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Figure 1: A sampler of representative results for different indoor scene modeling tasks surveyed in this report — (a) 3D object detec-
tion [YWY22] (Section 5.1), (b) 3D scene segmentation [ZJJ*21] (Section 5.2), (c) scene reconstruction as image-CAD model alignment

[GDN22] (Section 5.3), (d) 3D scene similarity [XMZ* 14] (Section 5.4), and (e) 3D scene synthesis [WSCRIS, LPX*19, YGZT21, PKS*21]
(Section 6). We survey advances in these indoor scene modeling tasks mainly in the realm of 3D geometry.

Abstract

This report surveys advances in deep learning-based modeling techniques that address four different 3D indoor scene analysis
tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor
scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning
models for such scene modeling tasks based on these representations. Specifically, we focus on the analysis and synthesis of
3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks — 3D object detection, 3D scene
segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis
works, though also highlighting model-driven methods that allow for human-centric, progressive scene synthesis. We identify
the challenges involved in modeling scenes for these tasks and the kind of machinery that needs to be developed to adapt to
the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the
state-of-the-art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output
etc., providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have
the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an
integral part of the metaverse.

CCS Concepts
* Computing methodologies — 3D indoor scenes, scene analysis and synthesis, neural models ;
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1. Introduction

A central goal in computer graphics (CG) is to develop tools for
generating real as well as imagined artifacts and environments,
such as 3D objects and scenes. The pursuit of this goal has been
revived in the past decade with a remarkable development in com-
puting technology, including but not limited to, hardware, compute
and machine learning algorithms. Specifically, the dawn of the big-
data era in visual computing coupled with the fast assimilation of
deep learning technology has pushed the frontiers of CG research,
especially in the realm of content creation and understanding. In
this report, we narrow down the focus of the word “content"”, to
simply refer to 3D indoor scenes.

In real life, an indoor scene is physically realized by a sequen-
tial arrangement of objects in a region-bounded indoor space. The
ubiquity of 3D indoor scenes in real life, has placed an increas-
ing demand for simulations in a wide variety of applications, rang-
ing from AR/VR, video games, and indoor navigation, to creating
virtual runs for Al agents that live and interact in those environ-
ments. These indoor scenes are characterized by their constituent
elements — 3D object models laid out in a spatially constrained
manner. These objects need to be held together in some form for
functional reasoning and/or contextual interpretation based on the
intended human activity.

To vividly simulate such indoor environments, one needs access
to a repository of 3D object models, and possess familiarity with
not-so-easy 3D modeling tools. A proxy to this would be to collect
large quantities of real-world scenes through acquisition devices
(stored as sequences of RGB-D image frames, which can then be
converted to a 3D point cloud) and perform object reconstruction
that adheres to the captured scene layout. This alternative has its
own unavoidable limitations — captured scenes have inherent errors
arising out of sensor limitations that need to be processed before
deploying for downstream scene modeling tasks, and 3D recon-
structions at both the object level and arrangement level are poor.
This premise, then, opens up a multitude of research possibilities
in 3D indoor scene modeling, with a analysis-for-synthesis theme,
keeping in mind the overall goal of content creation.

The first step in reconstructing an acquired 3D scene is to un-
derstand its composition, which reduces to localizing constituent
3D objects. Given a large collection of such real-world scans, al-
gorithms can be developed that can learn the occurrence and place-
ment patterns of prominent/all objects, leveraging the localization
module. These priors can be used to generate more of such scene
layouts, tackling the content creation bottleneck at the arrangement
level. Though object-level reconstruction from images/scans is a
challenging task, existing approaches could be borrowed to roughly
visualize the underlying objects. In addition, semantic scene seg-
mentation can complement 3D object localization (and vice-versa)
in heavily occluded scenes at the object level, leading to better
scene reconstruction. The knowledge gained during these analysis
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tasks can help in generating diverse scenes. We, therefore, focus on
modeling scenes in the context of both analysis and synthesis tasks.

1.1. Related Surveys

Our focus is on data-driven modeling of indoor scenes, which in-
cludes both analysis and synthesis of scenes, irrespective of their
representation. In the past, [PMG™*20] focused on the structured re-
construction of 3D indoor scenes, and [CRW*20] focused on gen-
erative models for 3D structures, which partly covers 3D indoor
scenes as applications to presented approaches in different papers
surveyed. Both reports focus on structural methods, one on recon-
struction and the latter on generation, respectively. Our report dif-
fers from the two in the sense that it is not confined to structured
modalities, and includes different aspects of scene analysis, go-
ing beyond reconstruction. As well, for scene generation, we fo-
cus mainly on neural generation, though also highlighting model-
driven methods that allow for human-centric, progressive scene
synthesis. With a mix of historical and contemporary works, we
provide a comprehensive survey on fundamental scene modeling
tasks.

2. Scope of the report

This report deals with 3D indoor scenes, which has a rich literature
on different aspects of analysis techniques, and a relatively smaller
literature on synthesis techniques. As such, it is hardly possible to
exhaustively survey all such publications. This report is focused
on providing technical insights into some of the prominent works
in scene analysis and synthesis tasks, with an emphasis on how
different scene representations necessitate the development of deep
learning models that cater to such representation while addressing
the scene modeling task at hand.

Individual scene modeling tasks presented in this report deserve
a survey of their own. Our aim is to provide directional pointers,
with fundamental technical insights, on some of the seminal, pop-
ular, and recent works in these areas. To the best of our knowl-
edge, this is the first such attempt to bring all scene modeling tasks
in a single report, with a focus on neural network-based modeling
(prominent model-driven approaches have also been touched upon
where the context so necessitates).

Organization We first present different types of indoor scene
representations (Section 3), followed by various indoor scene
datasets publicly available for use (Section 4) for different analysis
and synthesis techniques.

In general, analysis of layouts, both 2D and 3D, spans a wide
range of goals, from low-level understanding tasks such as primi-
tive detection (corners, line segments) and semantic segmentation,
to high-level layout understanding tasks such as saliency detection,
layout reflowing, and layout retrieval to name a few.

In the context of 3D indoor scenes, analysis refers to understanding
the object layout within a confined space, which can be categorized
into two fundamental tasks — 3D object detection (Section 5.1) and
3D scene segmentation (Section 5.2). A more high-level but chal-
lenging task in scene analysis we cover in this report is that of scene
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Figure 2: Different forms of visual representation for indoor scenes
as discussed in Section 3.1: (First two) RGB image depicting an in-
door scene and its corresponding depth map [AWI18], (third) vox-
elized representation of an indoor scene [SYZ* 17] and (right) point
cloud representing a subscene [QCLG20].

reconstruction, either from a single image or posed images (Sec-
tion 5.3). Finally, we discuss relevant literature in 3D scene simi-
larity (Section 5.4), thus concluding our coverage of scene analysis
tasks. For synthesis techniques (Section 6), we mainly look at re-
cent progress towards this goal, which by default, has been skewed
towards neural models. A more detailed discussion of model-driven
techniques for scene generation can be found in [CRW *20].

Audience This report is written keeping in mind new gradu-
ate students in computer science (and allied disciplines). Readers
should have a basic understanding of linear algebra, probability and
statistics, machine learning and standard deep learning machinery
(ex: CNN, GCN, GAN, VAE). This report, is by no means, an ex-
haustive collection of works dealing in the analysis and/or synthe-
sis of indoor scenes. It is more of a directional digest for research
in this area, exposing the main problems and challenges involved,
the observed gains due to a paradigm shift from model-driven ap-
proaches to data-driven ones where applicable, the interplay be-
tween scene representation and choice of computing machinery
(neural network), and the evolving trends that could inspire novel
problems in this area. Finally, we discuss open problems in this
domain that have wider industrial applicability.

3. Scene Representations

Representation of a scene should convey information about the
combination of atleast two things — (1) the composition of its lay-
out, either as a single entity or as a set of constituent objects (se-
mantics) and, (2) the arrangement of objects (and perhaps their re-
lations) in a given space. Such a combination could be either ex-
plicitly encoded or may need to be inferred separately. Represen-
tations that necessitate additional processing to infer information
about the object semantics and their placement are oblivious to the
underlying structure of the layout, and are said to be purely visual
in nature (ex: raster images in 2D, point clouds, and voxel grids in
3D). On the other hand, if the semantics of the constituent objects
and their placement (and even relations) is explicitly encoded, such
representations are said to be structural in nature (ex: multi-channel
segmented images, graphs). Thus, we broadly classify scene repre-
sentation into two categories: (a) visual, and (b) structural.

3.1. Visual Representations

Visual representations, as the name suggests, mainly represent a
scene as a single entity. Common examples of this kind of repre-
sentation include 2D images (monochrome, RGB and RGB-D) and
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3D point clouds. Figure 2 shows these common visual representa-
tions used for scenes, and layout data, in general.

2D images and 3D voxels Two-dimensional rectangular grids
of picture elements in the form of images are the common form
of visual representation for scenes. Such data could be obtained in
different ways such as using digital cameras or scanning devices
(RGB-D cameras) such as Microsoft Kinect. There also exists a 3D
counterpart to 2D pixel grids called 3D voxel grids that approxi-
mate a 3D surface. Such volumetric data representations are mem-
ory intensive and have been found to be intractable for modeling
3D shapes, let alone 3D scenes.

3D point cloud Real-world 3D indoor scenes are also digitized
using commercial 3D scanners, where the acquired data is stored as
a point cloud representing the surface of objects in the 3D environ-
ment, as shown in Figure 2. Point clouds do not encode topological
information of the underlying 3D content and simply depict the 3D
data in the simplest visual form possible.

This kind of 2D grid representation in the form of images and
3D point cloud respectively, depict an indoor scene as a single
entity, i.e., the semantics of the constituent objects, their geomet-
ric arrangement and their relationships are not accounted for by
the representation, and will have to be inferred separately. Exam-
ples of such representations include monochrome images for 2D
indoor scenes in the form of a floorplan [KYH"19], RGB (+D)
images [NSF12] and point clouds [DCS*17]. Figure 2 illustrates
different visual representations of indoor scenes.

The above representations convey information about indoor
scenes in a structure-agnostic manner — that is, only an abstrac-
tion of the scene layout is available. Its composition based on con-
stituent objects will need to be inferred separately.

3.2. Structural representations

Structure refers to the atomic composition of an entity/matter. In
the case of indoor scenes, it has to do with the type, arrangement,
and/or relationship of different objects forming the scene layout.
There are many ways of representing structured data, which have
been surveyed [CRW*20] for 3D structures in general. While most
of it directly applies to 3D scenes, the choice of such structural
representations for different works chosen for this report needs to
be discussed. We fill this piece of information below by briefly de-
scribing structure representations and the associated works in the
context of 3D indoor scenes.

Segmented Scenes Structure, in its simplest and weakest form,
can be thought of as assigning semantic labels to visual repre-
sentations of 2D, 3D scenes (images, voxels, point cloud etc.),
where each pixel/voxel/point represents the type of room/object en-
tity present at that location. For example, assigning labels to (a)
rooms in a floorplan image as in the RPLAN dataset [WFT*19,
PBEPAE20] and (b) objects (bed, nightstand, table lamp, cabinet
etc.) in a top-down scene image [WSCR18] can be considered as
collections of simplest scene structures. Figure 3 shows a few ex-
amples of this form of structural representation. This representa-
tion is built upon standard visual representations. Furthermore, ma-
chine learning models used for processing (analyzing and synthe-
sizing) visual representations can be directly employed for these
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Figure 3: Figure illustrating semantic segmentation of indoor
scenes: a top-down scene image on the left [WSCRIS8] and a 2D
foorplan on right [WFT*19, PLF*21]. Such segmented semantic
entities form the simplest form of structural representation as dis-
cussed in 3.2.

segmented layouts, making them easier to work with. The disad-
vantage is that they do not (and can not) understand the underly-
ing relationships among different elements, and therefore, are not a
strong fit for geometric analysis and synthesis tasks.

Component/Entity Sets A set of indoor scene elements, i.e., ob-
jects, with information about their semantics and oriented bounding
box, explicitly accounts for “atoms” in the structural representa-
tion. Such a set is called an entity set, which essentially is a set of
freely-floating elements in space, with no relationship information
encoded between any pair of elements. This kind of scene repre-
sentation is used in conjunction with a wide range of neural net-
works that process just the elements (their box coordinates and
semantics), as evidenced in sequence-to-sequence analysis tech-
niques [AGSK20] which makes use of a Recurrent Neural Net-
work, or, for synthesis tasks such as in [WYN20, PKS*21] which
make use of a Transformer.

Graphs Adding relationships between pairs of elements (nodes
of a graph) in the entity set, in the form of edges, reveals the
full structure of a scene layout [PLF*21, ZCZ*21]. These edges
connecting nodes in a graph usually encode spatial relationships,
such as adjacency, proximity [LYJ*20, HHT*20] and physical sup-
port [FSH11], but can also be simply connected between any two
pairs of objects/elements, regardless of their spatial relationships
[MRC20, PLF*21]. Figure 4 shows one such example of a seman-
tic relationship graph for an indoor 3D scene.

The advantage of using graphs is that they are a more general
and flexible form of structured representation. However, structured
scene modeling is constrained by advances in graph modeling
techniques, which is an active area of research in the broader
machine learning community. As such, the development of sophis-
ticated architectures for analysis tasks [LGD*19] and generative
models of arbitrary graphs is still in nascent stages.

