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Abstract

We describe HTN-Maker, an algorithm for learning hierarchical planning knowledge in
the form of task-reduction methods for Hierarchical Task Networks (HTNs). HTN-Maker
takes as input a set of planning states from a classical planning domain and plans that
are applicable to those states, as well as a set of semantically-annotated tasks to be ac-
complished. The algorithm analyzes this semantic information in order to determine which
portion of the input plans accomplishes a particular task and constructs task-reduction
methods based on those analyses.

We present theoretical results showing that HTN-Maker is sound and complete. Our
experiments in five well-known planning domains confirm the theoretical results and demon-
strate convergence toward a set of HTN methods that can be used to solve any problem
expressible as a classical planning problem in that domain, relative to a set of goal types
for which tasks have been defined. In three of the five domains, HTN planning with the
learned methods scales much better than a modern classical planner.
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1 Introduction

Automated planning systems typically require that a domain expert provide background
planning knowledge about the dynamics of the planning domain. At a minimum, the back-
ground knowledge includes semantic descriptions (i.e., preconditions and effects) of possible
actions, as in classical planning. More recent planning paradigms allow or require addi-
tional knowledge about the structural properties of the domain and about the potential
problem-solving strategies for planning problems in the domain.

Over the years, Hierarchical Task Networks (HTNs) emerged to be one of the best-
known approaches for modeling structural and problem-solving knowledge about a planning
domain. An HTN planner formulates a plan via task-reduction methods (also known as
simply methods), which describe how to reduce complex tasks into simpler subtasks until
tasks are reached that correspond to actions that can be performed directly in the world.
The HTN planner SHOP (Nau et al., 1999, 2003) demonstrated impressive gains in runtime
performance over earlier classical planners. HTNs provide a natural knowledge-modeling
framework in many real-world applications, including military planning (Mitchell, 1997;
Muñoz-Avila et al., 1999), strategy formulation in computer games (Smith et al., 1998;
Hoang et al., 2005), manufacturing processes (Nau et al., 1999), and story-telling (Cavazza
and Charles, 2005).

HTN domain descriptions have other uses as well, such as project planning. Project plan-
ning is an endeavor to create products or to deliver services (Project Management Institute,
2013), and is used in a wide variety of activities including organizing public events, plan-
ning software engineering projects, and civil construction management. At its core, project
planning involves the creation of hierarchical structures called work breakdown structures
(WBS). WBSs are equivalent to HTNs (Muñoz-Avila et al., 2002) and HTN planning tech-
niques can be used for project management (Xu and Muñoz-Avila, 2004).

Despite the great success of HTNs as a knowledge-modeling formalism, typically a sig-
nificant knowledge engineering burden is required to write HTN domain descriptions of
planning domains. To alleviate this burden, there have been several advances in automated
learning of hierarchical knowledge for planning (Reddy and Tadepalli, 1997; Khardon, 1999;
Choi and Langley, 2005; Ilghami et al., 2005; Xu and Munoz-Avila, 2005; Könik and Laird,
2006; Nejati et al., 2006, 2009; Könik et al., 2009). Most of these works require as input
some structural knowledge about the world and the relationships among the activities to
be accomplished in order to achieve the objectives. For example, the Icarus family of
learners (Choi and Langley, 2005; Nejati et al., 2006) use a hierarchy of concepts, which are
Horn clauses that describe the relationships between goals and subgoals. The learner uses
these concept definitions to chain together subgoals when creating nonprimitive skills that
describe how to achieve goals. Another class of systems take as input goal annotations over
possible task decompositions and use case-based reasoning (Xu and Munoz-Avila, 2005),
version-space learning (Ilghami et al., 2005), or inductive learning (Könik and Laird, 2006)
in order to produce the structure of HTN methods and their preconditions.

Currently, project plans are developed manually with the assistance of commercial tools
such as Microsoft Project. However, the main difficulty is that task models for project
planning are not available. Most knowledge is episodic (i.e., WBSs generated for previous
projects). Our work aims at learning domain knowledge to generate HTNs from examples,
and thus could be used to learn WBSs as well. As a result, our work could make producing
such WBSs more efficient and thus be able to reduce costs for a large number of organizations
that today perform this process manually.
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In this paper, we describe HTN-Maker, an offline and incremental algorithm for learn-
ing HTN methods without requiring background knowledge about the hierarchical relation-
ships among tasks and goals or problem-solving strategies. Even though such knowledge is
not provided, HTN-Maker is capable of learning both the structural relationships between
tasks and their subtasks as well as the conditions under which a task-reduction method may
be applied to a task. In particular, our contributions in this paper are as follows:

• We describe a way to adopt the notion of task models from process-models literature
(Murdock, 2001) in a new formalism. This formalism intuitively associates an activity
with the conditions that must hold in the world such that it is possible to begin that
activity and the effects that must be realized when the activity ends. HTN-Maker
uses this formalism to learn the relationships among tasks, which leads to learning the
structure of the HTN methods.

• We describe a formalism in which goal regression (Waldinger, 1977; Mitchell et al.,
1986) may be applied hierarchically over actions and task-reduction methods and
an algorithm, HTN-Maker, that uses this hierarchical goal regression to learn the
applicability conditions of HTN methods and to identify their subtasks.

• We demonstrate an equivalence between classical planning problems and (some) HTN
planning problems, and present a theoretical study showing that if an HTN planner
using methods learned by HTN-Maker generates a plan for an HTN planning prob-
lem with an equivalent classical planning problem, then that plan is a solution to the
equivalent classical planning problem. We also show that given a set of semantically
annotated tasks for a domain and sufficient example traces from which to learn, HTN-
Maker is capable of learning a set of HTN methods such that an HTN planner using
those methods will be able to solve every problem expressible using those tasks.

