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AUTOMATIC DESIGN OF NONCRYPTOGRAPHIC HASH FUNCTIONS 
USING GENETIC PROGRAMMING 

CESAR ESTEBANEZ, YAGO SAEZ, GUSTAVO RECIO, AND PEDRO ISASI 

Department of Computer Science, Universidad Carlos III de Madrid, Madrid, Spain 

Noncryptographic hash functions have an immense number of important practical applications owing to 
their powerful search properties. However, those properties critically depend on good designs: Inappropriately 
chosen hash functions are a very common source of performance losses. On the other hand, hash functions are 
difficult to design: They are extremely nonlinear and counterintuitive, and relationships between the variables are 
often intricate and obscure. In this work, we demonstrate the utility of genetic programming (GP) and avalanche 
effect to automatically generate noncryptographic hashes that can compete with state-of-the-art hash functions. We 
describe the design and implementation of our system, called GP-hash, and its fitness function, based on avalanche 
properties. Also, we experimentally identify good terminal and function sets and parameters for this task, providing 
interesting information for future research in this topic. Using GP-hash, we were able to generate two different 
families of noncryptographic hashes. These hashes are able to compete with a selection of the most important 
functions of the hashing literature, most of them widely used in the industry and created by world-class hashing 
experts with years of experience. 
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1. INTRODUCTION 

Hashing is everywhere. Hash functions are the core of hash tables, of course, but they 
also have a multitude of other applications: Bloom filters, distributed hash tables, local 
sensitive hashing, geometric hashing, string search algorithms, error detection schemes, 
transposition tables, cache implementations, and many more. For example, Robert Jenkins 
reports in his Web page1 that his hash function lookup3 has been used by top-class com-
panies such as Google, Oracle, and Dreamworks (they used it for the Shrek movie). He 
also reported that lookup3 was used in implementations of Infoseek, Perl, Ruby, and Linux, 
among others. The creators of the Fowler-Noll-Vo (FNV) hash function also report2 some 
impressive real-life applications of their function: Domain Name System servers, Network 
File System implementations (FreeBSD 4.3, IRIX, and Linux), video games (PlayStation2, 
GameCube, and Xbox consoles), Twitter, and so on. 

Why is hashing so important? The answer is that, under some reasonable assumptions, 
hashing allows searching for objects in a set in constant time 0(1), independent of the size 
of the set. Thus, it is not only that the access times are optimal: The most important feature is 
the perfect scalability of the system. Lookup time remains constant no matter how large the 
set is. Considering that we live in a world in which governments, companies, and research 
centers use every day massive databases containing thousands of terabytes of data that 
must be constantly accessed and updated, it should not be a surprise that hashing is such a 
popular technique. 

Address correspondence to Cesar Estebanez, Department of Computer Science, Universidad Carlos III de Madrid, 
Av. Universidad 30, 28911, Leganes, Madrid, Spain; e-mail: cesteban@inf.uc3m.es 

1 http://burtleburtle.net/bob/other/resume2.html. 
2 http://www.isthe.com/chongo/tech/comp/fuv/. 



Of course, findin elements in time O.1/ is the ideal case. In fact, one of the most
important drawbacks of hashing is worst case performance: Finding an object in a set of n
elements could have a cost of O.n/. This happens only when the hash function maps every
input key to the same hash value, and this extreme behavior is very unlikely as long as we
design a decent function. However, performance losses due to unsuitable hash functions are
very common. The performance of a hashing system entirely depends on how we design (or
choose) the hash function.

1.1. Motivation
The problem is that designing top-quality hash functions is a difficul process. They

are extremely nonlinear, counterintuitive mathematical constructions in which the relation-
ships between the variables are intentionally obscure and intricate. In fact, most of the
noncryptographic hashes that are commonly used in the software industry were handcrafted
by experts. Some very popular functions, such as FNV, use magic numbers, which are
numerical constants arbitrarily selected in a trial-and-error process. On top of that, there
is no generally accepted way of measuring the quality of noncryptographic hash functions
(NCHF); thus, even if one does a good job designing a hash function, it is very difficul to
compare it with the state of the art.

These difficultie in the design of good hash functions suggest that artificia intelligence
(AI) techniques such as genetic programming (GP) could do a good job replacing humans
in the task of creating new hashes. The reason is that GP is specially suitable for that specifi
kind of problems: In Poli, Langdon, and McPhee (2008) authors claim that, based on the
experience of numerous researchers over many years, GP is specially productive in problems
having some or all of the following properties:

(1) The interrelationships among the relevant variables are unknown or poorly understood.
(2) Finding the size and shape of the ultimate solution is a major part of the problem.
(3) Significan amounts of test data are available in computer-readable form.
(4) There are good simulators to test the performance of tentative solutions to a problem,

but poor methods to directly obtain good solutions.
(5) Conventional mathematical analysis does not, or cannot, provide analytic solutions.
(6) An approximate solution is acceptable.
(7) Small improvements in performance are routinely measured (or easily measurable) and

highly prized.

We can say that the problem of findin new hash functions completely fulfill at least
conditions 1, 3, 4, and 7. And it probably fulfill also all the others in some way.

1.2. Objectives
In this work, we want to prove that GP, in conjunction with an adequate fitnes function,

is able to automatically design NCHF that are competitive with those generated by human
experts with years of experience. The great difference with previous works on evolution
of hashes is the use of the avalanche effect as a powerful estimator of the general quality
level of an NCHF. This concept, related to information theory and widely used in cryp-
tography and hashing, represents the power of the hash to efficient y diffuse input patterns
and produce an apparently random output. In this work, we prove that selecting NCHF by
their levels of avalanche effect is an efficient unbiased, and accurate way to discover high-
quality functions. This allows us to use a very fast mono-objective optimization approach
that obtains highly competitive results.
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FIGURE 1. Example of a typical hash function: Input values could have any length; outputs are 32-bit 

values; the two last inputs only differ in a few letters, but their outputs are completely different. 

In the next sections, we describe the design and implementation of our hashing genera­
tion system based on GP. We call this system GP-hash. We also show the experimental work 
carried out to prove the practical utility of our system, and we claim that GP-hash is able to 
generate some hashes that compete in performance with state-of-the-art functions that are 
massively used in industry, such as lookup3, FNY, SuperFastHash, or MurmurHash. 

1 .3. Organization 

The remainder of this document is organized as follows, In Sections 2 and 3, we intro­
duce respectively the NCHF and GP. These are the two main technologjes on which this 
work is based. Their sections gjve a very brief introduction to the most important concepts 
and suggest further reading to those interested. Then, in Section 4, we review some previous 
works that involve the application of evolutionary computation techniques (and AI in gen­
eral) to hashing. Section 5 is dedicated to our GP-hash system: We describe all the design 
and implementation issues, including fitness function, terminal and function sets, parameter 
tuning, and so on. Then, in Section 6, we use our experimental results to show the utility of 
the GP-hash to generate noncryptographic hashes. Finally, in Section 7, we summarize the 
most important achievements and contributions of this work and give detailed explanations 
of what we have learned from it. 

2. NONCRYPTOGRAPHIC HASH FUNCTIONS

Hash functions are a family of mathematical expressions that take a message of variable 
length as input and return a hash value of fixed length as output (Figure 1 ). This asymmetry 
between the sizes of inputs and outputs is one of the most important properties of hash 
functions. Another desirable and important property, also illustrated in Figure 1 ,  is that 
minimum changes in the input of a hash function should produce maximum changes in 
the output. 

Most noncryptographic hash functions follow the Merk1e-Damgard construction 
scheme3 (independently developed by Merk1e 1989 and Damgard 1990). Figure 2 illustrates 
how it works: Inputs of the hash function are split into smaller blocks of fixed size, and then 

3 This does not apply to cryptographic hash functions, which use a variety of systems other than Merkle-Damgdrd. This
is because this construction scheme is no longer considered safe, because different cryptanalysis studies have exposed some 
weaknesses that are considered important for cryptographic applications. Alternative schema include HAIFA (Biham and 
Dunkelman 2006), wide-pipe construction (Lucks 2005), and sponge construction (Bertoni et al. 2007, 2008). 
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FIGURE 2. Merkle-Damgard construction scheme. 
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the blocks are processed one by one by the mixing function, whose mission is to scramble 
input bits and internal state, producing a highly entropic output. In step i, the inputs of the 
mixing function are block i, and the output of the processing block is i - I .  If the length 
of the message is not a multiple of the block size, then a padding must be added to the 
last block. 