Any flat graph can be encoded as a hierarchy by repeatedly
contracting its edges. Trees or hierarchies, are therefore, less dense.
The key difference is that hierarchies consist of internal nodes
that represent groups of objects, while all the nodes of a graph
represent the objects. Hierarchies are a class of restricted graphs
and can be used to represent much of the naturally occurring
structure in the real world. For example, a 3D scene can be thought
of as a hierarchy of objects [LCK* 14, LPX*19], where objects are
grouped based on their spatial positions, which in turn, is based on

the functionality of individual objects in a group, see Figure 4. This
representation was also extended to 2D documents in [PBEPAE20]
where individual document entities were merged along a tree using
spatial relationships. A major bottleneck of representing 3D scenes
using hierarchies is that there is no unique way of doing so, and as
such, task-specific models that consume hierarchies inherit design
limitations as a result of hard-coded heuristics used to construct
such hierarchies.

4. Indoor 3D scene datasets

There exist indoor scene datasets that either capture real-world
scenes using acquisition devices or are professionally designed us-
ing curated 3D CAD models of furniture assets. Table 1 summa-
rizes various such indoor 3D scene datasets, which have been dis-
cussed in literature at various points such as in [PMG*20,LYS*21,
FCG*21]. We aim to provide a comprehensive list of such up-to-
date datasets along with the potential applications they could serve,
each of which is briefly discussed below.

SUN 3D [XOT13] offers a dataset of large-scale RGB-D
video frames with semantic object segmentation and camera pose.
The dataset contains 415 videos captured for 254 different in-
door spaces, in 41 different buildings. Geographically, the places
scanned are mainly distributed across North America, Europe, and
Asia. The dataset can be used to obtain (a) a point cloud of the
scene; (b) 3D object models obtained from segmentation; (c) all
viewpoints of an object, and corresponding camera poses relative
to that object; (d) a map of a room, showing all of the objects and
their semantic labels from a bird’s-eye view.

UZH 3D dataset [UZH] contains 40 laser-scanned models of
office environments and apartments. Some scenes have arbitrarily
oriented walls which pose a challenge to many techniques in re-
constructing floor plans. The point cloud models in the dataset are
provided in ASCII PTX format with color information.

ETH 3D dataset [ETH] consists of 898 RGB images of both
indoor and outdoor spaces. The dataset also provides ground truth
point cloud and depth maps which can be used to benchmark multi-
view stereo algorithms.

Matterport3D [CDF* 17] provides a large-scale RGB-D dataset
of 90 building-scale scenes. The dataset contains 10,800 panora-
mas and 194,400 RGB-D images. It is also provided with recon-
structed textured 3D mesh with object-level semantic annotations
and camera pose. The dataset can be used for various tasks such
as room-type classification, semantic segmentation, surface normal
estimation, keypoint matching, and view overlap prediction.

ScanNet [DCS*17] is a RGB-D video dataset of 1513 indoor
scenes. The 3D reconstructed mesh has texture information and
is labeled with object-level semantic segmentations. Moreover, the
dataset also provides aligned 3D CAD models for a subset of scans.
The dataset can be used for many 3D scene understanding tasks in-
cluding 3D object classification, semantic voxel labeling, and CAD
model alignment and retrieval.

CRS4/ViC dataset [CRS] contains equirectangular RGB im-
ages covering 360x180 degrees of multi-room residential as well

COMPUTER GRAPHICS Forum (8/2023).



A. Gadi Patil & S. Gadi Patil & M.Li & M.Fisher & M.Savva & H.Zhang / Advances in Data-Driven Analysis and Synthesis of 3D Indoor Scenes 5

chair

root node
floor walll wall node wall3 wall node
/\ /\
wall2 co-oc node wall4 co-oc node
/\
surr node rug cabinet1 cabinet2
bed supp node = supp node
R
stand1 table lamp1 stand2 table lamp2

Figure 4: Representing 3D indoor scenes via strong structural representations (Section 3.2): on the left is an indoor scene represented as a
semantic-relational graph [WDNT20], and on the right is a bedroom scene represented as a hierarchy [LPX* 19].

Name Data ‘ Coverage ‘ Capture ‘ #scenes ‘ #CAD models ‘ Model Textures 3D Annotation
Real scans

SUN 3D [XOT13] Registered RGB-D | Perspective | Hand-held video 254 - No texture Raw PCD
SUN RGB-D [SX14] Registered RGB-D | Perspective | Hand-held video 10779 - No texture Raw PCD
Matterport3D [CDF*17] Registered RGB-D | Panoramic Tripod 2,056 - Rec. from scans Raw Mesh
ScanNet [DCS*17] Registered RGB-D | Perspective | Hand-held video 1,506 296 Rec. from scans Raw Mesh
Scan2CAD [ADD*19] Mesh All Manual modeling 1506 3049 No texture Mesh
OpenRoom [LYS*21] RGB-D Perspective | Hand-held decide 1287 44 UV mapping Mesh
UZH 3D [UZH] Registered PCD Scan Tripod 53 - No texture PCD
3DSSG [WDNT20] PCD All Hand-held device 1482 - Rec from scans Mesh + scene graph
SceneNN [HPN*16] RGB-D Perspective | Hand-held device 100 - Rec. from scans Mesh
Synthetic

Replica [SWM™19] CAD model All Manual modeling 18 - RGB texture camera Mesh
Structured3D [ZZL*20] CAD model All Manual modeling 3500 - No texture 3D structure
SceneNet [HPB*16] Mesh All Manual modeling 57 3699 No texture Mesh
InteriorNet [LSM*18] RGB Perspective | Manual modeling - - No texture -
Hypersim [RRR*21] RGB Perspective | Manual modeling 461 - Per pixel color RGB-D
3D-FRONT [FCG*21] Mesh All Manual modeling 18968 13151 Professional Mesh
Real scene images

ETH 3D [ETH] Registered RGB Perspective Tripod 898 - No Texture PCD
CRS4/ViC [CRS] Registered RGB Panoromic Tripod 191 - No texture -
NYU Depth v2 [SHKF12] | Registered RGB-D | Perspective | Hand-held video 1449 - No texture RGB-D
TUM [SEE*12] Registered RGB-D | Perspective | Hand held video 39 - No texture RGB-D

Table 1: A summary of publicly available 3D indoor scenes datasets, grouped based on acquisition source, along different axes that include
high-level details such as the physical mode of capture to low-level ones such as the kinds of annotations on the scene and the number of

CAD models/scenes. #scenes indicates number of rooms/scenes populated with 3D furniture objects, PCD=“Point cloud".

as commercial environments. It also contains images of rooms with
double-sloped ceilings and cluttered with many objects, making it
a challenging dataset to use for reconstructing a 3D floor plan.

Replica dataset [SWM™*19] provides 3D indoor scene recon-
structions of rooms and buildings with a rich semantic variety of
environments and their scale. The dataset contains high-dynamic-
range (HDR) textures and per-primitive semantic class and instance
information. Due to the high level of realism of renderings from
the Replica dataset, the creators believe that deep learning mod-
els trained on this dataset can adapt well to real-world images and
videos of indoor scenes.

Structured3D dataset [ZZ1*20] contains rich ground truth 3D
structure annotations of 21,835 rooms in 3,500 houses, and more

COMPUTER GRAPHICS Forum (8/2023).

than 196k photo-realistic 2D renderings of the rooms. The scenes
are represented in the format of “primitive + relationship". The use-
fulness of the dataset is demonstrated on room layout estimation
task.

NYU Depth v2 dataset [SHKF12] consists of 1449 RGB-D im-
ages of commercial and residential buildings comprising of 464 in-
door scenes. The dataset provides dense per-pixel labeling, where
each object in the image is labeled with class label and instance an-
notations. The dataset also includes support annotations between
two objects in the image. This dataset can be used for tasks such as
object recognition, segmentation, and inference of physical support
relationships.

SUN RGB-D dataset [SX14] consists of 10779 RGB-D images
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of real indoor scenes captured using four different sensors. The en-
tire dataset is densely annotated with room category, 2D and 3D
oriented bounding boxes for objects, and camera pose informa-
tion. Specifically, it includes 146,617 2D polygons and 58,657 3D
bounding boxes with accurate object orientations, as well as a 3D
room layout and category for scenes. This dataset can be used for
scene-understanding tasks and evaluate such models using mean-
ingful 3D metrics.

TUM dataset [SEE* 12] contains 39 image sequences capturing
office environments and industrial halls. Each sequence contains
color and depth images and also ground truth trajectory. The dataset
is aimed at evaluating visual odometry and visual SLAM systems.

3DSSG dataset [WDNT20] provides 3D semantic scene graphs
for 1482 scenes from 3RScan [JW19] dataset. 3DSSG dataset con-
tains scene graphs with 40 different types of object relationships,
and 93 different attributes for objects from 534 different class la-
bels represented in class hierarchies. Such semantically rich scene
graphs can be used for many applications such as semantic scene
graph prediction and cross-domain scene retrieval tasks.

SceneNN [HPN*16] is a dataset of RGB-D scans of 100 indoor
spaces. The dataset provides information about camera pose, re-
constructed mesh, color and texture information, axis-aligned and
oriented bounding boxes, as well as object pose. This dataset can
be used for shape completion, scene relighting, creating synthetic
scenes using CAD models by using object distribution statistics of
real scenes from the SceneNN dataset, and novel view synthesis
tasks.

Scan2CAD [ADD*19] is a large-scale dataset of 1506 Scan-
Net [DCS*17] scene objects aligned to 14225 (3049 unique) CAD
models of ShapeNet dataset [CFG™15]. It contains 97607 pairwise
keypoint correspondences between scene objects and CAD mod-
els. The dataset also contains oriented bounding boxes for objects
in the scenes. This information can be used in various applications
such as correspondence prediction between unseen 3D scenes and
CAD models, and their pose estimation task.

OpenRoom [LYS*21] dataset is aimed at creating photo-
realistic indoor scenes by adding high-quality material and light-
ing information. The dataset uses 1287 ScanNet [DCS*17] scenes
to create such photo-realistic indoor scenes. The dataset is anno-
tated with ground truth scene layout, high-quality material, and
spatially-varying BRDF lighting, including direct and indirect illu-
mination, light sources, per-pixel environment maps and visibility.
This dataset is useful in inverse rendering, scene understanding, and
robotics applications. The dataset can also be used for shape, mate-
rial and lighting estimation which are crucial in augmented reality
(AR) and virtual reality (VR) applications.

SceneNet [HPB*16] is a dataset of synthetically generated 3D
indoor scenes. It contains 57 scenes of five categories: bedroom,
office, kitchen, living room, and bathroom. Each scene has 15-250
objects. The RGB-D renderings of these scenes can be used for
per-pixel semantic segmentation tasks. The dataset also provides a
tool that can be used to generate unlimited labeled 3d indoor scenes
programmatically, which is helpful in training data-driven machine
learning models.

InteriorNet [LSM*18] is a synthetic 3D indoor scene dataset

created using 1M furniture CAD models and 22M interior layouts.
The dataset has 15K sequences of 10K randomly selected layouts
and 5M images rendered from 1.7M layouts. The dataset can be
used to train and evaluate SLAM systems.

Hypersim [RRR*21] is photo-realistic synthetic 3D indoor
scene dataset. It contains 77400 images rendered from 461 indoor
scenes with per-pixel labels, ground truth scene geometry, mate-
rial and lighting information, and semantic segmentation label. The
dataset was evaluated on two scene understanding tasks: semantic
segmentation and 3D shape prediction.

3D-FRONT [FCG*21] dataset contains professionally designed
3D indoor scenes of 31 scene categories. It has 6813 CAD houses
with 18968 rooms furnished with high-quality textured 3D models
from 3D-FUTURE [FIG*21] dataset. The usefulness of the dataset
was demonstrated on scene understanding tasks such as 3D indoor
scene synthesis and object texturing in scene context.

The explosion of NeRF [MST*21] has brought a variety of scene
images into focus, most of which are single-object images and are
not catered to indoor scenes. Here we briefly touch upon a few
datasets used in novel view synthesis.

RealEstate10K [ZTF" 18] is a dataset of camera poses on 10K
real estate YouTube videos that contain indoor and outdoor scenes
of houses. These videos are divided into clips of 1-10 seconds, and
for each clip, the dataset provides information such as camera posi-
tion, orientation, and field of view per frame. This dataset finds its
usefulness in tasks related to view synthesis.

ACID [LTJ*21] Another commonly used dataset for view syn-
thesis is the Aerial Coastline Imagery Dataset (ACID) [LTJ*21]. It
is a dataset of outdoor nature videos (891 videos) annotated with
camera pose information.

Common Objects in 3D (Co3D) [RSH*21] is another dataset
consisting of 18,619 videos of objects from 50 MS-COCO cate-
gories. Compared to RealEstate10K and ACID, the Co3D dataset
is simpler as the videos are focused on single objects with no oc-
clusion.

EgodD [GWB*22] provides a bit different dataset with videos
capturing everyday activities from first-person perspective. It con-
sists of 3025 hours of videos shot in indoor and outdoor scenar-
ios. In addition to videos, it also provides other information such
as 3D scans, audio, gaze, stereo, multiple synchronized wearable
cameras, and textual narrations. This dataset finds usefulness not
only in view synthesis but also in other challenging tasks such as
analyzing hand-object interaction, audio-visual conversation, and
forecasting activities.

