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Abstract 1 

Euclidean geometry has formed the foundation of architecture, science, and technology 2 

for millennia, yet the development of human’s intuitive reasoning about Euclidean geometry is 3 

not well understood. The present study explores the cognitive processes and representations that 4 

support the development of intuitive reasoning about Euclidean geometry. One-hundred-twenty-5 

five 7-12-year-old children and 30 adults completed a localization task in which they visually 6 

extrapolated missing parts of fragmented planar triangles and a reasoning task in which they 7 

answered verbal questions about the general properties of planar triangles. While basic Euclidean 8 

principles guided even young children’s visual extrapolations, only older children and adults 9 

reasoned about triangles in ways that were consistent with Euclidean geometry. Moreover, a 10 

relation between visual extrapolation and reasoning appeared only in older children and adults. 11 

Reasoning consistent with Euclidean geometry may thus emerge when children abandon 12 

incorrect, axiomatic-based reasoning strategies and come to reason using mental simulations of 13 

visual extrapolations. 14 

 15 

Keywords 16 

spatial cognition; mathematical cognition; Euclidean geometry; reasoning; simulation; 17 

computation  18 
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1. Introduction 19 

Our reasoning about everyday physical events, like how forces affect object trajectories, 20 

may be most successful when we consider how such events unfold over time (e.g., Battaglia, 21 

Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, & Griffiths, 2013; Smith & Vul, 2013). 22 

For example, when asked what would happen if a ball attached to a string whirling around in a 23 

circle were suddenly released, about ⅓ of adult participants in one classic study incorrectly 24 

thought that the ball would continue on a curved, rather than straight, path (McCloskey, 25 

Caramazza, & Green, 1980, see also Caramazza, McCloskey, & Green, 1981; McCloskey, 1983; 26 

Proffitt & Gilden, 1989). But when given animated displays of the whirling ball versus static 27 

displays or linguistic descriptions, participants were more likely to choose the correct, linear 28 

trajectory than the incorrect, curved one (Hegarty, 2004; Smith, Battaglia, & Vul, 2018; Kaiser, 29 

Proffitt, Whelan, & Hecht, 1992). 30 

While successful reasoning about the spatial and geometric properties of such dynamic 31 

physical events may naturally lend itself to mental simulations, what of successful reasoning 32 

about geometry itself, a mathematical cornerstone for physics and much of human achievement? 33 

Do such dynamic simulations play any role in our reasoning about the properties of static, 34 

immutable geometric objects, like planar triangles? Problems in geometry instead seem best 35 

answered by immediate inference (like Bhāskara’s seeing-is-knowing “Behold” proof of the 36 

Pythagorean theorem) or by step-by-step proof rooted in axiomatic deduction (like Euclid’s 37 

Elements 1.47 for the same theorem). But without Bhāskara’s brilliance or Euclid’s elements, 38 

what describes our intuitive reasoning about triangles? 39 

Much prior work has addressed the role of visual imagery and visual routines for 40 

judgments about physical spatial entities (e.g., Mitrani & Yakimoff, 1983; Shepard & Metzler, 41 
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1971; Ullman, 1984; Weintraub & Virsu, 1972). Nevertheless, it remains unknown whether such 42 

visual and mental processes might also support our more general reasoning about abstract spatial 43 

entities, like those that underlie formal geometry. Evaluating this link is important not only for 44 

our understanding of geometry as a central cognitive achievement of the human mind but also 45 

for our development of effective geometry pedagogies, which traditionally communicate 46 

geometric abstractions through language, proofs, or static diagrams (Calero, Shalom, Spelke, & 47 

Sigman, 2019; Carraher, Schliemann, & Carraher, 1988; Duval, 2006; González & Herbst, 2013; 48 

Herbst & Brach, 2006; Zaslavsky, 2010; Zodik & Zaslavsky, 2007). 49 

Recent work by Hart et al. (Hart, Dillon, Marantan, Cardenas, Spelke, & Mahadevan, 50 

2018) has begun to address the possibility that dynamic mental simulations described by 51 

particular spatial properties might indeed support mature geometric intuitions used during 52 

reasoning about Euclidean objects, like planar triangles. In this study, adult participants tested in 53 

the laboratory and on Amazon Mechanical Turk were presented with a series of fragmented 54 

planar triangles varying greatly in size and were asked to use a mouse to drag a dot to the 55 

missing vertex of the triangles. Participants produced third corner locations that both 56 

underestimated the true vertex location and also were strikingly more accurate than those that 57 

would be produced if they had attempted one instantaneous, straight-line extrapolation from each 58 

of the given two corners with a noisy representation of the angle sizes (Mitrani & Yakimoff, 59 

