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Abstract
Cross-situational word learning, like any statistical learning problem, involves tracking the
regularities in the environment. But the information that learners pick up from these regularities is
dependent on their learning mechanism. This paper investigates the role of one type of mechanism
in statistical word learning: competition. Competitive mechanisms would allow learners to find the
signal in noisy input, and would help to explain the speed with which learners succeed in
statistical learning tasks. Because cross-situational word learning provides information at multiple
scales – both within and across trials/situations –learners could implement competition at either or
both of these scales. A series of four experiments demonstrate that cross-situational learning
involves competition at both levels of scale, and that these mechanisms interact to support rapid
learning. The impact of both of these mechanisms is then considered from the perspective of a
process-level understanding of cross-situational learning.
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In any statistical learning problem, the learning system is exposed to a stream of input
information and tasked with discovering the underlying structure. However, the information
in the stream may not all be of equal importance. Consequently, it is to the learner’s advange
to employ a discovery process that biases the acquisition of new information in light of its
likely informativeness (Pearce & Hall, 1980; Billman & Knutson, 1996; Kruschke, 2001).
One way of producing such a process is through competition; a competitive discovery
process is one in which evidence in favor of one structure acts as evidence against another
structure. Mechanistically, this may be realized through processes in which stronger
representations actively inhibit competing representations and thereby make them even
weaker. Competition of this sort reduces noise in the input and sharpens the signal, allowing
the learning system to more quickly converge on the underlying patterns. Competitive
processes have been implicated in multiple linguistic phenomena, including speech
segmentation (Norris, McQueen, & Cutler, 1995), visual and spoken word processing
(McClelland & Elman, 1986; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995;
Luce & Pisoni, 1998; Rodd, Gaskell, & Marslen-Wilson, 2004; Gaskell, 2003), and
grammatical parsing (Smolensky, 1996; Vosse & Kempen, 2000). They are also found
throughout the cognitive system in vision (Blakemore, S., & Georgeson, 1970; Masland,
2001), selective attention (Desimone, 1988; Beck & Kastner, 2005), action selection (Cisek,
2007), and decision making (McKinstry, Dale, & Spivey, 2008; Spivey, Dale, Knoblich, &
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Grosjean, 2010). Thus it is reasonable to expect that competitive processes also play a role
in statistical learning of language. Here we consider the problem in the context of cross-
situational word-referent learning.

In the cross-situational word learning task (Yu & Smith, 2007), participants are exposed to a
series of learning trials each consisting of multiple words and referents. Within an individual
trial, there is no information about which words map onto which objects (See Figure 2 for an
example). However, across multiple trials, co-occurrence frequencies between words and
objects provide the statistical information sufficient to determine which word labels which
object. Cross-situational word learning is a good experimental paradigm in which to study
the role of competitive process in statistical language learning for three reasons. First, cross-
situational word learning is an important phenomenon in its own right. There is general
agreement that one of the difficult problems in word learning is ambiguity of reference
(Markman, 1990; Gillette, Gleitman, Gleitman, & Lederer, 1999; Yu & Smith, 2007). To
which of many potential objects in a scene does a label refer? Many studies documented the
processes by which children can reduce ambiguity in a given naming event, using social,
pragmatic, and attentional cues. The cross-situational approach to language acquisition is
concerned instead with the processes by which ambiguity can be reduced by accruing
information across instances (Siskind, 1996; Gillette et al., 1999; Yu & Smith, 2007).
Because it a more recent proposal, however, cross-situational word learning is not well
understand mechanistically (Medina, Snedeker, Trueswell, & Gleitman, 2011).
Understanding, at a process level, how learners hone in on a coherent system of word-
referent pairs in this laboratory task may help us to understand how learners in the real
world acquire words even when, most often, no single naming event provides certain
information.

Second, cross-situational word learning is a specific example of the general problem of
statistical learning. Mechanisms which are found to be important for successful statistical
word learning are likely to be important for other kinds of human statistical learning. For
example, Aslin and colleagues have shown similar processes to operate in both auditory and
visual statistical learning (Saffran, Aslin, & Newport, 1996; Fiser & Aslin, 2001), and
Kirkham, Slemmer, and Johnson (2002) have argued that the two are instantiations of a
common mechanism. Finally, the structure of information presented in cross-situational
learning experiments allows for the systematic examination of competition at two levels:
within and across trials.

First, since each individual learning trial presents multiple words and multiple objects,
mappings between words and objects could compete such that mapping a word onto one
object within a trial could inhibit its mapping onto other objects on that same trial.
Competition at this local level, in which words within a single utterance compete for
referential extent, has been a key component in an assortment of models of word learning
(Siskind, 1996; Yu, 2008; Frank, Goodman, & Tenenbaum, 2009; Fazly, Alishahi, &
Stevenson, 2010; McMurray, Horst, & K., in press). In each of these cases, prior knowledge
of the words and items determines the relative strength of competing mappings, but the
items in competition – the words and objects – are present within a single, local, learning
instance. Local competition of this kind finds the best within-trial solution. However, local
competition also allows learners to leverage knowledge of some of mappings on the trial to
learn other unknown mappings. For example, if the strength of a word-object mapping A – a
inhibits mappings other objects to A or other words to a, then the learner may be better able
to find the right mappings for other words and referents.

Second, co-occurrence frequencies between words and objects provide statistical
information across the entire set of trials such that evidence concerning elements not present
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in the current trial may also enter into competition. That is, evidence acquired about a word-
object mapping on one trial can influence mapping that word onto other objects even when
the original object is not present. We operationally define global competition, in contrast to
local competition, as competition in which both elements of the competing mapping need
not be present in the same learning trial. For example, global, cross-trial competition, would
be implicated if previous evidence for a mapping of word A to object a inhibited mapping
word A to object b on a trial in which object a was not present. That is, by definition, global
competition does not require the previously mapped object to be present on subsequent trials
for the past learning of the mapping to inhibit new mappings. If the system prefers one-to-
one mappings, this kind of cross-trial competition would make for a very powerful learning
device in which latent knowledge strongly constrains the possibility of new learning. Such
global competition could effectively reduce the noise in the learning environment given that
words are frequently used in the absence of their referents (Gleitman, 1990). Competition at
the global level has been conceptualized within Clark’s (1987) principle of contrast, which
posits that no two words can have identical referential extent. Global competition is also
implemented in a number of associative models of language acquisition (MacWhinney,
1989; Merriman, 1999; Regier, 2005; Yu, 2008; Fazly et al., 2010) as well as in Bayesian
models of word learning (Xu & Tenenbaum, 2007; Frank et al., 2009). In these latter
models, the size-principle implements a competition between positing more word-object
links to better explain the input and keeping the total lexicon small.

Competition at these two levels need not be mutually exclusive. In fact, some models
explicitly include competitive mechanisms which operate at both the local and global levels
(Yu, 2008; Frank et al., 2009; Fazly et al., 2010). By implementing competition at both
levels, the models become significantly more robust to noisy input. Global competition
speeds up the acquisition of individual mappings across time, and local competition lets
these mappings be used to learn other mappings. However, despite theoretical proposals
about these kinds of competition in word learning, their use in many models of statistical
word-referent learning, and their relevance to the mechanisms underlying statistical word-
referent learning, they have not been empirically studied in the context of learning the
meanings of words across multiple individually ambiguous trials. Accordingly, in the
experiments that follow, we present human learners with cross-situational learning tasks
designed to investigate how competition operates at each level and how these levels of
competition interact.