There are a huge number of practical applications of hash functions, but the most impor­
tant one (and the base for most of the others) is the hash table. Hash tables are data structures 
composed ofa random-access container (e.g., an array) with M slots (usually called buck­
ets) that can store entries, and a hash function. Entries consist of two elements: the data we 
actually want to store and a key that identifies the entry. To insert an entry into the table, 
the hash function is fed with the key, producing a hash value. This value is translated into a 
valid index of the table, and then the key-data pair is inserted into the bucket indicated by 
the generated index. When looking for a particular entry in the table, the process is reversed: 
The key associated to the entry is hashed and the hash value is translated into an index. The 
entry is supposed to be in the bucket indicated by the produced index. 

Ideally, every hash value should identify a unique input message. However, as stated 
earlier, inputs of a hash function have variable sizes, and outputs have a fixed size. This 
means that there are an infinite number of possible inputs and a finite number of possible 
outputs. The consequence is that some inputs must produce exactly the same output. We 
call this a collision. Collisions are an unavoidable problem that can dramatically decrease 
the performance of hashing. 

Apart from collision resistance, we generally require an NCHF to be fast, to distribute 
outputs evenly, and to produce great levels of avalanche effects. 

2.1. Quality Criteria for Noncryptographic Hash Functions 

According to the hashing literature, the most important quality criteria for NCHF are 
collision resistance, distribution of outputs, avalanche effect, and speed (Valloud 2008; 
Henke, Schmoll, and Zseby, 2008; Goodrich and Tamassia 2009). 

• Collision resistance: A hash function must reduce the collisions it produces to a mini­
mum (Knott 1975; Valloud 2008; Goodrich and Tamassia 2009). If we assume that the
function produces each hash value with exactly the same probability, it should take about
2n/2 hash evaluations (where n is the size of the output in bits) to find two colliding
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keys using a birthday attack. However, it could take much fewer if the NCHF is poorly 
designed (Bellare and Kohno 2004). Collisions are one of the major reasons of perfor-
mance loss in hashing applications, and they should be carefully controlled. Collision 
resistance is data dependent: The collision properties of a function can be measured only 
in relation to a specifi  key set (Knuth 1973; Valloud 2008).

� Distribution of outputs: It is very important for a noncryptographic hash to produce
outputs that follow a uniform distribution (Knott 1975; Sedgewick 2001; Cormen et al.
2001; Valloud 2008). The function must generate each possible output value with the
same probability, independent of the distribution of the inputs. An uneven distribution of
outputs would produce clustering problems, which greatly affect the performance of an
NCHF. Similar to the collision rate, this quality criterion is data dependent.

� Avalanche effect: The avalanche effect of a hash function refers to its ability to produce
a large change in the output under a minimum change in the input. This property is very
important for NCHF (Valloud 2008; Henke et al. 2008). A hash with a good avalanche
level can dissipate the statistical patterns of the inputs into larger structures of the output,
thus generating high levels of disorder and preventing clustering problems. This crite-
rion is independent of the architecture and the data, which greatly simplifie its study
and measurement.

� Speed: NCHF are useful because they allow searches to be performed very quickly.
This means that an NCHF must be as fast as possible (Goodrich and Tamassia
2009; Heileman 1996; Knuth 1973; Ramakrishna and Zobel 1997; Sedgewick 2001;
McKenzie, Harries, and Bell 1990). For this purpose, NCHF should use very few opera-
tors, and these operators should be efficien in terms of CPU consumption. This criterion
obviously depends on the architecture in which the hash function runs, because differ-
ent CPUs offer different performance levels for the same operators (e.g., Matsui and
Fukuda 2005).

2.2. Most Common Noncryptographic Hash Function in the Literature
According to their practical applications and their presence in the literature, the most

important NCHF are the following:

� FNV (Fowler, Vo, and Noll 1991): This function was designed by Glenn Fowler and
Phong Vo in 1991 and later improved by Landon Curt Noll. It is one of the most efficien
and widely used hash functions ever created. According to the authors, dozens of very
important software products use FNV hash, including Linux and FreeBSD distributions,
Twitter, Domain Name System servers, Network File System implementations (FreeBSD
4.3, IRIX, and Linux), and video games (in PlayStation2, GameCube, or Xbox consoles).
There are two versions of this hash: FNV-1 and FNV-1a.

� lookup3 (Jenkins 1997): This function was designed by Robert Jenkins and is one of the
most important references in the fiel of noncryptographic hashes. According to Jenkins,
companies such as Google, Oracle, and Dreamworks have been using lookup3 in their
products. This hash is also included in implementations of PostgreSQL, Linux, Perl,
Ruby, and Infoseek.

� SuperFastHash (Hsieh 2004–2008): This hash was created by Paul Hsieh with the
objective of being elegant, being extremely fast, and providing high levels of avalanche.
It was inspired by some principles found in FNV and lookup3. This function is popular in
the software industry: According to Hsieh, Apple uses SuperFastHash in its open-source
project WebKit, which is in turn used in browsers such as Safari and Google Chrome.
This function was also part of several versions of the former Macromedia product
Flash Player.



� MurmurHash2 (Appleby 2008): This function was designed by Austin Appleby in 2008
and, despite its short lifetime, enjoys great prestige among hashing experts. It is used
in some important open-source projects, such as libmemcached, Maatkit, and Apache
Hadoop, and has outstanding avalanche properties.

� DJBX33A: This function was originally proposed by Prof. Daniel J. Bernstein and is
used very often for hashing strings. Many different programming languages such as PHP
5, Python, and ASP.NET use DJBX33A or functions derived from it. Java also uses a
function that is essentially equivalent to DJBX33A when hashing string objects. This has
greatly influence many application servers, such as Tomcat, Geronimo, Jetty, or Glass-
fish which could be exposed to denial-of-service attacks that use known weaknesses of
DJBX33A to bring the application server to its knees (Klink and Wälde 2011; Crosby
and Wallach 2003).

� BuzHash: This is a general-purpose hash function that was invented by Robert Uzgalis
in 1992. It uses a substitution table that replaces each input byte by a randomized alias.
These aliases are made so that for every bit position, exactly one half of the aliases have
a 1 and the other half have a 0. It is suited for any input distribution, even extremely
skewed distributions.

� DEK: This is a multiplicative hashing that is based on the ideas of Donald E. Knuth
1973. It is one of the oldest and simplest hashing algorithms ever created and is still very
popular in the hashing community. The version used in this work is part of the “General
Hash Function Library” by Arash Partow (2010).

� BKDR: This function was originally proposed by Kernighan and Ritchie (1988) and is
included in the aforementioned General Hash Function Library.

� APartow (Partow 2010): This hybrid rotative and additive hash function algorithm was
proposed by Arash Partow and is included in his library of hashes.

2.3. Further Reading
According to Donald E. Knuth, the firs publication about hashing is an internal mem-

orandum by H. P. Luhn, an IBM employee, in 1953, but the most cited reference about
hashing is Knuth (1998). It is probably the firs textbook that gives a serious introduction
to hashing, but its firs edition is from the 1970s and could be a bit outdated. There are
other modern textbooks that are also worth reading: Valloud’s (2008) is the only textbook
that we know that is a comprehensive dedicated guide to hashing. The only con is that the
book is focused on SmallTalk. Other textbooks containing interesting chapters about hash-
ing are as follows: Sedgewick (2001), Cormen et al. (2001), Goodrich and Tamassia (2009),
and Heileman (1996). Another great source of information is the video lectures of the com-
puter science course Introduction to Algorithms at MIT, publicly available through MIT
OpenCourseWare.

3. GENETIC PROGRAMMING

Genetic programming (Koza 1992) is a stochastic search technique that tries to automat-
ically generate solutions to a problem starting from high-level statements of what needs to
be done. GP belongs to the family of evolutionary computation techniques. GP populations
are composed of computer programs. Thus, GP parts from a random population of pro-
grams and tries to improve them through generations using mechanisms inspired by natural
selection and evolution.

To exert a selective pressure over the population and properly guide the search, GP
uses a combination of two elements: first a cost function (or fitnes function) that evaluates



computer programs and assigns them a score indicating their level of adaptation to the prob­
lem and, second, a set of operators that recombine or modify individuals of the population 
trying to produce fitter programs. As stated by Poli et al. (2008), a typical GP run executes 
the following algorithm: 

(I) Randomly create an initial population of programs from the available primitives.
(2) Repeat:
(3) Execute each program and ascertain its fitness.
( 4) Select one or two program( s) from the population with a probability based on fitness to

participate in genetic operations.
(5) Create new individual program(s) by applying genetic operations with specified

probabilities (Section 2.4).
(6) Until an acceptable solution is found or some other stopping condition is met (e.g., a

maximum number of generations is reached).
(7) Return the best-so-far individual.