• We present an extensive experimental evaluation of HTN-Maker in five benchmark
planning domains from the past International Planning Competitions over several
thousand planning problems. The hierarchical goal regression technique used by HTN-
Maker is able to generalize well from specific training plan traces to general methods
that are effective in planning. A reimplementation of SHOP using the learned HTNs
was able to solve our experimental problems much faster than FastForward (Hoff-
mann and Nebel, 2001) and SGPlan6 (Hsu and Wah, 2008) for large problems in
three of five planning domains, and is competitive in all but one.

2 Background

2.1 Classical Planning

We adopt the usual definitions for classical planning as in Ghallab et al. (2004, Chapter 11).
We summarize these definitions below.

We formalize a classical planning domain description as a tuple Σ = (S,A, γ). S and
A are the finite sets of all possible states and actions in the domain, respectively. A state
is a conjunction of ground atomic formulas in predicate logic. An action has the form
a = (ah, aφ, a−, a+), where the head of the action ah is a grounded predicate and the

HTN-Maker is short for Hierarchical Task Networks with Minimal Additional Knowledge Engineering
Required
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preconditions aφ, negative effects a−, and positive effects a+ of the action are conjunctions
of atomic formulas that use only terms from the head of the action. When convenient, we
will describe states and the preconditions and effects of actions in set-theoretic notation
rather than logical notation (i.e., a state is a set of ground atomic formulas). For example,
Figures 1 and 2 contain descriptions of a state and action, respectively, from the Blocks-
World domain.

A large number of actions are typically represented compactly by an operator, which has
the same form as an action but is not required to be grounded. A variable substitution Θ
creates an instance of an action from an operator by fully grounding it.

A

B C

( and

(on-table C) (on-table B)

(on A C) (clear A)

(clear B) (hand-empty) )

Figure 1: An example state from the Blocks-World domain.

( :action !Unstack

:parameters ( A C )

:precondition

( and (on A C) (clear A) (hand-empty) )

:effects

( and ( not (on A C) ) ( not (clear A) )

( not (hand-empty) ) (clear C) (holding A) ) )

Figure 2: An example action from the Blocks-World domain.

In Σ, γ is the state-transition function: a partial function S × A → S. That is, given a
state s ∈ S and an action a ∈ A, if s |= aφ, then γ(s, a) = (s \ a−) ∪ a+. Otherwise, γ(s, a)
is undefined. If γ(s, a) is defined then we say that the action a is applicable in the state s;
otherwise, a is not applicable in s.

A plan π = 〈a1, a2, . . . , ak〉 is a sequence of actions. A plan π = 〈a1, a2, . . . , ak〉 is
applicable to a state s if γ(s, a1) is defined, γ(γ(s, a1), a2) is defined, and each subsequent
transition through γ(γ(. . . , γ(s, a1), a2), . . . , ak) is defined. As shorthand, we write γ(s, π)
for the state produced through this chain of transitions.

A classical planning problem is a triple P = (Σ, s0, g), where Σ = (S,A, γ) is a classical
planning domain, s0 ∈ S is the initial state, and g is a conjunction of ground atomic
formulas known as the goals of the problem. A solution for the classical planning problem
P is a plan π = 〈a1, a2, . . . , ak〉 such that π is applicable to s0 and the final state γ(s, π)
satisfies the goals g. A classical planning problem is solvable if it has a solution. We call the

Figure 2 uses the syntax of the well-known Planning Domain Definition Language (PDDL) (McDermott,
1998), which is also used with extensions for all other examples in this paper. In the PDDL language, negative
effects are represented simply as negations of atomic formulas.
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sequence of states produced by successively applying the actions in the plan starting from
s0 as the state trajectory ~Sπ induced by the solution plan π. That is, if π = 〈a0, a1, . . . , an〉
is applicable to state s0, it produces state trajectory ~Sπ = 〈s0, s1, . . . , sn+1〉, where sk =
γ(s0, 〈a0, a1, . . . , ak−1〉) for all 0 < k ≤ n+ 1.

2.2 Hierarchical Task Network (HTN) Planning

In HTN planning, a task t is a symbolic representation of an activity in the world, usually
represented as a logical predicate (Ghallab et al., 2004, Chapter 11). Formally, it is an
expression of the form (name arg1 arg2 . . . argk) where name is a symbol denoting the
name of the task. Each argi for i = 1 . . . k is either a variable or a constant symbol, denoting
an argument of the task.

Let T be the finite set of tasks to be performed in a classical planning domain Σ =
(S,A, γ). T includes the head of every action in A, called the primitive tasks, as well as
some additional tasks called nonprimitive tasks. A task network w is a sequence (i.e., a
totally-ordered list) of tasks. The empty task network is w = 〈〉.

The form of HTN planning in which task networks are totally ordered is known as
Simple Task Networks (STNs) (Ghallab et al., 2004, Chapter 11), and is used by planners
such as SHOP (Nau et al., 1999). Other forms of HTN planning allow partially ordered
or unordered task networks, but are beyond the scope of this paper. Following the lead
of other authors, we will use the familiar, general term HTN even though we are writing
specifically about STNs.

An HTN planner formulates a plan via task-reduction methods (in short, methods), which
describe how to reduce complex tasks into simpler subtasks until tasks are reached that
correspond to actions that can be performed directly in the world. Formally, a method is a
triple m = (mh,mφ,mw) where the head mh is a nonprimitive task in T , the preconditions
mφ is a conjunction of atomic formulas, and the subtasks mw is a task network into which
the head task may be reduced. A method m = (mh,mφ,mw) is applicable to a task network
w = 〈t0, t1, . . . tn〉 in a state s, if there exists a variable substitution Θ such that Θ(mh) = t0
and s |= Θ(mφ).

( :method Make-2Pile

:parameters ( ?a ?b )

:vars ( ?c )

:precondition

( and (on-table ?b) (on ?a ?c)

(clear ?a) (clear ?b)

(hand-empty) )

:subtasks

< (!Unstack ?a ?c),

(Make-2Pile ?a ?b) > )

( :method Make-2Pile

:parameters ( ?a ?b )

:precondition

( and (on-table ?b) (clear ?b)

(holding ?a) )

:subtasks

< (!Stack ?a ?b) > )

Figure 3: Two example methods from the Blocks-World domain.