1983). Hart et al. (2018) thus modeled participants’ localizations using a correlated random walk 60 

composed of two competing processes: one that maintained local, smooth motion; and another 61 

that globally corrected this motion’s direction by the given angle sizes. Participants’ localization 62 

accuracy was overall scale-dependent (error grew as triangles grew) because of the local noise 63 

associated with the random walk. Nevertheless, the global correction process inherently 64 
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persevered the basic Euclidean principle of scale-invariant angle representations because 65 

extrapolations were corrected at a constant timescale as they unfolded. This model was able to 66 

account both for participants’ underestimation of a triangle’s missing vertex and also for the 67 

striking accuracy of their localizations. 68 

Hart et al. (2018) also evaluated the relation between this model of participants’ 69 

localizations and their reasoning about the general properties of triangles. A different group of 70 

adult participants on Amazon Mechanical Turk produced verbal judgments about the location 71 

and angle size of a triangle’s missing corner after reading verbal descriptions of changes to the 72 

other two corners (e.g., “What happens to the angle size of the third corner of a triangle when the 73 

other two angles get smaller? Does the third corner angle size get bigger, get smaller, or stay the 74 

same size?”). Participants responded more accurately and more quickly when the described 75 

transformation resulted in a smaller versus larger triangle, suggesting that they were relying on a 76 

reasoning process that, like their localizations, was scale-dependent and tied to particular 77 

physical exemplars. Moreover, the model of the first group of participants’ localizations 78 

predicted the categorical responses of the second group. Hart et al. (2018) speculated that adults 79 

might actively engage in mental simulation of these visual extrapolations to answer verbal 80 

reasoning questions about static geometric figures. 81 

This work highlights, but does not directly address, several persistent questions about 82 

human geometric reasoning, including how formal education and individual development might 83 

affect the intuitive strategies humans adopt during geometric reasoning. Prior cross-cultural 84 

research testing children and adults from the United States, France, and a remote Amazonian 85 

village (Izard, Pica, Spelke, & Dehaene, 2011) and prior developmental research from a 86 

laboratory in the United States (Dillon & Spelke, 2018) had used tasks nearly identical to Hart et 87 
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al. (2018) and found significant changes in geometric reasoning through development. 88 

Reasoning consistent with Euclidean geometry emerged universally across human cultures, 89 

regardless of formal schooling (Izard, Pica, Spelke, & Dehaene, 2011) at about 10-12-years of 90 

age (Dillon & Spelke, 2018; Izard, et al., 2011). While these cross-cultural and laboratory-based 91 

studies suggest universal developmental changes in geometric reasoning, they nevertheless 92 

provide no evidence of what cognitive processes, representations, or intuitive strategies might 93 

underlie those developmental changes. In particular, they do not reveal whether the spatial 94 

properties inherent in simple acts of visual triangle completion might be related to explicit 95 

judgments about the Euclidean properties of shapes. In the present work, we thus combine 96 

computational methods from statistical physics and developmental methods from basic research 97 

in cognitive science to examine the relations between visual triangle completion and verbal 98 

reasoning about the general properties of planar triangles across samples of children and adults. 99 

We speculate that reasoning consistent with Euclidean geometry may emerge in development 100 

when children abandon incorrect, axiomatic-based strategies and instead come to reason by an 101 

intuitive strategy rooted in mental simulations of visual extrapolations. 102 

 103 

2. Methods 104 

2.1. Child Participants 105 

The use of human participants for this study was approved by the Institutional Review 106 

Board on the Use of Human Subjects at New York University. A sample size of 125 fluent 107 

English-speaking children between the ages of 7-12 was chosen in advance of data collection and 108 

was preregistered on the Open Science Framework (OSF). All participants were recruited from 109 

visitors to the National Museum of Mathematics in New York City. While the museum 110 
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welcomes visitors of all ages, their target child age range is eight to eleven years. Most museum 111 

visitors reside in New York City or the surrounding suburbs. Most visitors are White, although 112 

household incomes varied widely. Museum visitors also likely have a strong interest in 113 

mathematics. Despite these specifications of our sample, the tasks in the present study have – 114 

rather uniquely – been used in previous studies with diverse populations, as reviewed above, and 115 

their results have been unaffected by education or culture. We thus consider the present sample’s 116 

responses too as representative of the larger population at least in terms of the specific cognitive 117 

geometry probed here and in those prior studies. 118 

Several unexpected outcomes related to the sample occurred during data collection. First, 119 

we had planned that each whole-year age group would include at least 20 children, but 125 120 

participating children met the inclusion criteria before we could reach 20 children per age group 121 

(7 years: 19 children; 8 years: 17 children; 9 years: 28 children; 10 years: 30 children; 11 years: 122 

19 children; 12 years: 12 children). Second, while our exclusion criteria were planned and 123 

preregistered, a greater number of children met these exclusion criteria than we had expected. 124 