In each generation, the current population is evaluated. At the end of this process, each 
individual has been assigned a numerical value, called the.fitness value. In some problems, 
we are looking for low fitness values ( e.g., minimize the collisions produced by a hash 
function), and in some others, we want high fitness values (e.g., maximize the disorder 
produced by a hash function measuring the randomness of the outputs). Programs with 
better-than-average fitness values are selected to breed and produce new individuals for 
the next generation. The most common genetic operators used to breed new programs are 
as follows: 

• Crossover: The offspring is created by combining randomly chosen parts from two
previously selected parents.

• Mutation: The new child is created by randomly altering some parts of a previously
selected parent.

Individuals are usually represented as parse trees or their equivalent syntactic expres­
sions in Polish notation (Figure 3). Internal nodes of the tree are functions ( operators that 
accept parameters), and leaves are terminals (variables or constants). 

* 

y 

7 

(* (log (- X 7)) (+ 3 Y)) 

FIGURE 3. Example of a genetic programming individual represented as a tree and its equivalent 
syntax expression. 
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4. ARTIFICIAL INTELLIGENCE + HASHING

In Section 1.1, we explained the reasons why GP could be very suitable to automat-
ically design hash functions: Evolutionary computation techniques in general are proven
to be very good in findin approximate solutions to poorly understood problems, in which
the relationships between the variables are not completely known. Furthermore, GP is par-
ticularly good at discovering unexpected hash functions because the individuals it evolves
do not need to have a fi ed size or shape, which is perfect for evolving arbitrary mathe-
matical expressions.

Surprisingly, there is not much research on this topic. Actually, it is hard to fin research
work that uses AI techniques to automatically generate NCHF.

The most similar work we found is Safdari’s (2009). In fact, the author cites a previous
work that we published in 2006 (Estébanez et al. 2006a) describing the firs prototype of our
GP-hash system. In his article, M. Safdari starts with the family of universal hash functions

ha;b.k/ D ..ak C b/ mod p/ mod N

and uses a genetic algorithm to evolve parameters a and b, trying to fin the best function
for a particular set of inputs. All the databases he uses are sets of random integers lying in
a predefine range. The results are promising, but the methodology is questionable: If the
input data are purely random, which is the case, then a hash function is not needed at all:
Just use the input values (or a portion of them) as hash values to obtain a perfect uniform
distribution and a minimum collision rate. It will be much more interesting to try the same
experiments with biased input sets, which are far more difficul for NCHF. Furthermore,
there are no significanc tests (or at least mean values over a number of runs) on the results.
The cost function used to guide the search is based in the collision rate and the load factor
of the table, two concepts that are mixed in the same function in an apparently arbitrary way.

In a previous work, Berarducci (2004) already followed a similar approach, trying to
automatically generate hash functions for hashing integer numbers. Their system, called
GEVOSH, is even closer to GP-hash than the work of M. Safdari, because GEVOSH uses
grammatical evolution (Ryan et al. 1998; O’Neill and Ryan 2003), a technique that is closely
related to GP, and because complete hash functions are evolved instead of using a fi ed
schema and evolve the parameters. The fitnes function is based on the collision rate. Two
hash functions are obtained and compared with six hashes extracted from Wang (2007).
The authors claim that their hashes are competitive with the other six, but the reader cannot
really tell, because charts in the article are very difficul to understand (very-low-quality
graphics and no explanation on the text). It is not clear in the article whether the data sets
they used were random or not.

Hussain and Malliaris (2000) has a very short article in which they use a genetic algo-
rithm with collision-based fitnes to evolve some kind of polynomials that they use as hash
functions. There is no explanation about how those polynomials are constructed or used to
hash; thus, we assumed that they are using a schema similar to the polynomial hash codes
studied by Goodrich and Tamassia (2009). The experimental results appear to be good, but
the extreme lack of details makes it very difficul to evaluate their real impact.

Another interesting fl vor of this problem is the automatic design of hashing circuits
using Evolvable Hardware. This technique uses evolutionary algorithms to automati-
cally design electronic devices (Sipper et al. 1997; Gordon and Bentley 2002). In this
domain, Damiani, Liberali, and Tettamanzi (1998) offer an interesting approach. They
use an evolutionary algorithm to evolve a field-pr grammable gate array (FPGA)-based
digital circuit, which computes a hash function mapping 16-bit entries into 8-bit hash



values. The evolutionary algorithm uses dynamical mutation and uniform crossover. The
fitnes function is based on the uniformity of the output distribution. In the work of
Damiani and Tettamanzi (1999), this system is adapted to online reconfiguratio of the
circuits. Finally, in the work of Widiger, Salomon, and Timmermann (2006), we have
another example of the application of evolvable hardware to the generation of FPGA
hashing circuits. In this case, the hash circuits are intended to work as hardware packet
classifier inside routers. The routing rules that the device needs to hash are con-
stantly changing; thus, the designed hash function must be adaptive, and the circuits
must allow online reconfigurations Different hash schemes are used, and the results are
very interesting.

The automatic generation of cryptographic hashes is completely out of the scope of this
work because their design goals and restrictions are completely different from those related
to noncryptographic hashes. Even so, we suggest an interesting publication on this topic:
Snasel et al. (2009).

In the work of Estévez-Tapiador et al. (2008), some of our colleges at Universidad
Carlos III de Madrid continued our previous work presented in Estèbanez et al. (2006b)
and created a variation of our system that evolves cryptographic hashes. Although we are
not dealing with cryptographic functions in this work, we think it is important to cite this
work because it shows that the central idea of GP-hash is fl xible and powerful enough to
be easily adapted to different domains. In the aforementioned article, authors were able to
generate a block cipher that they used as the compression function of a cryptographic hash
following the Miyaguchi–Preneel construction scheme (Miyaguchi, Ohta, and Iwata 1990;
Preneel 1993). The function they generated was very fast and passed some statistical tests
that prove that the function has no evident weaknesses and suggest that it could be secure
enough to resist some attacks. They used the same fitnes function based on the avalanche
effect that we developed in our previous work.

4.1. Contributions of GP-hash
In this section, we reviewed the previous work on AI applied to the automatic design of

NCHF, including Hussain and Malliaris (2000), Safdari (2009), and the GEVOSH system
proposed by Berarducci et al. (2004). The most important difference between GP-hash and
these systems is the fitnes measure: Whereas in previous works, the collision rate is always
the quality criterion used to evaluate general-purpose NCHF, GP-hash uses a fitnes function
based on the avalanche effect.

This is important because collision rate is data dependent. This means that for calcu-
lating the collision resistance of an NCHF, one needs to actually hash a key set and study
the frequency of the outputs. Thus, it is only possible to measure the collision properties of
a hash with relation to a specifi key set. This is a major drawback when trying to evolve
general-purpose hashes, which should perform well with a wide range of very different
key sets.

On the other hand, our approach uses the avalanche effect as the main optimization
objective. Avalanche is a fundamental characteristic of the internal mixing process of the
NCHF; thus, it does not depend on the hashed key set. This feature makes the avalanche
effect a perfect candidate to evolve general-purpose hashes. Furthermore, the avalanche
effect could be seen as a measure of how much disorder the hash function can generate and
how well it disrupts the input patterns. Our hypothesis is that this measure could be a good
estimator of the overall quality of a hash function. In Section 6, we experimentally prove this
hypothesis, showing how the performance of NCHF evolved with this criteria is comparable
with that of the state of the art in noncryptographic hashing.



5. GP-HASH: DESIGN AND IMPLEMENTATION
The objective of this work is to automatically discover general-purpose, state-of-the-art,

NCHF using GP. To do so, we used our GP system for automatic generation of noncryp-
tographic hashes. We call this system GP-hash. It is coded in Java, and it makes use of
two more publicly available Java libraries: PROGEN,4 which provides the GP framework
(population management, evaluation and selection, genetic operators, strong typing, etc.),
and HashBench,5 which offers a very rich application programming interface for NCHF
evaluation. A primitive version of GP-hash was previously proposed by Estébanez et al.
(2006b).

In the remainder of this section, we explain the decisions made during the design and
implementation of GP-hash:

(1) Design of the fitnes function.
(2) Definitio of the terminal and function set.
(3) Parameter tuning.

