2
(34)

The values of ∠V𝑖 and ∠V𝑖 𝑗 in (33) are taken such that the absolute
differences between angles are less than 𝜋/2. Finally, 𝑍 allows us
to normalize the sum to obtain a weighted mean of squared angle
differences. We have:

𝑍 =
©­«
𝑁∑︁
𝑖=1
‖V𝑖 ‖ +

∑︁
(𝑖 𝑗) ∈T𝐸

V𝑖 𝑗

ª®¬
(∫
P
‖𝑉 (𝑥)‖𝑑𝑥

)−1
(35)

The integral of the norm over P is the total area in which the vec-
tor field is non-zero. This is useful for adequately weighing this
objective with the isotropic/anisotropic one.

The gradient of this objective is approximate since the variations
of the integralsV𝑖 , andV𝑖 𝑗 are ignored. The gradient with respect
to 𝑣𝑣𝑣𝑖 is approximated as follows:

G (𝑖)Ali =

V𝑖−

𝑍

𝑅𝜋/2 (𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖−−)
‖𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖−− ‖2

(
∠
(
𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖−−

)
−
∠V𝑖−

2

)
−

V𝑖+

𝑍

𝑅𝜋/2 (𝑣𝑣𝑣𝑖++ − 𝑣𝑣𝑣𝑖)
‖𝑣𝑣𝑣𝑖++ − 𝑣𝑣𝑣𝑖 ‖2

(
∠
(
𝑣𝑣𝑣𝑖++ − 𝑣𝑣𝑣𝑖

)
−
∠V𝑖+

2

)
+

V𝑖−𝑖

𝑍

𝑅𝜋/2 (𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖−)
‖𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖− ‖2

(
∠
(
𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖−

)
−
∠V𝑖−𝑖

2

)
−

V𝑖𝑖+

𝑍

𝑅𝜋/2 (𝑣𝑣𝑣𝑖+ − 𝑣𝑣𝑣𝑖)
‖𝑣𝑣𝑣𝑖+ − 𝑣𝑣𝑣𝑖 ‖2

(
∠
(
𝑣𝑣𝑣𝑖+ − 𝑣𝑣𝑣𝑖

)
−
∠V𝑖𝑖+

2

)
(36)

Vector field discretization Our field 𝑉 is represented by a 2D
array of size 𝑊 ×𝐻 whose elements are 2D vectors. If our shape
P is included inside a rectangle [0,𝒲] × [0,ℋ] of the Euclidean
plane, then the value𝑉 [𝑥] [𝑦] in our array corresponds to the vector
field inside the small rectangle centered in

((
𝑥 + 1

2

)
𝒲

𝑊
,

(
𝑦 + 1

2

)
ℋ

𝐻

)
with a width 𝒲

𝑊
and a height ℋ

𝐻
. To compute the integralV over a

cell C, we again use the Shoelace formula:

V =
∑︁
(𝑖 𝑗) ∈C

(𝑝 𝑗 ,𝑥− 𝑝𝑖,𝑥)
∫ 1

0

∫ 𝑝𝑖,𝑦+𝑡 (𝑝 𝑗,𝑦−𝑝𝑖,𝑦)

0
𝑉 (𝑝𝑖,𝑥 +𝑡 (𝑝 𝑗 ,𝑥− 𝑝𝑖,𝑥), 𝑦)𝑑𝑦𝑑𝑡

(37)

𝑝𝑖

𝑝 𝑗

Figure 29: The vector field’s integral under a segment is obtained
by decomposing it in smaller segments contained in single quads of
the grid.

In order to efficiently compute the integral over 𝑦, we pre-compute
a second array 𝑆𝑉 :

𝑆𝑉 [𝑥] [𝑦] =
𝑦∑︁
𝑗=0
𝑉 [𝑥] [𝑗] (38)

for two points (𝑥0, 𝑦0) and (𝑥1, 𝑦1) in the quad (𝑋,𝑌) of our grid.
That is to say, when these inequalities are verified:

𝑋
𝒲

𝑊
6 𝑥0, 𝑥1 6 (𝑋 +1)𝒲

𝑊
(39)

𝑌
ℋ

𝐻
6 𝑦0, 𝑦1 6 (𝑌 +1)ℋ

𝐻
(40)

The integral of the vector field under the segment connecting these
two points is:∫ 1

0

∫ 𝑦0+𝑡 (𝑦1−𝑦0)

0
𝑉 (𝑥0 + 𝑡 (𝑥1 − 𝑥0), 𝑦)𝑑𝑦𝑑𝑡

= 𝑆𝑉 [𝑋] [𝑌] −
(
𝑌 +1− 𝑦0 + 𝑦1

2ℋ
𝐻

)
𝑉 [𝑋] [𝑌]

(41)
Then we decompose each edge (𝑖 𝑗) of the cell C in small parts
contained in a single quad of our grid (represented by alternating
between dark and light in Figure 29) and compute the double inte-
gral over each small part (𝑆𝑉 [𝑋] [𝑌] is the integral over the union
of the blue and red areas, and

(
𝑌 +1− 𝑦0+𝑦1

2ℋ 𝐻

)
𝑉 [𝑋] [𝑌] is the in-

tegral over the red area).