5. 3D scene analysis

The first step in computational scene synthesis, i.e., teaching com-
puters to generate indoor environments, is scene analysis, i.e.,
teaching computers to understand their composition — what charac-
terizes scenes of a particular category (say, bedrooms), what kind
of furniture goes in there, how to identify different furniture ob-
jects, how to detect different instances of the same object in the
scene, and how to reason about their placements in the context of
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Related Work Learning Scene rep Backbone Input Output Dataset Evaluation Metric(s)
framework
TSDF + 3D Normal
[SX14] Supervised | RGB-D image SVM + Point Density Pr(C) for a 3D OBB SUN RGBD AP; 2D,3D IoU
+ Shape features
. . TSDF scene
[SX16] Supervised | RGB-D image 3D CNN X Pr(C) and 3D OBB SUN RGBD AP, AR, 3D IoU
and RGB image
[RS16] Supervised | RGB-D image SVM Point density 3D OBB SUN RGBD AP, AR
and normal features
[QLHG19] Supervised | RGB-D image PointNet++ 3D point cloud 3D OBB SUN RGBD, ScanNet 3D IoU, AR, mAP
[QCLG20] Supervised | RGB-D image | PointNet++, 2D CNN RGB image and 3D OBB SUN RGBD 3D IoU, AP
3D point cloud
[XLW*20] | Supervised | RGB-D image | PointNet++ | 3D pointcloud | 3D OBB | SUNRGBD, ScanNet | 3D IoU, mAP
[ZSYH20] | Supervised | RGB-D image | PointNet | 3Dpointcloud | 3D OBB | SUNRGBD, ScanNet | 3D IoU, mAP
[LZC*21] | Supervised | RGB-Dimage | PointNet, Transformer | 3D point cloud | 3D OBB | SUNRGBD, ScanNet | 3D IoU, mAP
[YWY22] ‘ Supervised ‘ RGB-D image PointNet and 3D point cloud 3D OBB Sun RGBD, ScanNet | 3D IoU, AP, mAP

Equivariant Point Network

Table 2: Table summarizing prominent 3D object detection works in indoor scenes. We provide details on the scene representation, the input
for and output of the model, the central algorithm that makes the task possible, dataset used and the metrics employed to evaluate results
from proposed methods. AP - Average Precision, mAP - mean of Average precision, AR - Average Recall, loU - Intersection over Union.
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Figure 5: Illustration of training (top) and test (bottom) phases for
3D object detection using Sliding Shapes [SX14]. Refer to the text
in Section 5.1 for details.

global scene plausibility. In other words, computational analysis of
scenes, a.k.a scene understanding, is a prelude to scene synthesis.

Understanding comes from observations, which are relayed by
indoor scene datasets, which have been discussed in Section 4.
Each of these datasets uses a different form of representation for
indoor scenes, as categorized in Section 3. In literature, different
scene analysis tasks use different kinds of representation, which
could be motivated by different factors such as the easy availability
of a dataset with one form of representation, friendliness toward
off-the-shelf networks used as a part of the proposed approach, or
the need for developing novel architectures due to the choice of
a certain representation. In the upcoming sections, we provide a
summary of different works along similar axes.

The main analysis tasks we cover in this report include 3D ob-
ject detection (Section 5.1), semantic scene segmentation (Section
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Figure 6: Figure illustrating the technique behind Deep Sliding
Shapes [SX16]. Top: using a 3D CNN to propose regions of interest
in 3D. Bottom: training pipeline based on the 3D and 2D CNN s to
localize bounding boxes in 3D space.

5.2), 3D scene reconstruction (Section 5.3, and 3D scene similarity
(Section 5.4).

5.1. 3D object detection

Recognizing objects in a scene, i.e., identifying their semantic cate-
gory and localizing their spatial position via 2D/3D bounding boxes
has been a fundamental and long-standing goal of computer vision.
This report does not cover works on 2D object detection in RGB
images. Rather, we focus on notable works on 3D object detec-
tion in indoor scenes, a task that is challenging mainly due to vari-
ations in shape (both inter and intra-class), texture, illumination,
viewpoint, and the presence of clutter and occlusions. Table 2 pro-
vides a comprehensive overview of notable methods on 3D object
detection in indoor scenes. Broadly, these works can be catego-
rized into three types: sliding window techniques [SX14, SX16],
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grouping techniques [QLHG19, QCLG20, XLW*20], and group-
free techniques [LZC*21], as discussed below.

Sliding window techniques Song et al. [SX14] introduce Slid-
ing Shapes, a supervised machine learning-based approach for 3D
object detection. The work makes use of depth maps for designing a
3D object detector, in addition to a collection of 3D CAD models,
where each CAD model is rendered from many viewpoints, ob-
taining synthetic depth maps for every viewpoint. For each depth
rendering of a CAD model, features based on truncated sign dis-
tance fields (TSDF) values, 3D normals, point density, and voxel
occupancy are extracted (collectively known as point features) and
an exemplar support vector machine (Exemplar-SVM) classifier is
trained on point features of the sensor-acquired scenes. During test
time, a sliding window is moved through the 3D scene space to
detect an object; see Fig 5.

The successor to Sliding Shapes, termed, Deep Sliding Shapes,
was presented in [SX16]. It is a supervised deep learning-based
framework which makes use of a 3D ConvNet that takes a 3D volu-
metric scene from an RGB-D image as input and outputs 3D object
bounding boxes. A 3D Region Proposal Network (RPN) is trained
at two different scales to learn object-ness from geometric shapes.
An Object Recognition Network (ORN) is jointly trained with RPN
to extract geometric features in 3D and color features in 2D, to
eventually output a category label and 3D box coordinates. Figure
6 illustrates these two steps during training. At test time, a sliding
window is again moved through the space of a 3D scene to detect
the presence of an object.

One main limitation of both the above approaches is that they do
not explicitly encode object orientation, which can hurt the perfor-
mance of a 3D object detection system. Ren et al. [RS16] overcome
this limitation by designing a new set of features, called, cloud-of-
oriented-gradient (COG), that robustly link 3D object pose to 2D
image boundaries. COG features are nothing but the gradients of
2D projections of oriented cuboid points falling inside the object
voxel. COG features, in addition to the point cloud density fea-
tures and 3D normal histogram features form the point features, are
used to train an SVM for 3D object detection similar in spirit to
Sliding Shapes. Sedaghat et al. [SZAB17] also address the limita-
tion of Deep Sliding Shapes by adding orientation classification as
an auxiliary task, and demonstrate that speed and accuracy of 3D
detection using a sliding window increases when the 3D CNN is
jointly trained on object labels, location and pose.

Voting techniques In recent years, voting concepts, specifically,
Hough voting, have made a comeback in the space of 3D object
detection. VoteNet [QLHG19] and ImVoteNet [QCLG20] are two
such works that are built on voting strategies. VoteNet demonstrates
two advantages of using the voting strategy for 3D object detec-
tion — first, it does not make use of any 2D object detectors which
used to be the de-facto step in 3D object detection, and second,
the Hough voting technique used in the work is now differentiably
learned in an end-to-end supervised manner.

As shown in Figure 7, the input to the system is a colorless point
cloud of a scene, which is processed by PointNet++ [QYSG17],
to produce features for every point. A voting net, which is nothing
but a MLP on these point features, produces virtual points, called
votes, for centers of 3D bounding boxes. The votes are clustered in

VoteNet

Voting in Point Clouds Object Proposal and Classification from Votes

Kclusters

x40
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shaped

Point cloud feature
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Figure 7: An end-to-end learning pipeline for 3D object detection
using voting technique (VoteNet) [QLHG19] that directly operates
on 3D data without the need for any 2D image priors, such as 2D
object detectors.

the 3D space using farthest point sampling and L, distance, from
where the extent of the 3D bounding boxes and their centroids are
regressed using another MLP. All of this training is done in a su-
pervised manner, where the votes on the training data are available
since it is supervised. ImVoteNet [QCLG20] incorporates all the
steps from VoteNet, but in addition, makes use of a 2D object de-
tector, where votes are obtained in the image space, which is lifted
to the 3D space (along with the 2D object center) by ray-casting.

Hybrid techniques A hybrid model for 3D object detection
on colorless scene point clouds was proposed by Zhang et al.
[ZSYH20], where bounding boxes are represented using three ge-
ometric primitives — bounding box centers, face centers, and edge
centers. These hybrid geometric primitives represent an overcom-
plete set of constraints that are predicted using a neural network.
The predicted geometric primitives are converted into object pro-
posals by defining a distance function between an object and the ge-
ometric primitives. The main purpose served by the distance func-
tion is that it helps in the continuous optimization of object propos-
als. A final matching and refinement module is proposed to classify
object proposals into detected objects.

Context-aware techniques Despite a large inter- and intra-class
shape variation and illumination effects in 3D indoor scenes, the
context relation of object arrangements provides useful cues for ob-
ject detection. Some prior works seek holistic scene understanding
to improve object detection with other auxiliary tasks. For exam-
ple, Lin et al. [LFU13] first estimate the candidate 3D cuboids of
the objects, and then use a conditional random field (CRF) model to
Jjointly solve for the scene classification and 3D object recognition.
This holistic approach takes the scene context into account while
also accounting for relations between different objects for the task
of object classification.

Zhang et al. [ZBK™] integrates the context relations into neu-
ral networks using automatically constructed scene templates. They
first select a template and align it with the input scene by a trans-
formation network, and then compute the global and local features
of the input scene based on the aligned template. What makes this
approach holistic is that it uses global features to classify scenes,
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Figure 8: PointNet architecture [QSMGI17] that was originally
proposed for the task of shape classification and segmentation at
the object part level, as well as for indoor scenes. This work has
been the basis for many 3D object detection works, especially for
developing task-specific feature descriptors.

while using both the global and local features to predict the ex-
istence of objects and the box offset for better alignment. Huang
et al. [HQX™ 18] refer to their approach of jointly recovering the
object bounding boxes, room layout, and camera pose as a holis-
tic one. They estimate all this information from a given RGB im-
age, then use the predicted camera pose to project the inferred 3D
bounding boxes back to the 2D plane, in order to obtain a more
consistent prediction.

Recent investigations have looked into utilizing context infor-
mation to complement 3D object detection. Feng et al. [FGW*21]
take PointNet++ [QSMG17] as the backbone to generate candidate
3D object bounding boxes, and then use the object-object rela-
tion graph to reduce uncertainty during 3D bounding box regres-
sion. Duan et al. [DZL*22] argue that 3D object detection can be
improved by adopting relations between representative proposals,
which is more efficient than those between all the predicted pro-
posals. They accomplish this by proposing what they call a Dis-
ARM module, which first samples relation anchors with rich in-
formation and then estimates the weight of each proposal w.r.t the
anchors based on spatial- and feature-aware displacements. The
weighted proposal-anchor features provide contextual information
to complement the anchor proposal feature. In addition, Sun et
al. [SFZ*22] propose an online data augmentation pipeline based
on the functional relation between objects, called Correlation Field,
that helps boost the performance of object detection.

Transformer-based techniques A more recent supervised
learning approach by Liu et al. [LZC*21] to 3D object detection on
scene point clouds makes use of the transformer model [VSP*17],
which is essentially an attention-based feature aggregation module
on the input. Unlike voting-based object detection works such as
VoteNet [QLHG19] and ImVoteNet [QCLG20] where the points
are assigned to an object candidate via a heuristic point-grouping
stage, [LZC*21] uses a grouping-free approach for detecting
objects in a scene point cloud. Instead of obtaining a candidate
object feature from a heuristically-grouped set of points (also
called "votes"), candidate features are computed by neurally
estimating the contribution of each point to the object candidate

COMPUTER GRAPHICS Forum (8/2023).

using attention mechanism.

Note that all the above works have been discussed in the con-
text of indoor scenes, which is the focus of this report. There
exist impactful works that have been developed in the context
of outdoor scenes, specifically on the KITTI dataset [GLSU13],
such as PointRCNN [SWL19], PointPillars [LVC*19], CenterPoint
[YZK21] that operate on the 3D point cloud of the scene and are
able to predict a 3D bounding box for scene objects. In theory, these
architectures could very well be extended to 3D indoor scenes, but
supporting experiments have not been presented.

Discussion With an anticipated shift from feature-engineered
methods [SX14, RS16, SZAB17] to deeply learned ones [SX16,
QLHG19,QCLG20,ZSYH20,LZC*21], 3D object detection in in-
door scenes has drawn significant research interest over the years,
leading to improved performances of proposed approaches.

Assuming good quality indoor scene data at hand, extracting rich
features from the 3D representation plays a critical role in the suc-
cess of 3D object detection algorithms. Apart from the 3D-aware
local shape features, the model should be designed to encode con-
textual scene information, either explicitly as done in sliding win-
dow techniques used in [SX14,SX16], or encoding contextual rela-
tions as done in [ZBK*,HQX* 18, FGW*21], or implicitly as done
in transformer-based networks. Encoding such contextual informa-
tion proves useful when the input scene contains noise or occlusion
and clutter. This means that the extracted features should account
for spatial and semantic scene information to facilitate accurate ob-
ject localization in the form of a detected 3D bounding box (loca-
tion, size, and orientation).

Since transformer models are well known for their ability to
capture long-range dependencies via the self-attention mechanism,
they can be employed on large-scale scenes without the loss
of spatial information, as opposed to when using convolutional
architectures with or without specially designed modules. This is
evident from [LZC*21]. The downside of transformer models is
that the intermediate computational operations cannot be traced
as easily as in the case of CNNs (ex. being able to visualize the
intermediate layers and activation maps). There is an accuracy and
interpretability trade-off with transformers, but given the improved
performance, they are a good starting point.