As an example, Figure 3 shows a definition in an extended PDDL syntax of two methods
that might be useful in the Blocks-World domain. (In this language, the head of a
method is divided into two parts: the name Make-2Pile and the parameters ?a and ?b.
The language also allows us to specify a free variable ?c that will be used in the parameters
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and/or subtasks, which makes it easier to parse the language and find potential errors.)
Throughout this paper, we follow the convention that the names of primitive tasks begin
with an exclamation point and that the names of logical variables begin with a question
mark. The first method shown in Figure 3 is applicable only in states where a block ?a is
clear and on a block ?c, a block ?b is clear, block ?b is on the table, and the gripper is
empty. Figure 1 shows one state in which this method is applicable, with the substitution
{?a/A, ?b/B, ?c/C}.

One can define similar methods for the cases where ?a is on the table, or ?a is not clear,
or ?b is not clear or is on another block, or the gripper is not empty, or ?a is being held, etc.
The method on the left is insufficient to solve a problem by itself; because it is recursive, an
additional method is needed to reduce its second subtask, such as the one on the right.

A plan π = 〈a0, a2, . . . , ak〉 accomplishes a task network w = 〈t0, t1, . . . , tn〉 in state s if
any of the following cases can be shown to hold:

Case 0: If both the plan π and the task network w are of length 0.

Case 1: If the first task t0 is primitive and is an exact match for the head of the first action
in the plan, a0 such that the action a0 is applicable to state s, and if the successor
task network w′ = 〈t1, . . . , tn〉 is accomplished by π′ = 〈a1, a2, . . . , ak〉 in the successor
state s′ = γ(s, a0).

Case 2: If the first task t0 is nonprimitive and there exists a method m = (mh,mφ,mw)
and a substitution Θ such that t0 = Θ(mh) and s |= Θ(mφ), such that the plan π
accomplishes the reduced task network w′ = Θ(mw) · 〈t1, t2, . . . , tn〉 in state s.

A

B C

A

B C

A

B C

(!Unstack A C) (!Stack A B)

State s0 State s1 State s2

Action a0 Action a1

(Make-2Pile A B)

Method m0

(Make-2Pile A B)

Method m1

Figure 4: An example decomposition tree in the Blocks-World domain.
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The replacement of a nonprimitive task t by the subtasks of a method m is known
as a reduction of the task t with m. A sequence of one or more reductions that results
in a task network with no nonprimitive tasks is a decomposition of the task. The recursive
structure containing the intermediate steps in the decomposition of a task is a decomposition
hierarchy or decomposition tree (or decomposition forest if the initial task network contains
more than one task). Each node in a decomposition forest represents a task, while each edge
represents a reduction of a nonprimitive task into subtasks. The roots of a decomposition
forest represent the initial task network. The leaves of a decomposition forest represent
primitive tasks, which form a plan when read from left to right.

In Figure 4, (Make-2Pile A B) is reduced into 〈(!Unstack A C), (Make-2Pile A B)〉,
using method m1 (from left of Figure 3). Within that task network, (Make-2Pile A B)

is further reduced into 〈(!Stack A B)〉 using method m0 (from right of Figure 3). These
two reductions together create a decomposition of the top-level (Make-2Pile A B) into the
task network 〈(!Unstack A C), (!Stack A B)〉, which is also a plan. The decomposition
tree itself contains only the nodes for the four tasks and the edges that are shown as dashed
arrows; the states below are shown to aid in understanding.

An HTN planning domain description is a tuple ΣH = (S,A, T,M, γ), where S, A, and
γ are the finite sets of states and actions and the state-transition function as in a classical
planning domain description, T is a finite set of tasks including the heads of the actions in
A, and M is a finite set of methods whose heads are members of T .

An HTN planning problem is a tuple PH = (ΣH , s0, w0), where ΣH is an HTN planning
domain description, s0 is the initial state, and w0 is the initial task network (whose elements
are members of T ). A solution for the HTN planning problem PH is a plan π that accom-
plishes the initial task network w0 in the initial state s0. We say that an HTN planning
problem is solvable if there is a solution plan for it.

Algorithm 1 contains a high-level description of an HTN planner that searches for a
solution plan using the three cases defined above. Both SHOP and our reimplementation
HTN-Solver are based on this procedure.

2.3 Annotated Tasks

As described above, a task t in HTN planning is a symbolic representation of an activity.
Consequently, t does not specify any information about the meaning of that activity: what
purpose the activity serves, under what conditions it can start, or under what conditions
it ends. Existing HTN formalisms that associate semantics to tasks (Erol et al., 1996;
Nau et al., 2003; Tate, 1977) typically do so through the methods that reduce those tasks.
Because we seek to learn the methods themselves, our formalism requires that tasks have
inherent semantics.

Several previous works have described similar formalisms; examples include activity
representation in software engineering (Sutton et al., 1995), user interactions for AI planning
systems (Fdez-Olivares et al., 2006), adaptive agent systems (Ulam et al., 2005), hierarchical
planning and plan adaptation (Kambhampati and Hendler, 1992; Biundo and Schattenberg,
2001), and introspective, self-reasoning agents (Murdock, 2001). In our work, we have
adopted the formalism of the task-model language TMKL (Murdock, 2001). In TMKL, tasks
indicate what they accomplish by stating their conditions and effects: if the conditions are
true in a state of the world from which the task is accomplished, then the effects must be
true in the resulting world state.

Formally, we define an annotated task as a tuple τ = (τh, τφ, τ+), where the head τh is
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Algorithm 1: A high-level description of a straightforward HTN planner. The input
is an HTN planning problem (ΣH , s0, w0). The output is a solution plan or Failure.