5.1. Fitness Function
To design a fitnes function for NCHF, we considered the quality criteria define in

Section 2:

(1) Collision resistance
(2) Distribution of outputs
(3) Avalanche effect
(4) Speed

The speed is not adequate as the only fitnes measure in a mono-objective optimiza-
tion approach: We want our function to be very fast, but that is not enough. The expression
h D 0 � 0I return hI, for example, is a syntactically valid hash function, and it is extremely
fast, but it is completely useless. If we use speed as the objective function of a GP run, then
we will obtain many individuals like that. The speed could be seen as a secondary objective
that has an influenc on the fitnes through a weighted addition (the architecture depen-
dence could be avoided by assigning a cost to each operation proportional to the architecture
involved), or it could be considered a constraint of the problem. GP-hash follows the latter
approach: The size (number of nodes) of the evolved hashes is always limited; thus, they
can only have a limited number of operators. This way, the execution time of the evolved
hashes is bounded.

Previous approaches invariably use fitnes functions based on collision resistance prop-
erties. As we explained in Section 2.1, collision resistance is a data-dependent metric. This
means that it is mandatory to choose a specifi key set for training the hash function, which
only guarantees that the evolved NCHF will do a good job hashing key sets with simi-
lar structures. This lack of generality is a major drawback when evolving general-purpose
NCHF, which are expected to deliver a proper performance with many key sets of very
different natures. The second quality criterion, distribution of outputs, is also data dependent
and thus has exactly the same limitation.

4 PROGEN website:
http://eva.evannai.inf.uc3m.es/personal/cesteban/cesteban/ProGen.html.

5 HashBench website:
http://eva.evannai.inf.uc3m.es/personal/cesteban/cesteban/HashBench.html.



One of the most important contributions of GP-hash is the use of the avalanche effect
as the fitnes measure to evolve general-purpose NCHF. Avalanche is an intrinsic property
of the mixing function of an NCHF; thus, it is not data dependent. That makes it a perfect
candidate to evaluate general-purpose NCHF. Furthermore, it is a measure of how well
the function disrupts the input patterns and produces an apparently unpredictable output.
This feature is intuitively related with a good distribution of outputs (the more random
the output looks, the more evenly the outputs distribute) and thus with the collision rate
(biased distributions generate more collisions than pure uniform distributions). This makes
us hypothesize that the avalanche effect could be a very accurate estimator of the global
quality of an NCHF.

Although GP-hash also implements fitnes functions based on collision resistance and
distribution of outputs, in this work, we only use the avalanche effect-based fitness We
describe this fitnes function next.

5.1.1. Avalanche Fitness. We already introduced the avalanche effect as a quality
criterion for NCHF in Section 2.1. In this section, we firs provide a more formal defi
nition of the avalanche effect and strict avalanche criterion (SAC). Then, we describe the
avalanche-based fitnes functions designed for GP-hash.

5.1.1.1. Avalanche effect and SAC. The concept of avalanche effect was introduced
by Horst Feistel (1973) as an important property of block ciphers. Later, this concept was
extended to s-boxes (Schneier 1996), cryptographic hash functions (Preneel 1993), non-
cryptographic hashes (Valloud 2008; Mulvey 2007), and so on. We say that a hash function
achieves a good avalanche when minimum changes in the input produce maximum changes
in the output. This happens if each input bit has some influenc on every output bit. The
consequence is that flippin a single bit in the input produces an avalanche of bit flip in the
output. If a hash function achieves a high avalanche effect, then the disorder caused by the
hash is maximum (Figure 4).

A more rigorous concept is the Strict Avalanche Criterion (SAC) introduced by Webster
and Tavares (1986): A hash function satisfie the SAC if for every change in any of the input
bits (toggle between 0 and 1), all the bits of the output change with a probability of 1=2. In
other words, flippin one bit of the input changes on average half of the output bits:

8x; y W ¹H.x; y/ D 1º ) EŒH.f .x/; f .y//� D n=2; (1)

where H.x; y/ is the Hamming distance between x and y; f is a hash function, and n is the
number of output bits of f .

5.1.1.2. Avalanche fitness A high-quality fitnes function must deliver smooth and
accurate measures, while keeping an eye on efficien y. The SAC is the most precise mea-
surement of avalanche, but checking whether an individual satisfie SAC is not practical: For
individuals with 32-bit input and output, this means hashing 32�232 (i.e., 137,438,953,472)
bitstrings for each individual, for each generation. That is a huge amount of CPU time that
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FIGURE 4. A hash function h with a nice avalanche effect.



we cannot afford. Instead, the avalanche fitnes uses a Monte Carlo simulation: It generates
N random bitstrings6 and the hash values for those bitstrings. Then, for each bitstring, it
generates the 32 possible flippe bitstrings (a flippe bitstring is the same original bitstring
but with a single bit flipped and their hash values. Finally, the avalanche function checks
the differences between h.bitstring/ and each of h.flippedBitstrin /. Then, there are two
possibilities (and two different fitnes functions):

(1) Measuring the probability pi;j of each input bit i affecting output bit j (i.e., if pi;j is
0:8, that means that if input bit i changes, then output bit j changes 80% of the time).
With all the probabilities, construct the avalanche matrix. This matrix contains all the
probabilities of every input bit affecting every output bit:

AM D

0
BB@

p0;0 p0;1 : : : p0;31

p1;0 p1;1 : : : p1;31
:::

:::
:::

:::
pn;0 pn;1 : : : pn;31

1
CCA :

For a perfect avalanche, all probabilities must be 0.5; thus, we can calculate the total
error (we used root mean square error (RMSE)) and use this value as the fitnes of
the individual.

(2) Calculate Hamming distances between the hash values of original bitstring and the
corresponding flippe bitstrings.We know that those distances should follow a binomial
distribution with parameters 1=2 and n:

8x; yjH.x; y/ D 1; H.F.x/; F.y// � B

�
1

2
; n

�
:

This can be used to calculate the goodness of fi using Pearson’s chi square test:

�2 D

NX
iD1

.Hi � n=2/2

n=2
:

And comparing �2 with a chi square distribution of N � 1 degrees of freedom, we
obtain the goodness of fi and the fitnes of the evaluated individual.

Both methods work very well, but for the default settings of GP-hash, we prefer
avalanche matrices because they offer the possibility of nice graphical representations like
those shown in Figure 5. The color of the square in position .i; j / represents the probability
that input bit i affects output bit j . A black square means that changes in bit i do not change
bit j at all or always changes it7 (0.0 or 1.0 probability of change). A white square means
that i has a perfect influenc on j (i.e., probability = 0.5).

6 In our experiments, we used N D 100 by default.
7 Note that a probability of 1.0 is as bad as 0.0, because 1.0 means that the value of the output bit is define by the input

bit (every time we change input bit, output bit changes).
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FIGURE 5. Examples of graphical representation of avalanche matrices corresponding to APartow,
DJBX33A, FNV-1, and lookup3 hashes.

5.2. Terminal and Function Set
In this section, we explain all the aspects related with the building blocks that GP-hash

uses to construct syntactically correct, efficien NCHF. First, we give a brief description of
the internal representation of the hashing structures. Then, we explain how we choose the
terminals and functions of our problem. And final y, we show the experimental evidence
that supports our choice.

5.2.1. Representation of Individuals. The mission of GP-hash is to evolve 32-bit non-
cryptographic hashes (we focus on 32-bit NCHF because those are the most common, and
we do not want to unnecessarily complicate the explanations, but it is trivial to configur GP-
hash to produce functions with different output sizes, e.g., 64 or 128). Given that we already
know that virtually all NCHF use a Merkle–Damgård construction, it is an unnecessary
waste of time and resources to ask GP-hash to reinvent the wheel: The optimal solution is to
provide a Merkle–Damgård construction and make GP-hash evolve only mixing functions.
Internally, individuals of GP-hash only code mixing functions whose inputs in a particu-
lar step are the block being processed and the output from the previous step. When we



want to externally use those individuals, we wrap them with Merkle–Damgård constructions
obtaining fully functional hash functions. Mixing functions are coded as regular GP trees.

5.2.2. Terminal Set. Given that evolved functions will follow the Merkle–Damgård
scheme, we need at least two different terminals:

� hval: This is a 32-bit variable containing the internal state of the hash function. When
processing block Mi , hval contains the result of processing the previous block Mi�1. By
default, it is initialized to zero but could be initialized to any other value.

� a0; a1; : : : ; an: These variables contain the block being processed in the current step. In
the Merkle–Damgård scheme, these blocks have a fi ed size, but internally, the mixing
function could process them in separate parts. In the most common case, blocks are 32
or 8 bits long, and we only use one variable a0 coded in an integer (32 bits) or in a
byte (8 bits). However, other combinations are possible and very common in the hashing
literature. For example, the mixing function of lookup3 consumes blocks of 96 bits on
each step, and internally, the function splits each block into three variables of 32-bit
length and mixes them separately. To obtain a similar mixing function in GP-hash, we
should use three integer variables (a0, a1, and a2). By default, we always use one 8-bit
variable a0.

