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Figure 1: Makeup-aware facial inverse rendering and component-wise reconstruction. The top row displays a makeup portrait input and
overlaid rendering images (from left to right: bare skin only, bare skin plus makeup, bare skin multiplied by diffuse shading, and plus specular
reconstruction) whereas the bottom row shows disentangled materials in the UV space.

Abstract
Facial makeup enriches the beauty of not only real humans but also virtual characters; therefore, makeup for 3D facial models
is highly in demand in productions. However, painting directly on 3D faces and capturing real-world makeup are costly, and
extracting makeup from 2D images often struggles with shading effects and occlusions. This paper presents the first method for
extracting makeup for 3D facial models from a single makeup portrait. Our method consists of the following three steps. First,
we exploit the strong prior of 3D morphable models via regression-based inverse rendering to extract coarse materials such
as geometry and diffuse/specular albedos that are represented in the UV space. Second, we refine the coarse materials, which
may have missing pixels due to occlusions. We apply inpainting and optimization. Finally, we extract the bare skin, makeup,
and an alpha matte from the diffuse albedo. Our method offers various applications for not only 3D facial models but also 2D
portrait images. The extracted makeup is well-aligned in the UV space, from which we build a large-scale makeup dataset and a
parametric makeup model for 3D faces. Our disentangled materials also yield robust makeup transfer and illumination-aware
makeup interpolation/removal without a reference image.

CCS Concepts
• Computing methodologies → Computer graphics; Computer vision; Machine learning;
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Figure 2: Example applications of our method. From left to right, makeup controllable 3D face reconstruction, illumination-aware makeup
interpolation/removal/relighting, illumination-aware makeup transfer, and makeup data collection.

1. Introduction

Facial makeup is an art of enhancing human appearance, dating
back to ancient times. Currently, it is quite commonly used for
beautification purposes to improve the quality of life. Furthermore,
facial makeup enriches the user experience of face-related applica-
tions such as VR/AR, video games, online commerce, and social
camera apps. These trends have been driving active research on
facial makeup in computer graphics and computer vision. In par-
ticular, research on makeup for 3D facial models has been gaining
increasing attention in the movie and advertising industries for dig-
ital humans.

To obtain facial makeup for 3D characters, the following three
approaches are currently available; 1) direct painting, 2) captur-
ing of real-world makeup, and 3) makeup transfer from 2D im-
ages. Direct painting is labor-intensive for makeup artists and
quite costly. Capturing real-world makeup requires special de-
vices [SRH∗11, HLHC13] and thus is also costly and not scal-
able. 2D makeup transfer [LQD∗18,MZWX21] is the current main-
stream of facial makeup research, exploiting a myriad of facial
makeup photos available on the Internet. However, most exist-
ing studies have focused on 2D-to-2D transfer and struggled with
physical constraints. For example, faces of in-the-wild photos fre-
quently contain lighting effects such as specular highlights and
shadows and occlusions with hands, possibly with various facial
expressions and head poses. Recent 3D face reconstruction tech-
niques [SKCJ18, EST∗20] can handle these physical constraints,
but none of the existing techniques focus on facial makeup.

In this paper, we propose the first integrated solution for ex-
tracting makeup for 3D facial models from a single portrait im-
age. Fig. 1 shows example outputs of our method. Our method
exploits the strong facial prior of the 3D morphable model
(3DMM) [LBB∗17] via regression-based inverse rendering and ex-
tracts coarse facial materials such as geometry and diffuse/specular
albedos as UV textures. Unlike the existing regression-based tech-
niques for facial inverse rendering [SKCJ18, EST∗20], we further
refine the coarse facial materials via optimization for higher fidelity.
To alleviate the inherent skin color bias in the 3DMM, we also in-
tegrate skin color adjustment inspired by color transfer. From the

refined diffuse albedo, we extract the bare skin, facial makeup,
and an alpha matte. The alpha matte plays a key role in vari-
ous applications such as manual tweaking of the makeup inten-
sity and makeup interpolation/removal. The extracted makeup is
well aligned in the UV space, from which we build a large-scale
makeup texture dataset and a parametric makeup model using prin-
cipal component analysis (PCA) for 3D faces. By overlaying ren-
dered 3D faces onto portrait images, we can achieve novel applica-
tions such as illumination-aware (i.e., relightable) makeup transfer,
interpolation, and removal, working on 2D faces (see Fig. 2).

The key contributions are summarized as follows:

• We present the first method to achieve illumination-aware
makeup extraction for 3D face models from in-the-wild face im-
ages.

• We propose a novel framework that improves each of the follow-
ing steps; (1) an extended 3D face reconstruction network that in-
fers not only diffuse shading but also specular shading via regres-
sion, (2) a carefully designed inverse rendering method to gener-
ate high-fidelity textures without being restricted by the limited
lighting setup, and (3) a novel procedure that is specially de-
signed for extracting makeup by leveraging the makeup transfer
technique. The UV texture representation effectively integrates
these three modules into a single framework.

• Our extracted illumination-independent makeup of the UV tex-
ture representation facilitates many makeup-related applications.
The disentangled maps are also editable forms. We employ the
extracted makeup to build a PCA-based makeup model that is
useful for 3D face reconstruction of makeup portraits.