In addition, a strongly desired property in 3D deep learning
is rotation equivariance. Accounting for equivariance to object
rotations in 3D scenes, not at the global input level, but rather at
the object level, is an interesting future direction — attempts have
been made to take into account object rotations when developing a
3D object detector [RS16,SZAB17], but has not been explored by
deeply learned methods.

Since we are discussing about indoor scenes, object rotations
are invariably around the gravity axis. Recently, [YWY22] propose
a rotationally equivariant 3D object detector, which is able to de-
tect bounding box that are equivariant to the object pose. But even
this work accounts for object rotations along the gravity axis alone.
Theoretically, it may be easy to extend the framework in [YWY22]
to SO(3) rotations, but many fundamental issues may need to be
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solved in practice. Developing a 3D object detector that is equiv-
ariant to SO(3) rotations invariably begs the question: “Are there
robust shape descriptors that are rotation-equivariant?". A recent
work [PCS23] systematically evaluates recent shape classification
networks for robustness to rotation invariance, which can provide
helpful pointers in designing rotation-in/equivariant architectures
for 3D object detection.

5.2. 3D semantic scene segmentation

A more in-depth understanding of indoor scenes, beyond 3D object
detection, involves segmenting objects based on their semantics.
An even comprehensive 3D indoor scene understanding pushes
segmentation further, going into instance segmentation (not simply
semantic). Indoor scenes contain a variable number of objects that
occur in different positions and orientations. Moreover, some sub-
scenes may contain identical sets of similar/identical objects, which
can simply be represented by a single model. Determining the spa-
tial extent of objects in an indoor scene (i.e., segmentation) in the
presence of different categories with varying number of model in-
stances, geometries, and rotation distributions is quite challenging.
This problem also is related to object detection, since for scene
segmentation, the underlying models will need to implicitly reason
about objects in a scene, allowing for fine-grained localization that
result in segmenting the overall object.

Most works in the area of 3D indoor scene understanding restrict
themselves to semantic segmentation, although there are some
works that tackle the instance segmentation problem. Such works
primarily build on the intuitions of semantic scene segmentation
networks. As such, we cover notable works that propose methods
for semantic segmentation, all of which use point clouds as the
choice of scene representation. Table 3 lists notable works on 3D
semantic segmentation in indoor scenes.

Point cloud-based techniques Qi et al. [QSMG17] propose
the very first point-cloud processing network, PointNet, that can
be used for 3D semantic segmentation on shapes and scenes. It
has a unified framework (supervised) for object classification and
segmentation. By design, the semantic segmentation network of
PointNet is an extension of the classification network which takes
n points as input, applies transformations on the input as well as
intermediate feature, and then aggregates point features by max
pooling; see Figure 8 for an overview. Experiments were performed
on the Stanford 3D semantic parsing data which contains 3D scans
of indoor environment with semantic annotations per point. During
training, random crops with 4096 points coming from a room in
the dataset is passed through the network which learns to assign
a semantic label to each point (segmentation is essentially a
classification task on each point). During test time, all points form-
ing a room are input to the system and semantic labels are obtained.

PointNet++ proposed by Qi et al. [QYSG17] builds on top of
PointNet to further improve semantic scene segmentation. They
propose a hierarchical feature learning architecture that uses Point-
Net as a feature processing block. While PointNet uses a single max
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Figure 9: Network architecture for semantic scene segmentation,
as proposed in citedai20183dmv. It is composed of a 2D network
and a 3D one. A 2D CNN extracts features from aligned images of a
scene for which a geometric reconstruction is also performed from
RGB-D scans. These 2D CNN features are mapped to 3D space
using a differentiable back-projection layer. Features from multiple
views are max-pooled on a per-voxel basis and fed into a stream
of 3D convolutions, along with the reconstructed 3D geometry. Fi-
nally, both 3D streams are joined and the 3D per-voxel labels are
predicted. The whole network is trained in an end-to-end fashion.

pooling operation to aggregate the whole point set, PointNet++
builds a hierarchical grouping of points and progressively abstracts
larger and larger local regions along the hierarchy. This leads to
better semantic scene segmentation. However, the max pooling op-
eration used to aggregate features in local neighborhood regions
often causes loss of information. PointCNN [LBS*18] proposed
an -conv operator to adapt the convolutional networks for point
clouds. Specifically, to aggregate the local region feature of each
point spanned by its K nearest neighbors, the network predicts an -
transformation matrix to weight and permute the per-point features,
which is then processed using element-wise product and sum oper-
ations present in a typical convolution operation. In continuation
with point convolutions, Thomas et al. [TQD*19] introduce KP-
Conv, a convolution operation that operates on point clouds, taking
radius neighborhoods as inputs and processing them with weights
spatially located by a small set of kernel points. A deformable ver-
sion of this convolution operator is also proposed that learns local
shifts, effectively deforming the convolution kernels to make them
fit the point cloud geometry. They demonstrated an improved per-
formance on semantic segmentation which could be attributed to
the flexibility offered by deformable KPConv.

Wang et al. [WSL*19] propose a supervised dynamic graph
convolutional neural network (DGCNN) that uses PointNet as the
backbone network, and demonstrate the application of their pro-
posed method for semantic scene segmentation. The key idea is
to compute point graphs at every layer and applying edge convo-
lutions that are invariant to neighbor ordering. Point graphs are
computed using k-nearest neighbor (based on L, distance) between
points. The dynamic nature of graph computation at every layer of
the graph convolution network enables them to capture better local
and global features, leading to improved semantic scene segmenta-
tion results. Li et al. [LMTG19] propose a dilated version of graph
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Related Work Learning Scene rep Backbone Input Output Dataset Evaluation Metric(s)
Framework
[QSMG17] Supervised | RGB-D image MLP Scene point cloud Per-point scores S3DIS Acc, mloU
[QYSG17] Supervised | RGB-D image PointNet Scene point cloud Per-point scores ScanNet Acc, mloU
[DN18] Supervised | RGB-D image 2D, 3D CNN Multi-view RGB ¥mages Per-voxel scores ScanNet Acc
and voxel grid
[LBS*18] Supervised | RGB-D image CNN Scene point cloud Per-point scores | ScanNet, S3DIS Acc, mloU
[TQD*19] Supervised RGB-D image PointNet (MLP) Scene point cloud Per-point scores | ScanNet, S3DIS Acc, mloU
[WSL*19] Supervised | RGB-D image | Message Passing MLP | Scene point cloud, point graph | Per-point scores S3DIS Acc, mloU
[LMTG19] Supervised | RGB-D image MLP (GCN) Scene point cloud, point graph | Per-point scores S3DIS Acc, mloU
[ZIFJ19] Supervised RGB-D image MLP (GCN) Scene point cloud Per-point scores | ScanNet, S3DIS Acc, mloU
[ZFF*21] Supervised RGB-D image MLP (GCN) Scene point cloud Per-point scores S3DIS Acc, mloU
[Z3J*21] Supervised RGB-D image MLP, Transformer Scene point cloud Per-point scores S3DIS Acc, mIQU’
mean classwise acc

Table 3: For the task of 3D indoor semantic scene segmentation (3D-SSG), we summarize state-of-the-art methods in the table above— Input
and Output refer to the input consumed by the Backbone and its output, respectively. Acc - Accuracy, AP - Average Precision, mAP - mean
of Average precision, AR - Average Recall, IoU - Intersection over Union, RMSE - Root of Mean Squared Error.

convolution neural networks, which enables them to capture global
features better, which is demonstrated by the results of semantic
scene segmentation.

In contrast to these sparse graphs connecting the center point
and its neighbors, Zhao et al. propose PointWeb [ZJFJ19], which
builds dense, fully connected graphs in local regions and processes
them using the Adaptive Feature Adjustment (AFA) module. This
module predicts the impact of neighborhood points by adaptively
aggregating contextual information on graph edges. Further, Zhou
et al. [ZFF*21] propose an adaptive graph convolution (Adapt-
Conv) that generates adaptive kernels for points within a local
region, rather than weighting the features based on fixed/isotropic
kernels. On the other hand, Cheng et al. [CHXY21] propose
SSPC-Net, a semi-supervised method for 3D point cloud segmen-
tation, which partitions the point clouds into super-point graphs,
then dynamically propagates information from the super-point
labels and uses the coupled attention mechanism to enhance the
super-point features for more accurate segmentation.

In 3D-SIS [HDN19], instance segmentation on 3D scans is per-

formed by learning from both color and geometry input obtained
from real RGB-D scans. Specifically, the proposed learning frame-
work has two branches — one that uses color images corresponding
to reconstructed scan geometry, and the second one uses 3D point
cloud reconstruction, either chunks of an indoor scene or a full
one, from many different frames of RGB-D scan. The backbone
for the first branch is a 2D CNN that extracts meaningful color fea-
tures, which are brought to 3D using a differentiable back projec-
tion layer. The second branch uses a 3D CNN to obtain geometry
features. Both the color and geometry features are joined in 3D.
In order to obtain object masks, they need to be localized. To this
end, the work proposes a region proposal network to predict ob-
ject bounding boxes. From these box predictions, class labels are
predicted using a classification head, which are both used for in-
forming instance mask predictions. Note that this is a strongly su-
pervised approach. During inference, instances can be inferred on
a full test scene in a single forward pass.

More recently, Zhao et al. [ZJ]J*21] present a transformer-based
architecture that serves as the backbone for many recognition and
segmentation tasks on 3D point clouds, including semantic scene
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segmentation. The key insight driving this work is that the self-
attention operator at the core of a transformer is essentially a set
operator, and point clouds are essentially sets embedded in met-
ric space. Much like [VSP*17], their method, called Point Trans-
former, makes use of encoder and decoder branches which are
stacked layers of what they call, a point transformer layer, which is
roughly, a piece-wise summation and aggregation of outputs from
two different linear layers and an MLP, all of which take points
from the point cloud as input; see figure 10 and 11. Although a
supervised learning framework like all other works discussed till
now, the gain comes from self-attention mechanism that learns the
correlation between points in the input point cloud, outperforming
state-of-the-art designs including graph-based models, sparse con-
volutional networks, and continuous convolutional networks.

Voxel-based technqiues Dai et al. [DN18] propose a supervised
multi-view prediction approach for semantic scene segmentation.
The goal of their method is to infer semantic class labels on per-
voxel level of the grid of a 3D reconstruction. To achieve this, they
propose a 2D-3D neural network that leverages both RGB and geo-
metric information obtained from 3D scans. Their method takes as
input a reconstruction of an RGB-D scan along with its color im-
ages, and predicts a 3D semantic segmentation in the form of per-
voxel labels; see Figure 9 for an overview. To allow for 2D features
to influence the per-voxel semantic predictions, they combine the
2D features (2D convolution on multi-view RGB images centered
around a voxel location in xy plane) with the 3D ones (3D convo-
lutions on volumetric chunks of a scene centered around a point in
the xy plane) using a differentiable back-projection layer. This joint
2D-3D network is trained in an end-to-end fashion to predict per-
voxel classes, resulting in a semantically segmented scene.

Discussion With the introduction of PointNet [QSMG17], there
has been an explosion of related works that attempt to solve stan-
dard shape+scene understanding tasks — object classification and
part/semantic scene segmentation. It is observed that architectures
that are built for the task of semantic scene segmentation are all
based on features meant to be used for classification purposes.
For example, point cloud-based architectures for semantic scene
segmentation mainly propose different ways to aggregate neighbor-
hood information of each point in a scene, while transformer-based
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Figure 10: Point transformer layer from [ZJJ*21]. This module is
essentially responsible for extracting meaningful features, which
are obtained from a combination of three neural sub-modules as
depicted above.

architectures investigate different strategies for improving the
attention mechanisms that capture neighborhood relations.

Among the different approaches discussed above, point cloud-
based methods, which operate directly on the point coordinates,
do not suffer from any loss of information that occurs with voxel-
based methods that discretize the underlying data into regular
grids. However, voxel-based methods capture local neighborhood
geometry better than the former, leading to improved segmentation
accuracy. That is, compared to point cloud-based methods, they
are more context-aware, owing primarily to the spatial/topology
awareness of the underlying representation, but are computation-
ally intensive compared to the former. There is thus an accuracy
vs. efficiency trade-off, which means that the choice of a 3D scene
segmentation method to build upon boils down to the complexity
of the scene, and the available computational resources. In this
context, it is worthwhile to investigate hybrid representations such
as [LTLH19, ZYM*20, ZSYH20], which can provide the best of
different representations.

However, although the above methods adopt different data rep-
resentations and propose architectures for 3D semantic scene seg-
mentation task, they all adopt supervised learning frameworks on
commonly available datasets, e.g. 3DSIS dataset [HDN19]. As a
result, they tend to perform relatively worse on the categories with
low frequency in the training set, with considerable room for im-
provement in the case of connected and/or overlapping objects
in the scenes. Developing semi-supervised or even unsupervised
learning techniques for indoor 3D semantic scene segmentation is
the way to overcome these limitations introduced due to the dataset-
specific learning process.

As well, for more general tasks such as robot manipulations
(for example, if a robot is tasked to open a cabinet drawer, it has
to first understand which parts of the cabinet are interactable,
and then localize-plus-segment that specific part on the cabinet),
semantic scene segmentation algorithm should not be merely
restricted to the knowledge base of training object categories, but
an open-vocabulary segmentation scheme should be developed for
such general tasks.