To these ends, in each of the following experiments, participants were exposed to two types
of words: single words, which co-occurred six times with only one correct referent, and
double words which each co-occurred six times with two different correct referents. Since
these two referents shared the same word, the two mappings should be in direct competition.
The experiments were designed to systematically manipulate the contexts in which these
competing referents appeared – both within and across trials – so as to study local and global
competition. In Experiment 1, both referents of each double word always co-occurred with
that word within the same learning trial. This structure provides an opportunity for these
mappings to compete both locally, within a single trial, as well as globally, across trials.
Impaired learning of such double words compared to single words provide the first evidence
for competition in cross-situational learning and sets the stage for disentangling the roles of
local and global competition in the following experiments. In Experiment 2, the two
competing referents were always encountered on separate trials. Since they could not
compete locally, this experiment established the contribution of global competition.
Experiment 3 was based on Experiment 2, but varied the order in which the referents of
double words were encountered to examine how past learning influences global competition,
and to pit local and global competition against each other. Finally, Experiment 4 used a
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novel method for measuring trial-to-trial learning in cross-situational learning tasks in order
to simultaneously measure competition at both the local and global level.

Before turning to the experiments, it is important to lay out what questions we do not intend
to answer. First, while we are using two-to-one mappings in order to investigate the
operation of competitive processes in cross-situational word learning, these experiments are
not intended to be the definitive word on how children learn homonyms and synonyms. A
number of excellent empirical studies have documented the developmental time course of
children’s difficulties with many-to-one mappings, and potential factors that may mitigate
this difficulty (Liittschwager & Markman, 1994; Doherty, 2000, 2004; Casenhiser, 2005).
These studies are aimed at elucidating the competitive mechanisms that underpin
accumulation of co-occurrence information across multiple ambiguous instances.
Understanding the operation and dynamic interaction of these processes is essential in
moving towards a process-level account of statistical word learning (Smith, Colunga, &
Yoshida, 2010). Second, competitive processes can be implemented in a variety of
architectures: in neural networks (McClelland & Elman, 1986), in deductive hypothesis
testing systems (Siskind, 1996), in exemplar models (Regier, 2005), in statistical machine
learning systems (Yu, 2008; Fazly et al., 2010) and in Bayesian ideal observer models
(Frank et al., 2009). They could be innately specified constraints specific to word learning
(Clark, 1987; Markman, 1990) or they could be general properties of the cognitive system
(Landau, Smith, & Jones, 1988; Regier, 2003). The present experiments do not discriminate
among these different architectures or claims. However, what competitive processes in all
these approaches have in common is a shared outcome: sharpening the signal present in
noisy input, and a shared mathematical operation: normalization, in which strengthening one
candidate weakens the others. The unifying criterion is that word-object mappings are
acquired not only in parallel, but also that the system treats them as dependent. Information
about multiple mappings interacts. The empirical question asked in the present experiments
is, in our view, prior to model building and differentiation (Yu & Smith, 2012). What roles
do local and global competition play in cross-situational word learning? Although each of
type of competition – local and global –could accelerate cross-situational word learning, the
way in which they function and the way they interact implicate different learning
mechanisms.

Experiment 1
Following the cross-situational learning paradigm (Yu & Smith, 2007), we asked
participants to learn multiple word-referent pairs from a sequence of individually ambiguous
learning trials. On each trial, learners saw four objects and heard four words, but were given
no information about which word referred to which object. In contrast to the original
experiments, however, each word heard on a trial did not label exactly one of the present
objects. Within an individual trial, some words labeled one object, some words labeled two
objects, and some words labeled none of the objects. Figure 1 shows a schematic of the
learning situation.

If cross-situational word learning involves a competitive mechanism at either scale –local or
global – learning multiple referents for the same word should be difficult, as mapping the
word to one referent should inhibit mapping it onto the other. If competition is local, and
word-object mappings compete within a single trial, then each referent of a double word
should directly inhibit the other within each trial. If competition is global, then accruing
information about one referent of a double word on one trial should inhibit accruing
information about that same word and its other referent on the next trial. Thus the primary
goal of Experiment 1 is to demonstrate that competition occurs in this experimental task by
showing impaired learning in the case when there is more than one referent for a word. This
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is because while competition would affect learning the mappings of each word, it would be
beneficial for learning the referents of single words, by limiting mappings to other referents,
but detrimental for learning referents of double words, which requires learning two
mappings.

Method
Participants—Forty-eight undergraduate students at Indiana University received class
credit in exchange for volunteering. None had previously participated in any cross-
situational learning experiments.

Stimuli and Design—The stimuli were trials consisting of pictures of uncommon objects
paired with auditorally presented pseudowords (see Figure 2 for an example). These
pseudowords were computer-generated to broadly sample phonotactically-probable English
forms and were spoken by a synthetic female voice in monotone. In total, 18 unique objects
and 18 unique words were produced. The set of 18 words was further divided into six single
words, six double words, and six noise words. Single words behaved identically to words in
other cross-situational learning experiments, co-occurring on each appearance with exactly
one correct referent object. In contrast, each double word referred to two objects, both of
which co-occurred with it on each appearance. In total, single words co-occurred six times
with their correct referent, and double words co-occurred six times with each of their correct
referents. Thus, co-occurrence frequency of each correct referent was equated. Finally, noise
words co-occurred with approximately equal frequency with all objects in the set, and thus
did not map consistently onto any referent. This allowed us to directly compare learning of
double words to learning of single words. Noise words were included to produce an equal
number of words and referents on each trial, preventing learners from immediately noticing
non one-to-one mappings.

Each training trial consisted of four words, heard serially, and four pictures of objects, one
in each corner of the screen. One of the words was a correct label for each of the objects.
Across the entire set of trials, each of the 18 words and objects appeared six times, resulting
in 27 total 4 word × 4 object training trials. Of these 27 training trials, two contained four
single words, and 14 contained two single words, one double word, and one noise word. The
remaining 11 contained two double words and two noise words. Thus, while each trial
always consisted of four words and four objects, the within-trial mapping structure varied
considerably from trial to trial, and was rarely consistent with one-to-one mapping (2 of 27
trials).

After training, participants were tested for their knowledge of the referents of each word. On
each test trial, participants heard one word from the training set, and were asked to rank each
of four objects in order of their likelihood of being the referent of the word label. The set of
alternatives for each single word consisted of its one correct referent, the referent of a
different single word, and one correct referent for each of two different double words. The
set of alternatives for each double word consisted of both of its correct referents, the referent
of a single word, and one referent of a different double word. Since noise words mapped to
no correct referents, the set of alternatives for each noise word consisted of the referent of
one single word and one referent for each of three different double words.

Procedure—Participants were told that they would be seeing pictures of objects and
hearing words, and that they should try to determine which referred to which. They then
engaged in a training session, followed by a test session. At test, they received the following
instructions: “You will now be tested on your knowledge of the word-object mappings. On
each testing trial, you will hear one of the words from training and see four objects. Please
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rank the objects according to their likelihood of matching the word by clicking on them in
order from most likely to least likely.” The test would not advance to the next trial until all
four objects had been selected.

This method of testing was chosen in order to balance three important constraints: getting a
clean and complete measure of participants’ knowledge, minimizing the chance of biasing
them towards or away from one-to-one mappings, and keeping testing reasonably short in
length. This ranking procedure provided a better solution then a number of other
alternatives. For instance, a simple alternative-forced-choice test would either not provide
information for both referents of each double word, or could potentially bias participants to
prefer or disprefer one-to-one mappings. An exhaustive matching test (e.g. “does this sound
match this picture”) would require too many trials due to the large number of words and
referents. Asking participants to name the pictures would not have these problems, but could
interact quite differently with learned mappings and would be even more difficult to
compare to previous cross-situational word-learning studies.