2. Related Work

Our framework consists of three steps for extracting makeup from a
portrait. It is related to recent approaches in terms of three aspects.
First, we discuss facial makeup-related research. Subsequently, we
review intrinsic image decomposition which can separate the in-
put image into several elements. Finally, we discuss 3D face re-
construction methods that generate a 3D face model from a single
portrait image.

submitted to EUROGRAPHICS 2023.
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2.1. Facial Makeup

Facial makeup recommendation and makeup transfer methods
have been developed in the computer graphics and computer vi-
sion research fields. Makeup recommendation methods can pro-
vide appropriate makeup for faces. The method in [SRH∗11] cap-
tured 56 female faces with and without facial makeup. Suitable
makeup was recommended by analyzing the principal components
of the makeup and combining them with the facial appearance.
An examples-rules guided deep neural network for makeup rec-
ommendation has been designed [AJWF17]. Professional makeup
knowledge was combined with the corresponding before and af-
ter makeup data to train the network. However, it is challenging
to collect a large-scale makeup dataset by following the existing
methods. Recently, we proposed BareSkinNet [YT22], which can
remove makeup and lighting effects from input face images. How-
ever, BareSkinNet cannot be used for subsequent makeup applica-
tions because it discards the makeup patterns and specular reflec-
tion. In contrast, our method can automatically extract the makeup
layer information from portrait image inputs. As a result, a large-
scale makeup dataset can be constructed.

The aim of makeup transfer is to transfer the makeup of a per-
son to others. Deep learning technologies have significantly ac-
celerated makeup transfer research. BeautyGAN [LQD∗18] is a
method based on CycleGAN [ZPIE17] that does not require a be-
fore and after makeup image pair. A makeup loss function was
also designed to calculate the difference between makeups. The
makeup loss is a histogram matching loss that approximates the
color distribution of the relative areas of different faces. Sub-
sequent approaches that have used BeautyGAN as the baseline
can solve more challenging problems. LADN [GWC∗19] achieves
heavy makeup transfer and removal, whereas PSGAN [JLG∗20]
and SCGAN [DHC∗21] solve the problem of makeup transfer un-
der different facial expressions and head poses. CPM [NTH21]
is a color and pattern transfer method and SOGAN [LDP∗21] is
a shadow and occlusion robust GAN for makeup transfer. Ele-
GANt [YHXG22] is a locally controllable makeup transfer method.
Makeup transfer can also be incorporated into the Virtual-Try-On
applications [KGPB20, KJB∗22]. However, existing methods do
not consider illumination and can only handle 2D images. Our
method takes advantage of the makeup transfer technique. The ex-
tracted makeup is disentangled into bare skin, facial makeup, and
illumination in the UV space. Furthermore, the extracted makeup
is editable.

2.2. Intrinsic Image Decomposition

We mainly review the recent intrinsic image decomposition meth-
ods relating to the portrait image input. An intrinsic image de-
composition method [LZL15] has been employed, thereby en-
abling accurate and realistic makeup simulation from a photo. SfS-
Net [SKCJ18] is an end-to-end network that decomposes face im-
ages into the shape, reflectance, and illuminance. This method uses
real and synthetic images to train the network. Inspired by SfS-
Net, Relighting Humans [KE18] attempts to infer a light transport
map to solve the problem of light occlusion from an input portrait.
The aforementioned methods can handle only diffuse reflection
using spherical harmonic (SH) [RH01] lighting. Certain methods

use a light stage to obtain a large amount of portrait data with il-
lumination [SBT∗19, POL∗21, WYL∗20]. The global illumination
can be inferred by learning these data. As data collection using a
light stage requires substantial resources, several more affordable
methods have been proposed [TKE21, LSY∗21, JYG∗22, WWR22,
TFM∗22,YNK∗22]. In this study, we focus on makeup with the aim
of decomposing a makeup portrait into bare skin, makeup, diffuse,
and specular layers without using light stage data.

2.3. Image-Based 3D Face Reconstruction

3D face reconstruction from a single-view portrait is chal-
lenging because in-the-wild photos always contain invisible ar-
eas or complex illumination. Existing 3D face reconstruction
methods [BV03, THMM17, TZK∗17, TZG∗18, GZC∗19, GCM∗18,
SBFB19, DYX∗19, SSL∗20, DBA∗21, FFBB21, DBB22, ZBT22]
generally use a parametric face model (known as a 3DMM) [BV99,
LBB∗17,GMB∗18,BRP∗18] to overcome this problem. In general,
3D face reconstruction is achieved by fitting the projected 3DMM
to the input image. These methods estimate the SH lighting while
inferring the shape and texture. We recommend that readers refer
to [EST∗20,SL09], as these surveys provide a more comprehensive
description of the 3DMM and 3D face reconstruction.

The 3DMM-based 3D face reconstruction method estimates
coarse facial materials and cannot achieve a high-fidelity facial ap-
pearance. A detailed 3D face reconstruction method was proposed
in [DBA∗21], which can reconstruct the roughness and specular
compared to the previous methods. This method involves the setup
of a virtual light stage of illumination and the use of a two-stage
coarse-to-fine technique to refine the facial materials. Inspired by
[DBA∗21], we employ coarse facial materials and take specular
into consideration. Furthermore, we extend and train a deep learn-
ing network using the method in [DYX∗19] as the backbone with
a large-scale dataset. We optimize the textures in UV space to re-
fine facial materials, to solve the problem of self-occlusion and
obstacles of the face. The completed UV texture is advantageous
because the complete makeup can be extracted to achieve high-
fidelity makeup reconstruction.

The generation of a completed facial UV texture is a tech-
nique for obtaining refined facial materials. Several methods use
UV texture datasets to train an image-translation network for
the generation of the completed texture via supervised learn-
ing [SWH∗17,YSN∗18,DCX∗18,GPKZ19,LL20,LL20,LMG∗20,
BLC∗22]. Other methods [CHS22, GDZ21] use the GAN inver-
sion [XZY∗22] technique to generate faces in different directions
for completion. However, both of these methods are limited by the
training dataset. We adopt a state-of-the-art UV completion method
known as DSD-GAN [KYT21] to obtain a completed high-fidelity
face texture, which is to be used as the objective for the opti-
mization of the refined facial materials. This method employs self-
supervised learning to fill the missing areas without the need for
paired training data.
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Figure 3: Overview of our framework. Given a makeup portrait, we extract an illumination-independent bare skin and makeup in the UV
space via the following three steps; First, we reconstruct a 3D face to estimate the coarse facial materials using a 3D face reconstruction
network FRN [DYX∗19] (Sec. 3.1). Second, we refine the coarse facial materials, which may have missing pixels owing to occlusion. We
apply an inpainting network DSD-GAN [KYT21] and then apply optimization (Sec. 3.2). Finally, we extract a bare skin, makeup, and an
alpha matte from the refined diffuse albedo using makeup extraction network E (Sec. 3.3).