All in all, backbone architectures for semantic scene seg-
mentation seem to be pretty matured, with recent efforts being
invested in engineering these networks for slightly better perfor-
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Figure 3. Point transformer networks for semantic segmentation (top) and classification (bottom).

input: (x, p) input: (x,p;) input,: (x,,p;) input,: (x5, p,)
[farthest point sampl. | [ linear | [ linear |
[ NN mp ] [ interpolation |
linear local max pooling summation

output: (¥, p) output: (y. p2) output: (¥, pz)

(a) point transformer block (b) transition down (¢) transition up

Figure 11: Using the point transformer layer from 10 as the back-
bone, [ZJJ*21] propose an architecture for point cloud processing
tasks such as shape classification, part segmentation and semantic
scene segmentation.

mance. A more exciting research direction, one that is directly
an extension of semantic segmentation, is instance segmentation
in 3D scenes. This area allows for fine-grained understanding
of scenes since we often encounter sets of identical objects in a
scene. For example, a set of chairs surrounding a dining table
or a set of place settings on the table. With a wide disparity in
the number of instances observed, the distribution over observed
rotations, and the geometric variations among instances per model
within a category, the challenges are galore. Developing advanced
techniques in this direction provides a deeper insight on scene
understanding tasks.

5.3. 3D scene reconstruction

Single-view reconstruction is a severely ill-posed problem, mainly
due to the lack of sufficient priors for obtaining a faithful recon-
struction. Inferring a 3D structure, either for an object or a scene,
from an input image is a complex process that combines low-level
image cues to learn the structural arrangement of parts/objects and
the high-level semantic object/scene information. Variations in the
views and shading, along with variations in textures make conven-
tional reconstruction algorithms fail. For indoor 3D scenes, the fo-
cus is more on reconstructing object arrangements than the objects
themselves. The challenge here is to reason about 3D positions
from a single image, while leveraging contextual information about
object arrangements reflected in the input image.

In general, indoor 3D scene reconstruction can be categorized
into two parts: room layout reconstruction and object layout re-
construction. Room layout reconstruction deals with recovering
the spatial layout of the walls of a room, whereas object layout
reconstruction involves recovering the spatial arrangement of 3D
objects. We limit the scope to reconstructing object arrangements
in this section (there is rich literature on reconstructing the room
layouts alone). The input representations for 3D scene reconstruc-
tion tasks span the entire spectrum of visual representations, the
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Related Work Learning Scene rep Backbone Input Output Dataset Evaluation Metrics
framework
. . . 2D image and CAD models with placements, ShapeNet, LSUN, Classification Acc,
[Ss17) ‘ Unsupervised ‘ RGB image ‘ 2D CAN ‘ 3D CAD models ‘ 3D Room layout SUN RGBD mAP, voxel [oU
[HQX* 18] ‘ Supervised ‘ RGB image ‘ 2D CNN ‘ 2D image ‘ 3D OBB for object, ‘ SUN RGB-D ‘ mAP and 2D IoU
room layout

* . . . . . Room layout OBB, .
[NHG™20] ‘ Supervised ‘ RGB image ‘ 2D CNN with attention 2D image ‘ 3D objects with OBBs SUN RGBD, Pix3D 3D IoU

. . . 2D CNN with attention, . Room layout OBB, .
[ZCZ"21] ‘ Supervised ‘ RGB image ‘ GCN 2D image 3D objects with OBBs SUN RGBD, Pix3D 3D IoU
[MVAB*20] ‘ Supervised ‘ RGB-D image ‘ 2D and 3D CNN ‘ Video/2D image frames ‘ 3D mesh ‘ ScanNet ‘ AP, AR, F-score, RMSE

« . . Scene point cloud, Room layout box, ' .
[AKC™20] ‘ Supervised ‘ RGB-D image 2D CNN, GNN ‘ CAD models ‘ CAD models with placements SUNCG, ScanNet ‘ 3D IoU, F1 score
[GRJ22] Unsupervised RGB image 2D CNN RGB image SD. objects Scene-_Shap eNet, 2D Box and Mask IoU

and spatial placement HyperSim, ScanNet

Table 4: Notable works on 3D indoor scene reconstruction — Input and Output refer to the input consumed by the Backbone and its output,
respectively. We focus on object layout reconstruction over room layouts alone and not on room layout reconstruction. Abbreviations used
for evaluation metrics: Acc - Accuracy, AP - Average Precision, mAP - mean of Average precision, AR - Average Recall, IoU - Intersection

over Union, RMSE - Root of Mean Squared Error.

most prominent ones being RGB (D) images and point clouds. We
cover 3D object layout reconstruction works from a single RGB
image [ISS17,NHG*20,ZCZ*21,HQX*18,HQZ" 18, DT20], or a
set of posed RGB images [MvAB™*20], or a point cloud scan of an
indoor scene [SYZ*17], as summarized below and in Table 4.

Image-based techniques Izadania et al. [ISS17] propose a
method for reconstructing a 3D scene of an RGB image (see Fig-
ure 12). They make use of a pre-trained 2D object detector (Faster-
RCNN [RHGSI15]) to detect objects in the input RGB image, and
compare the box features of these 2D detections with that ob-
tained from multi-view renderings of a database of CAD mod-
els (ShapeNet). This comparison enables them to retrieve an ap-
proximately aligned CAD model for a detected object in the in-
put image. This process is done for all the object categories in
consideration (eight, to be precise). In parallel, a fully convolu-
tional network (FCN) [LSD15] is trained for room layout estima-
tion that estimates per-pixel surface labels for ceiling, floor, and
walls. The FCN network is trained on annotated scenes from the
LSUN database [YSZ*15].

In order to find the object location and scale in the x and
y directions (i.e., parallel to the ground plane) in the scene, a
ray is cast from a camera center through the input image pixels
corresponding to the bottom four corners of an aligned CAD
model cube (note that all CAD models in ShapeNet dataset are
confined within a unit cube). To compute the object scale along
the z axis, they compute the ratio between the length of the four
vertical edges of the projected cube and the length of those edges
from the ground plane to the intersection of those lines with the
horizontal vanishing line. After estimating the 3D room geometry
and the initial placement of the objects in the scene, object
placements are refined by optimizing the visual similarity of the
rendered scene with that of the input image. To this end, they solve
an optimization problem where the variables are the 3D object
configurations in the scene and the objective function is the mini-
mization of the cosine distance between the convolutional features
obtained from the camera view rendered scene and the input image.

Huang et al. [HQX™ 18] use a strongly supervised approach for
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Figure 12: IM2CAD [ISS17] proposes a system to reconstruct a
CAD modeled scene based on a single input image. The main idea
is to first render CAD models from different viewpoints and match
their CNN features to that of detected objects in the input image.
Once CAD models are retrieved corresponding to objects in the
input image, an optimization algorithm modifies places them in a
scene to reflect object arrangement in the input image. Color and
lighting are injected using an additional module.

reconstructing a 3D scene for a given RGB image, in what they
call, a "cooperative" manner. Instead of developing independent
modules for reconstructing parts of the scene, they propose to co-
operatively estimate 3D object bounding boxes, layout bounding
box and the camera pose, and project the resulting 3D layout to the
image plane forcing consistency between the input image and the
projected image, see Figure 14. Specifically, the following three
cooperative losses are used: 3D box loss (directly optimize final
estimation of the 3D boxes), 2D projection loss (maintain the con-
sistency between 2D image and estimated 3D boxes) and physical
loss (penalize the physical violations between 3D objects and 3D
room layout). This kind of cooperation is shown to improve the
estimation accuracy of 3D bounding boxes, and the physical plau-
sibility of the overall scene. Supervisory signals are obtained from
the SUNRGB-D dataset [SLX15].

Similar to [HQX™ 18], Nie et al. [NHG*20] propose a supervised
method to jointly reconstruct room layout, object poses and meshes
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in an indoor scene from a single RGB image as the input, termed as
Total3DUnderstanding (T3DU). Their approach consists of three
parts: room layout estimation (in world coordinate system), 3D ob-
ject detection (in camera coordinate system), and mesh generation
(in object canonical system). The output of these three modules are
embedded together in the reverse order (see Figure 13), to estab-
lish an end-to-end joint training mechanism. The 3D object detec-
tion module makes use of an attention mechanism to obtain con-
textual object features (called "Relational features") for a detected
2D object in the input image. The relational features are combined
with the detected 2D object features (obtained using a ResNet),
and the resulting features are regressed through an MLP to get 3D
bounding boxes. Room layout estimation is done similarly, where
the room bounding box parameters are regressed using the 3D ob-
ject detector module. Finally, a mesh generation module based on
AtlasNet [GFK™ 18] is employed to reconstruct 3D object meshes.

During inference, the generated meshes in the canonical system
are transformed to the camera system for viewing object bounding
boxes, which are in turn converted into world coordinate system for
combined interpretation with the estimated room layout bounding
box. This method of training in an end-to-end fashion produced
improvements over [HQX* 18] on room layout estimation and 3D
object detection, and this gain can be attributed to the incorpora-
tion of relational features in 3D object detection and room layout
estimation, that take scene context into account via the attention
mechanism.

Building on T3DU, Zhang et al. [ZCZ*21] make improvements
in the quality of generated object meshes, and reduce cases of ob-
ject intersections observed in T3DU. In terms of network architec-
ture, the method is split into two stages: initial estimation stage, and
arefinement stage; see Figure 15. The initial estimation stage is the
same as T3DU (Figure 13(a)), with the only difference being the
employment of a network outputting a shape code based on local
implicit fields [GCS*20], instead of using AtlasNet [GFK* 18] for
mesh generation. In the refinement stage, the scene is modeled as
a graph to capture the scene context, where the node features are
concatenation of features obtained from the three modules in the
initial estimation step. The node features are updated using mes-
sage passing, which are later decoded into residuals to refine the
initial estimation. The refined poses are then incorporated with the
object shapes decoded from shape code with LDIF [GCS™*20] to get
the final reconstruction of the whole scene. The results show an im-
provement over existing relevant works which can be attributed to:
(a) an improved mesh generation network, (b) the incorporation of
a loss term that penalizes the physical interaction of objects (in ad-
dition to other losses) and (c) modeling scenes as graphs that helps
to better capture scene context and in turn, can effectively refine the
initial estimates.

Different from the aforementioned approaches, Murez et al.
[MvAB*20] present Atlas, an end-to-end 3D scene reconstruc-
tion approach from posed images. The method takes a calibrated
monocular video as input. Image features from each frame are ex-
tracted using a 2D convolutional neural network. These features
are back-projected along rays into a 3D voxel volume using known
camera intrinsics and extrinsics. Feature volumes are accumulated

using a simple running average. After accumulation, a 3D convo-
lutional neural network refines the features and regresses a trun-
cated signed distance function (TSDF). The overall approach is
shown in Figure 16. Finally, a mesh is extracted from the TSDF
volume using marching cubes. Additionally, semantic labels can
be predicted by adding a classification head to the 3D CNN. This
approach demonstrated superior quality of reconstructions on chal-
lenging long-frame temporal sequences with unobserved geometry,
despite not making use of any depth information.

A more recent work called USL [GRJ22] presents an approach
to scene reconstruction without any layout supervision, albeit from
multi-view images of a scene during training. Their proposed sys-
tem models object shapes and scene layout to roughly mimic an
input image during test time. During training, given two views of a
scene, one being the input to the system and the other being the
target, a 3D scene is produced for the input view based on the
prior work of MeshRCNN [GMJ19]. This 3D scene is now ren-
dered from the viewpoint of the target image, and an optimization
algorithm compares object masks in the two. This helps in optimiz-
ing object arrangements thereby improving the scene layout.

Scan-based methods In SceneCAD [AKC*20], a solution to
scene reconstruction from RGB-D scans is proposed. The prob-
lem is broken down to that of aligning CAD models to objects in
RGB-D scans. The prelude to SceneCAD is a prior work called
Scan2CAD [ADD* 19] that aims at estimating object arrangements
from 3D scans by learning to align CAD models to RGB-D scans.
The emphasis here is on the type of input — RGB-D scans, which
tend to be very noisy and incomplete, with no semantic informa-
tion. SceneCAD solves a joint problem of estimating both object
and room layout information, by capturing relationships among ob-
jects and between objects and room elements, such as walls. The
end result is a lightweight digitized representation for the input
RGB-D scan. Note that this is also a supervised learning approach,
with supervision on class labels during object mask predictions
and edge labels between graph nodes. Many recent approaches
to single-view scene reconstruction [KALD20, KALD21, GDN22]
propose similar proxy solutions based on shape recovery of de-
tected 2D objects in the input image via CAD model alignment.

Discussion 3D supervision is hard to obtain, which necessitates
the exploration of challenging tasks to scene reconstruction from
one or more images. In order to truly reconstruct an indoor 3D
scene, both room layout (walls and their arrangement), and object
layout (spatial placements of objects in a room) should be recov-
ered, which are non-trivial to solve. In 3D vision, a lot of effort
has been put in recovering room layouts from a single image, start-
ing from [HHF] to more recent works like [DFCS16, LBMR17,
ZCSH18, HQZ*18, YWP*19]. Model-based room layout recon-
struction algorithms such as the ones proposed by [HHF, ML15]
are limited by hand-crafted features based on one/few properties
of physical existence. Learning from data, however, can uncover
the full potential of realizable results, allowing to explore further in
that direction.