Results and Discussion
In order to be given credit for knowing the correct referent for a single word, participants
were required to rank it as the most likely referent. That is, it had to be their first guess. Test
trials for each double word contained both of that word’s correct referents. If a participant
selected either of the correct referents as their first guess (e.g. A – a1 x x x or A – a2 x x x),
the participant was given credit for knowing at least one correct referent. In order to get
credit for knowing both referents for a double word, the participant needed to select both of
the referents in either order as guesses one and two (e.g. A – a1 a2 x x or A – a2 a1 x x).
Because these different kinds of words have different chance-levels of accuracy, we
developed a statistical analysis to correct for this and present these results after standard t-
test analyses.

Figure 3 shows average test accuracy for participants in Experiment 1. Participants showed
better than chance knowledge of the referents for single words (Ms = .454, SDs = .264,
chance = .25, t(47) = 5.29, p < .001) and not only one (M≥1 = .698, SD≥1 = .210, chance = .
5, t(47) = 6.47, p < .001) but both (Mboth = .301, SDboth = .146, chance = .17, t(47) = 6.32, p
< .001) referents for double words. Thus, relative to chance, participants learned both one-
to-one and two-to-one mappings despite the ambiguity in their input.

However, participants were significantly less likely to learn both referents of a double word
than the one referent of a single word (t(47) = 3.68, p < .001). As chance level performance
due to guessing on these two types of tests is different, a direct comparison of absolute
accuracy is unfair. We present next the rationale for the analysis we developed to make a
fair comparison. The starting assumption is that each correct answer at test could be due to
one of two mutually-exclusive possibilities: (1) the participant knows the correct mapping
for the tested word, or (2) the participant guesses correctly. At test, suppose that a
participant gave some number n of correct responses. This participant may have actually
known any number of correct mappings less than or equal to n. The remaining correct
responses must be explained by guessing. Based on the probability of guessing correctly in
each test condition, our analysis produces a maximum likelihood estimate of the number of
correct responses due to (1) word-object knowledge and the number due to (2) guessing. The
number of known mappings can then be converted to a proportion as in the standard
analysis, and compared directly across word types. In all cases, this alternative analysis
produced outcomes consistent with the standard t-test analyses of overall performance. Full
details for the maximum-likelihood analysis can be found in the Appendix.
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This guessing analysis was used to infer the proportion of single words for which
participants knew the correct referent (M = .39), and the proportion of double words for
which participants knew only one (M = .34) versus both (M = .21) referents. Because these
data need not be normally distributed, we compare single word learning to double word
learning with a non-parametric Mann-Whitney U test. Participants were significantly less
likely to learn both referents of a double word than they were to learn the one referent of a
single word (z = 2.996, p < .01). That is, within the experiment, two mappings made up of a
single word and two different referents do not act like two independent mappings (two
words and two different referents). This means there is competition of some kind.

Experiment 1 thus provides evidence that competition is involved in cross-situational
learning. But, it does not determine the type of competition. Both of the correct referents of
each double word were available on each trial, and thus they could have directly inhibited
each other through local competition. Alternatively, stored information about co-occurrence
from prior trials could have resulted in each referent inhibiting the other on future trials
through global competition. To help in disentangling these two kinds of competition,
consider a sample trial containing words {A, B, C, D} and referents {a1, a2, b, c}. One
possibility is that cross-situational learning involves local competition in which pairing a
word to an object on a given trial reduces the probability of pairing that word with other
objects and that object with other words on that trial. In this trial, if A is paired with a1, it
will be less likely to be paired with a2. If it is instead paired with a2, the strength of its local
pairing with a1 will be reduced. Thus, on each trial containing A, on average less mapping
strength will be accrued for A – a1 and A – a2 than for B – b or C – c. Since a1 and a2
compete locally on each occurrence of A, learners will be less likely to know both double
pairings (A – a1, A – a2) than a given single pairing (B – b).

If cross-situational learning involves primarily global competition, then the key factor might
be not potential mappings presented within a trial, but rather all the mappings one has been
exposed to across trials. In such a mechanism, the objects within a trial do not interact
directly, but do so through stored mapping information. Consider again the same trial:
{words: A, B, C, D; referents: a1, a2, b, c}. Through global competition, the previously
acquired strength of mapping A – a1 will reduce the amount strength stored for A – a2 even
without a local competition between A – a1 and A – a2, and previous knowledge about
mapping A – a2 will reduce the amount stored for A – a1. Thus, even if no computation
relates the words and objects within a trial to each other directly, global competition across
trials should produce a decrement for learning both double mappings (A – a1, A – a2)
relative to a single mapping (B – b). Following this rationale, the goal of Experiment 2 is to
establish a role for global competition.

In Experiment 2, we expose participants to distributional information in which only one of
the correct referents of each double word is available on each trial. If, for cross-situational
learners, out of sight is out of mind, then without local competition in the sense of two vying
mappings within the same trial, participants should not show impaired learning of double
words. If, in contrast, knowledge of a non-present mapping influences the mappings formed
within a trial, then learning of the double mappings should suffer relative to the single ones
just as in Experiment 1.

Experiment 2
In this experiment, participants were again exposed to both single words and double words,
but each appearance of a double word coincided with only of its correct referents. Co-
occurrences with each of the two referents were interleaved randomly over the entire set of
training trials (see Figure 4 for a schematic). If competition operates only at the local level,
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participants in Experiment 2 should be able to learn the two referents of each double word as
well as the one referent of each single word. In contrast, if there is competition at the global
level, learning of double words should again be impaired.

Method
Participants—Forty-eight undergraduate students at Indiana University received class
credit for volunteering. None had previously participated in Experiment 1 or any other
cross-situational learning experiments.

Stimuli and Design—Stimuli for Experiment 2 were similar to those for Experiment 1.
Trials were again composed of four pseudowords and four pictures of objects; 12 words and
18 objects were drawn from the set used in Experiment 1. The 12 words were divided into
six single words which mapped onto one object referent each and six double words which
mapped onto two objects each. Trials were presented as before: four objects were seen in the
four corners of the screen, and four words were presented serially from loudspeakers. Each
of the single words appeared six times, and each of the double words appeared 12 times, six
with each of its correct referents. This again produced 27 total 4 word × 4 object training
trials.

After training, testing proceeded as in Experiment 1. For each word, participants were again
asked to rank four possible referents in order of likelihood. The set of alternatives for each
double word contained of both of its correct referents along with 2 foils, the set of
alternatives for each single word contained its one correct referent and three foils.

Procedure—Participants were given the same instructions as before – that they would be
seeing objects and hearing words and that they should determine to which object each word
referred. They then engaged in a training session, followed by a test session. Testing was
again assessed via 4-alternative ranking.

Results and Discussion
As in Experiment 1, credit was given for knowledge of the referent of a single word if the
correct referent was the participant’s first choice. Credit for knowing at least one referent of
a double word was given to participants who selected either of the word’s referents as their
first choice. Credit for knowing both referents was given only if choices one and two were
both correct referents in either order.