3. Approach

We design a coarse-to-fine texture decomposition process. As
shown in Fig. 3, our framework is composed of three steps. 1)
We estimate the coarse 3D facial materials using 3D face recon-
struction by 3DMM fitting. In order to handle highlights, we ex-
tend a general 3DMM fitting algorithm. The reconstructed coarse
facial materials are used for the refinement process in the next step
(Sec. 3.1). 2) We propose an inverse rendering method to obtain re-
fined 3D facial materials via optimization. First, we use the 3DMM
shape that is obtained in the previous step to sample the image in
UV space. Subsequently, a UV completion method is employed to
obtain a high-fidelity entire face texture. Finally, using the com-
pleted texture as the objective, and coarse facial materials as priors,
the refined facial materials are optimized. (Sec. 3.2). 3) The refined
diffuse albedo that is obtained from the previous step is used as the
input. Inspired by the makeup transfer technique, we design a net-
work to disentangle bare skin and makeup. The key idea is that the
makeup albedo can be extracted using an alpha blending manner
for bare skin and makeup (Sec. 3.3). The details of each step are
described in the following subsections.

3.1. Coarse Facial Material Reconstruction

We obtain the coarse facial materials using a 3D face recon-
struction method based on regression-based inverse rendering.
We use the FLAME [LBB∗17] model with specular albedo from
AlbedoMM [SSD∗20]. The diffuse and specular albedo of FLAME
are defined in the UV texture space. We only use the facial skin
region in our study. Compared to existing methods, we extend the
capability of the 3D face reconstruction network [DYX∗19] (FRN)

to estimate the shape, diffuse albedo, and diffuse shading, as well as
the specular albedo and specular shading. Inspired by [DBA∗21], a
simplified virtual light stage with regular icosahedral parallel light
sources is set up to infer the specular shading. The intensity of 20
light sources is predicted during the reconstruction process, and the
direction of the light sources can be adjusted slightly. Furthermore,
In order to eliminate the limited color range of the skin tone of
FLAME, we estimate the skin tone adjustment parameters to en-
sure a diffuse albedo that is similar to the original image. The skin
tone ablation study is depicted in Fig. 10. This process can im-
prove the diversity of the diffuse albedo representation capability
of FLAME.

The coarse shape geometry Gc, diffuse albedo Dc, and specular
albedo Sc of the 3DMM are defined as follows:

Gc = Ḡ+Bidα +Bexβ , (1)

Dc = D̄+Bdγ � Cgain +Cbias, (2)

Sc = S̄+Bsδ , (3)

where Ḡ, D̄, and S̄ are the average geometry, diffuse albedo, and
specular albedo, respectively. � denotes the Hadamard product.
The subscript c indicates coarse facial materials. Moreover, Bid ,
Bex, Bd , and Bs are the PCA basis vectors of the identity, ex-
pression, diffuse albedo, and specular albedo, respectively, whereas
α ∈ R200, β ∈ R100, γ ∈ R100, and δ ∈ R100 are the correspond-
ing parameters for controlling the geometry and reflectance of a 3D
face. Finally, Cgain and Cbias are the skin tone adjustment parame-
ters.

submitted to EUROGRAPHICS 2023.
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Figure 4: Facial material optimization module for Step 2 (Sec. 3.2). We optimize the coarse facial materials Dc,Nc,Rs
c and SH lighting Lsh

c
so that the full reconstruction R f resembles the completed texture T f . The refined diffuse albedo D f , normal N f , and specular reconstruction
Rs

f are the outputs. ⊕ and ⊗ denote the per-pixel addition and multiplication, respectively.

Our reconstructed texture can be formulated as follows:

Rc = Rd
c +Rs

c (4)

= Dc� DS
c +Sc� SS

c , (5)

where Rd
c , Rs

c, DS
c , and SS

c are the diffuse reconstruction, specu-
lar reconstruction, diffuse shading, and specular shading, respec-
tively. In this paper, a geometrically-derived shading component is
referred to as “shading,” wheras a multiplication with reflectance
is dubbed “reconstruction.” Using the normal Nc and second-
order SH lighting coefficients Lsh

c ∈ R27, the diffuse shading is
calculated following the Lambertian reflectance model [BJ03].
The normal Nc is computed from the geometry Gc. The spec-
ular shading is calculated following the Blinn–Phong reflection
model [Bli77]. We define the 20 light sources of the virtual
light stage with the light intensity Li ∈ R20 and light direc-
tion Ld ∈ R60. ρ ∈ R20 is the exponent that controls the shini-
ness. We employ the 3D face reconstruction network implemen-
tation of [DYX∗19], and extend it to regress the parameters χ =
(α,β ,γ,δ ,Cgain,Cbias,r, t,Lsh

c ,Li,Ld ,ρ), where r∈R3 is the face
rotation, and t ∈R3 is the face translation. Using the geometry Gc,
reconstructed texture Rc, rotation r, and translation t, the recon-
structed image Irec can be rendered.