Procedure HTN-Solver(ΣH = (S,A, T,M, γ), s0, w0 = 〈t0, t1, . . . , tn〉)1

begin2

if w0 = 〈〉 then // Case 03

return 〈〉4

if t0 is primitive then5

α = {a|a ∈ A, t0 = ah, s |= aφ} // Case 16

if α 6= ∅ then7

nondeterministically select a ∈ α8

return 〈a〉· HTN-Solver(ΣH , γ(s0, a), 〈t1, . . . , tn〉)9

else10

return Failure11

else12

α = {Θ(m)|m ∈M, t0 = Θ(mh), s |= Θ(mφ)} // Case 213

if α 6= ∅ then14

nondeterministically select Θ(m) ∈ α15

return HTN-Solver(ΣH , s0,Θ(mw) · 〈t1, . . . , tn〉)16

else17

return Failure18

end19

a nonprimitive task, the preconditions τφ is a conjunction of atomic formulas, and the post-
conditions τ+ is a conjunction of atomic formulas. The preconditions of an annotated task
represent those facts that must hold in order for it to be possible to attempt that task, while
the postconditions represent those facts that must become true as a result of accomplishing
that task. Given a sequence of actions 〈ap, ap+1, . . . , aq−1, aq〉 and a corresponding state
trajectory 〈sp−1, sp, . . . , sq−1, sq〉, an annotated task τ is accomplished by the action trace
if its preconditions τφ are satisfied in the state sp−1 and its postconditions τ+ are satisfied
in the state sq. There are no negative postconditions of an annotated task, as there are no
negative goals of a classical planning problem.

( :task Make-2Pile

:parameters ( ?a ?b )

:precondition

( and )

:postcondition

( and (on-table ?b) (on ?a ?b) (clear ?a) ) )

Figure 5: An example annotated task in the Blocks-World domain.

Figure 5 shows a definition of an annotated task from the Blocks-World domain.
This task can be attempted from a state in which the preconditions (none) are satisfied
and has been accomplished in a state in which the postconditions are satisfied. Note that
a method reducing this task may have additional applicability conditions that specify the
conditions under which the task is to be accomplished with the subtasks specified in the
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method. However, those applicability conditions are not necessarily part of the semantics of
the task; they are specific to the particular way of accomplishing the task with that method
and may differ from one possible method for the task to another. Similarly, each particular
method for accomplishing this task is likely to also produce side effects in addition to the
required postconditions. Because there are no preconditions, this particular task may be
attempted from any state, such as the state of Figure 1 with substitution {?a/A, ?b/B},
or {?a/B, ?b/C}, etc. Figure 3 shows two of the many possible methods for accomplishing
the task.

The notion of an annotated task enables us to define an equivalence between a task and
a set of goals, and consequently, between a classical planning problem and an HTN planning
problem. Given a goal statement g, we define the equivalent annotated task as τg = (τh, ∅, g),
where τh is an arbitrary nonprimitive task that uniquely represents g. Then, given a classical
planning problem P = (Σ, s0, g) and annotated task τg = (τh, ∅, g) equivalent to its goals,
we define PH = (ΣH , s0, 〈τh〉) to be an equivalent HTN planning problem. The sets of states
and actions and the state transition function of the HTN planning domain description ΣH

are the same as those of Σ. The set of tasks in ΣH contains each of the primitive tasks and
τh (and may also contain other tasks). Given a classical planning problem P there might
be multiple different equivalent HTN planning problems PH , each with different sets of
tasks and methods. Many of those equivalent HTN planning problems may be unsolvable.
(Consider, as a trivial example, one in which the set of methods is empty.)

Because the motivation for our work is to automate the creation of HTN methods with
very little manual knowledge engineering, our experiments thusfar have used very simple
annotated tasks that have no preconditions and whose postconditions correspond directly
to problem goals. See Appendix D for the details of these annotated tasks used in our
experiments. Our formalism allows the use of more complex annotated tasks (with a care-
fully chosen set of harmonious postconditions, or with a non-empty precondition set, for
example), and it remains as future work to explore whether or not additional human effort
would improve results.

By introducing annotated tasks we have not changed the semantics of HTN planning,
since the annotations are not used by the HTN planners explicitly. Instead, they are implicit
in that the annotated tasks will be used by HTN-Maker to learn methods, which are
then given to the HTN planners to generate plans in the usual way. The learned methods
are constructed in such a manner that plans generated will be guaranteed to satisfy the
conditions of the annotated tasks.

3 Learning HTNs from Solution Plans For Semantically-
Annotated Tasks

In this section, we describe HTN-Maker (Hierarchical Task Networks with Minimal Addi-
tional Knowledge Engineering Required), a novel offline incremental learning algorithm that
learns a set M of HTN methods from an input set of planning states and plans applicable
to them and successively updates M with new methods it learns when presented with new
plans from the same planning domain.

The idea behind the algorithm is that plans provide demonstrations of how an anno-
tated task might be accomplished. Moreover, in some cases they may show not simply an
acceptable way to accomplish a task, but what the creator of the plan considers to be the
best way to do so. However, accomplishing a certain task does not need to have been the
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objective of a plan in order for HTN-Maker to learn to do so from that plan; plans may
coincidentally accomplish tasks, and HTN-Maker will still extract knowledge from them.
Thus, HTN-Maker performs Explanation-Based Learning (Minton et al., 1989): using
logical inference to explain how an example (a plan) is an instance of a high-level concept
(accomplishment of a task).

In order to learn from a plan, it is necessary to determine which part of a plan (perhaps
the entire plan, but perhaps not) accomplishes a particular task. Our main algorithm, HTN-
Maker, does this by evaluating the preconditions and postconditions of an annotated task
in the different states that result from execution of a plan. Section 3.2 explains this algorithm
in detail.