Orientation objective

We control the probability distribution of the orientations along T
to be either as isotropic or as anisotropic as possible. To do so, we
minimize/maximize the squared 2-Wasserstein distance [Vil03] be-
tween a uniform distribution U over [0, 𝜋[and the distribution of
the orientations in T that we denote DT . The orientation distribu-
tion of T can be defined as:

DT =
1
𝐿

∑︁
(𝑖 𝑗) ∈T𝐸

‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖𝛿∠(𝑣𝑣𝑣 𝑗−𝑣𝑣𝑣𝑖) (42)

Where ∠𝑣 is the angle of 𝑣 modulo 𝜋 taken inside the interval [0, 𝜋[,
and 𝐿 is the total length of T . We know from [RDG11] that the
Wasserstein distance on a circle can be expressed as:

𝒲
2

2 (U,DT) = inf
𝛼

∫ 1

0

(
(𝐹𝛼) (−1) (𝑡) −𝐺 (−1)

T (𝑡)
)2
𝑑𝑡 (43)

submitted to COMPUTER GRAPHICS Forum (4/2022).

20 Bedel et al. / Closed space-filling curves with controlled orientation for 3D printing

where 𝐹 and 𝐺T are, respectively, the cumulative distribution of
U and DT . That is to say:

𝐹 (𝜃) = 𝜃/𝜋, 𝐺T (𝜃) =
1
𝐿

∑︁
(𝑖 𝑗) ∈T𝐸

‖𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖 ‖𝟙{∠(𝑣𝑣𝑣 𝑗−𝑣𝑣𝑣𝑖)<𝜃} (44)

𝐹𝛼 is defined as 𝐹−𝛼 and the pseudo inverses (𝐹𝛼) (−1) and𝐺 (−1)
T

are given by:

(𝐹𝛼) (−1) (𝑡) = 𝜋(𝑡+𝛼), 𝐺
(−1)
T (𝑡) =

∑︁
(𝑖 𝑗) ∈T𝐸

∠
(
𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖

)
𝟙{

𝑡 ∈
[
𝑇 0
𝑖 𝑗
,𝑇 1

𝑖 𝑗

[}
(45)

where:

𝑇0
𝑖 𝑗 =

1
𝐿

∑︁
(𝑘𝑙)∈T𝐸

∠ (𝑣𝑣𝑣𝑙−𝑣𝑣𝑣𝑘)<∠(𝑣𝑣𝑣 𝑗−𝑣𝑣𝑣𝑖)

‖𝑣𝑣𝑣𝑙 − 𝑣𝑣𝑣𝑘 ‖, 𝑇1
𝑖 𝑗 =

1
𝐿

∑︁
(𝑘𝑙)∈T𝐸

∠ (𝑣𝑣𝑣𝑙−𝑣𝑣𝑣𝑘)6∠(𝑣𝑣𝑣 𝑗−𝑣𝑣𝑣𝑖)

‖𝑣𝑣𝑣𝑙 − 𝑣𝑣𝑣𝑘 ‖ (46)

In the distance (43), the infimum is obtained at the value 𝛼0 defined
as the mean of 1

𝜋𝐺
(−1)
T (𝑡) − 𝑡 over [0,1], which is:

𝛼0 =
1
𝜋
E[DT] −

1
2

(47)

We then obtain:

𝒲
2

2 (U,DT) =
∑︁
(𝑖 𝑗) ∈T𝐸

∫ 𝑇 1
𝑖 𝑗

𝑇 0
𝑖 𝑗

(
𝜋𝑡 + 𝜋𝛼0 − ∠

(
𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖

))2
𝑑𝑡 (48)

To simplify the following expressions, we let:

Θ𝑘
𝑖 𝑗 = 𝜋𝑇

𝑘
𝑖 𝑗 + 𝜋𝛼0 (49)

Finally, we define an isotropic objective as the squared Wasserstein
distance (EIso (T) =𝒲

2
2 (U,DT)). Computing the integral in (48),

we get:

EIso (T) =
1

3𝜋

∑︁
(𝑖 𝑗) ∈T𝐸

(
Θ1
𝑖 𝑗 − ∠

(
𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖

))3
−

(
Θ0
𝑖 𝑗 − ∠

(
𝑣𝑣𝑣 𝑗 − 𝑣𝑣𝑣𝑖

))3

(50)
As for the alignment objective, we only compute an approximation
of the gradient by ignoring the variations of Θ𝑘

𝑖 𝑗
. Our approxima-

tion of the gradient with respect to 𝑣𝑣𝑣𝑖 is as follows:

G (𝑖)Iso =
𝑅𝜋/2

(
𝑣𝑣𝑣𝑖+− 𝑣𝑣𝑣𝑖

)
𝜋‖𝑣𝑣𝑣𝑖+ − 𝑣𝑣𝑣𝑖 ‖2

[(
𝜋Θ1

𝑖𝑖+
−∠

(
𝑣𝑣𝑣𝑖+− 𝑣𝑣𝑣𝑖

))2
−

(
𝜋Θ0

𝑖𝑖+
−∠

(
𝑣𝑣𝑣𝑖+− 𝑣𝑣𝑣𝑖

))2
]

−
𝑅𝜋/2

(
𝑣𝑣𝑣𝑖−𝑣𝑣𝑣𝑖−

)
𝜋‖𝑣𝑣𝑣𝑖 − 𝑣𝑣𝑣𝑖− ‖2

[(
𝜋Θ1

𝑖−𝑖
−∠

(
𝑣𝑣𝑣𝑖−𝑣𝑣𝑣𝑖−

))2
−

(
𝜋Θ0

𝑖−𝑖
−∠

(
𝑣𝑣𝑣𝑖−𝑣𝑣𝑣𝑖−

))2
]

(51)
One can notice that EIso is included in

[
0, 𝜋

2

12

]
. To have an

anisotropic objective included in the same interval we define it as:

EanIso (T) =
𝜋2

12
−EIso (T) (52)

The gradient of the anisotropic objective is simply the opposite of
the isotropy gradient (51).

Then we regroup these two objectives inside the orientation ob-
jective defined as:

EOri =
∑︁
𝑖

area (I𝑖) EIso (T ∩I𝑖) +
∑︁
𝑖

area (A𝑖) EanIso (T ∩A𝑖)

(53)

•𝑣𝑣𝑣1

•
𝑣𝑣𝑣2

• 𝑣𝑣𝑣3•𝑣𝑣𝑣4

•

•

•

•

𝜋𝛼0 = Θ0
34Θ1

41= Θ0
23

𝜋/4

0, 𝜋𝜋/2

3𝜋/4

Figure 30: Left: A path with 4 segments. Right: Transport map of
the path orientation distribution to the uniform distribution. Sticks
are Dirac located at the orientation of the segment having the same
color. They are mapped to domains of [0, 𝜋[represented by por-
tions of the ring having an area proportional to the segment length.

As for the CVT energy, the intersection of T with zone bound-
aries creates new vertices. Again the gradient is transferred to the
initial vertices of T using the chain rule (10).

Finally, the last weight term 𝛾Obj allows us to control the influ-
ence of EAli and EOri. We use the following normalized weight:

𝛾Obj =
area(P)3

50 · 𝐿2
0

(∫
P
‖𝑉 (𝑥)‖𝑑𝑥 +

∑︁
𝑖

area (I𝑖) +
∑︁
𝑖

area (A𝑖)
)−1

(54)

Zoning objective

The zoning objective is only used during the combinatorial opti-
mization. It counts the number of intersections between T and ma-
terial zone boundaries:

EZon =
∑︁

(𝑖, 𝑗) ∈T𝐸

∑︁
𝑘≠𝑙

#
(
[𝑣𝑣𝑣𝑖 , 𝑣𝑣𝑣 𝑗] ∩Z𝑘 ∩Z𝑙

)
(55)

Where #𝑆 is the cardinal of a set 𝑆. The weight 𝛾Comb attempts to
prioritize the zoning objective EZon. To do so, we set 𝛾Comb such
that 𝛾Comb (EAli + EOri) is included in [0,1]. The squared angle
difference in the alignment objective is bounded by 𝜋2/4, and the
squared Wasserstein distance is bounded by 𝜋2/12. We then set
𝛾Comb to:

𝛾Comb =
4
𝜋2

(∫
P
‖𝑉 (𝑥)‖𝑑𝑥 +

∑︁
𝑖

area (I𝑖) +
∑︁
𝑖

area (A𝑖)
)−1

(56)

submitted to COMPUTER GRAPHICS Forum (4/2022).