Other important building blocks are magic constants. They are very common in hashing
literature, in the form of big numbers that are combined with the variables of the system
(hval; a0; a1; : : : ; an) to improve the overall entropy. There are no established rules about
how to choose those numbers, but, in general, prime numbers are preferred, because they are
considered to provide more disorder (e.g., Partow 2010). In GP-hash, magic constants are
implemented as ephemeral random constants or ERCs (special terminals that are randomly
initialized the firs time they are evaluated but that keep their values during the rest of the GP
run, as define by Koza 1992). Each ERC is initialized with an integer randomly selected
from a list8 of one million prime numbers between 15,485,867 and 32,452,843.

Terminal set D ¹hval; a0; a1; : : : an; PrimesERCº:

5.2.3. Function Set. The approach we follow to create the function set is to gather
some of the most widely used noncryptographic hash functions and check which are the
operators that more frequently appear. This way, we define a basic function set by putting
together the most common operators in the hashing literature. Then we carry out a battery
of experiments to refin the basic function set.

In Table 1, we show some of the most important noncryptographic hashes and the oper-
ators they use. Addition (C), subtraction (�), multiplication (*), and division (/) are the
common arithmetic operators we use everyday.9 Bitwise operators xor (^), and (&), or (j),
and not (:) are also very usual and do not need explanation. Right shift (�) and right rota-
tion (o) are bitwise operators that literally move the bits of a variable to the right. The
difference between � and o is that in the former, bits originally placed in the right end
are discarded, and zeros are injected in the left end, while in o, bits that are shifted out on

8 This list was obtained from Caldwell (1994–2009).
9 Except for division, which is protected to avoid divide-by-zero errors and respect the closure property as define by

Koza (1992).



TABLE 1. Operators Used by Some State-of-the-Art Noncryptographic Hashes.
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the right are then shifted in on the left. Left shift (�) and left rotation (n) operators work
exactly the same but in the opposite direction.

We observe in Table 1 that almost every NCHF uses a combination of some of the
following operators: { C; �; �; �; �; o; n; ^; : }.

Operators =, &, j are not used by any hash. This is not a surprise given that these
operators are not reversible. We say that an operator (�) is reversible when the operation
x � C D y (with C constant) can be reversed; this means the value of x can be deduced
from the value of y. Using only reversible operators guarantees that the mixing function is
reversible, which means that inputs of the function can be calculated out of the outputs. In
other words, there is a one-to-one mapping between inputs and outputs; thus, the mixing
function is collision free. If the function is not reversible, then at least two different inputs
must be producing the same output, which means that the mixing function is introducing
totally avoidable collisions, which will final y propagate to the hash function. See Mulvey
(2007) for more information about reversible operators and mixing functions.

Multiplication is reversible only in some circumstances and could be slow in some
architectures, but it is often used because it introduces a lot of disorder.

Bit shifts are very popular because they are highly entropic and also because they
are extremely efficien (only one CPU cycle latency on most modern microprocessors).
However, they are not reversible unless they are combined with other operators (e.g.,
h �D constant is not reversible, but h ^D h � constant is reversible); thus, they
must be used with care. We cannot expect the GP to be careful when putting building
blocks together; thus, given that bit rotations have a very similar behavior (and efficien y)
and that they are always reversible, we tend to prefer rotations in our function set rather
than shifts. Furthermore, right rotation and left rotation are completely equivalent (i.e.,
.x o n/ D .x n 32 � n/); thus, when using rotations, we arbitrarily discarded left
rotations and kept only right rotations.

Apart from shifts and rotations, the most frequent operators are clearly addition, multi-
plication, and exclusive or. Thus, we can defin a basic function set for GP-hash based on
the popularity of the operators:

Basic function set D ¹C; �; o;^º:

5.2.4. Validation of the Terminal and Function Set. Combining the selected functions
and terminals, we create the basic terminal and function set for GP-hash. Then, following
an approach similar to Wang and Soule’s (2004), we carried out a battery of experiments to



TABLE 2. Average Results of 50 GP-hash Runs with Different Terminal and Function Sets.

Label Terminal and function set Average fitnes (SD) Significanc

BTFS ¹C; �; o;^ ; hval; a0;PrimesERCº 0.05026 (0.00084) n/a
F1 ¹C; �; o;^ ;&; j; hval; a0;PrimesERCº 0.05134 (0.00167) D

F2 ¹C; �; o;^ ; �; �; hval; a0;PrimesERCº 0.05206 (0.00550) D

F3 ¹C; �; n;^ ; hval; a0;PrimesERCº 0.05015 (0.00112) D

F4 ¹�; o;^ ; hval; a0;PrimesERCº 0.05113 (0.00158) D

F5 ¹C; o;^ ; hval; a0;PrimesERCº 0.23917 (0.00874) #

F6 ¹C; �; o; hval; a0;PrimesERCº 0.0508 (0.00206) D

F7 ¹C; �;^ ; hval; a0;PrimesERCº 0.1739 (0.00060) #

F8 ¹C; �; o;^ ; a0;PrimesERCº 0.43425 (0.00017) #

F9 ¹C; �; o;^ ; hval; a0º 0.05113 (0.00315) D

F10 ¹�; o; hval; a0;PrimesERCº 0.43416 (0.00011) #

Standard deviation (SD) is also shown in parenthesis.

test whether this set is complete and minimum and whether our hypotheses about the func-
tions were correct. We include a summary of the results in Table 2. Each row represents the
average fitnes obtained with different terminal and function sets over 50 runs.10 Terminal
and function sets are labeled as F1, F2, . . . , F10. The row labeled BTFS represents the aver-
age fitnes obtained with the basic terminal and function set define earlier, and it is used
as reference. In the last column, there is a symbol that encodes the statistical significance #
means that results are statistically significant and D means that there is no significan dif-
ferences between row average fitnes and the BTFS average fitness It is important to note
that we are minimizing fitnes values; thus, the lower the fitness the better the individual is.
We used the Shapiro–Wilk test for normality and t -test and Wilcoxon significanc tests for
normal and nonnormal distributions, respectively (with significanc level of ˛ D 0:05).

Conclusions obtained from the results are as follows:

� F1 and F2: Including & and j does not improve the average fitnes of GP-hash. The &
operator was never selected for being part of the best individual of a GP-hash run. The
j operator was selected only in around 30% of the runs. This is probably related with
the nonreversibility of those operators, and it is interesting to see that operators that are
unpopular among hashing experts are also unpopular in GP-hash solutions. Including bit
shifts does not have any effect on the average fitnes of GP-hash runs either. Hash func-
tions generated with F2 contains shifts; thus, shifts are used in the evolution even though
they do not improve the performance of just having rotations. These results support our
decision of excluding &; j, and shift operators from the BTFS.

� F3: As expected, replacing the right rotation with left rotation does not have any effect on
the average fitnes of GP-hash. As we already predicted, both operators are completely
equivalent.

� F4 and F6: Surprisingly, removing either addition or xor operators from BTFS has no
effect on the average fitness This was completely unexpected: These operators are very
popular in the hashing literature, but GP-hash seems to work fin without them. We want
to stress that we are talking about two separate experiments: In the firs one, we remove

10 For these experiments, we used the avalanche fitnes based on avalanche matrices and RMSE explained in Section 5.1.1
and the standard parameters shown in Section 5.3



addition, and in the second one, we remove xor. The lack of impact on the fitnes  could 
be explained if these two apparently important functions belong to a function group as 
define  by Wang and Soule (2004). We tested this possibility with function set F10.

� F5 and F7: On the other hand, removing either the multiplication or the rotation
does have a drastic impact on the average fitness Both changes produce a significan
worsening of GP-hash performance. These operators are clearly needed.

� F8 and F9: We also tested hval and PrimesERC impact on the average fitness Results
show that the hval terminal is definite y needed for a correct evolution. That was totaly
expected. What was unexpected is that PirmesERC seems not to be needed. Removing it
from the BFTS does not affect the average fitness

� F10: Removing both addition and xor operators produces an important worsening of
average fitness As we suspected from the results of F4 and F6, xor and addition form a
function group. In other words, at least one of these operators must appear in the function
set, but it does not matter which one. This explains the apparent lack of effect over
the fitnes of these so popular operators observed in F4 and F6. Is interesting to note
that every hash function in Table 1 that does not use addition uses xor, and vice versa.
According to Wang and Soule (2004), the optimal solution is to choose only one of those
operators for the function set. Because we already have an arithmetical operator (�), but
we do not have any Boolean operator, we arbitrarily decide to include xor and remove
addition from the BTFS.