Once it has been determined that a (sub-)plan accomplishes a task, the next step is to
determine how the task was accomplished and to create a method structure that encapsulates
the strategy and that can be used by an HTN planner to use that strategy for accomplishing
the task in other situations. This means creating an ordered list of subtasks that represent
the activities taken to accomplish the task and a set of preconditions that must be true in
order for this to be an appropriate strategy for accomplishing the task. A sub-algorithm,
Learn-Method, uses a novel generalization of goal regression known as hierarchical goal
regression to find an appropriate subtask list and precondition set and creates a method
based on them. Section 3.3 explains this algorithm in detail.

If the subtasks of the methods learned by HTN-Maker were always primitive tasks
corresponding directly to actions in the plan we would simply be learning macro-operators,
which other researchers have already done (Mooney, 1988; Botea et al., 2005). Instead, some
subtasks should be nonprimitive tasks that must be further reduced, creating the hierarchical
structures typical of HTN planning. To accomplish this, HTN-Maker examines subplans
in a particular order and maintains information about nonprimitive tasks that had been
accomplished by sub-sub-plans, so that those nonprimitive tasks may be used as subtasks
of methods that will be learned later.

3.1 Example

A

B C

A

B C

A

B C

A

B

C

A

B

C

(!Unstack A C) (!Stack A B) (!Pickup C) (!Stack C A)

State s0 State s1 State s2 State s3 State s4

Action a0 Action a1 Action a2 Action a3

Figure 6: An example plan in the Blocks-World domain.

Before we explain the details of the algorithm, we will show an example of its execution
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in the familiar Blocks-World domain. Figure 6 shows an initial state s0 (the same one
from Figure 1), a plan of four actions a0 through a3 applied to that state, and the rest of
the resulting state trajectory. Suppose that there exist annotated tasks for building piles of
sizes 1 through 3, where the blocks in a pile are listed from top to bottom, the top block is
clear, and the bottom block is on the table. The annotated tasks for size-1 piles and size-3
piles would be analogous to the annotated task for size-2 piles, which was shown in Figure 5.

A

B C

A

B C

A

B C

A

B

C

A

B

C

(!Unstack A C) (!Stack A B) (!Pickup C) (!Stack C A)

State s0 State s1 State s2 State s3 State s4

Action a0 Action a1 Action a2 Action a3

(Make-1Pile C)

Method m0

Figure 7: A method that could be learned from the example plan.

HTN-Maker would begin by considering the subplan containing only action a0. It
would check whether or not there is an annotated task whose preconditions are satisfied in s0
and whose postconditions are satisfied in s1 but not in s0, and would find one: (Make-1Pile
C). Thus, the Learn-Method subroutine would learn a method (labeled m0 on Figure 7)
to explain how that task was accomplished. Method m0 has only one subtask, a0. It
has several preconditions: (on-table C), (on A C), (clear A), and (hand-empty), which
were found by regressing the postconditions of the annotated task through a0.

Next, HTN-Maker would look at the subplan containing only a1. This short subplan
accomplished a different task: (Make-2Pile A B). So another method (m1 in Figure 8)
would be learned in a similar fashion. This happens to be the second one shown in Figure 3.
Then HTN-Maker would consider the subplan containing both a0 and a1. It would find
that this larger subplan accomplishes the task (Make-2Pile A B) as well, and would thus
learn another method m2. This method has two subtasks: first a0 and then the nonprimitive
task (Make-2Pile A B), which happens to be the same task as the head of the method.
Recursive structures like this are not uncommon in the methods learned by HTN-Maker,
and represent the fact that after part of the work has been done by the first subtask there
is a new state in which the system may already know how to accomplish the larger task.
The preconditions of m2 will be the postconditions of (Make-2Pile A B) regressed first
through method m1 and then through action a0. Method m2 happens to be the first one
shown in Figure 3. Note that there are now two methods for accomplishing (Make-2Pile

A B), which are applicable in different circumstances and which can be used together or
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(Make-2Pile A B)

Method m1

(Make-2Pile A B)

Method m2

Figure 8: Two additional methods that could be learned from the example plan.

independently.
HTN-Maker next considers the subplan 〈a2〉, but finds nothing interesting is accom-

plished by that subplan, and finds the same thing to be true of subplans 〈a1, a2〉 and
〈a0, a1, a2〉. The subplan containing only a3, however, accomplishes (Make-3Pile C A B).
HTN-Maker thus learns a new method (m3 in Figure 9). It then considers ever larger
subplans and finds that each one accomplishes this task, and thus learns methods m4, m5,
and m6 as well, using the same sort of logic. Thus, from this single five-action plan HTN-
Maker learns one way to create a pile of 1 block, two ways to create a pile of 2 blocks, and
four ways to create a pile of 3 blocks.

The HTN-Maker algorithm contains a nondeterministic choice that determines what
subtasks to give a method when there are several possibilities. This example shows what
would happen if that nondeterministic choice were made in one particular way, which cor-
responds to the choices made in our experiments. (See Section 5.1 for details.) If that
nondeterministic choice were made in a different way a different set of methods would have
been learned from this example, creating a different hierarchical structure. For example, it
might instead have learned to create the pile C-A-B by first creating the pile A-B, then picking
up C, and finally stacking C on A.

For the sake of simplicity this example and the algorithms shown in Sections 3.2 and 3.3
show the creation of methods whose terms are constants. The methods that HTN-Maker
learns actually use variables, and Section 3.4 explains how the example and algorithms are
extended to accomplish this.
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(Make-3Pile C A B)

Method m6

Figure 9: Four additional methods that could be learned from the example plan.
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3.2 The Main Algorithm

A learning example e = (s0, π) is a pair such that s0 is a state and π is a plan applicable
to that state. The input to HTN-Maker includes a classical planning domain Σ, a finite
set of learning examples E, a finite set of annotated tasks T , and a set of existing HTN
methods M for the tasks annotated in T . In a typical run of HTN-Maker M would be
the empty set, but it can also contain some methods that had been previously learned or
hand-crafted.