We had planned to include an additional group pf 25 6-year-old children, moreover, apart from 125 

the main group of 125 older children. However, their exclusion rate was very high (12 out of the 126 

first 25 children tested, 2 for missing data and 10 for response properties in the Localization 127 

Task), and so we discontinued data collection with these younger children. In our main sample of 128 

7- to 12-year-old children, an additional 61 children participated but were excluded for: missing 129 

data (6); technical failure (1); experimenter error (1); parental interference (1); and the properties 130 

of their responses in the Localization Task (52; see SM; Fig. S1). This last criterion, which by 131 

far led to the most exclusions, was specified in advance and based on Hart et al. (2018), who 132 

tested adults individually in the laboratory and presented three times the number of trials 133 
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compared to the present task. This criterion turned out to have been too strict for the present 134 

study (see SM), not accounting for the age differences between studies, the more complex testing 135 

conditions in the museum compared to the laboratory, and the significantly reduced number of 136 

trials. To examine the robustness of our findings to this exclusion criterion, we thus repeated our 137 

main analyses as an unplanned analyses with the excluded sample (N = 52; 21 girls; 7 years: 17 138 

children; 8 years: 9 children; 9 years: 10 children; 10 years: 6 children; 11 years: 6 children; 12 139 

years: 4 children), and because those results are consistent with the analysis of the planned 140 

sample, we report them in the SM. 141 

2.2. Adult Participants 142 

Based on the findings with children presented below, we also tested an unplanned group 143 

of 30 adult participants (the maximum number of participants per age group in the child sample) 144 

between the ages of 21-36 years. This allowed us to examine whether the unexpected trends we 145 

observed in older children described below were also present in adults. An additional 7 adults 146 

also participated but were excluded because of the properties of their responses in the 147 

Localization Task (see SM); no adults met any of our other exclusion criteria. Adult participants 148 

were also recruited from visitors to the National Museum of Mathematics and completed the 149 

same tasks as children, presented exactly in the same way. None of the adults were participating 150 

children’s parents or guardians. 151 

2.3. Reasoning Task 152 

The task materials and procedures were determined in advance and preregistered on the 153 

OSF. Participants first completed a geometric reasoning task (after Dillon & Spelke, 2018; Hart 154 

et al., 2018) that required them to produce verbal, categorical responses about the distance and 155 

angle properties of triangles given shape and size transformations to fragmented scalene triangles 156 
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with only two visible corners (Fig. 1A). This task was presented on a large screen (65’’ diagonal, 157 

1920px x 1006px) and with the help of an adult experimenter. At the beginning of the task, 158 

participants saw a sample fragmented triangle (which never appeared during a test trial), 159 

displaying at first just the triangle’s two base corners, then the complete triangle, then just the 160 

two base corners again. The experimenter then demonstrated what four different possible 161 

changes to those visible corners would look like, using a separate display with one button for 162 

each of the four possible changes: the visible angles growing in size; shrinking in size; moving 163 

apart; or moving together. The sample fragmented triangle had 30° base angles, and its base 164 

length was set to 0.7 of the full possible base length (Table 1). Although participants were tested 165 

only on static fragmented triangles, they could revisit the sample-changes display at any point 166 

during the task if they wanted to see those sample changes again. Participants were then told that 167 

for each fragmented triangle, they could be asked: whether the triangle’s missing corner location 168 

would “move up,” “move down,” or “stay in the same place” after one of these changes; or 169 

whether its angle size would “get smaller,” “get bigger,” or “stay the same size” after one of 170 

these changes. To ensure that participants understood what each of these outcomes meant, the 171 

experimenter gestured as they described each one. For the location outcomes, the experimenter 172 

held one hand at chin height, then moved it up in space, then down in space (below chin height), 173 

and then back to chin height. For the angle-size outcomes, the experimenter formed an upside-174 

down “V” shape with their hands, then made the “V” narrower, then wider (wider than its 175 

starting width), and then back to its starting width. In addition to providing these gestures during 176 

the task’s introduction, the experimenter also displayed them during every test question. There 177 

were 8 possible questions (4 possible changes to the visible corners × 2 possible outcomes for 178 

the missing corner), and each question was presented twice, once per block of 8 questions with 179 
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two total blocks for each participant. Those 8 questions were randomized within a block and 180 

paired with a random fragmented scalene triangle (Table 1). The second block presented the 181 

same questions but in a different order and with a different random triangle. Participants never 182 

saw the same question or triangle presented twice in a row. All images accompanying test 183 

questions were created by a custom Javascript code. Participants’ responses were recorded by an 184 

experimenter’s button press. 185 

 186 

187 

Fig. 1. A. Sample screen, Reasoning Task. The question at the top reads: “Take this partial 188 

triangle here. What if I increase the distance between the bottom two corners, will the angle size 189 

of the top corner get bigger, get smaller, or stay the same size?” Participants were provided with 190 

a set of scalene triangle corners and asked to make judgments about the third, missing corner 191 

after changes to the given corners. B. Sample screen, Localization Task. The question at the top 192 

reads: “Can you click where the top corner is?” Participants were provided with a set of 193 

isosceles triangle corners and asked to drag a dot to the vertex of the missing corner. 194 