Finally, we have define the terminal and function set for GP-hash:

Terminal and function set D ¹�; o;^ ; hval; a0º:

5.3. Parameter Tuning
We made an extensive experimental work to fin the best parameter set. We followed a

similar approach to that of Section 5.2.4: Start with an initial arbitrary configuratio based
on our knowledge about the problem and our experience working with GP; then, using
this basic configuratio as a reference, try different changes on the parameters, looking for
fitnes improvements.

We started our experiments with the basic configuratio shown in Table 3, and we pro-
gressively introduced changes in all the important parameters: genetic operator rates (˙30%
to each one), tournament sizes (˙5), population size (100, 200, 500, and 1,000), initializa-
tion method (grow, full, and half and half) , init depth interval (2–4, 2–6, 3–6, and 4–6),
and size limitations (25, 50, and 75 nodes). We could not fin any configuratio that signif-
icantly improved the average fitnes over the basic tableau. Furthermore, we found out that
the GP-hash system is very robust: With a large number of different parameter configura
tions, GP-hash keeps working fine obtaining approximately the same average fitnes and
very similar best individuals. Only when using extreme values is the average fitnes signifi
cantly deteriorated. This is not surprising, because the GP is well known to be a very robust
technique in general (Poli et al. 2008, Section 3.4).

We were specially careful in tuning the maximum number of generations: We started
from 50 generations and tried raising this parameter. We found out that in GP-hash, evo-
lution curves show very large fitnes improvements in earlier generations and very small
improvements later on. This is a very typical behavior of GP populations, as stated by Luke
(2001). The improvements obtained with long runs are not proportional to the amount of
extra CPU time needed. Therefore, we prefer the initial value of 50 generations per run.

The conclusion is that, in light of our experimental results, we can keep the basic tableau
of Table 3 as the default parameters for GP-hash.



TABLE 3. Basic Tableau for GP-hash.

Parameter Value

Max generations 50
Population size 100
Max nodes 25
Terminal and function set ¹�; o;^ ; hval; a0º

Fitness Avalanche matrices (RMSE)

Crossover
Rate = 0.8

Selection = tournament
Tournament size = 4

Point Mutation
Rate = 0.1

Selection = tournament
Tournament size = 4

Reproduction Rate = 0.1
Selection = fitnes proportional

Elitism No
Initialization Half and half, init depth 2–4

6. EXPERIMENTAL RESULTS

The main hypothesis of this work is to show that evolutionary techniques such as GP
can substitute human experts in the challenging task of designing high-quality NCHF. To
prove that, we created GP-hash, a GP-based system for the evolution of general-purpose
NCHF that uses the avalanche effect as the global quality estimator for evolved hashes.
In this section, we show how GP-hash can be used to generate families of NCHF that are
able to compete with a selection of the most widely used NCHF of the literature. First, we
describe the methodology followed to carry on the experiments. Then we present the results,
and final y, we discuss them.

6.1. Methodology
The experiments we carried out to prove the practical utility of GP-hash are divided into

two different stages. In the firs stage, we use the GP-hash system described in the previous
section to evolve a family of NCHF: We use the avalanche effect fitnes function and all the
parameters previously specifie to perform 50 independent GP-hash runs. This generates
50 NCHF.

In the second stage, we select the best f ve NCHF produced in the previous stage and
compare those functions with a selection of 10 of the most widely used, general-purpose
NCHF of the literature: FNV (both versions FNV-1 and FNV-1a), lookup3, SuperFastHash,
MurmurHash2, DJBX33A, BuzHash, DEK, BKDR, and APartow (we already described
these functions in Section 2.2). The comparison is made in terms of global performance.
This means that we compare our evolved functions with the state of the art in terms of the
most important quality criteria for NCHF: avalanche effect, distribution of outputs, and col-
lision resistance (already introduced in detail in Section 2.1). Two of those criteria (collision
resistance and distribution of outputs) are data dependent. This means that collisions and
distribution measurements can only be calculated with relation to a particular key set. Thus,
to perform reliable comparisons, we must compile a collection of key sets that represent the
general features of most common hashing problems.



In the remainder of this section, we describe the metrics used to compare NCHF under
each criterion and the key sets we designed for the data-dependent benchmarks.

6.1.1. Metrics. These are the metrics used to compare the performance of each NCHF
under the different quality criteria:

� Distribution of outputs: We use the Bhattacharyya distance as a measure of how close the
outputs of an NCHF are to the ideal uniform distribution. The Bhattacharyya distance is
a similarity measure that can be used to determine the degree of coincidence of two sta-
tistical distributions. It is closely related to the �2 statistic. In fact, Aherne, Thacker, and
Rockett (1998) deduce that the Bhattacharyya coefficien approximates the �2 statistic,
avoiding in addition some drawbacks that the latter is vulnerable to.

To obtain the Bhattacharyya distance, we calculate firs the frequency vector of the
NCHF over a key set K, def ned as X D ¹x0; x1; : : : xn�1º, where n is the number
of possible outputs of the hash function, xi is the number of times that the hash value
hi was generated, and p.xi / is the probability of xi (i.e., p.xi / D xi=jKj). Then, we
calculate the Bhattacharyya distance between the frequency vector and the ideal uniform
distribution using equation (2):

DB.X/ D � ln
nX

iD1

r
p.xi /

1

n

!
: (2)

� Collision resistance: We measure the collision rate of each NCHF, calculated as the ratio
of the number of generated collisions to the total number of hashed keys.

� Avalanche effect: We use avalanche matrices (Mulvey 2007; Appleby 2008) in which the
probability of a change in each input–output pair of bits deviates from the ideal proba-
bility (0:5). We also use error measures (in terms of RMSE) of the complete avalanche
matrices with respect to the ideal avalanche matrix.

� Speed: In this work, the speed is considered as a requisite of NCHF, instead of a feature;
thus, we do not perform speed comparisons. As we already stated in Section 5.1, individ-
uals evolved by GP-hash have a limitation on the number of operations they can perform
on each mixing cycle. This way, we only allow GP-hash to evolve efficien NCHF whose
execution times are below a given threshold. The idea is to focus on evolving NCHF
with good distribution, collisions, and avalanche properties, which are the real important
properties, while keeping the execution time bounded.

6.1.2. Key Sets. Jenkins (1997) identifie four patterns that usually appear in key sets.
These patterns can be summarized as follows :

� Keys consist of common substrings arranged in different orders.
� Keys often differ with respect to only a few bits.
� The only difference between keys is that their lengths are different, i.e., “aaaa”

versus “aa.”
� Keys are nearly all zeroes, and only a few bits are set to 1.

According to Jenkins’s experience, most key sets, both human selected and computer
generated, match at least one of these patterns.

Another interesting report on how to construct key sets for NCHF evaluation is the
work of T. C. Fai (1996), where the author divides key sets into two classes: real sets, like



those used by McKenzie et al. (1990), and synthetic sets. Inspired by a 1953 memorandum
written by H. P. Luhn for IBM (which is considered by Donald E. Knuth to be the firs
hashing publication ever), Fai points out that the purpose of an NCHF is to disrupt any order
or pattern that the keys could contain to generate the most random possible output. Thus,
Fai deduces that the most difficul key sets should be those that are more compressible; i.e.,
those that contain the minimum amount of information or the maximum amount of order.

Inspired by the ideas of Jenkins and Fai, we designed eight different key sets for our
experiments, four real and four generated synthetically for this work:

(1) Real key sets:

� NAMES: This set is a list issued by the government of the city of Buenos Aires,
Argentina, which contains all of the names allowed for newborn babies. In addition
to the HTML labels, each line contains a name, gender, the number of the act that
regulates the name, and some optional information about its origin and meaning.
Most of the characters in each line are HTML labels, which are almost the same in
every line, and thus, this set contains keys that are very similar (i.e., it contains very
little information).

� PASSWD: This is a huge text fil (41Mb) that contains 3,721,256 common pass-
words, including alphanumeric combinations and words in 13 different languages.
It is useful for testing the performance of NCHF against short alphanumeric strings,
which are very common in hashing applications.

� MEGATAB: This key set was extracted from an 18-Gb MySQL table with
100,000,000 rows, each of which contains 26 different data points for a person:
complete name, id number, gender, age, and so on. To construct our key set, we ran-
domly extracted 2,000 rows from the table and only used the following columns: firs
name, middle name, last name, nationality, gender, and age. Key sets of this type
that are comprised of aggregations of personal data are quite common in hashing
applications.

� LCC: This set contains all of the compilation symbols that were created while com-
piling the source code of lcc, a retargetable compiler for ANSI C Fraser, Hansen, and
Hanson (1995). Symbol tables for compilers and lexical analyzers are a paradigmatic
application of NCHF.