For object layout reconstruction from single/multiple images or
3D scans, two major approaches exist — (1) learning contextual
placements of objects, or (2) aligning CAD models to the input.
The first approach is mainly a supervised setting, based on attention
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Figure 13: Figure illustrates the pipeline for reconstructing a 3D scene from a single image in a supervised setting. The work is called
Total3DUnderstanding [NHG" 20], or T3DU in short. Relationships between detected objects in the input image are captured using attention
mechanism. Both object and room layout are recovered and represented in the form of a cuboid box. Objects are reconstrcuted using a mesh

generation network from [GFK* 18].
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Figure 14: Single-view scene reconstruction pipeline from
[HQX™* 18]. The method proposes to cooperatively estimate 3D ob-
Ject bounding boxes, layout bounding box and the camera pose,
and project the resulting 3D layout to image plane forcing consis-
tency between the input image and the projected image.

mechanism [NHG*20] or message passing [ZCZ*21] since they
need a notion of what plausible placements look like. In addition to
recovering object layouts, these works also perform reconstruction
at the object level, which may not be ideal for visualizing results
since single-view reconstruction for objects is a research area in
itself. A more recent work [GRJ22] does not make use of layout
supervision, but gains additional training information by making
use of multi-view images of the same scene, which compensates
for the lack of layout-level supervision.

The second approach is an ad-hoc setting, moving towards un-
supervision at the layout level, where the goal is to simply align
CAD models from a database to detected objects in the input image
[ISS17] or input 3D scans [AKC*20, ADN19, ADD* 19, KALD20,
KALD21,GDN22,MPNF22]. These approaches are more closer to
works that estimate object poses from a single input image, with an
added component of optimizing for object placements that reflect
the input image/scan. Overall, an unsupervised learning framework
that could be trained from a single input image is missing.
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5.4. 3D scene similarity

In visual computing, a metric is used to compare different data rep-
resentations such as two images, meshes, voxels etc., and provide
a measure of closeness or similarity between samples in consider-
ation. As a result, they find applications in database retrieval, data
clustering, and evaluating the diversity of generative models.

Similarity metrics for 3D shapes (Chamfer Distance, IoU, Light
Field Distance etc.) and 2D images (L2 distance, PSNR) make an
underlying assumption that the data being compared can be glob-
ally aligned. However, the concept of global alignment between
two 3D scenes, even if they are of the same type, is rather weak
since there is no "correct”" sequence of populating 3D objects in
a space to compose a plausible scene, where same objects can be
placed quite differently in two scenes. In addition, scene compar-
ison is complicated when the two scenes (of the same type) have
different 3D objects, both semantically and geometrically. As such,
developing a metric for comparing 3D scenes is quite challenging,
but interesting at the same time due to many degrees of design free-
dom.

Graph Kernels Fisher et al. [FSH11] was the first work to de-
velop a method to measure 3D scene similarity, called Graph Ker-
nels. Specifically, they characterize 3D scenes using graphs (see
Figure 17 left), where the edges of a graph encode physical prox-
imity relationships (such as support, contact, enclosure) between
objects (nodes) in a scene and the nodes correspond to objects in
the scene, which encode the geometric information of the objects.
With such graph-based representation of scenes, a kernel is defined
for comparison of two relationship graphs in a way that similarities
between the graph nodes and edges are computed and accumulated
to produce an overall similarity of two graphs (see Figure 17 right).

Interaction descriptors Zhao et al. [ZWK14] propose a scene
relationship descriptor, called Interaction Bisector Surface (IBS),
to characterize complex relationships in a scene, or rather, a
sub-scene. IBS describes topological (wrapped in, linked to or
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Figure 16: End-to-end training pipeline for 3D scene reconstruc-
tion from posed images [MvAB*20]. The method takes a monocu-
lar video as input and extracts 2D CNN features from each frame,
which are back-projected to 3D voxel grids using known camera
information. A 3D CNN refines the features and regresses a TSDF
function, from which a scene mesh is extracted using the marching
cubes algorithm.
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Figure 17: Graph Kernels in [FSHI11] is a method for characteriz-
ing the structural relationships between two subscenes. In the figure
above, a scene is represented as a relational graph shown on the
left. Two types of relationships are considered, as indicated by the
arrows. The figure on the right shows an example of the process
involved in finding similarity between two subscenes using graph
walks. Both walks in each scene are rooted at the lamp node. The
two walks are compared by taking the product of kernel evaluations
for their constituent nodes and edges.

tangled with) as well as spatially proximal relationships between
objects (see Figure 18). IBS is defined as the set of points that
are equidistant from two objects, which form an approximation
of the Voronoi diagram for objects in the scene. IBS is used to
define a similarity metric between objects, which is then used

Figure 18: Interaction Bisector Surface (IBS) [ZWK14] is a rich
representation between objects in a scene that describes topolog-
ical and geometric relationships between objects in a scene. IBS
is the set of points equidistant from two sets of points sampled on
different objects, shown as the blue-colored surface above.

to group similar objects in a bottom-up manner to automatically
construct hierarchies. Unlike [FSHI11], IBS does not make use
of object labels, and instead, focuses on modeling interaction
between objects where spatial relationships between objects are
characterized by topological and geometric features. Thus, IBS
enables content-based relationship retrieval based on interaction
similarity. Figure 19 provides an example of content-based rela-
tionship retrieval based on IBS.

Object-centric descriptor Xu et al. [XMZ*14] present a
method to organize a heterogeneous collection of scenes by what
they call focal points. The key insight in this work is that analyzing
complex and heterogeneous scenes in a collection is difficult with-
out references to certain points of attention or focus. Focal points
provide such points of attention against which two or more complex
scenes could be compared. Specifically, focal points are defined
as representative substructures in a scene collection, using which
similarity distances between scenes could be computed, see Figure
20 for an illustration. Identifying focal points from a collection of
scenes is a problem that is coupled with clustering scenes based
on a common point of reference. To solve the coupled problems of
focal point extraction and scene clustering, a co-analysis algorithm
that interleaves frequent pattern mining and subspace clustering is
presented to extract a set of contextual focal points that guide scene
clustering from within the collection. This is shown in Figure 21.
This co-analysis-based method of focal point extraction extends it-
self towards scene comparison (retrieval), and exploration of a het-
erogeneous collection of scenes.
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Figure 19: Retrievals results using IBS features [ZWKI14] — In the
query scene on the left, a desk, overlayed using its bounding box, is
the query object for IBS algorithm. On the right are the scenes or-
dered based on their similarity, where the red object is the retrieved
object with a similar context to the query desk.

Learning on scene graphs Recently, [WDNT20] propose a
neural network that infers a semantic scene graph from an instance-
segmentation of a 3D scene, represented as a point cloud. Leverag-
ing these learned semantic scene graphs, a 3D scene retrieval is
performed where the objects in the scene represent the nodes in the
learned graph, and edges represent generic connection as well as se-
mantic relations (such as: next to, lying on, close by) between scene
objects. This is achieved by graph matching, not using any neu-
ral network, but using a deterministic similarity function based on
two types of metric — Jaccard coefficent and Szymkiewicz-Simpson
(SS) coefficient. When matching two graphs G and Gl, they com-
bine the similarity metric of the object semantics, generic node
edges E as well as semantic relationships R.

Since the semantic graphs are rich with relational semantics be-
tween objects, and the similarity function based on either the Jac-
card coefficient or the Szymkiewicz-Simpson coefficient can pro-
vide meaningful similarity scores, especially SS coefficient when
the two scenes A and B have very different sizes, one can use this
retrieval method to find rooms that fulfill certain requirements such
as the availability of objects e.g. meeting room with a TV, white-
board.

Discussion Efficient retrieval of 3D scenes is helpful in visu-
alizing interior design possibilities, and a reliable scene similarity
metric is central to this application, which can also help with evalu-
ating different scenes. The query to such evaluation systems can be
in different forms — 2D image, text input, a sketch, a scene graph, a
sequence of attributes, etc., each of which poses unique challenges.
The central goal to this problem is to define a similarity function
that captures the space of scenes based on either pre-defined prop-
erties (such as focal-centric themes) or incorporates as many at-
tributes of a scene as possible directly from the data.

We observe a clear shift from heuristic-based methods to
learning-based methods in formulating a scene similarity measure.
This is expected since it is rarely tractable to describe all kinds of
scenes using a specific set of rules, especially considering the com-
plexity of scene structures in indoor environments. In the context of
learning-based methods, as discussed above, graph neural networks
(GNN) appear to sit comfortably in becoming the preferred tool to
tackle 3D scene retrieval problems. In recent years, neural graph
matching networks [PLF*21] have been shown to effectively cap-
ture similarity on 2D layouts, albeit with inherent sluggishness due
to dependent graph embeddings (embedding of one graph is equally
governed by the other graph in a pair). This could be extended
to 3D scenes, where the focus should be on efficiently matching
scene graphs in a large database, using hashing techniques. It is
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Figure 20: [XMZ" 14] introduce focal points, shown in yellow and
pink color in scene renderings above, to analyze and organize 3D
indoor scenes. Focal points are essentially sub-scenes. The trian-
gles on the left provide a visual illustration for similarity distances
between scenes based on focal points.

worthwhile to explore the assimilation of human feedback in the
development of a scene similarity metric since it can help provide
a human perspective to an objective algorithm that may not always
see things as we humans do.

6. 3D scene synthesis

Real world 3D scenes are realized from sequential placement and
adjustment of objects carried out in a region-bounded space. Such
object placements follow certain interior design rules based on
room functionality and layout, which provide useful priors for de-
veloping algorithms for modeling indoor 3D scenes.

Before deep learning made inroads in this field [WSCR18,
LPX*19], many scene synthesis works [YYT*11, MSL*11,
FRS*12, FSL*15, MLZ*16, MPF*18, SCH*16, YYT15] were
model-driven and learned from a few hundred 3D scenes. They
were progressive in nature (vs. auto-regressive terminology used
with neural-based works), i.e., the placement of a new object in
the scene is conditioned on either one or a set of already existing
objects in the scene thus far. These methods are example-based ap-
proaches, i.e., the underlying method for scene modeling depends
on a set of scene/sub-scene examples to learn priors from.

We cover notable works on scene synthesis that incorporate
different forms of representation discussed in Sec 3. We borrow
some pointers from the survey on generative models for structured
scenes [CRW*20] for our report, albeit it is less up-to-date and
focuses only on structural representation.

Probabilistic synthesis Relying on probabilistic reasoning over
scene exemplars forms the core of example-based scene synthe-
sis approaches [MSL*11,FRS*12,JLS12,SCH*16,ZHG"16]. No-
tably, Fisher et al. [FRS*12] develop a Bayesian network for ob-
ject co-occurrences and model object placements using a Gaussian
mixture model (GMM). To synthesize new scenes from an example
scene, object contextual placements are sampled from the learned
GMM model. Most of the probabilistic scene synthesis algorithms
follow this paradigm, but with variations on both heuristics and
models capturing object co-occurrences and their relationships.

Progressive synthesis Models that synthesize a scene by se-
quential placements of an object or a set of objects (called sub-
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scenes & structural graphs

(a) Input. (b) Focal point detection (c) Focal-induced clustering. (d) Focal-based organization.

Figure 21: In focal-cenric graph kernel (FCGK) [XMZ* 14], the in-
put to the system is a non-uniform collection of 3D scenes, where
each scene is represented by a structural graph (left). The proposed
method performs a co-analysis on the collection of 3D scenes to
obtain a set of contextual focal points and is an iterative process
(middle two). Once focals are obtained, the entire scene collection
can be organized with reference to these focals, serving as the in-
terlinks between scenes from various clusters (right).

scene) are said to be progressive in nature. This is a reflection of
how scenes evolve in the real world — based on human actions,
which in turn, depend on the functionality of objects present in
the scene. This forms the basis of most human-centric scene syn-
thesis works such as [MLZ*16, SCH*16], discussed later below.
In other words, progressive scene synthesis involves user input
in some form, be it activity-driven or language-driven [MPF*18].
Such methods can even be made interactive offering more control-
lability, where the overall system is localized at every synthesis
step.

The first instance of such progressive synthesis via interactive
modeling was demonstrated by Merrell et al. [MSL*11]. They de-
veloped a modeling tool for furniture layout arrangement based on
interior design guidelines. The design guidelines are encoded as
terms in a probability density function and the suggested layouts
are generated by conditional sampling of this function. Another re-
lated work called Make It Home [YYT*11] offers an interactive
modeling tool to synthesize furniture layouts by optimizing a lay-
out function that encodes spatial relationships between furniture
objects. ClutterPalette [YYT15] presents another interactive mod-
eling tool that progressively populates a scene by suggesting a set
of possible objects, the priors of which are learned from the data,
when a user clicks on a particular region of the scene.

More recently, Ma et al. [MPF*18] use language commands to
drive scene synthesis. Language commands are parsed into scene
graphs, which are used to retrieve subscenes from a scene database.
The key idea leveraged by this method is that semantic scene graphs
act as a bridge between language commands and scene arrange-
ments, and as such, aligning the scene graph from one domain will
allow retrieving corresponding scenes. To account for the lack of
an exact match, the system also allows augmenting retrieved sub-
scenes with additional objects based on the language context. At
each step, a 3D scene is synthesized by coalescing the retrieved
sub-scene, with augmented objects, into the current scene.

Human-centric scene synthesis Fisher et al. [FSL*15] present
a method that can produce multiple plausible 3D scenes from an
input RGBD scan. here, plausibility means that the synthesized 3D
scenes allow for the same functional activities as the captured envi-
ronment. A scene template is estimated based on the input scan that
captures likely human activities (as a probabilistic map) over the
scene space. The core model, called the activity model, encodes ob-

ject distribution with respect to human activities, and would guide
the synthesis process based on predicted activities in the scene tem-
plate. In a slightly different setting, Savva et al. [SCH" 16] capture
human poses with object arrangements in the scene based on hu-
man activity. The underlying modeling is a probabilistic model.
The functional relationships between humans and objects in the
form of physical contacts and visual-attention linkages are rep-
resented using what they call Prototypical Interaction Graphs (in
short, piGraphs). Joint probability distributions over human pose
and object geometries are encoded in the PiGraphs and learned
from data and in turn, the learned PiGraphs serve to guide the gen-
eration of interaction snapshots.