 195 

Table 1. 196 

Properties of the triangle fragments presented in the Reasoning Task 197 
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Triangle Base 

Length 

Right 

base angle 

Left 

base angle 

Triangle 

size [area] 

1 0.44 48° 32° 3.87 

2 0.66 32° 40° 7.8 

3 0.77 32° 56° 13.03 

4 0.55 40° 32° 5.41 

5 0.77 56° 48° 18.82 

6 0.66 40° 48° 10.41 

7 0.44 56° 40° 5.19 

8 0.55 48° 56° 9.6 

Note. (1 length unit = 1632 px [1920px x 0.85]) 198 

 199 

2.4. Localization Task 200 

The task materials and procedures were determined in advance and preregistered on the 201 

OSF. Participants completed the Localization Task (after Hart et al., 2018; Izard et al., 2011) 202 

following the Reasoning Task. At the beginning of the task, participants again saw the sample 203 

fragmented triangle, displaying at first just the triangle’s two base corners, then the complete 204 

triangle, then just the two base corners again. Participants were told that they would see more 205 

partial triangles and would be asked to use the mouse to click on the vertex location of the 206 

triangle’s missing top corner. To ensure that participants understood the task, they completed one 207 

trial with this sample triangle. For the test trials, participants saw 49 fragmented triangles (Fig. 208 

1B) and were asked to click on the location of a triangle’s missing vertex. They received no 209 

feedback. Seven isosceles triangles were presented, which had 7 different side-length values 210 

combined with 2 angle sizes and 4 base lengths (Table 2). The presentation of these triangles 211 

was pseudo-random for each participant, not allowing the same triangle to be presented twice in 212 

a row. All participants used a single-button, child-sized mouse, and their responses were 213 

recorded based on where they clicked on the screen; reaction times were also recorded. All 214 

images accompanying test questions were created by a custom Javascript code. 215 
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 216 

Table 2. 217 

Properties of the triangle fragments presented in the Localization Task 218 

Triangle Base 

Length 

Base 

angles 

Triangle 

size [area] 

1 0.9 36° 14.7 

2 0.4 36° 2.9 

3 0.1 36° 0.18 

4 0.04 36° 0.03 

5 0.4 45° 4 

6 0.1 45° 0.25 

7 0.04 45° 0.04 

Note. (1 length unit = 1632 px [1920px x 0.85]) 219 

 220 

3. Results 221 

3.1. Child Results 222 

3.1.1. Planned Analyses. 223 

The following analyses were specified prior to data collection and preregistered on the 224 

OSF. 225 

Reasoning Task. 226 

First, a binomial mixed-model logistic regression revealed a significant effect of gender 227 

on children’s overall accuracy, with boys performing better than girls (P = 0.579, 95% CI = 228 

[0.501, 0.653], p = 0.048). As planned, all analyses were thus repeated with gender as an 229 

additional predictor variable, but because those results were consistent with our primary planned 230 

analyses, they are reported in the SM. 231 

A binomial mixed-model logistic regression evaluated the role on children’s accuracy of: 232 

question type (about the position versus angle size of the missing corner); transformation (to the 233 

distance between the two given corners or their angle sizes); size of the transformation (whether 234 
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the two given corners were described as getting farther/bigger versus closer/smaller); the two-235 

way interactions between these variables; the implied area of the fragmented triangle; and age. 236 

As predicted, this regression revealed results consistent with prior studies (Dillon & Spelke, 237 

2018; Fig. 2). In particular, children were more accurate on questions about the position versus 238 

angle size of the fragmented triangle’s missing corner (P = 0.746, 95% CI = [0.672, 0.808], p < 239 

.001) and when there was a transformation to the angle sizes versus the distance between the two 240 

given corners (P = 0.716, 95% CI = [0.637, 0.783], p <.001). Children were also more accurate 241 

when they were asked about the position versus angle size of the missing corner after a distance 242 

transformation to the two given corners (P = 0.692, 95% CI = [0.597, 0.772], p < .001). Neither 243 

the size of the transformation (bigger or smaller) nor the implied area of the fragmented triangle 244 

presented with each question (continuous, in area units, see Table 1) affected children’s 245 

accuracy (ps > .490). Finally, older children were more accurate on this task than younger 246 

children (age, in days, was treated as a continuous variable in this analysis; P = 0.538, 95% CI = 247 

[0.507, 0.568], p = .016). 248 

 249 

 250 

Fig. 2. The percentage of A. younger (< 10 years) and B. older (≥ 10 years) children’s 251 

responding in the Reasoning Task about the general properties of triangles. Children were asked 252 
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to reason about changes to the position and angle size of a missing corner of incomplete triangles 253 

after changes to the angle sizes or distances between the two given corners (see Fig. 1). 254 