The HTN-Maker algorithm uses a data structure that we call an indexed method in-
stance. An indexed method instance is a sextuple x = (xh, x+, xw, xφ, xb, xe) in which xh is
the head of an annotated task τ for which a method has been learned, x+ is the postcon-
ditions of that annotated task, xw is a task network into which xh may be reduced, xφ is
a set of preconditions under which that reduction is valid, and xb and xe are indices in a
state trajectory. This indicates that the subtasks are a demonstration of how the annotated
task was accomplished within the subplan between states xb and xe. Thus, xφ must hold
in sxb and x+ must hold in sxe . Indexed method instances are computed automatically by
HTN-Maker from the annotated tasks and learning examples.

Algorithm 2: A high-level description of the HTN-Maker procedure. The input
includes a classical planning domain description Σ, a set E of learning examples, a set
of annotated tasks T , and a set of HTN methods M . The output is an updated set of
HTN methods.

Procedure HTN-Maker(Σ, E, T ,M)1

begin2

M ←M ∪Make-Trivial-Methods(T )3

M ←M ∪Make-Verification-Methods(T )4

foreach learning example e = (s0, π = 〈a0, . . . , ak〉) ∈ E do5

initialize X ← ∅6

initialize ~Sπ ← 〈s0〉7

for i← 1 to k do // Generate state trajectory8

si ← γ(si−1, ai−1); ~Sπ ← ~Sπ · 〈si〉9

for f ← 1 to k do // End of sub-trajectory10

for i← f − 1 down to 0 do // Beginning of sub-trajectory11

foreach annotated task τ = (τh, τφ, τ+) ∈ T do12

if si |= τφ and sf |= τ+ and si 6|= τ+ then // Task accomplished13

m← Learn-Method(π, ~Sπ, τ,X, i, f) // Learn new method14

M ←M ∪ {m} // Store new method15

X ← X ∪ {(mh, τ+,mw,mφ, i, f)} // Store instance16

return M17

end18

Algorithm 2 shows a high-level description of HTN-Maker. Before processing each of
the learning examples, HTN-Maker calls two subroutines to create methods that do not
require a demonstration from which to learn. The Make-Trivial-Methods subroutine
creates (if they do not already exist) a trivial method for each annotated task, which can be
used to “accomplish” a task that can accomplished without doing anything at all because
its postconditions are already true. Specifically, if τ = (τh, τφ, τ+) is an annotated task, the
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trivial method for τ is m = (τh, τφ ∪ τ+, 〈〉). These methods are needed so that an HTN
planner will be able to produce the empty plan when the empty plan is a valid solution to
a (sub-)problem.

The Make-Verification-Methods subroutine creates (if they do not already exist)
a verification method for each annotated task. If τ = (τh, τφ, τ+) is an annotated task, the
verification method for τ is m = (t′, τ+, 〈〉). Verification methods and trivial methods are
very similar, but there is an important difference: the head of a verification task is not the
head of the annotated task. Instead, it is a new task symbol t′ created uniquely for that
annotated task, known as a verification task. Verification tasks do not have annotations,
and no methods will be learned to reduce them. Instead, the single verification method for
an annotated task may be used to reduce the associated verification task into the empty
task network when the annotated task has been accomplished. The last subtask in every
method that we learn will be a verification task, to ensure that the postconditions of the
task really were accomplished. To simplify presentation, this last subtask of each learned
method is omitted from figures in this paper. The necessity of verification tasks and methods
is explained in Section 4.1 and Appendix C.

HTN-Maker then processes each learning example in turn. In Line 6, HTN-Maker
initializes an empty set X of indexed method instances. In Lines 7 through 9 it generates the
state trajectory ~Sπ induced by the plan in the current learning example. HTN-Maker then
considers each subsequence of states, si through sf , from the state trajectory (Lines 10–
11). Note that these subsequences are processed in a specific order such that when any
subsequence is being considered all of its subsequences have already been processed in ear-
lier iterations. This ensures that HTN-Maker learns new HTN methods in a bottom-up
fashion, effectively building a possible HTN decomposition hierarchy above the plan.

In Line 12, HTN-Maker considers each annotated task for each possible subsequence
of the state trajectory. If the first state, si, and the last state, sf , of the subsequence satisfy
the preconditions and postconditions of the annotated task, respectively, then that task has
been accomplished by the plan that corresponds to this state subsequence (Line 13). We skip
over situations in which the postconditions of an annotated task were satisfied in both si and
sf because in these cases the subsequence does not actually demonstration accomplishment
of the task. When a task has been accomplished, HTN-Maker calls its Learn-Method
subroutine to learn a new method that describes how the task was accomplished (Line 14).
The Learn-Method subroutine is shown in Algorithm 3, and will be explained in the
subsequent section. HTN-Maker adds the new method that Learn-Method returns to
the list of methods (Line 15).

In Line 16, HTN-Maker stores information about the method that has just been learned
in an indexed method instance. This will be used in successive calls to the Learn-Method
subroutine to allow complex hierarchies to be learned.

3.3 Hierarchical Goal Regression

We now describe our hierarchical goal regression technique, which is the basis of our learning
procedure for both the structure (i.e., task-subtask relationships) in an HTN method and
its preconditions. Unlike previous work on goal regression (Mitchell et al., 1986), hierar-
chical goal regression can regress goals both horizontally (through the primitive actions)
and vertically (up the task hierarchy through indexed instances of previously-learned HTN
methods).

In hierarchical goal regression, a formula can be regressed over either a primitive action
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or an indexed method instance for a nonprimitive task. In the case of the former, the
regression is performed using the preconditions and effects of the action in the same manner
as traditional goal regression. In the case of the latter, the regression is performed over the
postconditions of the annotated task and the preconditions of the method learned for that
task.