We refer to [DYX∗19] to set up the loss functions for the model
training as follows:

Lc(χ) = ωphotoLphoto(χ)+ωlanLlan(χ)

+ωskinLskin(Cgain,Cbias)

+ωregLreg(α,β ,γ,δ ,Li,Ld),

(6)

where Lphoto(χ) is the L1 pixel loss between the skin region of

input image Iin and reconstructed image Irec. Llan(χ) is the L2
loss between detected landmarks from Iin and the projected land-
marks of the 3DMM. Lskin(Cgain,Cbias) is the L1 loss for comput-
ing the mean color error between the skin region of Iin and diffuse
albedo Dc. This is our specially designed loss term to adjust the
skin tone. Lreg(α,β ,γ,δ ,Li,Ld) is the regulation loss for prevent-
ing a failed face reconstruction result. In contrast to the previous
method [DYX∗19], we extend constraints on the specular related
coefficients of δ , Li, and Ld . Lreg(α,β ,γ,δ ,Li,Ld) is determined
as follows:

Lreg = ωα‖α‖2
2 +ωβ ‖β‖2

2 +ωγ‖γ‖2
2

+ωδ ‖δ‖2
2 +ωL‖Li‖2

2 +ωL‖Ld‖2
2,

(7)

where ‖ · ‖2 denotes the L2 norm. The balance weights are set to
ωphoto = 19.2, ωlan = 5, ωskin = 3, ωreg = 3× 10−4, ωα = 1.0,
ωβ = 0.8, ωγ = 1.7×10−2, ωδ = 1.0, and ωL = 1.0 in all experi-
ments.

3.2. UV Completion and Facial Material Refinement

The goal of this step is to obtain the disentangled refined facial
materials. We use the geometry Gc to sample the colors from the
input image Iin and project them to the UV texture space Tu. Tu
contains the missing area owing to self-occlusion or obstacles.
As opposed to the 3D vertex color sampling approach used in
related work [NTH21, CHS22], we adopt the image-to-UV ren-
dering approach used in DSD-GAN [KYT21] to obtain a high-
quality texture. The direct use of incomplete textures will cause
many problems, such as noise and error. Thereafter, we fill the
missing areas following DSD-GAN to obtain the completed UV

submitted to EUROGRAPHICS 2023.
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Figure 5: Makeup extraction with network E for Step 3 (Sec. 3.3). Considering alpha blending in mind, the network E decomposes the refined
diffuse albedo into bare skin, alpha matte, and makeup.

texture T f . The subscript f indicates refined facial materials. The
difference between our method and DSD-GAN is that we use the
FLAME model for implementation, whereas DSD-GAN uses the
BFM model [GMB∗18]. The results of the UV completion are pre-
sented in Fig. 6.

Using the completed UV texture as an objective with facial de-
tails, the optimization-based refinement module (see Fig. 4) is de-
signed. Given the target texture T f , the coarse prior Dc, Nc, Lsh

c ,
and Rs

c are used for initialization, and we optimize the refined ma-
terials of D f , N f , Lsh

f , and Rs
f to reconstruct the refined texture

R f . The diffuse shading is calculated following the Lambertian
reflectance model [BJ03]. For the specular, we directly optimize
the specular reconstruction Rs

f , rather than the specular albedo and
specular shading, which is not restricted by the light source settings
of the virtual light stage in Sec. 3.1. Note that the specular recon-
struction Rs

c is three channels image due to the specular albedo Sc
of 3DMM, while Rs

f is converted to one channel image for stable
and efficient optimization.

The loss functions for the optimization are calculated as follows:

L f (Ψ) = ωreconsLrecons(R f )+ωvggLvgg(R f )

+ωtvLtv(D f ,N f ,Rs
f ) (8)

+ωpriorLprior(D f ,N f ,Rs
f ,L

sh
f ),

where Ψ = (R f ,D f ,N f ,Rs
f ,L

sh
f ) is a new parameter set for opti-

mization. Lrecons(R f ) ensures L1 consistency between R f and T f .
Lvgg(R f ) is the perceptual loss [JAF16] that aims to preserve the
facial details. Ltv(D f ,N f ,Rs

f ) is the total variation loss [GEB16]
that encourages spatial smoothness in the optimized textures D f ,

N f , and Rs
f .

Lprior(D f ,N f ,Rs
f ,L

sh
f ) = ωDLD(D f )+ωN LN(N f )

+ω
s
RL

s
R(R

s
f )+ωshLsh(Lsh

f ),
(9)

where Lprior(D f ,N f ,Rs
f ,L

sh
f ) regulates the optimized texture to be

similar to the coarse prior. We compute the L1 loss over the diffuse
albedo, normal, and specular reconstruction as LD(D f ), LN(N f ),
and Ls

R(R
s
f ), respectively. The coarse textures are resized to the

same resolution as that of refined textures. We note that the coarse
and refined textures are not exactly equal; they differ in clarity, and
with or without makeup. Therefore, before calculating the losses
between the coarse and refined textures, we simply use a Gaussian
blur filter K to blur the refined textures in each iteration. We use
the blurred refined texture to calculate the loss, while the original
refined texture is not changed. Lsh(Lsh

f ) is the L2 loss over the SH
lighting. We normalize N f to [-1, 1] following each optimization it-
eration to guarantee the correctness of the normal. The parameters
ωrecons = 40, ωvgg = 5, ωtv = 10, ωprior = 1.0, ωD = 4, ωN = 1.0,
ωs

R = 1.0, and ωsh = 1.0 balance the importance of the terms. The
refined textures of our coarse-to-fine optimization step are illus-
trated in Figs. 6, 7, and 8.

3.3. Makeup Extraction

In this step, we only use the refined diffuse albedo D f , and decom-
pose the texture into the makeup, bare skin, and an alpha matte. To
train the network, we create two diffuse albedo datasets with and
without makeup following the previous process; the makeup albedo
Dm and non-makeup albedo Dn, respectively.