 255 

Localization Task. 256 

For each child and for each of the 7 triangle side lengths, we calculated the localization 257 

error in the y direction (the true vertex location – the mean of the child’s estimates) and the 258 

standard deviation in the y direction of the child’s estimates. Using a linear regression, we first 259 

evaluated the growth in each child’s error with growing triangle side lengths. We then evaluated, 260 

across the sample of children, the relation between error growth by side length and age using a 261 

linear regression. As predicted, across the sample of children, error grew significantly as triangle 262 

side-length grew (p < .001), suggesting an overall scale dependence in children’s visual 263 

extrapolations of the triangles’ missing parts. Moreover, as predicted, we found that the error 264 

grew less in older versus younger children (p = .039). 265 

After Hart et al. (2018), we then evaluated the slope of the log of the standard deviation 266 

of each child’s localization estimates as a function of the log of triangle side length. This slope, 267 

or scaling exponent, is equivalent to the power law by which the standard deviation of the 268 

estimates scales with triangle side-length. The scaling exponent represents one of the two 269 

competing processes in the correlated-random-walk model described above, which characterizes 270 

the extrapolation process. It represents the global correction of the local noise associated with 271 

maintaining smooth motion in the direction of the given angle sizes. 272 

(1)  𝑑2𝜃/𝑑𝑡2 = 1/𝜏(1/𝜉(𝜃 − 𝜃0) − 𝑑𝜃/𝑑𝑡) + 𝜂(𝑡) 273 

(2)  𝑑𝑥/𝑑𝑡 = 𝑣𝑝 𝑐𝑜𝑠(𝜃) 274 

(3) 𝑑𝑦/𝑑𝑡 = 𝑣𝑝 𝑠𝑖𝑛(𝜃) 275 
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The model parameters include τ, an inertial relaxation timescale for local smoothness, 𝑣𝑝 , 276 

a characteristic speed of extrapolation progress, ξ, a timescale for the global error correction, and 277 

η(t), a noise term. The more correction events that occur, the closer the scaling exponent is to 0.5 278 

versus 1. Scaling exponents less than 1 suggest that correction events are occurring, and scaling 279 

exponents closer to 0.5 suggest that correction events are occurring at a more frequent timescale. 280 

Extrapolations with scaling exponents close to 0.5 thus better preserve the angle sizes of the 281 

triangle’s given corners, allowing greater consistency with Euclidean geometry. 282 

We predicted that our data would be well described by this model, yielding localization 283 

errors that underestimated the true vertex location and scaling exponents that were less than 1. 284 

We also predicted that since older children more consistently reason in line with Euclidean 285 

geometry (as revealed by prior work), their localizations would also better reflect Euclidean 286 

geometry, resulting in smaller scaling exponents. 287 

Consistent with the model from Hart et al. (2018), children tended to underestimate the 288 

location of a triangle’s vertex (Fig. 3; Fig. S2) and most of their scaling exponents were less than 289 

1: Children produced a median scaling exponent of 0.83 (95% CI = [0.80, 0.86], range = [0.56, 290 

1.14]). Contrary to our prediction, however, the relation between scaling exponent and age was 291 

not significant (p = .666): We did not find evidence that older children corrected their visual 292 

extrapolations more than younger children. 293 

 294 
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 295 

Fig. 3. Example responses from an 8-year-old child on the Localization Task on A. a smaller 296 

triangle with 0.4 times the base-length metric and 45° angles and B. a larger triangle with 0.9 297 

times the longest base length and 36° angles. 298 

 299 

Relation between reasoning and simulation. 300 

Children’s accuracy in the Reasoning Task and Localization Task may nevertheless rely 301 

on properties inherent to Euclidean geometry. We thus hypothesized that individual children’s 302 

scaling exponents would be related to their individual reasoning success such that the more 303 

frequently a child corrected their visual extrapolations in the Localization Task, the greater their 304 

accuracy in the Reasoning Task. This relation would be especially evident in older children, 305 

moreover, who may more often adopt a strategy of mentally simulating visual extrapolations 306 

during reasoning. 307 

First, a binomial mixed-model logistic regression across the entire sample of children 308 

probing the relation between scaling exponent and reasoning accuracy was not significant (P = 309 

0.271, 95% CI = [0.097, 0.562], p = .117). Nevertheless, this first analysis did not take into 310 

account the difference in reasoning accuracy for older versus young children. An additional 311 

binomial mixed-model logistic regression predicting accuracy by scaling exponent, age, and their 312 

interaction did not provide evidence that age moderated the relation between scaling exponent 313 
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and reasoning (Scaling Exponent: P = 0.995, 95% CI=[0.038, 1], p = .226; Age: P = 0.660, 95% 314 