(2) Synthetic key sets:

� SPARSE: This set contains 1,000 bit strings of 128 bits each. The main feature of
these keys is that they are almost all zeroes, and only a few bits are set to 1. They
are created from a statistical distribution that sets the probability of a bit containing
a 1 to less than an upper limit � D 0:1.

� RANDOM: This set contains 1,000 strings of 128 bits. Each bit has a fi ed proba-
bility of being set. The probability distribution is generated randomly in a previous
stage and used to produce all of the keys. This means that most of the bits are biased
toward 1 or 0.

� REPEAT: This set contains 1,000 strings of 512 bits each. Keys of this set are
strings composed of a set of substrings arranged in different orders. To create them,
we selected 16 common English words and created a master string with them. All of
the keys of this set are different permutations of this master string.

� LENGTH: Keys of this set contain only “a” characters and blank spaces in a 90:10
proportion, respectively. The set consists of 1,000 keys of between 80 and 512 bits.



TABLE 4. Summary of Minimum, Maximum, Average, Variance, 
and Standard Deviation Values of Fitness, Number of Nodes, and Depth.

Minimum Average Variance (SD) Maximum

Fitness 0:0448 0:0459 9:2 � 10�7 (0:0009) 0:0523

Nodes 16 21 7:6734 (2:7701) 25
Depth 9 12 4:8412 (2:2002) 17
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FIGURE 6. Box plot of the fitnes values of the 50 independent runs of GP-hash.

Keys of this set only differ in length and the position of the spaces, which is consis-
tent with the third pattern described by Jenkins. This presents a very difficul test for
NCHF, which are expected to generate different hash values for very similar strings,
such as “aaaa” and “aa” or “aaaa aa” and “aa aaaa.”

6.2. Results
First, we show the results of GP-hash with the basic configuration Then, we show how

the sample size of the Monte Carlo simulation used in the avalanche fitnes calculation can
be raised to solve particular problems with special key sets.

6.2.1. Basic Configu ation. In the firs place, we examine the results of stage 1,
including the 50 GP-hash independent runs and the selection of the f ve best runs. Then,
in stage 2, we compare the selected hashes with the state of the art in noncrypto-
graphic hashing.

6.2.1.1. Stage 1. Table 4 and Figure 6 summarize the results of the 50 GP-hash runs
with the basic configuratio obtained in the experiments of previous sections. All the 50 exe-
cutions achieved very good fitnes values, between 0:0448 and 0:0523. Differences between
executions are very small. This suggests GP-hash is a very robust system: Once the param-
eters have been correctly set, it is able to fin NCHF with very good avalanche properties
almost on every execution. We already observed this feature during parameter tuning in
Section 5.3. Figure 7 shows the evolution curves of the 50 GP-hash runs. Gray circles rep-
resent the fitnes of the best individual of each run on each generation. The black curve
represents the average of those fitnesse on each generation. As we already observed dur-
ing parameter tuning, GP-hash usually performs most of the fitnes improvements during
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FIGURE 7. Evolution curve of the experiments with the basic configuration Gray circles represent the
fitnes of the best individual of each GP-hash run on each generation, and the black curve is the average of those
fitnes values.

the earlier generations. In fact, we observe that around generation 20, all the runs already
founded the basic structure of their best individuals. From generation 20 to the end of the
run, the computational effort is only devoted to fine- rain adjustments.

We select the best f ve GP-hash runs and extract their best individuals. By wrap-
ping these individuals into Merkle–Damgård constructions, we obtain f ve fully functional
NCHF. We label these hashes as gp-hash601, gp-hash602, gp-hash603, gp-hash604, and gp-
hash605. We call this f ve NCHF the gp-hash600 family. The simplifie pseudocode of their
mixing functions is the following:

6.2.1.2. Stage 2. The next step is to compare gp-hash600 hashes with the 10 NCHF
selected as benchmarks. We performed the avalanche, distribution, and collision tests
specifie in Section 6.1, and results are very clear: Hashes belonging to gp-hash600 family
have outstanding avalanche properties, only comparable with the best NCHF of the state of
the art (Figure 8 shows the avalanche error of each NCHF), but they are also highly com-
petitive in terms of distribution of outputs and collision resistance with all the specifie key
sets, with only one single exception: the SPARSE key set. Figure 9 shows the Bhattacharyya
distances of the distributions of outputs generated by each NCHF with each key set. With
the SPARSE set, most of the gp-hash600 hashes have serious problems and generate very
poorly distributed outputs. Results of the collision tests (not shown here because of space
limitations) are consistent with this observation: Except for gp-hash605, all the other hashes
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FIGURE 8. Root mean square error between the avalanche matrices of each NCHF and the ideal avalanche
matrix (which contains only 0:5 values). Hashes of the gp-hash600 family obtain avalanche scores only
comparable with those obtained by SuperFastHash, lookup3, and MurmurHash2.

of the gp-hash600 family produce four times more collisions than the reference NCHF and,
which is worst, they generate their most probable hash value for up to 487 different keys,
when the average of the reference NCHF is only 4; 3 (more than 100 times better).

In the remainder of this section, we focus on the problems with the SPARSE key set
instead of analyzing in detail the complete results of the gp-hash600 family. We are more
interested in understanding and solving this problem before.

6.2.1.3. Problems with the SPARSE key set. Figure 10 shows the frequency of the
hash values generated by lookup3 and gp-hash601. The differences are obvious. While
lookup3 generates very few times most of the possible hash values (four times maximum),
gp-hash601 follows exactly the opposite approach: It generates most of the times a few over-
sampled hash values. More precisely, gp-hash601 generates 487 times the hash value 0x0,
and 70% of the input keys hashed to only f ve different hash values. It is significat ve that
the most probable hash value is 0x0 when we are hashing a key set like SPARSE in which
all the keys contain almost only zeroes (we already explained the construction of the key
sets in Section 6.1.2).

The reason for this behavior is that the mixing function of most gp-hash600 hashes
relies in a multiplication by the input byte of each step. If the last byte of a key is 0x0,
then the last step of the hash function multiplies the internal state by zero, and the result is
always 0x0. When dealing with a key set in which there are mostly only zeroes, this happens
very often.

By design, the avalanche fitnes function has the power to detect this kind of behaviors,
penalizing them with poor scores. The problem is that the fitnes function is not calculating
the real avalanche error of the individuals, which will require sampling of all the possible
32-bit input values. Instead, it estimates this error using a Monte Carlo simulation with a
sample size that we initially set to N D 100 in Section 5.1.1. Considering that there are 232

possible input bit strings, and only 224 of them have only zeros on the last byte, when we
randomly select 100 bit strings, in average, we are only sampling 0:37 of zero-ended strings.
This means that most of the times, not even one of those bit strings has influenc on the
fitnes calculation, and this avoids GP-hash to detect and penalize sensible hashes.

The solution we propose here is to increase the sample size to N D 1; 000; thus,
the average number of zero-ended keys sampled raises to 3:7, which should be more than
enough to detect and eliminate the problematic hashes. We analyze the results obtained with
this configuratio in the next section.

6.2.2. Raising the Sample Size to N D 1;000. In this experiment, we use the same
basic configuratio as that in the previous section, but with two important differences. First,
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FIGURE 9. Bhattacharyya distance between the output distribution generated by each NCHF for each key
set and the ideal uniform distribution (lower distances are better).

the sample size of the Monte Carlo simulation used to estimate avalanche fitnes is raised
to N D 1;000. Second, to shorten the execution time of each experiment (the new sample
size means that fitnes calculations are 10 times slower), we reduced the number of gen-
erations to 50. This helps maintain the efficien y of the GP-hash while preserving most of
its exploitation capabilities (the most important evolution always happens before generation
50, as we show in Figures 7 and 12).
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TABLE 5. Summary of Minimum,Maximum, Average, Variance, and Standard Deviation Values of Fitness,
Number of Nodes, and Depth.

Minimum Average Variance (SD) Maximum

Fitness 0:01431 0:0146 1:21 � 10�8 (0:0001) 0:01475
Nodes 18 22:56 3:84 (1:9596) 25
Depth 9 12:64 3:3233 (1:8230) 16
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FIGURE 11. Box plot of the fitnes values of the 50 independent runs of GP-hash with N D 1;000 and
G D 50.