The idea of goal regression is that we can find some set of atoms g′ such that, if we reach
a state s′ in which they hold, we know a procedure to transform s′ into a state s in which
our goals g hold. In classical goal regression the procedure would be a plan, but in our
case it is a task network. Given a set of goals g and a task network w, we can find the set
g′ = R(g, w) with the regression operator R (Reiter, 1991), modified to support tasks. The
value of R(g, w) is the minimal set of atoms that must be true in a state s′ to guarantee
that w will be decomposable resulting in a plan that produces a state s where g holds:

• If w is the empty task network, then R(g, w) = g.

• If w contains a single primitive task t, which corresponds to the action
a = (t, aφ, a−, a+), then R(g, w) = (g \ a+) ∪ aφ.

• If w contains a single nonprimitive task t for which we have an indexed method in-
stantiation x = (t, x+, xw, xφ, xb, xe), then R(g, w) = (g \ x+) ∪ xφ.

• If w contains two or more tasks 〈t0, t1, . . . , tn〉, then R(g, w) =
R(R(g, 〈tn〉), 〈t0, t1, . . . , tn−1〉).

Note that a particular indexed method instantiation may have incidental side effects that
serendipitiously achieve a goal. These side effects are not used in regression because there
is no guarantee that they would occur in other situations (in which a task that could be
reduced with the same method observed in the example is instead reduced with a different,
equally legal method that has different side effects).

Algorithm 3 shows a high-level description of our hierarchical goal regression procedure,
called Learn-Method. Intuitively, the algorithm works backward through a given subplan,
maintaining a set of open conditions (initially the postconditions of the annotated task τ).
At each step, it nondeterministically chooses between the actions and/or indexed method
instances whose effects provide an open condition, regresses the open conditions through that
action or indexed method instance to create a new set of open conditions, and prepends the
chosen action or indexed method instance to a list of subtasks for the new method being
learned. When it reaches the beginning of the subplan, the algorithm creates a new method
whose preconditions are the remaining open conditions and whose subtasks are those actions
and indexed method instances that were chosen.

In Line 3, Learn-Method first initializes the set of open conditions to the postcon-
ditions of the annotated task. The open condition set represents those conditions that an
indexed method instance or action could cause to become true to assist in accomplishing
the task. Learn-Method also initializes a task network that will represent the subtasks
of the method to be learned in Line 4 and a current state in Line 5. The single element of
the task network is the verification task t′ associated with the annotated task τ .

The main loop of Learn-Method iterates the current state backwards through the
relevant section of the state trajectory, sometimes by steps (Line 20) and others by leaps
(Line 18). The loop begins by initializing an empty set of potential subtasks (Line 7). An
indexed instance x of a previously-learned method is a potential subtask if it meets three
criteria: the ending index of the instance must be the current state, the beginning index of
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Algorithm 3: The Learn-Method procedure that performs hierarchical goal regres-
sion over HTNs. The inputs are a plan π, a state trajectory induced by that plan ~Sπ,
an annotated task τ , a set X of indexed method instances generated from previous
calls to this same algorithm with the same plan, and indices for an initial state i and
final state f . The output is a new method m.

Procedure Learn-Method(π, ~Sπ, τ,X, i, f)1

begin2

φ← τ+ // Initialize open conditions3

w ← 〈t′〉 // Initialize subtask list4

c← f // Initialize current state index5

while c > i do // Step current state back to initial6

X ′ ← ∅ // Initialize useful instances7

foreach x = (xh, x+, xw, xφ, xb, xe) ∈ X do8

if xe = c ∧ xb ≥ i ∧ x+ ∩ φ 6= ∅ then // Fits and provides an open9

X ′ ← X ′ ∪ {x} // cond., so its task could be a subtask10

ac ← the c-th action in π11

if a+c ∩ φ 6= ∅ then // Current action provides an open12

X ′ ← X ′ ∪ {(ahc , a+c , 〈〉, aφc , c− 1, c)} // cond., so could be subtask13

if X ′ 6= ∅ then14

nondeterministically select an instance x = (xh, x+, xw, xφ, xb, xe) ∈ X ′15

φ← (φ \ x+) ∪ xφ // Regress open conditions across subtask16

w ← 〈xh〉 · w // Prepend subtask to list17

c← xb // Update current state18

else19

c← c− 1 // Step backward in plan20

return m = (τh, φ ∪ τφ, w) // Create new method21

end22
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the instance must be no earlier than the initial state of this subplan, and the postconditions
of the instance must contain an open condition (Lines 9–10). The action directly before the
current state is a potential subtask if its positive effects contain an open condition (Lines 12–
13). It cannot strictly form an indexed method instance, but storing information about it
in the same data structure simplifies the presentation of the algorithm.

If there are any potential subtasks, one is nondeterministically selected (Line 15). The
subtask selected will determine the structure of the HTNs generated by the learned methods.
Section 5.1 discusses the details of the criterion used to make this selection. The open
conditions are regressed through the selected indexed method instance in Line 16, the head
of the subtask is prepended to the subtask HTN in Line 17, and the current state is moved
backward to before this subtask began in Line 18.

If there are no potential subtasks (that is, the previous action was not useful to accom-
plishing the task), then that action is skipped and the current state moved back by one
(Line 20).

At the end of the main loop, the Learn-Method subroutine returns a new method with
the same head as the annotated task that was accomplished (Line 21). The preconditions
of this new method include the preconditions of the annotated task and the regressed open
conditions, and its subtasks are the actions and the heads of the indexed method instances
through which they were regressed.

3.4 Generalization of the Learned Methods

The actions in a plan π of a learning example are entirely grounded. On the other hand, the
terms in an HTN method are generally variables, and a substitution is applied to ground
the method when it is used to reduce a task. We now explain how we generalize each
grounded method into a method containing variables. We will explore two different ways to
perform generalization. In Section 5, we report how these two versions compare in a variety
of domains.