As shown in Fig. 5, we design a makeup extraction network
based on alpha blending. Our network consists of a makeup extrac-
tor E, a makeup discriminator M, and a bare skin discriminator B.
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M and B attempt to distinguish the makeup and non-makeup image.
The core idea is that we regard the diffuse albedo as a combination
of makeup and bare skin that is achieved by alpha blending. There-
fore, E extracts the bare skin Db

m, makeup Dm
m, and alpha matte A. A

is used to blend the extracted makeup Dm
m and a non-makeup albedo

Dn to generate a new makeup albedo Dm
n which has the identity

from Dn and makeup from Dm. The reconstructed makeup albedo
Dr

m and the reconstructed bare skin Dr
n should be consistent with

their original input. The reconstructed Dr
m and generated Dm

n are
formulated as follows:

Dr
m = A�Db

m +(1−A)�Dm
m,

Dm
n = A�Dn +(1−A)�Dm

m,
(10)

where (1−A) is an inverted version of A with pixel values of
[0,1]. The discriminators ensure that the generated bare skin Db

m
and makeup Dm

n are reliable. As the network takes advantage of
the uniformity of the UV space, the makeup transfer is straightfor-
ward, and the problem of face misalignment does not need to be
considered.

The loss function is given by:

Lm(Φ) = ω
cyc
m Lcyc

m (Dr
m,D

r
n)+ω

vgg
m Lvgg

m (Dr
m,D

r
n)

+ω
adv
m Ladv

m (Db
m,D

m
n )+ω

tv
mLtv

m(D
b
m,D

m
n )

+ω
make
m Lmake

m (Db
m,D

m
n ),

(11)

where Φ = (Dr
m,Dr

n,Db
m,Dm

n ), L
cyc
m (Dr

m,Dr
n) and L

vgg
m (Dr

m,Dr
n) are

the L1 loss and perceptual loss for the reconstruction, respectively.
Ladv

m (Db
m,Dm

n ) is the adversarial loss for the discriminators and gen-
erators. Ltv

m(Db
m,Dm

n ) is the total variation loss for Db
m and Dm

m to
provide smooth texture generation, whereas Lmake

m (Db
m,Dm

n ) is the
makeup loss introduced by BeautyGAN [LQD∗18]. We defined the
corresponding face region F of the brows, eyes, and lips in the UV
texture space to compute makeup loss, and the compared textures
are Dm and Dm

n , and Dn and Db
m. Note that, in contrast with previ-

ous makeup transfer methods, the skin region is not calculated for
the makeup loss because we believe that the difference in skin tone
between individuals cannot be considered as makeup, while it can
also be a restriction if the foundation of the makeup changes the
entire face color. This is a trade-off between skin tone and makeup
color. In this work, we assume that the makeup will not drastically
change the skin tone. Moreover, as indicated in Fig. 7, even with-
out the makeup loss of the skin region, our network precisely ex-
tracts the makeup of the cheeks using the alpha blending approach
because we use two discriminators to distinguish the makeup and
non-makeup textures. The details are discussed in Sec. 5.

We use ω
cyc
m = 20, ω

vgg
m = 2, ωadv

m = 5, ωtv
m = 8, and ωmake

m = 1
as the balancing terms. Our makeup extraction results are presented
in Figs. 6, 7, and 8.

4. Implementation Details

4.1. Coarse Facial Material Reconstruction

We followed the training strategy of [DYX∗19] and use the same
datasets for approximately 260K face images. We used [BT17]
to detect and crop the faces for alignment. The image size was
256 × 256 and the resolution of FLAME albedo textures was

256×256. We initialized the network with the weights of the pre-
trained [RDS∗15] and modified the last layer to estimate our own
3DMM parameters. The batch size was 8, and the learning rate was
1× 10−4 using an Adam optimizer with 20 training epochs. For
the shininess parameter ρ , we set the initial value to 200 to achieve
highlight effects.

4.2. UV Completion and Facial Material Refinement

We sampled approximately 100K images from FFHQ [KLA19] and
CelebA-HQ [KALL18] in the UV space to train DSD-GAN for the
UV completion, and the resolution of the UV textures was 512×
512. Prior to sampling, the face images were segmented using the
method of [YWP∗18] and only the skin region of the face was used.
Subsequently, we performed a manual cleanup to remove the low-
quality textures. Eventually, 60,073 textures remained for training.

The optimization-based refinement process was executed with
500 iterations for each texture. The learning rate of the Adam opti-
mizer was set to 1×10−2 with a 0.1 learning rate decay. The kernel
size of the Gaussian blur filter K was set to 11.

4.3. Makeup Extraction

We combined two makeup datasets, namely the MT
dataset [LQD∗18] and LADN dataset [GWC∗19], which consisted
of 3,070 makeup images and 1,449 non-makeup images. A total
of 300 makeup images were randomly selected for testing. By im-
plementing the previous steps, both the makeup and non-makeup
images were processed into albedo textures to train our network.
We trained the network with 40 epochs and batch size of 1. The
Adam optimizer used a learning rate of 1×10−4. The makeup ex-
tractor E had the same architecture as the generator of DSD-GAN,
and PatchGAN [IZZE17] was used for the discriminators M and
B.

We used Nvdiffrast [LHK∗20] for the differentiable renderer
and trained the networks using a single NVIDIA GeForce RTX
2080 Ti GPU. Our training required approximately 3 days for the
coarse facial reconstruction network and approximately 1 day for
the makeup extraction network. Approximately 1 minute was re-
quired to process a texture in the refinement step.

5. Experiments

We evaluated the results of our approach. First, we present the inter-
mediate outputs of each step of the framework (see Fig. 6). There-
after, we discuss the final outputs (see Fig. 7). Subsequently, we
analyze the albedo texture that was associated with the makeup and
observe how the makeup changed in the albedo texture (see Fig. 8),
Finally, we provide several examples with complex illumination
and examine the decomposition (see Fig. 9). Note that the origi-
nal images of the specular reconstruction were too dark to display,
so we adjusted the contrast for better display. Please refer to the
supplemental material to see the original images.

Intermediate outputs of each step. Fig. 6 depicts the intermediate
outputs, which are related to the final textures in (d), to illustrate
the effectiveness of each step. Four makeup portraits are presented
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(a) Input (b) facial inverse rendering

(3D face recons. result, Diff. albedo, Diff. shading)

(Spec. shading, Spec. albedo, Spec. recons.)