Figure 5 shows test results for Experiment 2. Participants successfully learned referents for
single words (Ms = .40, SDs = .247, chance = .25, t(47) = 4.09, p < .001) and, again, they
learned referents for not only one (M≥1 = .58, SD≥1 = .277, chance = .5, t(47) = 2.08, p < .
05) but both (Mboth = .24, SDboth = .203, chance = .17, t(47) = 2.49, p < .05) referents of the
double words. As in Experiment 1, although participants learned all types of mapping at
above chance levels, they were significantly less likely to learn both referents of a double
word than they were to know the one referent for a single word (t(47) = 3.81, p < .001). We
again applied the guessing analysis to estimate the proportion of single words (M = .31)
participants knew, and the proportion of double words for which participants knew only one
(M = .24) versus both (M = .15) referents. As in Experiment 1, participants were
significantly less likely to learn both referents of a double word than they were to learn the
one referent of a single word (z = 3.03, p < .01), a result that indicates competition across
trials.

The results thus suggest global competition. Knowledge of one word-object mapping alters
the acquisition of a second referent for the same word even when the first referent is not
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available within the same trial. It is worth noting that while Experiment 2 had the same
number of learning trials Experiment 1, and learners were exposed to the same word-object
co-occurrence information, there were differences in timing. In Experiment 1, learners
would have to divide their attention between the two referents for a double word within a
single trial. Because in Experiment 2 participants did not have to divide their attention in
this way, we might have expected improved learning (Yu & Smith, 2011). However, this
was not the case. Instead, learning in Experiment 2 was slightly worse. One possible
explanation for this result is that each occurrence of one referent of a double word meant a
non-occurrence of the other. Participants thus could have treated this non-occurrence as
implicit negative evidence (see e.g., Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010). Thus,
while implicit negative evidence is treated as deriving from alternative positive evidence in
competition models (e.g. Merriman, 1999, see also Xu & Tenenbaum, 2007, for a review),
non-occurrence of a word-object mapping could also have a separate additional role in
reducing evidence for that mapping. Since assessing this role empirically would require
training participants with an unequal number of words and objects, and thus very probably
change their learning strategies, we do not pursue it further here. Nonetheless, understanding
the independent contributions of competition and non-occurrence would be an interesting
question for further research.

In either case, since learning results were no better in Experiment 2 than Experiment 1,
global competition is likely to be a potent force. This global competition could be
implemented in one of two ways: either after all information has been acquired, and thus
independently of local competition (e.g. Frank et al., 2009), or trial-by-trial as information is
being accrued and thus potentially interacting with local competition (e.g. Fazly et al.,
2010). One way to measure whether global competition operates trial-by-trial is through
order effects.

If global competition occurs on-line from trial-to-trial, then the order in which participants
are exposed to the two referents for each double word should matter. If global competition
operates through batch-like statistics at the end of learning (or at test), order effects would
not be expected. Accordingly, in Experiment 3, the trials from Experiment 2 were
rearranged such that participants received all exposures to one correct referent for each
double word before seeing the other. If global competition occurs at the end of training, then
learning results should be identical. If, in contrast, trial-by-trial global competition is the
primary mechanism of competition, then participants should be significantly more likely to
acquire the first referent of a double word, but significantly less likely to acquire both. Such
a pattern was found by Gebhart, Aslin, and Newport (2009) in a similar statistical speech
segmentation task.

Experiment 3
In Experiment 3, participants again encountered cross-situational learning trials in which
half of the words co-occurred with equal frequency (six times) with two correct referents. As
in Experiment 2, only one of these correct referents appeared on each trial. However,
whereas in Experiment 2 these appearances were randomly interleaved, in Experiment 3
they were strictly ordered (see Figure 6). Trials in the first half of the experiment presented
only one of the two correct referents of each double word, and trials in the second half
presented exclusively the other correct referent. Thus, participants received all six exposures
to one correct referent before ever seeing the other.

If competition is primarily global, and occurs only after all training information has been
accumulated, there should be no effect of the temporal order of individual trials and
performance in Experiment 3 should be identical to Experiment 2. In contrast, if global
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competition emerges trial-by-trial and does not interact with the other local mappings that
may be formed within a trial, then one would expect a clear order effect in Experiment 3
with the first referent being learned better than the second for the double words. Thus, both
hypotheses about global competition predict that double words will show a decrement
relative to single words as found in Experiments 1 and 2, and the key question is whether
that decrement is greater for the second learned referent (a result that implicates trial by trial
global competition) or roughly equivalent (a result that implicates post-learning or batch
competition). Predictions are more complicated if there are interactions between global and
local competition. Briefly, double words are not the only words presented on each trial and
if local competition works within a trial for learners to find the one best referent for each
word, then local within-trial competition in the second half of the experiment could help the
learner double words to their correct second referents.

Method
Participants—Forty-eight undergraduate students at Indiana University received class
credit for volunteering. None had previously participated in Experiments 1 or 2 or any other
cross-situational learning experiments.

Stimuli, Design, and Procedure—Stimuli for Experiment 3 were identical to those in
Experiment 2 except for the order in which trials were presented. In Experiment 2 the two
referents of each double word were interleaved randomly across the set of training trails. In
contrast, in Experiment 3 they were ordered such that one of the referents co-occurred with
the first six appearances of a double word, and the second referent co-occurred with the
remaining six appearances. Figure 6 shows this new training scheme. In the analysis, we will
refer to the referent which occurred first as the early referent, and the one which occurred
second as the late referent. The testing procedure was also identical to that of Experiment 2.

Results and Discussion
As in previous experiments, knowledge of word-object mapping was assessed via 4-
alternative ranking. The set of four alternative objects for each word was constructed
identically to Experiment 2. Figure 7a shows mapping accuracy for participants in
Experiment 3.

Overall, participants successfully learned referents for single words (Ms = .45, SDs = .30,
chance = .25, t(47) = 4.69, p < .001) and again for not only one (M≥1 = .73, SD≥1 = .24,
chance = .5, t(47) = 6.53, p < .001) but both (Mboth = .40, SDboth = .30, chance = .17, t(47) =
5.42, p < .001) referents for double words. However, in contrast to the previous experiments,
participants were not significantly less likely to know both referents of a double word than
they were to know the single referent for a single word (Ms = .45, Mboth = .40, t(47) = 1.53,
n.s.). The guessing analysis again confirmed standard t-test analysis. The analysis described
in the Appendix allowed us to infer the proportion of single words (M = .36) participants
knew, and the proportion of double words for which participants knew only one (M = .22)
versus both (M = .34) referents. A Mann-Whitney U test showed that participants in
Experiment 3 did not learn single words more successfully than they learned both referents
of double words (z = .122, n.s.). Thus, in contrast to previous experiments, the results do not
show direct evidence of competition. The results therefore do not support either of the two
global competition alone hypotheses, both of which predicted some degree of decrement for
double words versus single words (for related results in phonological contrast learning, see
also Perrachione, Lee, Ha, & Wong, 2011).

However, although this measure of participants’ test accuracies did not show evidence of a
competition, there is one more place to look. Since the two referents of each double word
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appeared in a consistent order, the early referent for the first six occurrences and then the
late referent for the second six, one might expect them to be treated differently at test. In
particular, if global competition is applied trial-by-trial as information is accrued, then the
early referent should be better learned. Did order matter? When participants correctly
selected both referents in their first two guesses (Mboth = .4), they were marginally more
likely to select the early referent first (Me = .24, SDe = .23, Ml = .16, SDl = .20, t(47) = 1.77,
p = .08). These results are shown in Figure 7b.