A concurrent work from Ma et al. [MLZ*16] guides the scene
generation process from human activity. In contrast to the above
two methods, observations of human-object interactions in this
work come from 2D images. That is, the action models are learned
from annotated photographs in the Microsoft COCO dataset,
which makes the problem challenging since such 2D images do not
contain object/human-pose designation. The key idea of the work
is to formulate transition probabilities to account for a transition
in human activity. An action graph is constructed whose nodes
correspond to actions and edges encode transition probabilities.
Synthesizing a new scene would correspond to sampling from the
model capturing action graph priors.

Deep Generative Models Wang et al. [WSCR18] present a deep
convolutional, autoregressive approach for 3D scene synthesis. A
scene is represented as a multichannel top-view image where each
channel encodes the mask of an object in the scene, in addition to
depth information. An autoregressive neural network is then trained
with such images (corresponding to 3D scenes) to output object
placement priors as a 2D distribution map, see Figure 22. To syn-
thesize a new scene, objects are sequentially placed based on the
learned placement priors.

Moving towards a stronger structural representation, Wang et
al. [WLW™19] present an autoregressive graph generative model
called PlanlT, for 3D scenes based on Graph Neural networks em-
ploying message passing convolutions. They represent a 3D scene
as a graph with scene objects as nodes and their spatial or seman-
tic relationships by edges of a graph. During training, the network
learns relationship priors between different kinds of objects in a
scene type (ex: bedrooms). To generate a new scene from an empty
or a partially complete scene (or scene graph), the learned autore-
gressive model is used to obtain a scene graph, which is instantiated
via an image-based reasoning module to generate a 3D scene cor-
responding to that scene graph; see Figure 24 for an overview of
this method.

Different from the above two methods, Li et al. [LPX"19]
present GRAINS, a generative neural network for 3D scenes that
can efficiently generate a large quantity and variety of indoor
scenes. Their key observation is that indoor scenes are inherently
hierarchical (so they represent 3D scenes as hierarchies), and use
a recursive neural network (RvNN) architecture coupled with a
VAE to model the space of scenes following the pipeline shown
in Figure 23. Using a dataset of annotated scene hierarchies, they
train an RvNN-VAE, which performs scene object grouping during
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Related Work f;l-::-;lvl::fk Scene rep Backbone Input Output ‘ Dataset ‘ Evaluation Metrics
Scene hierarchy
with object labels, Perceptual studies.
[LPX*19] Self-supervised Hierarchy RvNN-VAE (MLP) 3D bounding box, Scene hierarchy SUNCG . P ’
relative position Object co-occurrence map
between two siblings
[WSCR18] | Self-supervised 2D image 2DCNN,MLP |  C+6 channel image Prierz8) () | suNcG Perceptual studies
Scene araph Perceptual studies,
[WLW*19] Self-supervised 2D image, Graph 2D CNN, GNN 6 cha.nfel l:ma o Pro‘""'z'e)(C) SUNCG Real/synthetic classifi
& -cation accuracy
[ZYM*20] Supervised Top-v1ew scene ?mage, _2D CNN, RGB image, ) 11 (k+9) scene matrix SUNCG .Perceptual studies,
object matrix linear layers nx(k+9) scene matrix Object co-occurrence map
) . 2D floor image, 2D CNN, I-channel image i Perceptual studies,
[WYN20] ‘ Self-supervised ‘ ordered object set ‘ Transformer ‘ +ol (ciosisristi) OJ(L‘x«,s“h«,t:) SUNCG Next-object prediction accuracy
. . Collection of segmented . Structure3D, Perceptual studies,
[YGZT21] Supervised RGB-D images CNN-GAN . Volumetric scene (voxels) | Matterport3D, .
depth images Object co-occurrence map
ShapeNet
FID score,
i 1-ch 1i : i
[PKS*21] Self-supervised 2D floor image, 2D CNN, crannel mage O (¢ 5073, 17) 3D-FRONT Category KL divergence,
unordered object set Transformer + 0" (ci,86,7iy1i) Real/synthetic scene classi

-fication accuracy

Table 5: A summary of neural scene synthesis works informing about the kind of learning framework employed (supervised vs. unsuper-
vised), the representation of indoor scenes, the kind of machinery employed to process the incorporated scene representation, the input to
and output of the neural network, the dataset used and metrics employed to evaluate the generative models.
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Figure 22: Scene synthesis pipeline in deep convolutional priors [WSCRI8]: given an input scene, its top-down view image is obtained that
contains multiple features per pixel. Such feature-rich image is analyzed using a 2D CNN to determine if an object should be added to the
current scene, and if so, what type of object category and at which location. Once the category and location are determined, an instance of
that category is retrieved from a model database and added to the scene at an appropriate orientation.

its encoding phase and scene generation during decoding.
Specifically, a set of encoders is recursively applied to group 3D
objects (represented as semantically oriented bounding boxes) in
a scene, bottom up, and encodes information about the objects
and their relations, where the resulting fixed-length codes roughly
follow a Gaussian distribution. To generate a new scene, a random
vector is sampled from the learned Gaussian and branched down
through the RvNN decoder to obtain the scene hierarchy. Shape
models are retrieved from a shape database based on the semantics
and dimensions of leaf nodes in the generated hierarchy.

Zhang et al. [ZYM™20] present a generative model for indoor
scenes based on a GAN, which learns to map a normal distribution
to the distribution of primary objects in indoor scenes. In this
work, a 3D scene is represented as a matrix that encodes all the
information about every object in a scene. A scene is encoded into
a latent vector by a set of interleaved sparse and fully connected
layers. The decoder, which mirrors the encoder, generates scene
matrices. A discriminator is trained to classify whether the input to
it is a real scene or not. In addition, an image-based discriminator
is also used to differentiate between the top-view renderings of 3D
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scenes; see Figure 25 for this method’s overview.

Very recently, [WYN20, PKS*21] developed conditional gen-
erative models for 3D scenes by making use of attention-based
Transformer models [VSP*17]. The advantage of using Trans-
former models is that they alleviate the need for hand-crafting
spatial relationships between objects, and instead, implicitly learn
object relations through attention mechanism. Specifically, Wang
et al. [WYN20] condition the generation process on two kinds
of inputs — room layout (including the position of doors and
windows), and text descriptions. They represent indoor scenes as
a sequence of object properties, converting the scene generation
task to a sequence generation one. During training, an empty
room (represented by the floor dimensions) or a text description
(encoded using one of GloVe [PSM14], ELMo [PNI*18] or
BERT [DCLT18] techniques) is input to their model along with
a sequential ordering of object categories; see Figure 26 for
an overall pipeline of their approach. The transformer model
learns to sequentially generate the properties of the next object
in the predefined ordered set. During inference, given the type
of user input (empty room or text description), the trained model
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sequentially outputs an ordered set of objects and inserts them into
the existing scene.

On the other hand, Paschalidou et al. [PKS*21] reduce the
problem of scene generation to that of generating an unordered
set of objects, where meaningful object arrangements are obtained
by sequentially placing objects in a permutation-invariant fashion.
They represent a scene as an unordered set of objects where each
object is encoded using its cateory, size, orientation (relative to the
floor normal), and location. During training, given a training scene
with M objects, they randomly permute them and keep the first T
objects (here T=3). The network is tasked to predict the next object
to be added in the scene given the subset of kept objects, and the
floor layout feature. During inference, they start with an empty
context embedding C and the floor representation of the room to
be populated. From here, they autoregressively sample attribute
values from the predicted distributions; see Figure 27 for their
method overview. Once a new object is generated, it is appended
to the context C to be used in the next step of the generation
process until the end symbol is generated. To transform the
predicted labeled bounding boxes to 3D models, object retrieval
from the dataset based on Euclidean distance of the bounding box
dimensions is performed.

Another recent work from Yang et al. [YGZT21] developed
a conditional volumetric generative model of indoor scenes using
a GAN framework. They represent scenes as voxels, and take the
room size as a conditional input to a GAN that is trained to map
the distribution of an indoor scene to a normal distribution. The
discriminator is trained on depth and semantic images of the volu-
metric scenes. To this end, they employ a differentiable renderer to
render depth and semantic maps of generated volumetric scenes,
which are used with the depth, and semantic maps of scenes
from the training database for learning the GAN discriminator.
At generation time, given a room size ¢ and a latent vector zs
randomly sampled from the latent space, the trained volumetric
GAN can generate a semantic scene volume that stores both layout
and rough shapes of the objects instances in the room. To obtain
the final 3D scene, they extract object instances from the semantic
scene volume and replace them with the CAD models retrieved
(based on Chamfer Distance) from a 3D object database.

Discussion With the availability of large synthetic 3D scene
datasets such as 3D-FRONT [FCG*21], and the impressive ad-
vancements made in developing generative neural networks for 3D
scenes, a basic question naturally arises — do we need more such
generative models, and what purpose would more of such scenes
serve anyway?

While it is surely worth having access to large quantities of syn-
thetic and generated 3D scenes, they are not of practical use unless
they are functional. That is, human activity should be adequately
supported by these scenes. For example, if the area for in-and-out
movement for a family of four in a generated living room is insuf-
ficient, then such a generated scene, although appearing plausible,
does not find real-world applicability. This issue is systemic, in the
sense that the typical way to scene synthesis has been to treat hu-
mans and scenes separately. We need to model them together, al-
lowing us to generate functionally plausible environments, and in

turn, using such scenes to improve human pose within that space
and optimize activity. Scenes and humans complement each other.

In recent years, neural scene rendering [MST*21], diffusion
models [SDWMG15, HJIA20] and CLIP-based models [RKH*21]
have gained a lot of traction for generating novel data sam-
ples. They have been predominantly employed in the 2D domain,
with only recent exploration for 2D-to-3D generation [GSW™*22,
PJIBM?22] on single-object images. Leveraging these models for 3D
indoor scenes is an under-explored direction mainly due to the com-
plexity of the scene structures. Below, we present recent works that
use these newer techniques for synthesizing indoor scenes.

Using Radiance Fields The basic idea in neural rendering is to
first sample spatio-temporal coordinates with respect to a given 3D
scene, feed it through a neural network to recover radiance/signed-
distance fields and employ a differentiable forward map (such as
sphere tracing or volume rendering) that outputs a novel view RGB
image (see [XTS*22] for a detailed report). Using these radiance
fields to hallucinate scene geometry or to manipulate object ar-
rangements allows their employability for indoor scene modeling
applications.

To this end, [DBS*21,YZD*21] present some of the early works
on using radiance fields for scene hallucination/completion and
scene editing, respectively. Yang et al. [YZD*21] develop a neu-
ral rendering system that enables editing on real-world scenes by
learning an object-compositional neural radiance field. The main
idea is to use two separate branches to encode the scene, one to pro-
cess the scene background and the other to process the constituent
objects, both undergoing a neural rendering pipeline of their own.
In doing so, the system runs a neural radiance field pipeline on the
object branch that takes as inputs object voxel features and an ob-
ject activation code, allowing scene edits at the object level based
on the object activation code.

DeVries et al. [DBS*21] make use of the radiance fields to learn
scene priors from which novel scenes can be sampled. Specifi-
cally, they train a GAN in which the generator learns to decompose
scenes into a collection of many local radiance fields that can be
rendered from a freely moving camera. The generator of this pro-
posed GAN tries to learn a distribution of novel view images (using
a NeRF model) that is similar to the prior distribution. The discrim-
inator is tasked to classify the images at the output of generator to
be fake. Once trained on many diverse scenes and viewpoints, a
novel scene sample can be generated using a random vector that
can hallucinate parts of a scene captured in the training images.

[WLJ*22] propose NeuralRooms to reconstruct indoor scenes
(represented by meshes) from unposed multi-view 2D images
based on neural radiance fields. The main motivation of this work
is that shape-radiance ambiguity and the presence of texture-less
regions in indoor scenes make it difficult to faithfully reconstruct
them using multi-view stereo (MVS) algorithms or using NeRF
models. To address this issue, they propose a two-part learning
framework wherein the first part makes use of a MVS algorithm
[SF16] (ensuring the accuracy of texture-rich and edge areas) and
a normal estimation network [BBC21] (ensuring completeness of
texture-less regions) to acquire geometry prior. The input RGB im-
ages and the geometry prior are used in a neural rendering-based
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Figure 23: GRAINS [LPX*19] represents a scene as a hierarchy based on commonly occurring object relations. The learning pipeline is
based on recursive neural networks (RvNN) coupled with a variational autoencoder. At inference time, a random vector is sampled from the
learned latent space (which is approximated to a Gaussian distribution), and passed through the trained RvNN decoder to obtain a scene
hierarchy. A 3D scene is recovered from the decoded hierarchy in a top-down fashion until all the leaf nodes of the hierarchy are traced. 3D

objects are placed by retrieving from a collection of CAD models present in the scene database based on their attributes generated.
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Figure 24: Scene synthesis pipeline in PlanIT [WLW* 19]: Given a database of 3D scenes, relational graphs are automatically extracted from
them (left), which are fed to a graph neural network (middle). Eventually, to generate a 3D scene, a graph is instantiated using image-based
reasoning (right) and 3D models corresponding to each node are inserted.

surface reconstruction pipeline. Finally, ray-tracing on the recon-
structed scene is done with TSDF fusion to obtain a 3D mesh for
the reconstructed indoor scene.