(c) Completion (d) Final output

(Diff. shading, Bare skin)

(Spec. recons, Makeup) 

(e) Recons.

Neutral

Expression

Pose

Illumination

Figure 6: Intermediate outputs for each step. Left to right and top to bottom: (a) input makeup portraits, (b) facial inverse rendering (diffuse
albedo, diffuse shading, specular shading, specular albedo, and specular reconstruction), (c) unwrapped and completed textures, (d) final
refined facial materials (diffuse shading, bare skin, specular reconstruction, and makeup), and (e) rendered bare skin face and rendered
makeup face using textures from (d).

in (a) with different facial features: a neutral face, a face with ex-
pression, a face pose with an angle, and a face with uneven illumi-
nation. The results of the 3D face reconstruction are shown in (b).
It can be observed that the diffuse albedo of the 3DMM contained
only a coarse texture without makeup. The specular shading was

affected by the limited light source, and thus, the global illumina-
tion could not be recovered. Furthermore, the specular albedo was
a coarse texture; therefore, the final specular reconstruction is not
detailed. Although it was not possible to obtain a reconstruction of
the makeup using only the 3D face reconstruction method, these
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(a) Input (b) Rendering (c) Bare skin (d) Makeup (e) Diff. (f) Spec. 

Figure 7: Final outputs of our framework. (a) Input makeup por-
traits, and (b) fully reconstructed renderings and corresponding
textures. The columns from (c) to (f) are similar to those of Fig. 1.

coarse facial materials were helpful for subsequent steps. We used
the original texture and completed it to obtain the refined facial
materials as well as makeup. The UV completion results are pre-
sented in (c). The final textures were refined using the outputs of
the previous steps, as illustrated in (d). For better visualization, we
show the blended makeup, which was calculated by (1−A)�Dm

m.
It can be observed that the makeup and bare skin were disentan-
gled, the diffuse shading was adjusted, and the specular reconstruc-
tion was more detailed. We combined the final textures to achieve
effects such as rendering a bare skin face and a makeup face while
the lighting remained invariant. These results demonstrate that our
method is robust to different makeup, expressions, poses, and illu-
mination.

The final outputs. The final outputs are depicted in Fig. 7. We ren-
dered the disentangled final UV textures separately for improved
visualization: (c) bare skin, (d) bare skin with makeup, (e) bare
skin with diffuse shading, and (f) bare skin with the full illumina-
tion model. Furthermore, we rendered the makeup faces in (b) using
these textures which could be considered as a 3D face reconstruc-
tion of makeup portraits. It can be observed that the layers of bare
skin, makeup, diffuse, and specular are disentangled. For exam-

(a) Input (b) Coarse (c) Completion (d) Refined (e) Bare skin (f) Makeup

Figure 8: Texture outputs relating to makeup. Left to right: (a) in-
put makeup portraits, (b) coarse diffuse albedo, (c) completed UV
textures, (d) refined diffuse albedo, (e) bare skin, and (f) makeup.

(a) Input (b) Completion (c) Diff. albedo (d) Diff. shading (e) Spec. recons.

Figure 9: Outputs of decomposed refined facial materials in com-
plex illumination conditions. Left to right: (a) input makeup por-
traits, (b) completed UV textures, (c) diffuse albedo, (d) diffuse
shading, and (e) specular reconstruction.

ple, a comparison of (c) and (d) indicates that makeup was added
while no illumination was involved, and the makeup around the
eyebrows, eyes, and lips was disentangled. The presence of makeup
on the cheeks can also be clearly observed in the third identity from
the top.

Makeup in diffuse albedo. The textures relating to the makeup are
depicted in Fig. 8 to demonstrate the effect of the makeup changes
on the diffuse albedo textures. This process represents the main
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Table 1: Quantitative ablation study for makeup face reconstruc-
tion results.

Complete data RMSE SSIM LPIPS

FRN (w/o specular) 0.056 0.953 0.091
FRN (w/ specular) 0.053 ↓ 0.956 ↑ 0.088 ↓
Rendered result 0.060 0.968 ⇑ 0.062 ⇓

Test data RMSE SSIM LPIPS

FRN (w/o specular) 0.058 0.948 0.102
FRN (w/ specular) 0.055 ↓ 0.951 ↑ 0.099 ↓
Rendered result 0.063 0.964 ⇑ 0.066 ⇓

concept under consideration for extracting the makeup. The recon-
structed coarse diffuse albedo could not preserve the makeup ef-
fectively; although the reconstruction results exhibited some black
makeup around the eyes, it was difficult to preserve the makeup be-
yond the scope of the 3DMM texture space (see (b)). Thus, we used
the original texture directly. The completed UV textures, which
contained makeup and involved illumination, are depicted in (c).
Subsequently, the illumination was removed. A comparison of (d),
(e), and (f) demonstrates the validity of our makeup extraction net-
work. Moreover, the final row presents an example of a makeup
portrait with occlusion, for which our method was still effective in
extracting the makeup. As we only used the sampled skin region
while excluding the others, the missing regions were filled to be-
come complete.

Decomposition of illumination. We evaluate the results of the
refined facial materials to demonstrate the capabilities of our
illumination-aware makeup extraction. It can be observed from the
outputs in Fig. 9 that portraits containing uneven lighting and shad-
ows (particularly around the bridge of the nose) were captured by
diffuse shading, whereas the highlights were reflected in the spec-
ular reconstruction. Thus, the diffuse albedo textures became clean
and flat, and our makeup extraction was more precise after remov-
ing the illumination.

The entire process of our method is executed in the UV space.
UV-represented makeup offers numerous advantages. First, 3D
makeup avatar creation becomes accessible when the same UV co-
ordinates are used. Furthermore, such makeup can be extended to
scanned 3D faces, in which case makeup without illumination will
be helpful. Second, the makeup can be further divided into several
parts using a corresponding face segmentation mask, which will
enable specification of which makeup region is to be used. Third,
the textures can be directly edited and incorporated into a tradi-
tional rendering pipeline. Finally, the disentangled makeup maps
can be collected to form a makeup dataset, which will be useful for
3D makeup face reconstruction or makeup recommendation. We
explore several applications in Sec. 7.