Experiments 1 and 2 showed that competition plays a role in cross-situational learning, and
that mappings can inhibit each other even when both are not present within a single trial.
That is, there is some form of global competition. But the structure of Experiment 3
removed these competitive effects almost entirely. The likely explanation is that local
competition counteracted the effects of global competition from previously learned word-
referent pairings. In contrast to Experiments 1 and 2, learners received six exposures to
double-early mappings in the first half of training. Because of the lack of ambiguity in this
to-be-double pairing, local competition in the first half of training may have allowed
participants to acquire significantly more information about the correct mappings of the
single words on these trials. Then, while learning double-late mappings would be inhibited
by global competition, it would be supported by local competition from the other already
well-learned mappings present within a trial.

By this interpretation, cross-situational learning stems from both global and local
competition, and both processes unfold trial-to-trial as information is acquired. Global
competition protects old mappings from noisy information, and local competition leverages
prior mapping knowledge to speed the acquisition of new mappings. If we are correct, then
we should be able to uncover more direct evidence of competition not only at test, but
during training. The next experiment was designed to test these predictions. In Experiment
4, participants were exposed to the same information as in Experiment 3, but this time,
measures of learning were collected on each trial. If our hypothesis is correct, then these
trial-by-trial measures should provide evidence of competition at both levels.

Experiment 4
The ranking procedure used to assess learning in the previous experiments provided
information only about participants’ knowledge at the end of training. The goal of this
experiment was to measure learning trial by trial as training unfolds. Because testing may
interact with training (McClelland, 2006; Roediger & Karpicke, 2006), we chose the indirect
approach of asking participants to give their confidence that they knew the correct label for
each object. More specifically, at the end of each training trial, a bar containing the numbers
1–10 appeared under each object. Participants were asked to indicate their level of
confidence in their knowledge of the correct label for each object on this scale. Since these
judgments were made on each trial, analyses could be conducted to determine how
knowledge for individual words grew across exposures, and how knowledge of different
words interacted within a single trial. From this data, we could then ask more detailed
questions. For instance, can a participant’s knowledge of some of the words on a trial be
used to predict knowledge for others?

Method
Participants—Forty-eight undergraduate students at Indiana University received class
credit for volunteering. None had previously participated in any of the previous experiments
or any other cross-situational learning experiments.
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Stimuli and Design—Stimuli for Experiment 4 were identical to those in Experiment 3.
Double words again co-occurred six times with their early referent in the first half of
training, and then with their late referent six time in the second half of training. Participants
were not made aware that such a switch would occur.

Procedure—Training in Experiment 4 proceeded in exactly the same manner as
Experiment 3 except for the introduction of knowledge judgments. At the end of each trial, a
bar containing the numbers 1–10 appeared under each of the four objects on the screen.
Using this scale, participants were asked to indicate their level of confidence in their
knowledge of the correct label for each object. After a judgment was made for all four
objects, a ‘Next’ button appeared on the screen. Participants could revise any of their
judgments by clicking on a bar again. When participants clicked ‘Next’ button, the next trial
began.

Due to an extended time in training, testing in Experiment 4 was also slightly different from
the previous experiments. Whereas participants in Experiments 1–3 were asked to make four
responses at test – to rank the four alternatives in order of likelihood –participants in
Experiment 4 made only one response. They gave only their best guess.

Results and Discussion
Participants were tested for their knowledge of correct referents for each word in the training
set by selecting a single best referent from a set of four alternatives. As a result, for double
words, participants needed to make an active choice between the early and late referent.
Before examining participants’ knowledge judgments, we first verify that test results are
comparable to previous experiments.

Figure 8a shows participants’ accuracies at test. As in previous experiments, participants
successfully learned the referents for single words (Ms = .61, SDs = .31, chance = .25, t(47)
= 8.07, p < .001) and selected either the early or late referent of each double word at levels
significantly above chance (Md = .81, chance = .5, SDd = .22, t(47) = 9.57, p < .001).
Between these two referents, participants were significantly more likely to choose the early
over the late referent (Me = .47, SDe = .25, Ml = .34, SDl = .22, t(47) = 2.18, p < .05, shown
in Figure 8b). This is the same pattern of results found in Experiment 3, again providing
evidence for competition at the global level in the preference for early over late referents.

When compared to participants in Experiment 3, those in Experiment 4 were significantly
more likely to choose the correct referent of each single word (t(94) = 2.57, p < .05) and
were marginally more likely to choose either of the two referents of each double word (t(94)
= 1.69, p < .1). Why did participants perform better in Experiment 4 than in Experiment 3?
One possibility is that the addition of the knowledge judgments trial by trial gave
participants more time to encode the words and objects presented on each trial.
Alternatively, the benefit could have been not just a function of time, but also a function of
increased engagement in the task which may have resulted in deeper processing (Craik &
Tulving, 1975). Finally, it is possible that the difference in testing itself may have driven the
effect. However, the overall pattern is the same as in Experiment 3 and thus the analyses of
trial-by-trial judgments over the course of training should be revealing about the cross trial
roles of global and local competition.

To this end, a first step is to validate the judgment measures by asking whether participants’
trial-by-trial knowledge judgments were correlated with learning results at test. If so, they
can be used as to infer learners’ internal learning state in real-time learning. One simple way
to estimate the predictive power of these judgments is to ask whether they predict a correct
result at test. We thus analyze these judgments via logistic regression, with test response as
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the outcome variable, and confidence judgment on each occurrence of an object as
predictors. Participants responses at test were coded either 0 (selected incorrect referent) or
1 (selected correct referent). Regression coefficients for this model, seen in Table 1 below,
show that participants’ judgments began to be significant predictors of test response from
the second occurrence of an item.

When tested for their knowledge of the referents for double words, participants were
significantly more likely to select early referents. When does this effect arise? Figure 9
shows mean judgments scores provided by participants on each of the six occurrences of
each type of referent. While the referents of single words and early referents of double
words grew similarly – with the last occurrence of an early referent even judged marginally
better known (t(47) = 1.90, p = .06), judgments of late referents were strikingly different.
From their second occurrence – the first which is a significant predictor of test behavior,
judgments for late referents were significantly lower than those of either other type of
referent (tsingle–late(47) = 3.21, p =< .01, tearly–late(47) = 2.78, p =< .01). global competition
was thus in effect from the earliest exposures of a late referent. Further, evidence of
competition is seen all the way through to the judgments made on the late referents’ final
appearances. This means that for any given occurrence of a double word and its late referent
– e.g. the third occurrence – the knowledge judgment was likely to be lower than the
comparable (e.g. third) occurrence of that double word and its early referent. Thus, prior
knowledge inhibited the acquisition of new knowledge through global competition.

What about local competition? Because judgments were collected on each trial, we can
directly test whether local competition within each trial may have helped participants in
Experiment 4 learn word-object mappings. To this end, we consider a linear regression
analysis, in which the outcome to be predicted is the confidence rating assigned to a referent
object on any given trial. We first include referent type as a predictor. Then, because
knowledge should build on itself, we expect judgments on successive occurrences to be
highly correlated. We thus add judgment rating on the previous occurrence as a further
predictor. Finally, if participants are applyinglocal competition, then knowledge of these
other objects should allow their labels to be ruled out as the potential label of the target
object. We thus include an additional regressor – the mean of the judgments made for all
three other referents on their previous occurrences. In cases where a referent had not
previously occurred, it was assigned a judgment value of 1. As shown in Table 2, all
regressors were significant predictors. Thus, not only did previous knowledge of a word-
referent pairing predict its judgment, previous knowledge of other co-occurring referents did
as well.