CI=[0.486,0.800], p = .071; Scaling Exponent *Age: P = 0.344, 95% CI=[0.182, 0.554], p = 315 

.142). 316 

3.1.2. Unplanned Analyses. 317 

Relation between reasoning and simulation. 318 

To better understand the relation between reasoning and simulation and the differences 319 

between younger versus older children beyond what we could infer from the two planned 320 

analyses, we conducted two additional unplanned analyses. First, we repeated the same 321 

regressions as in the planned analysis, but this time treated children below 10 years of age (N = 322 

64) and above 10 years of age (N = 61) as different groups. This decision was motivated by prior 323 

results from the literature on children’s and adults’ geometric reasoning across cultures: Prior 324 

studies had indicated 10 years of age as approximately the age at which reasoning becomes 325 

conformal with Euclidean geometry (Dillon & Spelke, 2018; Izard et al., 2011). This age split, as 326 

opposed to the continuous treatment of age in our moderation analysis, may better capture the 327 

developmental changes in children’s reasoning, especially if there is not much change in 328 

reasoning before age 10 years and not much change in reasoning after age 10 years. In addition 329 

to splitting the sample based on the findings and conclusions of prior work, we also conducted a 330 

change-point analysis on children’s accuracy on our Reasoning Task, with age binned by month 331 

and using a binary segmentation method (Scott & Knott, 1974) with a Bayesian Information 332 

Criterion (BIC) penalty type. We found one change point at 10 years 3 months (Fig. S3). As a 333 

test of robustness, we thus repeated our analysis using this age split, and because it revealed 334 

results consistent with the split at 10 years, we report those results in the SM. 335 
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First, a binomial mixed-model logistic regression predicting reasoning accuracy by 336 

scaling exponent, age (≥ 10 years versus <10 years), and their interaction found no significant 337 

effect of scaling exponent (P = 0.492, 95% CI = [0.176, 0.814], p = .966) but a significant effect 338 

of age (P = 0.920, 95% CI = [0.613, 0.988], p = .016). This analysis was further characterized by 339 

a scaling exponent by age interaction (P = 0.093, 95% CI = [0.010, 0.522], p = .059). Individual 340 

contrasts revealed no relation between scaling exponent and reasoning for younger children (P = 341 

0.492, 95% CI = [0.176, 0.815], p = .966), but a significant relation between scaling exponent 342 

and reasoning for older children (P = 0.090, 95% CI = [0.016, 0.381], p = .013). 343 

 344 

 345 

Fig. 4. The relation between the scaling exponent from the Localization Task and accuracy in the 346 

Reasoning Task across younger (< 10 years, light grey) and older (≥ 10 years, dark grey) 347 

children, 95% CIs are depicted for each regression line. 348 

 349 
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We next explored whether this result was due to differences in effort or motivation in 350 

younger versus older children. In particular, if the hardest working or most motivated children 351 

were older, corrected their localizations more, and thought more deeply during reasoning, this 352 

might lead to both better scaling exponents and more accurate reasoning. If we correct for the 353 

time older children took to complete the Localization Task (as a proxy for their effort; reaction 354 

time, in seconds, was log-transformed to better align the scales of the variables, allowing for 355 

model convergence) and evaluate the relation between scaling exponent and reasoning, we find 356 

that the relation persists (P = 0.080, 95% CI = [0.009, 0.448], p = .032) and that time does not 357 

independently predict reasoning (P = 0.428, 95% CI = [0.258, 0.617], p =.495). The relation 358 

between scaling exponent and reasoning in older children is thus not likely due to overall effort 359 

or motivation. 360 

Finally, a close investigation of children’s responses lent further support to the suggestion 361 

that common Euclidean principles drive both visual extrapolation and geometric reasoning in 362 

older but not younger children. First, older children tended to produce reasoning responses that, 363 

like the extrapolation process, showed some scale dependence, for example, responding more 364 

accurately when the transformed triangle was smaller versus larger than the original (Fig. 2). 365 

Younger children, in contrast, tended to produce reasoning responses that directly conflicted with 366 

properties of extrapolation. The majority of younger, but not older, children reasoned, for 367 

example, that the missing third angle of a triangle would change in the same direction as (as 368 

opposed to inversely to) the change to the other two angles (Fig. 2). Even a very noisy 369 

extrapolation of such an angle transformation would be unlikely to yield this response in a 370 

majority of children. Thus, older children’s reasoning errors were—and younger children’s 371 

errors were not—consistent with the properties of visual extrapolation. 372 
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 373 