6. Ablation Studies

We conducted ablation studies on the 3D face reconstruction step.
We performed a comparative experiment with and without skin

(a) Input (b) Diff. albedo (c) Diff. shading (d) Diff. recons. (e) Spec. albedo (f) Spec. shading (g) Spec. recons.
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Figure 10: Qualitative ablation study for skin tone adjustment. For
each identity, the upper and lower rows display the results before
and after the skin tone adjustment, respectively. Left to right: (a)
input face images, (b) diffuse albedo, (c) diffuse shading, (d) diffuse
reconstruction, (e) specular albedo, (f) specular shading, and (g)
specular reconstruction.

tone adjustment and assessed the influence on the components of
3DMM. We selected two images from FFHQ [KLA19] with strong
illumination. As illustrated in Fig. 10, the skin tone adjustment had
only a slight effect, or none at all, on the specular. Although the
diffuse reconstruction did not change, the balance of the diffuse
albedo and diffuse shading was significantly adjusted. Limited by
the 3DMM texture, the diffuse albedos of the two faces before ad-
justing the skin tones had almost similar colors, resulting in an in-
correct estimation of the diffuse shading. This would be misleading
for the subsequent refinement and makeup extraction step. To mit-
igate this error, we adjusted the skin tone so that the average color
was the same as that of the original image.

Tab. 1 displays the results of the quantitative evaluation of the
3D makeup face reconstruction. We trained two face reconstruction
networks with different illumination models: one used SH lighting
without specular estimation, and the other was the full model. The
rendered results using the bare skin, makeup, diffuse shading, and
specular reconstruction textures are also listed for reference. We
used the complete makeup, which was not used to train the 3D face
reconstruction network for the general evaluation. We used a gray
color to mark the rendered results, because the generated maps for
rendering were trained on the complete dataset. Furthermore, the
test makeup dataset, which was not used to train the makeup ex-
traction network, was separated to evaluate the rendered results.
The network containing the specular illumination model improved
the accuracy of the reconstruction, thereby demonstrating the ef-
fectiveness of our model. Our final rendered makeup face exhibited
improvement in terms of the perceptual similarity. Thus, the recon-
structed results were more compatible with the visual evaluation, as
we believe that makeup significantly influences human perception.

7. Applications

We explore several makeup-related applications using the results of
our method and compare them with state-of-the-art methods.
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Table 2: Taxonomy of state-of-the-art makeup transfer methods. “Misalignment”: faces with different poses. “Shade”: controlling the shade.
“Control”: selection of the face region to be transferred. “Edit”: editing within arbitrary areas. "Occlusion": robust to occlusion. "Illumi-
nation": controlled illumination during transfer.

Method Misalignment Shade Control Edit Occlusion Illumination

BeautyGAN [LQD∗18]
LADN [GWC∗19] X
PSGAN [JLG∗20] X X X
SCGAN [DHC∗21] X X X
CPM [NTH21] X X X X
SOGAN [LDP∗21] X X X X X
EleGANt [YHXG22] X X X X X
Ours X X X X X X
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Figure 11: Makeup dataset and PCA-based makeup model. We
used the dataset to create a PCA-based makeup model. The top
row presents the extracted makeup textures from image input, and
the bottom row shows randomly sampled makeup textures along the
principal components from the makeup model.

7.1. 3D Face Reconstruction of Makeup

First, we demonstrate how the extracted makeup dataset can
be used to enhance the 3D face reconstruction of makeup.
The same process as the diffuse albedo model construction of
FLAME [LBB∗17] was followed, and the collected makeup tex-
tures (1−A)�Dm

m were used to construct a PCA-based statistical
model of makeup. The randomly sampled textures from the makeup
model are depicted in Fig. 11. The makeup model is an extension of
the diffuse albedo model, and the new model D′c can be formulated
as:

D
′
c = Dc +Dm

c , (12)

where Dm
c is the makeup model. We used an optimization-based

manner to reconstruct the 3D face from the makeup portraits be-
cause no large-scale makeup dataset is available to train a neural
network. A comparison of the 3D makeup face reconstruction us-
ing different albedo models Dc and D′c is presented in Fig. 12. D′c
could recover the makeup, and improve the accuracy of the entire
reconstruction, especially for lipsticks and eye shadows. The shape
of the lips and eyes were also matched more effectively by extend-
ing the ability of the diffuse albedo.

We believe that this makeup database can be explored fur-
ther; for example, by using advanced image generation techniques
such as StyleGAN/StyleGAN2 [KLA19, KLA∗20] or diffusion
model [HJA20]. The accuracy of the reconstruction results also

requires further quantitative evaluation, and we consider these as
future research topics.

7.2. Illumination-Aware Makeup Transfer

We used the extracted makeup for makeup transfer by employing
the same method as that for the makeup extraction network. Equa-
tion (10) was followed to blend a new makeup face, which was sub-
sequently projected onto the original image. The functionalities of
our method and previous methods are summarized in Tab. 2. Simi-
lar to the approach of CPM [NTH21], the makeup textures are UV
representations to solve the misalignment of faces. The face region
that is used for transfer can be specified, and the makeup is editable.
In addition to these advantages, our approach extracts makeup and
uses a completed UV representation, which can handle occlusion
and illumination.

Our makeup transfer results are depicted in Fig. 13. The refer-
ence images contained various complex factors, including occlu-
sion, face misalignment, and lighting conditions. We extracted the
makeup from the reference image. Subsequently, we transferred the
makeup to the source image while maintaining the original illumi-
nation of the source image.