6.2.2.1. Stage 1. Table 5 and Figures 11 and 12 summarize the results of the 50 GP-
hash runs with the extended sample size. In this case, the evolution curve is even more
abrupt, with most of the fitnes improvements happening before generation 15. Further-
more, the variance of the fitnes values is lower than that with N D 100 (1:21 � 10�8 vs.
9.2�10�7). This is a logical consequence of the greater sample size. Finally, we notice that
the fitnes values obtained with this new fitnes configuratio are considerably better than
with the smaller sample size: Average avalanche fitnes is 0:0146 in this case, way better
than the previous value of 0:0459.
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FIGURE 12. Evolution curve of the experiments with N D 1;000 and G D 50. Gray circles represent the
fitnes of the best individual of each GP-hash run on each generation, and the black curve is the average of those
fitnes values.

We select the best f ve GP-hash runs and extract their best individuals. By wrap-
ping these individuals into Merkle–Damgård constructions, we obtain f ve fully functional
NCHF. We label these hashes as gp-hash611, gp-hash612, gp-hash613, gp-hash614, and gp-
hash615. We call this f ve NCHF the gp-hash610 family. The simplifie pseudocode of their
mixing functions is the following:

6.2.2.2. Stage 2. The gp-hash610 family obtains even better results in the avalanche
tests than the gp-hash600. The avalanche matrices of the gp-hash610 hashes (Figure 13)
are almost perfect, with all the squares close to pure white. In fact, the total error (in terms
of RMSE) of their avalanche matrices is between 0:0022 and 0:0011 (Figure 14). Only
MurmurHash2, the most powerful NCHF in terms of avalanche effect, is able to outperform
gp-hash610 functions in the avalanche tests.

Furthermore, the results of the Bhattacharyya distance tests (Figure 15) show that gp-
hash610 functions are also competitive in terms of distribution of outputs: gp-hash612 is
the best function to hash the key sets LCC, NAMES, and RANDOM, while gp-hash611 is
the best NCHF available for the key set SPARSE. Other functions such as gp-hash615 or
gp-hash614 also deliver very decent distributions on some key sets, in which they are the
second best NCHF. On the other hand, some gp-hash610 functions perform poorly in some
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FIGURE 13. Avalanche matrices of functions gp-hash611, gp-hash612, gp-hash613, gp-hash614, and
gp-hash615.
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FIGURE 14. Root mean square error between the avalanche matrices of each NCHF and the ideal avalanche
matrix (which contains only 0:5 values). Hashes of the gp-hash610 family obtain avalanche scores only
comparable with those of MurmurHash2, the NCHF with the best avalanche properties.

sets. This is the case of gp-hash615 on the MEGATAB and VARIABLE sets or gp-hash613
on LCC.

It is also important to note that the larger sample size used to evolve the gp-hash610
family obviously improves the performance of the GP-hash with the SPARSE key set.
Although gp-hash614 still has problems with zero-ended strings, gp-hash613 obtains com-
petitive results, and there is even one hash, gp-hash611, that achieves in this set the best
distribution among all the NCHF tested.

Results of the collision tests (shown in Figure 16) are even better: On seven of the
eight key sets tested, a function belonging to the gp-hash610 family is the best in terms
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FIGURE 15. Bhattacharyya distance between the output distribution generated by each NCHF for each key
set and the ideal uniform distribution (lower distances are better).

of collision rate. The only key set in which gp-hash610 does not win is RANDOM, but in
this case, gp-hash612, gp-hash614, and gp-hash613 are the second, third, and fourth best
functions, respectively.

6.2.3. Discussion. Functions of the gp-hash600 family obtain interesting results.
They show very high levels of the avalanche effect, only comparable with those obtained
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FIGURE 16. Collision rate of each NCHF for each key set (lower collision rates are better).

by lookup3, SuperFastHash, and MurmurHash2. They also obtain competitive results in
the distribution and collision tests. However, they have a fl w that greatly affects their per-
formance with the SPARSE key set, which contains a very high proportion of zero-ended
keys. This fl w is a consequence of the reduced sample size (N D 100) used in the
Monte Carlo simulation that estimates the avalanche fitness With N D 100, it is very
unlikely that any zero-ended string is sampled during the fitnes evaluation; thus, the
GP-hash system is unable to exert an evolutionary pressure toward unfl wed individuals.

Increasing this sample size to N D 1;000 has proven to be effective: The gp-hash610
family is not generally affected by this problem, and in fact, gp-hash611 has proven to be



a very good choice for hashing the SPARSE key set. From a practical point of view, the
sample size should be adjusted according to the probability of the patterns contained in the
key sets of our particular application.

Finally, we want to stress that, in general, gp-hash610 functions are competitive with the
state of the art in noncryptographic hashing, delivering outstanding avalanche properties,
competitive results in the distribution of outputs tests, and exceptional collision resistances.
We want to stress that these functions were automatically designed by GP-hash, and we
can safely claim that they are at least as good as a selection of the best NCHF created by
human experts.

7. CONCLUSIONS

Hashing is of capital importance in the software industry. The possibility of findin
objects in a set in constant O.1/ time, independently of the size of the set, is essential for
software engineers. However, very often, they do not pay enough attention to the critical
process of designing appropriate hash functions for their particular problems. This is under-
standable: Designing good hash functions is a difficul process because of the extremely
nonlinear constructions they use. Hash functions are designed in such a way that humans
cannot easily invert them; thus, it is perfectly natural that these expressions are difficul
to design.

However, the same design principles that make this process difficul for humans also
seem to make it very suitable for GP: Highly nonlinear domains, in which the interrelation-
ships among the relevant variables are unknown or not completely understood, are precisely
the most adequate for GP, as stated by Poli et al. (2008).

Surprisingly, there is not much research about the application of GP, evolutionary com-
putation, or AI to the design of good NCHF. In Section 4, we reviewed the most interesting
articles on this topic that we know of. The approaches of those works have some merit, but
we still think that this topic really is worth much more research.

The central claim of this work is that it is possible to use GP to substitute human experts
in the challenging task of designing high-quality, general-purpose NCHF. For this task, we
created the GP-hash system, and we learned some important facts in the process.

The most important difference with other works on the application of evolutionary
computation to the automatic design of hashes is the fitnes function. Previous approaches
invariably use fitnes functions based on the collision resistance of the evolved hashes,
which is a problem, because collision properties are data dependent: We can only measure
the collision resistance of a hash with relation to a specifi key set. This lack of generality
is a major drawback when evolving general-purpose NCHF, which are expected to deliver a
proper performance with a great number of very different key sets. On the other hand, the
avalanche effect is a statistical measure of an intrinsic property of the mixing function, and
thus, it is completely independent of the hashed key set. Furthermore, this property is also
a measure of the ability of the hash to disrupt the input patterns and to efficient y spread
the input bits over the internal state, producing an apparently unpredictable output. These
concepts are closely related to a good distribution of outputs (the more random the out-
put looks, the more evenly the outputs distribute) and thus with the collision rate (biased
distributions generate more collisions than pure uniform distributions). Based on this, we
hypothesize that the avalanche effect could be a very good estimator of the overall quality of
an NCHF. And the results shown in Section 6.2 seem to support this claim: Hashes evolved
with avalanche fitnes have outstanding avalanche properties, and they also perform very
well in the distribution and collision tests.



Concerning the terminal and function set, we gathered together 10 of the most impor-
tant functions of the hashing literature and of the software industry. We studied the operators
and variables they use to generate a basic terminal and function set, and then we applied a
methodology similar to Wang and Soule (2004) to refin this set. We discovered some inter-
esting facts: first that magic constants are not needed to evolve hashes with a high avalanche
effect and, second, that two very popular operators, namely addition and xor, form a group,
and only one of them is needed (this is intuitively supported by the fact that hash functions
that do not use addition, always use xor, and vice versa). These two discoveries could help
other researchers that want to apply evolutionary algorithms to hashing, but they also sug-
gest to hashing experts that magic constants may not be necessary in the construction of
noncryptographic hashes.

We also found out that GP-hash system is highly robust and can work well with very
different parameter configurations This also supports the accepted idea that GP is a very
robust technique in general.

Finally, we experimentally demonstrate the utility of GP-hash by generating a set of new
general-purpose NCHF that are competitive with the state of the art in noncryptographic
hashing. We used GP-hash to generate two different families of NCHF. We call them gp-
hash600 and gp-hash610. The functions of the former have a weakness that makes them fail
when hashing zero-ended keys, but this fl w was addressed and solved in the gp-hash610
family. Functions belonging to this family have outstanding avalanche properties, only sur-
passed by MurmurHash2, the NCHF with the best avalanche properties of the state of the
art. Furthermore, gp-hash610 hashes are competitive as well in terms of collision resis-
tance and distribution of outputs with a selection of the 10 most widely used NCHF of the
literature. All these facts support the central claim of this work: that GP, when using the
avalanche fitnes and an appropriate functions and terminals set, is able to generate non-
cryptographic hash functions that are similar to those generated by hashing experts with
years of experience.
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