3.2. Adult Results 374 

3.2.1. Unplanned Analyses. 375 

After seeing these results with children, we collected an additional unplanned, small 376 

sample of adult participants to further evaluate two surprising findings, namely that children’s 377 

scaling exponents, which inherently reflect the Euclidean principle of scale-invariant angle 378 

measures: (1) do not improve with age; and (2) are associated with reasoning only at older ages, 379 

i.e., when reasoning is conformal with Euclidean geometry. 380 

First, consistent with the findings from the child sample, a linear regression revealed no 381 

evidence of an effect of age on the scaling exponent across the entire child and adult sample (P = 382 

0.500, 95% CI = [0.500, 0.501], p = .303). To further evaluate this null effect, we conducted a 383 

Bayesian regression, which calculated the posterior distribution of slopes characterizing the 384 

relation with a region of practical equivalence of -0.005 to 0.005. This analysis suggested that 385 

there was no effect of age on the scaling exponent (slope = 0.0015, 95% CI = [-0.0014, 0.0044], 386 

posterior probability of the null effect of age = 99.14%). 387 

Second, consistent with the findings with older children, adults’ performance on the 388 

Reasoning Task was conformal with Euclidean geometry (Fig. 5). For adults, as for older 389 

children, moreover, individuals’ scaling exponents were related to their reasoning success (P = 390 

0.017, 95% CI = [0.0002, 0.62], p = .080). 391 

 392 
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 393 

Fig. 5. The percentage of adults’ responding in the Reasoning Task about the general properties 394 

of triangles. 395 

 396 

4. Discussion 397 

Two tasks required children and adults to make judgments about the properties of 398 

visually fragmented triangles. The patterns of performance on these tasks suggested both 399 

continuity and change in geometric cognition through development. First, a correlated-random-400 

walk model from statistical physics characterized children’s localizations of the missing third 401 

corners of triangles of different sizes, as it had in prior studies examining adults’ localizations. 402 

The model revealed that while the random noise associated with triangle-side extrapolation 403 

decreased as children got older, the timescale with which they corrected that noise in line with 404 

the basic Euclidean principle of scale-independent angle-size information did not change. And 405 

so, children may require no explicit knowledge of this Euclidean principle (or its relevance to a 406 

visual shape completion task) when extrapolating the missing parts of planar shapes. Instead, 407 

basic Euclidean principles guiding visual extrapolation may be present from early in human 408 

development, perhaps due to experiences with the continuous edges and surfaces in scenes and 409 

objects or to the very structure of our brain systems dedicated to everyday spatial tasks 410 
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(Ayzenberg & Lourenco, 2019; Elder & Goldberg, 2002; Feldman, 2001; Field, Hayes, & Hess, 411 

1993; Lee & Yuille, 2006; Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011). Moreover, 412 

sensitivities to straight and oriented trajectories for moving through spaces and recognizing 413 

objects are observable in infancy and young childhood, even in the absence of typical visual 414 

experience (Kellman & Spelke, 1983; Landau, Gleitman, & Spelke, 1981; Slater, Mattock, 415 

Brown, & Bremner, 1991), and the tradeoff between maintaining a straight line at a certain angle 416 

and maintaining a smooth line with no sharp corrections is even inherent in the navigational 417 

abilities of a variety of animal species (Cheung, Zhang, Stricker, & Srinivasan, 2007), including 418 

dung beetles (Peleg & Mahadevan, 2016), birds (Wiltschko & Wiltschko, 2005), sharks 419 

(Papastamatiou, Cartamil, Lowe, Meyer, Wetherbee, & Holland, 2011), and insects (Wehner, 420 

Michel, Antonsen, 1996). Future research exploring whether other animal species incorporate 421 

basic Euclidean principles into their visual extrapolations, moreover, could evaluate whether 422 

such principles are reflective of our uniquely human capacity to learn geometry, our experiences 423 

in the spatial world shared by other animals (e.g., Hubel & Wiesel, 1962, 1965; Rubin, 424 

Nakayama, & Shapley, 1996; von der Heydt, Peterhans, & Baumgartner, 1984), or any 425 

evolutionarily inherited Euclidean biases in perception and cognition. 426 

Second, the present study found that children’s verbal reasoning about the general 427 

properties of triangles changed markedly as children got older, consistent with prior studies with 428 

diverse populations (Dillon & Spelke, 2018; Izard et al., 2011). In particular, younger children 429 

seemed to respond to reasoning questions by simple, though erroneous size-based heuristics that 430 

conflicted with Euclidean principles. For example, younger children responded that the missing 431 

angle of a fragmented triangle changed in the same direction as (as opposed to inversely to) the 432 

change to the other two angles. In contrast, older children and adults tended to respond to 433 
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questions about the side and angle properties of planar triangles in general accord with formal, 434 

Euclidean geometry. Nevertheless, neither older children nor adults were perfectly Euclidean: 435 