A qualitative comparison with state-of-art makeup transfer meth-
ods is depicted in Fig. 14, in which the source and reference images
have different illumination. As existing makeup transfer methods
do not consider illumination, they transfer not only the makeup,
but also the effect of the illumination. The first two rows present the
exchanged makeup results of two identities, one was evenly illumi-
nated, whereas the other had shadows on the cheeks. The existing
methods could not retain the illumination from the source image,
which resulted in a mismatch between the face and surrounding
environment. Note that our method preserved the illumination and
shade of the original images in the cheeks. The final row shows
an example in which the source and reference images have con-
trasting illumination. Our method enabled a natural makeup trans-
fer, whereas the other methods were affected by the illumination,
resulting in undesirable results. Note that the pioneering method
known as BeautyGAN [LQD∗18] (a) was relatively stable. How-
ever, as it is not suitable for transferring eye shadow, the makeup in
the source image was not cleaned up.
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Figure 12: 3D face reconstruction results using 3DMM. The PCA-based makeup model significantly improves the fidelity of synthesized
makeup.

Figure 13: Our makeup transfer can handle occlusion, illumination, and face misalignment.

7.3. Illumination-Aware Makeup Interpolation and Removal

As illustrated in Fig. 15, compared to existing makeup transfer
methods, our method could achieve makeup interpolation and re-
moval without a reference image. Moreover, our makeup interpola-
tion maintained constant illumination conditions and achieved nat-
ural makeup interpolation. The first two rows present the interpola-
tion and removal results of the face images. The specular and dif-
fuse shading were not changed while the makeup was adjusted from
heavy to light. The third row shows how the alpha matte changed
in the makeup interpolation process. The alpha matte A is adjusted
to Aσ as follows:

Aσ (p) = clamp(A(p)+σ ,0,1), (13)

where Aσ (p) and A(p) are values of Aσ and A at pixel p, re-
spectively, and σ ∈ [0,1]. Aσ was eventually clipped to between 0
and 1. It can be observed that for the change in Aσ , the makeup was
mainly lipstick and eye shadow in this sample. Thus, the original
A was the black color around the lips and eyes, which means that
this part of the skin color was not used, while the makeup is mainly
applied. With the increase in
sigma, Aσ became whiter; thus the use of makeup was reduced and
makeup interpolation was achieved. As the illumination was disen-
tangled from the makeup, it was possible to relight the face while
adjusting the makeup. The results are presented in the final row.

In addition to the above applications, the extracted makeup can
be used for makeup recommendations, please refer to [SRH∗11,
AJWF17]. The makeup textures can also facilitate the subsequent
processing of traditional graphics pipelines such as physically-
based makeup rendering.

8. Limitations and Conclusions

Limitations. Although we integrated a color adjustment to allevi-
ate the inherent skin color bias, the 3DMM skin colors still exhib-
ited a problem. Namely, because the skin colors of the FLAME
model [LBB∗17] were obtained by unwrapping face images of the
FFHQ dataset [KLA19], they contained baked-in lighting effects.
Therefore, our coarse albedos that were obtained using the FLAME
model contained shading effects, which further caused errors in
our refinement step and makeup extraction. Whereas our method
yielded satisfactory results in most cases, we would like to explore
a better albedo model.

Our network erroneously extracts a makeup-like material from a
makeup-less face because our network is currently not trained with
paired data of makeup-less inputs and makeup-less outputs.

Although our refinement step greatly improves the diffuse albe-
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(a) BeautyGAN (b) PSGAN (c) CPM (d) SCGAN (e) EleGANt (f) OursReferenceSource

Figure 14: Qualitative comparison of makeup transfer between two faces. Left to right: source images providing the identity and illumination,
the reference images providing the makeup, (a) BeautyGAN [LQD∗18], (b) PSGAN [JLG∗20], (c) CPM [NTH21], (d) SCGAN [DHC∗21],
(e) EleGANt [YHXG22], and (f) our results, which retain the lighting effects.

Original RemovedMakeup interpolation

R
el

ig
h

ti
n

g
A

lp
h

a
 m

a
tt

e
D

if
fu

se
 o

n
ly

Il
lu

m
in

a
ti

o
n

Figure 15: Results of illumination-aware makeup interpolation and
removal. Left to right: the original makeup was interpolated and
finally removed. The first row presents the interpolation results with
constant illumination. The second row displays the results using
only diffuse shading. The third row shows the alpha matte A for
controlling the balance of the bare skin and makeup. The final row
presents the rendered faces with relighting.

dos (see Fig. 8(b)(d)), the difference in the face geometry is subtle
before and after refinement. Fig. 16 shows that the normals around
the eyes and mouth were smoothed. We would like to improve the
face geometry as well.

At present, we extract makeup from diffuse albedos, but in the
real world, makeup contains specular albedos. We would like to ac-

Coarse normal Refined normal

Figure 16: Comparison of coarse and refined normal.

count for makeup BRDFs for a more physically-plausible makeup
transfer. Quantitative evaluation is difficult in makeup-related re-
search because no public ground-truth dataset of accurately aligned
face images before and after makeups is available. Therefore, it is
also essential to establish a quantitative evaluation criterion.

Conclusions. We have presented the first method for extracting
makeup for 3D face models from a single makeup portrait, which
consists of the following three steps; 1) the extraction of coarse fa-
cial materials such as geometry and diffuse/specular albedos via ex-
tended regression-based inverse rendering using 3DMM [LBB∗17],
2) a newly designed optimization-based refinement of the coarse
materials, and 3) a novel network that is designed for extracting
makeup. Thanks to the disentangled outputs, we can achieve novel
applications such as illumination-aware (i.e., relightable) makeup
transfer, interpolation, and removal. The resultant makeup is well
aligned in the UV space, from which we built a large-scale makeup
texture dataset and a PCA-based makeup model. In future work,
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we would like to overcome the current limitations and explore bet-
ter statistical models for facial makeup.
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