By way of example, consider a trial containing objects {a, b, c, d}. Suppose further that this
is the fourth occurrence of a, the third occurrence of b, the second occurrence of c, and the
fifth occurrence of d. Now suppose we are trying to predict the confidence that a participant
had for their knowledge of the correct label for object a. What the regression model shows is
first, that the confidence assigned to a on its previous (third) occurrence can be used to
predict confidence on this occurrence. But, beyond this, the model shows that the confidence
assigned to each of the other referents on their previous occurrences (b’s second, c’s third,
d’s third) adds information about the value assigned to a. That is, knowledge of some of the
referents of each trial increases the information acquired about the mappings of other
referents.

Because the first half of training consisted of words that mapped onto object one-to-one –
only single and early referents – participants were able to learn some of the single words
referents. Then, in the second half of training, participants used local competition within-
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trials to reduce uncertainty about the correct labels for late referents. This explains the
acquisition of the second referents of double words.

Overall, the results provide strong evidence for global competition: learning a word’s early
referent inhibited the acquisition of that word’s late referent from the outset, and continued
to do so through all of its occurrences, consistent with a trial-by-trial form of global
competition. However, participants nonetheless learned two referents for each double word.
Analysis of the growth in knowledge judgments on each trial suggests that local competition
– competing mappings within a trial – helped participants learn the second referent. Once
some of the single word-referent mappings were sufficiently strong, these words would be
inhibited as possible candidates for the late referents. Thus, competition at the local level
was able to compensate for the operation of competition at the global level.

General Discussion
In cross-situational learning experiments, participants are exposed to a series of individually
ambiguous learning trials, each containing multiple words and objects. Nonetheless, across
these trials, they successfully learn multiple word-object mappings. One way that humans
could do this would be to maintain only a single hypothesis for the referent of each word,
and to update this hypothesis only when it is disconfirmed (Medina et al., 2011). Such a
model is plausible, but would need significant revision in order to explain above-chance
learning of two-to-one mappings in all four of these experiments, as well as the results of
other recent studies of statistical word learning (e.g., Vouloumanos, 2008; Smith, Smith, &
Blythe, 2011). An alternative possibility for successful cross-situational word learning
would be to track and store all of the co-occurrences on all trials, and then to determine the
correct mappings at the end (Vouloumanos, 2008; Yu, 2008; Frank et al., 2009). However,
these experiments make such a model unlikely as well. Instead, these results suggest a
middle ground: learners may use past knowledge and the set of words and objects available
on each individual trial to determine which subset of the input they store. In this way, they
may select a more coherent set of mappings within each trial and consequently, trial-by-trial,
reduce the ambiguity in their input. The entire pattern of results provides clear evidence for
both global competition across trials and also local competition within trials. These results
thus suggest that a mechanistic understanding of statistical learning will require
understanding how within-trial information activates past learning, and how cross-trial
learning and within-trial input interact. This level of analysis will be critical to
understanding how statistical learning and memory constraints interact to produce what look
to be qualitatively different learning strategies as ambiguity scales up (Medina et al., 2011;
Smith et al., 2011; Yu & Smith, 2012).

The four experiments in this Chapter contribute to this discussion through three main
findings. First, they provide evidence that both local and global competition are involved in
cross-situational learning. That is, the set of mappings formed on a given trial depends both
on prior information about the words and objects within the trial, and on prior information
about the mappings of the present words with other, non-present, objects. Second, they show
that global competition is not an operation that is applied merely at decision time, but
operates trial-by-trial as does local competition (Experiments 3 and 4). Finally, they provide
evidence that the two mechanisms interact, such that local competition can compensate for
global competition in order to support the acquisition of two-to-one mappings. Even though
global competition can be quite potent (Experiment 2), the local assignment of word-object
links within a trial is a dominant force (Experiments 3 and 4). These results lead naturally to
a process-level account of cross-situational learning.
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Local and Global Interaction: Towards a Processes-Level Account
These four experiments implicate a cross-situational word learning process in which words
and objects compete for mapping strength (MacWhinney, 1989). Trial-by-trial, the amount
of evidence acquired for a particular word-object pairing depends both on the words and
objects present, and on memory for their other associations. Here we sketch a conceptual,
process-level account of how such a system might function. This is important because the
vast majority of recent models of cross-situational learning (e.g., Yu, 2008; Frank et al.,
2009; Blythe, Smith, & Smith, 2010; Fazly et al., 2010) have taken a batch-statistics or
corpus-level approach (although, c.f. ?, ?) and have not compared their learning mechanisms
directly to measures of human performance. The only recent counterexample, from Smith et
al. (2011), models a version of cross-situational learning in which the set of potential object
candidates for each word is completely non-overlapping. Thus, there was no chance for
competition in their task.

In the introduction, we noted explicitly that competition – at both levels – could be, and has
been, implemented in a variety of model architectures. We again reaffirm that statement
here. However, for the sake of clarity of exposition, we will adopt associative terminology to
present the conceptual model. We begin by considering what information might be acquired
on a trial in the middle of training with four words {A, B, C, D} and four referents {a, b, c,
d}. Learning on this trial can be considered as a combination of two processes by which
associations in memory are updated (see also, Frank et al., 2009; Fazly et al., 2010). In one
process, words and objects are sorted out locally. The probability that a word and object are
paired (e.g. A – a) is proportional to the prior strength of that association (A – a), and
inversely proportional to: (1) the strength of the associations between that word and all other
objects present on that trial (A – b, A – c, A – d), and (2) the strength of the associations
between that object and all of the other words present within the trial (B – a, C – a, D – a).

If the word D and object d have not been previously encountered, local competition would
produce a bias to pair the two, as all of the other words would inhibit mapping D onto their
more likely referents (e.g. D – a would be inhibited by A – a, B – a, C – a; D – b would be
inhibited by A – b, B – b, C – b, etc.). Local competition can also support the acquisition of
a second referent (as in Experiment 3 and 4). If referent b has never been previously
encountered, but A – a, C – c, and D – d are well established, and word B has been
previously strongly associated with some other referent x, then, the association of each of
the words with b will be inhibited by their associations with the other objects on the trial.
However, this inhibition will be much larger for A, C, and D as the trial contains objects
with which they are strongly associated. For B, the trial contains only weak associates, and
thus it will be most likely to be paired with b.

Via the second process, global competition moderates the updates made to associative
strengths between the words and objects that have been paired off. In this process, the
change in associative strength between a word and object (e.g. A – a) is proportional to the
strength of the current association in memory, and inversely proportional to the other
associations in memory for that word (e.g. A – b, A – e, A – g, etc). Mechanistically, this
could consist of a single normalized update, or could be a simple associative update
followed by normalization via a different mechanism (see e.g., Apfelbaum & McMurray,
2011). Either would produce an effect of global competition. Importantly, this global
competition is agnostic to the set of candidate referents on the trial, and all stored
associations play a role. Global competition is important for stabilizing word-referent
pairings in the face of noise in the input. For instance, if A has been strongly associated with
a, and a is absent on the current trial, any change in associative strengths between A and
other referents will be small because of this previous strong association. Global competition
explains the results of Experiment 2, in which two referents for the same double word are
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hard to learn even when they never co-occur. It also explains the decrement in confidence
for the second referent of each double word shown by participants in Experiment 4.