Both groups showed some scale dependence in their reasoning, for example, by responding more 436 

accurately when the described transformations to the triangles made triangles smaller versus 437 

bigger. This was true even though the participants in the present study may have more interest 438 

and practice in math compared to others who have been tested in prior studies and others in the 439 

general population. Their similar performance to other populations thus further supports the 440 

suggestion that some intuitive reasoning about geometry is largely unaffected by culture, 441 

education, or even expertise (see, e.g., Amalric & Dehaene, 2016; 2018; Butterworth, 2006). 442 

The present work also addresses two questions about the cognitive mechanisms 443 

underlying human geometric reasoning that prior work had not been able to address: What 444 

developmental change in cognitive representations and processes might underlie a change in 445 

reasoning from incorrect and axiomatic to nearly Euclidean? And what would it mean for our 446 

understanding of human intuitive cognitive geometry to qualify this reasoning as nearly 447 

Euclidean? While prior work had speculated that older children naturally become “little 448 

Euclids,” reasoning by intuitive knowledge of geometric rules (e.g., Dillon & Spelke, 2018; Izard 449 

et al., 2011), the present work instead suggests that older children and adults fall short of 450 

reasoning that is perfectly consistent with formal, Euclidean geometry. Instead, older children 451 

and adults appear to engage only some Euclidean principles during simple tasks of visual triangle 452 

completion and during verbal tasks of explicit geometric reasoning. We suggest, therefore, that 453 

older children and adults may perform better on tasks of Euclidean reasoning not because they 454 

become “little Euclids,” but because they adopt an intuitive reasoning strategy that relies on the 455 

mental simulations of their visual extrapolations, which include some Euclidean elements. 456 
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Developmental discontinuity in Euclidean reasoning may thus emerge when children abandon 457 

axiomatic strategies and begin to engage in dynamic simulations to solve novel geometric 458 

reasoning problems. For older children and adults, moreover, the strength of the Euclidean 459 

elements guiding these simulations may contribute to their individual success in reasoning in 460 

accord with Euclidean geometry. 461 

Given the correlational design of the present study as well as some unplanned analyses, 462 

this suggestion is speculative. Nevertheless, the present work raises new questions for future 463 

exploration. For example, if simulation is a relatively effective intuitive strategy for geometric 464 

reasoning that older children and adults rely on, and younger children’s extrapolations already 465 

incorporate basic Euclidean properties that are predictive of reasoning success, then why do 466 

younger children not engage in simulation during reasoning? One possibility is that younger 467 

children do not recognize the relevance of their simulations to the reasoning problem. Simply 468 

telling a younger child to dynamically imagine the missing parts of and the transformations to 469 

fragmented triangles during a reasoning task might thus make their performance look more like 470 

older children’s. Instruction to imagine the dynamic unfolding of physical events has improved, 471 

for example, even young children’s reasoning about the trajectories of balls moving through 472 

opaque tubes (e.g., Joh, Jaswal, & Keen, 2011; Palmquist, Keen, & Jaswal, 2017). Future studies 473 

using such explicit verbal instruction or implicit priming could begin to evaluate both whether 474 

mental simulation of visual extrapolations about geometry and its static planar figures is 475 

available to younger children as a reasoning strategy and whether such simulation is causally 476 

related to reasoning success. 477 

Another possibility for why younger children may not engage in simulation for reasoning 478 

is that limits to younger children’s memory and attention, in general, or other properties of their 479 
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simulations, in particular, may affect their ability to engage in simulation as a reasoning strategy. 480 

For example, while there were many similarities between older and young children’s visual 481 

extrapolations in the Localization Task, engaging in mental simulation of these visual 482 

extrapolations for reasoning requires both visualizing a transformation to a given triangle and 483 

also performing extrapolations on that imagined triangle. Our current tasks do not examine 484 

whether younger and older children might differ in such abilities. Moreover, younger children 485 

had more local noise in their simulations than older children. Future studies might begin to 486 

explore whether introducing noise into the displays accompanying reasoning questions for older 487 

children and adults might lead them to adopt language-based heuristics instead of simulation-488 

based strategies for solving reasoning problems (see Perfecto, Donnelly, & Critcher, 2019). Such 489 

studies could lead to the investigation of how individuals decide, more generally, whether 490 

reasoning by language-based heuristics or simulation might be more or less effective when faced 491 

with novel problems in geometry, mathematics, or other domains. Moreover, such findings could 492 

ultimately inform pedagogies aimed at teaching and testing geometric formalisms, rules, and 493 

abstractions. 494 

While problems in geometry may seem best answerable by immediate inference or 495 

deductive proof, intuitive geometric reasoning may instead rely on noisy, dynamic simulations. 496 

The achievements enabled by Euclidean geometry are manifest throughout human history, and 497 

Euclidean geometry has often been held up as the model of abstract thought. And yet our 498 

findings suggest that Euclid himself, like the rest of us, may have taken quick random walks in 499 

his mind before he plodded step by step on the printed page.  500 
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