Using Diffusion and CLIP-based models Unlike in the 2D do-
main, the deployment of diffusion models for modeling 3D indoor
scenes has not seen much activity. To the best of our knowledge,
the recent works of Lego-Net [WDP*23] and [LTJ22] are the only
work devoted to this task.

Lego-Net [WDP*23] develops a denoising diffusion model to
learn the rearrangement of objects in a messy indoor scene, where,
similar to ATISS, a scene is represented by an unordered set of ob-
jects and their transformations. The underlying model that is used
is a transformer. Given an input messy scene, the transformer itera-
tively computes the denoising gradient towards the clean manifold,
until a so-called regular state is reached; see Figure 28. Note that
the denoising process is not driven by any end goal state, and the
concept of an end goal state is not made use of in this work. At
each step of the denoising process, the transformer takes scene at-
tributes of the current state and outputs 2D transformations of each
object that would make the scene “cleaner". Training this model
takes place in a reverse fashion where clean scenes are perturbed to
make them messy.
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Lei et al. [LTJ22], on the other hand, propose to synthesize
an indoor scene via incremental inpainting. They represent indoor
scenes as RGBD images. Given a sparse set of multi-view RGBD
images, the goal is to generate a coherent 3D scene mesh by pre-
dicting RGBD frames along a novel camera trajectory. To this end,
they first fuse the input view images into an initial mesh, which
is then rendered to get an incomplete, hole-present image of the
scene. This incomplete scene is then inpainted using a RGBD dif-
fusion model which is back-projected to the 3D domain to get a 3D
mesh. This mesh is integrated with the very initial mesh to get a
new mesh. This process takes place in an iterative fashion, eventu-
ally generating a novel indoor scene.

CLIP [RKH*21] is a popular text-to-image generative model
capable of producing novel 2D images from text prompts. In the
3D domain, CLIP has been used to generate 3D shapes as shown
in [SCL*22,SFL*22]. Its extension to generating 3D indoor scenes
is not straightforward owing to the presence of multiple objects.
CLIP-Layout [LXJ*23] presents the first work that leverages a
CLIP model to synthesize 3D indoor scenes.

Similar to ATISS [PKS*21], CLIP-Layout [LXJ*23] adopts an
auto-regressive approach for indoor 3D scene synthesis, but the
synthesis is now additionally constrained on a text input that acts as
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Figure 25: Schematic pipeline for scene synthesis using hybrid
scene representations [ZYM™*20], where a 3D scene is represented
by its top-view rendering as well as using a matrix of object proper-
ties based on their occurrences in the scene. Above, an encoder G,
encodes a scene into a latent space, which the decoder Gg uses to
produce a scene data matrix. A scene discriminator Dy then deter-
mines if the generated scenes are real. A projection layer P projects
3D scenes to top-view images and an image discriminator Dy, clas-
sifies if its top-view images are real are not.

@@

Model

N ] c
ResNet \ f‘\ ategory mansi

Category [E]$
Location x @
Location y @
s @8 D
orientation (5 ) B

Dimension @@

Figure 26: SceneFormer [WYN20] uses a transformer to generate
new scenes in an autoregressive manner, where a scene is repre-
sented by an ordered set of objects. In addition, it consumes a floor
image, both during train and test time.
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Figure 27: ATISS [PKS*21] poses the scene synthesis task as one
of unordered set generation. Given a room type and its shape (in
the form of a top-down floor image), it generates plausible furniture
arrangements in an autoregressive, permutation-invariant fashion
using a transformer.

a style description prompt. This work also encodes a 3D scene as an
unordered set of objects and their transformations, and the underly-
ing machinery is based on a transformer model. The text prompt is
encoded using a CLIP encoder [RKH*21], which takes eight view-

renderings of a 3D scene as input and outputs a 512-dimensional
vector, which is then concatenated with all other object-plus-floor
features extracted using the transformer as done in ATISS. Note
that a pre-trained text-to-image CLIP encoder is used during the
training phase. This allows the representation of fine visual details
of each furniture instance while remaining agnostic to object en-
coding format. Sample results are shown in Figure 29.

7. Conclusions and open problems

In this report, we have surveyed historical and state-of-the-art
works in data-driven analysis as well as synthesis of 3D indoor
scenes. Starting from different possible representations (both vi-
sual and structural) and the available datasets, we discussed funda-
mental scene analysis tasks such as 3D object detection, 3D scene
segmentation, 3D scene reconstruction, and 3D scene retrieval. For
synthesis techniques, we have mainly documented recent progress
in that direction, which by default, has been skewed towards neural
models. During the course of these discussions, we have identified
the suitability of specific neural architecture for the chosen scene
representations.

Overall, indoor scene modeling has made impressive strides
in recent years, pushing the boundaries of computer graphics re-
search. Yet, there exist many interesting avenues at a higher level
to be pursued. We conclude this report by offering thoughts on what
we regard as some important and interesting research directions.

Modeling rotation equivariance for 3D object detection: A
strongly desired property in 3D deep learning is rotation equivari-
ance. In the context of object detection in 3D indoor scenes, it is
desired that the detected bounding box be equivariant to the ob-
ject pose. This means achieving equivariance not at the global in-
put scene level, but at the object level. The first step towards this
goal is to extract equivariant features at the object level, and find-
ing a way to inject them into recent 3D object detectors. Since ob-
jects in a scene are rotated along the gravity axis, it is natural to
limit the development of techniques to 1D rotations. A recent work
of [YWY22] has laid some groundwork in this regard. However,
it is the equivariance in SO(3) space that is challenging and under-
explored, finding wide industrial applicability such as in simulating
flight aerodynamics, building constructions, and in assembly lines
in manufacturing industries.

Instance detection and segmentation in scenes: In the real
world, sets of identical objects are observed in different orien-
tations. In synthetic scenes, such identical objects are typically
represented with instances of the same 3D model appropriately
transformed into various positions. The ability to segment scenes,
not simply semantically, but also at the instance level, provides a
greater machine understanding of indoor environments. The solu-
tion to this problem raises a more fundamental question that is re-
lated to modeling object rotations in the SO(3) space — can exist-
ing shape descriptors distinguish between rotated instances of the
same object, and if not, how can we go about doing that? In ad-
dition, if an agent can identify instances of the same objects in a
scene (through instance segmentation), motion articulations on one
such model can be easily applied to all other instances of the model
in the scene. These are all connected problems, but can only be at-
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Figure 29: CLIP-Layout [LXJ*23] takes a floorplan and a text
prompt as conditions for style descriptions, and generates plau-
sible, diverse 3D indoor scenes that are stylistically consistent, ad-
hering to the input text prompt.

tempted if the fundamental question posed above has been firmly
answered.

Unsupervised scene reconstruction from a single image: Ob-
ject reconstruction from single-view images is a difficult prob-
lem in itself. At the scene layout level, different challenges exist,
particularly of cluttered scene recovery. The development of such
models can facilitate visualizing possibilities for architects, furni-
ture retailers, and interior design firms. Recent supervised works
[NHG*20,ZCZ*21] have achieved decent results on this task while
also performing reconstruction at the object level. When no layout
supervision is provided, the problem of recovering the scene lay-
out from a single-view image becomes extremely challenging. A
potential solution to this problem is via self-supervision, where the
model needs to reason about placement priors from many homo-
geneous scene images. A lack of existing works in this direction
indicates the degree of difficulty involved in the task, something to
actively research about.

Neural 3D scene similarity: Alignment of visual data provides
a reference point to study data similarity. For 3D scenes, this is
notoriously hard, since there is no standard reference point — it all
depends on the scene object in focus. Developing algorithms for
3D scene similarity has continued to attract interest, starting from
graph kernels [FSH11] to later works on focal-centric graph kernels
[XMZ*14] and IBS [ZWK14]. A recent work [PLF*21] uses graph
neural network (GNN) to learn structural similarity for 2D layouts.
To explore a deployment of GNNs with intuitive focal-centric ap-
proaches that combine not just the structural layout properties, but
also object appearance traits, for 3D scene similarity/retrieval re-
mains an interesting direction. Such a metric could also be used
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to qualitatively evaluate the plausibility of 3D scenes, which is a
missing piece in the literature, especially in the realm of neural
generative models.

Modeling geometry and object textures for scene synthesis:
Access to a rich 3D scene database that contains diverse 3D ob-
jects is crucial for building neural models tasked with scene gener-
ation. In all such works, objects are placed in the generated scene
layout by retrieving from an object database based on generated
object attributes, which typically are nothing but bounding box di-
mensions, category, and scene centroid. Although geometric infor-
mation is generated, appearance properties are not accounted for.
This needs to be addressed since existing structural and geomet-
ric attributes provide strong cues to material and texture appear-
ance, something that has been under-explored at the object level
[JTRS12,LAK*18,CXY*15]. Learning to model a coupling of this
with the scene layouts is an interesting approach to bypass the typ-
ical object retrieval step and directly generate objects with novel
appearances.

Neural text-to-3D scene: With DALL-E [RDN*22] and IM-
AGEN [SCS*22], great advances have been made this year for
language-driven image synthesis that produce impressive, high-
quality results. However, these models do not offer control over
the generated results. That is, the underlying theme is of a one-
shot text-conditioned generation, something that is rarely desired
when dealing with 3D content. Rather, the ability to progressively
generate 3D content in a controlled manner is prioritized in the
graphics community. In the realm of indoor 3D scenes, a few at-
tempts [CSM 14, CFG* 15, MPF* 18] have been made in the past to
generate scenes from text input. All these works are model-driven,
and are limited by incorporated heuristics. Admitting neural net-
works for this task that learn directly from the data can make up
for the “lost ground", and open up further avenues to improve such
scene generation systems.

Modeling scene style: Scene style is a high-level concept, gen-
erally referring to a setting where the furniture designs (ornate
antique sofa vs. a flat IKEA sofa) are in agreement with, and
even complement, the ambient decorations in the scene (ex; ceil-
ing arches, wall carvings and other beautification), and themselves
exhibit geometric uniformity. In addition, room color, ambiance
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lighting, furniture color, texture and material, all factor into what
we call scene style. To be able to generate scenes of different styles
implies modeling a function of object styles and room decorations.
A recent work [SHS*22] gives a teaser on scene style, based on
a person’s mood. The question of how to define this function and
how to factorize object/room style in terms of material, color and
texture remains an open research problem.

In addition to such fine details, scene “style" can also refer to
its tidiness. Real world scenes are often cluttered with objects and
are far from the impeccable renderings depicted in the literature. A
significant energy is devoted to producing near-perfect scenes, ig-
noring investigations into producing messy (sub)scenes that mimic
environments encountered in daily life. Learning to model such
scenes, although challenging, can be beneficial in providing real-
ism to virtual scenes and remains an open research direction.

Modeling scene interaction: For an immersive metaverse ex-
perience, users should be able to interact with objects in a scene.
This can occur in two ways — (1) using objects and furniture in
their intended purposes (ex: sitting on a chair, adjusting the sofa to
appropriately face the tv, using the tv remote, picking up a pen),
and (2) playing with furniture models (ex: facilitating articula-
tions on the drawers of a file cabinet, where the user can touch
a drawer and it pops open; allowing part mobility such as adjust-
ing the height of a chair seat; manipulating object functionalities in
novel ways, perhaps making them non-functional). There have been
some attempts in modeling object functionalities and part mobil-
ity [SHL* 14, LHAZ, HZvK* 15, HYKW™* 16, HLVK* 17, HYZ*20].
However, modeling interactions at the scene level poses novel chal-
lenges and is an interesting research direction that has been under-
explored.

Move planning, scene rearrangement, and teleportation:
The ability to move freely and efficiently in indoor environments
influences productivity and work culture, either for shared work-
places such as offices, restaurant kitchens, warehouses, and airports
or for personal spaces such as living rooms and open Kkitchens.
More often than not, such planning takes ample time and layout
considerations, especially with a large object inventory. Suggest-
ing a plausible arrangement of objects leading to an optimized
workplan, as well as space design is extremely useful in indus-
trial applications. In a recent work [ZHPY21], such workspaces
and workplans are automatically designed given the input space
and workspace equipment, in addition to staff properties as inputs.
Such designs may benefit from data-driven modeling, for which, a
diverse, rich, large-scale database of indoor environments spanning
different industries is the first necessary step.

This move planning concept can be used to inject teleportation
feature in the metaverse, where a system can automatically suggest
possible teleportation locations within an already-seen environment
based on navigability, and the user can hop between such spots vir-
tually. One way to do this is to sample a set of desirable teleport
positions, assessing ease of navigation (and properties such as cov-
erage and connectivity from a subscene or a focal point). Such an
application has recently been explored in [LHLY21] which synthe-
sizes scene-aware teleportation graphs.

A slight deviation from the above, but with the potential to serve
teleportation application, albeit slower, would be to allow the user

to select teleportation spots apriori in an already configured envi-
ronment, and developing a system that can re-arrange objects in
the current physical state of the environment to a new state so as
to optimize for the desired tele-movement. Different versions of
this task exist have been described in [BCC*20] where the target
environment state can be described by object poses, images, lan-
guage description, or by letting an agent experience the target state
environment, if possible. A recent work [WLY20] makes use of re-
inforcement learning for automatic move planning of 3D objects
from an initial 3D layout to a target layout. This application serves
well in practice, and requires further exploration.
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