These two processes produce a highly adaptive word learning system. First, when the system
is learning word-object mappings from distributional information that really is produced by
one-to-one mappings and occasional noise, the two processes will support each other. Local
competition will sort out mappings within a trial, and global competition will increase the
rate at which consistently occurring mappings are formed. But, despite the production of a
one-to-one bias at each of the individual stages of competition, the unified system can
support the acquisition of two-to-one mappings. This is because the processes are
complimentary. As seen in Experiment 4, local competition can compensate for the action of
global competition and thus keep the system from failing to learn correct new mappings. Let
us now consider several implications of this process-model framework.

The Importance of Local Context for Statistical Learning
What is striking about the experimental results is the strength of local competition relative to
global competition. In the last two experiments, participants had received all six exposures
to each double word’s early referent before ever encountering its late referent. This should
have led to particularly strong global competition. Participants’ trial-by-trial confidence
judgments corroborate this, with early referent judgments being higher than late referent
judgments from their earliest occurrences. Nonetheless, participants learned the late
referents and did not lose the earlier ones. This highlights the importance of local
competition in cross-situational word learning, and by extension the importance of
understanding what happens in individual learning moments. Evidence from other recent
studies of word learning further underscores this point. Onnis, Waterfall, and Edelman
(2008) have argued for the importance of local structure in naming events to children in the
form of variation sets. Mothers will often highlight the meaning of a single word by using it
rapidly in several different sentence constructions, increasing salience through competition.
These authors and their colleagues have further argued that this is a general principle that
enables learning of structured representations (Goldstein et al., 2010). In a related vein,
Perry, Samuelson, Malloy, and Schiffer (2010) have shown that success in word and
category learning depends on the local structure of the categories to be learned. When local
exemplars vary maximally on dimensions by which they are not organized, global learning
is accelerated (see also Rost & McMurray, 2009).

Taken together with our competitive framework, these ideas shed light on recent conflicting
results in the cross-situational learning paradigm. Several different examinations of many-
to-one mapping have yielded mixed results. In some experiments (Ichinco, Frank, & Saxe,
2009), as in our Experiments 1 and 2, participants do not learn multiple mappings well. In
other experiments (Vouloumanos, 2008; Kachergis, Yu, & Shiffrin, 2012), as in our
Experiment 3, participants succeed in learning multiple mappings. The experiments in this
Chapter suggest that these differences in outcoms may lie in the types of competitive
processes encouraged by these tasks. For instance, Vouloumanos (2008) exposed learners to
stimuli consisting of one word and one object at a time, with probabilistic co-occurrence
relationships expressed only across multiple trials. Thus, there was no opportunity for
within-trial local competition. In contrast, the present experiments, as well as those
described in other explorations of mutual exclusivity in statistical word learning (Ichinco et
al., 2009; Kachergis et al., 2012) presented multiple words and objects per trial. The
differences in resulting learning rates can be explained by the within-trial and cross-trial
structures, and the types of competition they encourage.
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Representation and Process in Statistical Learning
In the framework presented in this paper, the results are interpreted on the assumption that
learners are tracking a simple statistic (e.g. co-occurrence), and the difference in learning
results is explained by competitive processes which moderate the stored information. This
simple representation is a reasonable starting point, but learners could alternatively represent
a different statistical property of their input. For instance, learners could represent a more
complex statistic, such as the conditional probabilities between words and objects. Human
learners are known to be sensitive to differences in conditional probability in visual (Fiser &
Aslin, 2001) and auditory (Aslin, Saffran, & Newport, 1998) statistical learning tasks.
However, we believe that such an account based on a complex representation alone would
be insufficient on two grounds. First, while tracking conditional probability rather than co-
occurrence frequency may be sufficient to explain the results of Experiment 2, it cannot
explain the other experiments. Participants showed similar inhibition in Experiment 1 in
which conditional probability between double words and each of their correct referents was
one. It also cannot parsimoniously explain the order effect found in Experiments 3 and 4.
Further, one can argue that tracking conditional probability implicitly implements
competition at the global level. The conditional probability between a word and any given
referent is reduced each time that word occurs on that trial without that referent but with
other referents. Thus, any complex representation needs to address issues of local and global
competition to explain the empirical results.

More importantly, even if a more complex statistic could account for the test results, we
believe that it would ultimately be incomplete. The experiments in this paper present
compelling evidence that cross-situational learning involves important order effects, and that
computations about which mapping information to store are made on a trial-to-trial basis.
An explanation for the data relying on complex statistical construct would be a move away
from a process-level model, and thus have little to say about the trial-by-trial computations.
More generally, while questions of process and representation may be treated as orthogonal
by normative models (e.g. Frank et al., 2009), they must be intimately connected in process-
level models.

Mutual Exclusivity
In the phenomenon of disambiguation through mutual exclusivity, children (Markman &
Wachtel, 1988; Merriman & Bowman, 1989) or adults (Golinkoff, Hirsh-Pasek, Bailey, &
Wenger, 1992; Halberda, 2006) are first exposed to a consistent mapping between a word
and an object. Then, they are shown the same object and a novel object, and asked to find
the target of a novel label. Adults and children over 18 months of age overwhelmingly select
the novel object as the referent for the novel label. Because such disambiguation is thought
to be important to acceleration of word learning, it is considered to be critical for
computational models of word learning (Regier, 2005; Xu & Tenenbaum, 2007; Yu, 2008;
Frank et al., 2009; Fazly et al., 2010). Its importance has also inspired a number of
competing theoretical accounts: Mutual Exclusivity (Markman, 1990), the principle of
Contrast (Clark, 1987), a Pragmatic account (Diesendruck & Markson, 2001), the Novel-
Name Nameless-Category principle (Golinkoff et al., 1992), Disjunctive Syllogism
(Halberda, 2006), and the size principle (Xu & Tenenbaum, 2007).

While these accounts make different predictions in some cases, we would like to call
attention to the point that these accounts posit competition at different levels. Markman’s
(1990) mutual exclusivity is fundamentally a competitive process at the global level: once a
word-object mapping has been established, learners should resist assigning a second label to
the same object. It also suggests commitments to trial-by-trial competition. On the other
hand, the principle of Contrast and the size principle are competitive processes at the global
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level, but do not make a commitment to trial-by-trial competition. Contrast suggests that
learners apriori disallow lexicons in which two labels share the same referential extent, and
the size principle suggests that learners apriori prefer lexicons of smaller size. Finally, the
pragmatic account and disjunctive syllogism are both processes that operate at the local
level. On the pragmatic account, a learner expects that the novel label is being produced
under Sperber and Wilson’s (1986) relevance principle: if the intent of the utterance was to
label the familiar object, the speaker would have used the familiar label. Disjunctive
syllogism is also about reasoning at the moment of word learning and describes a particular
process of elimination used to determine that the novel word should map to the novel label.
In contrast to these accounts, the Novel-Name Nameless-Category principle posits that pure
novelty, rather than competition with previous mappings, drives the effect.

In the framework presented in this paper, we suggest that many of these accounts may not be
direct rivals. Rather, they address competition at different levels. Disambiguation through
mutual exclusivity may involve any multiple levels. Understanding how mutual exclusivity
operates at a process-level (e.g. Halberda, 2006) will require understanding how these
different explanations are implemented and how they interact. One potentially fruitful route
for further research may consist in examining patterns of recovery from incorrect use of
mutual exclusivity. As evidence suggests that mutual exclusivity is not a hard constraint
(Merriman & Bowman, 1989; Regier, 2003), the patterns that adults and children show in
learning words that do not accord with one-to-one mapping may be useful in determining at
which level competition in mutual exclusivity operates.

Conclusion
Cross-situational word learning involves the acquisition of word-object by tracking co-
occurrence patterns across multiple instances. In this paper we examined the contribution of
competition – both at the global and local levels – to successful learning. While many
models include at least one such process in their explanations (Siskind, 1996; Yu, 2008;
Frank et al., 2009; Fazly et al., 2010), prior empirical work on non-one-to-one mappings has
been done explicitly in the context of unambiguous learning instances (see e.g.
Liittschwager & Markman, 1994). This paper presents a systematic empirical analysis of
such learning as it plays out, trial-by-trial, in learning words from a set of ambiguous
labeling instances. These experiments show that learners bring competitive mechanisms to
the table, and do so at multiple levels. These competitive processes reduce the ambiguity
involved in tracking word-object mappings, thereby reducing load for learners with
cognitive constraints (Kareev, 1995). These kinds of experiments are critical in the context
of recent interest in cross-situational approaches to language acquisition. This new
approaches shifts the focus of questions about language learning from how children
disambiguate reference in single learning events to how disambiguation occurs through
integration of information over time (Siskind, 1996; Yu & Smith, 2007). It is critical,
however, is not to lose sight of the earlier insights about in-the-moment processes. The
experiments in this paper represent a step in this direction, an attempt to connect the
statistical learning approach back to the mechanisms which produce its dynamics and
underpin the information acquired from each ambiguous naming event.

While the Experiments in this paper demonstrate competitive mechanisms by inhibition of
learning, precisely these same mechanisms are involved in successful cross-situational
learning. They allow learners to filter much of the noise out of the statistics in their input,
narrowing in on correct word-object mappings at a faster rate. Identifying these processes,
and understanding their interaction, will be critical to constructing satisfying process-level
models of cross-situational learning (Smith et al., 2011; Yu & Smith, 2011).
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But, of course, learning words is not just a matter of mapping words to their unique
referents. Rather, the majority of labels refer to whole categories of referents. In order to
better measure and understand competitive processes, these studies sidestep this problem,
but real word learners cannot. There is no reason to think that competition must play out
only an object-by-object basis. Instead, it is likely that it occurs also at the level of features
of both objects and words (Regier, 2005). Understanding competition at multiple scales, and
how these mechanisms can interact, can inform statistical learning theories for other
linguistic information. How do local and global competition play out in learning phonemes,
segmenting speech, or learning grammatical categories? Answering these questions will be
fundamental to developing process-level models of statistical language learning.
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Appendix
Because tests for different types of words (single and double) had different chance levels of
performance due to guessing, comparing absolute accuracy could be misleading. To correct
for this, we developed an analysis that breaks test accuracy down into two independent
portions: the number of successes due to known word-object mappings (K), and the number
of successes due to chance. The number of known word-object mappings can then be
compared directly across word types.

Responses due to knowledge are modeled as a deterministic process: if a participant knows
the correct answer, he or she always gives it. Guesses are modeled as a draw from a
binomial distribution with parameter p set by the number of alternatives from which the
participant selects. Each participant produces some number of correct responses n. For any
number of correct responses due to knowledge (k ∈ 0 … n), the remaining correct responses
(n – k) must be due to guessing. The number of observed correct responses has some
likelihood under each of the different settings of k. Our analysis finds the setting K = k
under which the data has the highest likelihood.

For single words, accuracy is determined from a single choice among four alternatives.
Thus, the binomial distribution for guess for single words has . For a participant who
produces n correct responses out of 6, the maximum likelihood estimate of known mappings
Ks is:

(A1)

For double words, a participant makes two consecutive responses. Zero, one, or both two of
these responses may be correct. A participant may also know zero, one (Kd1), or both (Kd2)
of the correct mappings for each word. As two of the four alternatives are correct responses,

 for the first response. If the first response is correct, 1 of the remaining 3 choices is
correct. Thus, given a correct answer on the first choice,  for the second. For participant
who selects the correct first response for n of the 6 words, and both correct responses for m
of the 6 words, the maximum likelihood estimate for Kd1 and Kd2 is:

(A2)
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Figure 1.
A schematic of the trial structure of Experiment 1. On each trial, participants saw 4 words
and 4 referents, but the number of correct mappings for each word varied by type. Capital
letters (e.g. A) indicate words and lower case letters (e.g. a) indicate referents. Single words
each had one correct mapping per trial (e.g. B – b, C – c), double words each had two
correct mappings per trial (e.g. A – a1 and A – a2, F – f1 and F – f 2) and noise words were
not mapped to any referent (e.g. D, G). Single words and their referents are depicted in
black, double words and referents in gray, and noise words in white.
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Figure 2.
An example of a single ambiguous learning trial in the cross-situational paradigm.
Participants saw 4 objects, and heard four pseudo-words which were mapped onto the
objects. Words were assigned to objects randomly, and screen position of objects was
independent of the order in which words were spoken
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Figure 3.
Accuracy at test for each of the word types in Experiment 1. Error bars represent ±SE.
Dotted lines indicate chance levels of performance. Participants learned not only the
referents of single words, but also both referents for double words. However, they learned
the two referents of double words significantly less well than the single referents of single
words.
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Figure 4.
A schematic of the training structure in Experiment 2. In contrast to Experiment 1, the two
referents of each double word now appeared randomly on different trials throughout
training. Overall exposure to each correct co-occurrence frequency was identical. Single
words and their referents are depicted in black, double words and referents are depicted in
gray. There were no noise words in Experiment 2. Capital letters indicate words and lower
case letters indicate referents.
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Figure 5.
Accuracy at test for each of the word types in Experiment 2. Error bars represent ±SE.
Dotted lines indicate chance levels of performance. Participants learned the referents of
single words, and both referents for double words, but less well than in Experiment 1.
Further, they were significantly more likely to learn the one referent of a single word than
both referents of a double word.
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Figure 6.
A schematic of the training structure in Experiment 3. In contrast to Experiment 2, the two
referents (called early and late) of each double were separated across training. The first six
occurrences of a double word appeared with its early referent, and the second six appeared
with its late referent. Single words and their referents are depicted in black, double words
and referents are depicted in gray. Capital letters indicate words and lower case letters
indicate referents.
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Figure 7.
Test outcomes for Experiment 3. (a) Accuracy at test for each word type. Error bars
represent ±SE. Dotted lines indicate chance levels performance. Participants learned the
referents of single words, and both referents for double words. Also, as in Experiment 1 but
not Experiment 2, they were not significantly more likely to know the one referent of a
single word than both referents of a double word. (b) When participants learned both of the
referents for a double word, they selected them in one of two orders: early first or late first.
The bars indicate the proportion of each of these two selection orders. Error bars represent
±SE. Participants were marginally more likely to select the early referent of a double word
first.
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Figure 8.
Test outcomes for Experiment 4. (a) Accuracy at test for each word type. Error bars
represent ±SE. Dotted lines indicate chance levels performance. Participants learned the
referents of single words, and at least one referent for the double words. (b) When tested
with the double words, participants could select either the early or the late referent. The bars
indicate the proportion of each of these two selections. Participants were significantly more
likely to select the early referent as the correct referent of a double word
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Figure 9.
Mean judgment value given for each referent as a function of occurrence number (1-6) and
referent type (single, early, or late). All judgments grew over occurrence number, but single
and early judgments were significantly higher than late judgments from their second
occurrence.
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Table 2

Betas for linear regression predicting referent judgment values.

Parameter Beta

Intercept .858***

Single .690***

Early .879***

Previous Judgment .476***

Avg. Other Ref. Judgments .407***

***
= p < .001

Cogn Sci. Author manuscript; available in PMC 2014 July 01.