At nearly every step of the Learn-Method algorithm a substitution must be maintained
to keep track of the relationships between terms from different subtasks. When a new
subtask is added (Lines 16-17 of Algorithm 3), the variables used in the action or indexed
method instance that is being added are standardized apart from any variables currently
used in the method being built. We consider two possible techniques for determining when
a variable used in the new subtask should be unified with a variable that is already in use
for the method being built.

3.4.1 Weak Generalizations

In this formalism, variables from the new subtask are only unified with variables already in
use if they appear in a positive effect of the new subtask that matches an open condition.
For example, if (on ?a ?b) is in the open condition set with substitution {?a/B12, ?b/B3}
and (on ?x ?y) is a positive effect of the subtask being added with substitution {?x/B12,
?y/B3}, then ?a will be unified with ?x and ?b will be unified with ?y. Otherwise, variables
are not unified and an HTN planner using the method will be free to instantiate it with
a substitution that maps each of them to the same constant or to different constants. For
example, if ?c, ?d, and ?e are other variables currently in use for the new method with

We use the term generalization as it is frequently used (e.g., see Bergmann and Wilke (1995)). This
term describes the process of replacing constants with variables in an object.
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substitution {?c/B5, ?d/B7, ?e/B1} and ?z is another variable used by the new subtask
with substitution {?z/B7}, then ?d will not be unified with ?z (unless ?z is part of a positive
effect of the subtask that matches an open condition that ?b is a part of, as described above).

3.4.2 Strong Generalizations

In strong generalization every constant used in the subtasks of a method is mapped to a
single variable in that method and in planning no two variables may refer to the same
constant. For example, if ?a, ?b, ?c, ?d, and ?e are variables currently in use for the new
method with substitution {?a/B12, ?b/B3, ?c/B5, ?d/B7, ?e/B1} and ?x, ?y, and ?z

are variables used in the new subtask with substitution {?x/B12, ?y/B3, ?z/B7}, then ?a

will be unified with ?x, ?b will be unified with ?y, and ?d will be unified with ?z. This
reduces the applicability of the learned method, but may in so doing prevent the method
from being used in unhelpful ways.

( :method Deliver

:parameters ( ?p ?y )

:vars ( ?x ?z )

:precondition

( and

(is-package ?p)

(is-location ?x)

(is-location ?y)

(is-location ?z)

(is-truck ?t)

(package-at ?p ?x)

(truck-at ?t ?z) )

:subtasks

< (!Drive-Truck ?t ?z ?x),

(Deliver ?p ?y) > )

( :method Deliver

:parameters ( ?p ?y )

:vars ( ?x )

:precondition

( and

(is-package ?p)

(is-location ?x)

(is-location ?y)

(is-truck ?t)

(package-at ?p ?x)

(truck-at ?t ?y)

(different ?x ?y) )

:subtasks

< (!Drive-Truck ?t ?y ?x),

(Deliver ?p ?y) > )

Figure 10: Two example methods that could be learned in the Logistics domain.

The difference between weak and strong generalizations is demonstrated in the two
similar methods of Figure 10. These methods are from the Logistics domain, where trucks
and airplanes are used to deliver packages to various locations among several cities. The
first uses weak generalization, while the second uses strong generalization. Both deliver a
package to a location first by driving a truck to where the package is, then recursively trying
to deliver (presumably by loading it into the truck, driving the truck to the destination, and
unloading it there). The subtle difference is that the first drives the truck from a location
?z, which has no constraints other than that it be a location and that the truck be located
there, while the second drives the truck from location ?y, which is also used in the head of
the method. Thus, the second method will only be applicable when the truck happens to
start in the package’s desired destination, while the first will work regardless of where the
truck begins.
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3.4.3 Method Subsumption

Once the set M of learned methods are generalized to include variable symbols, it might be
the case that a generalized method m ∈M subsumes another method m′ ∈M . Intuitively,
this means that in every case where m′ is applicable, m will also be applicable and have
exactly the same results.

We say that a method m1 subsumes another method m2 when there is a substitution that
could be applied to one such that they will have identical heads and subtasks, and the pre-
conditions of m2 will imply the preconditions of m1. Formally, method m1 = (mh

1 ,m
φ
1 ,m

w
1 )

subsumes method m2 = (mh
2 ,m

φ
2 ,m

w
2 ) if there exists a substitution Θ such that each of the

following are true:

1. mh
2 = Θ(mh

1 )

2. mw
2 = Θ(mw

1 )

3. mφ
2 |= Θ(mφ

1 )

If a method is subsumed by another, then we can safely remove it from the domain
description without reducing the number of problems that may be solved using the do-
main description. Reducing the number of methods in a domain description is desirable
because a planner should be more efficient with fewer constructs to consider. However, de-
termining whether or not condition 3 holds requires solving an instance of the Associative-
Commutative Unification problem, which has been shown to be NP-complete (Kapur and
Narendran, 1986).

4 Theoretical Properties

In this section, we present the formal properties of the HTN-Maker learning algorithm.

4.1 Soundness

The soundness of the HTN-Solver procedure follows directly from the definition of a
solution to an HTN planning problem and has been discussed elsewhere (Ghallab et al.,
2004). That is, if HTN-Solver produces a plan as a solution for an HTN planning problem,
then that plan is indeed a solution to that HTN planning problem. What we attempt to
show is that our procedure for learning planning knowledge from traces and annotated tasks
is sound, which is to say that plans produced by HTN-Solver using methods learned by
HTN-Maker will be solutions to the classical planning problems that are the equivalent
of the HTN planning problems being solved by HTN-Solver.

Our main soundness result depends on the verification tasks and methods introduced
in Sections 3.2 and 3.3. Each learned method has as its last subtask a verification task,
which may only be decomposed (into the empty task network) when the postconditions of
the associated annotated task hold.

Theorem 1. Let Σ = (S,A, γ) be a classical planning domain, E be a finite set of learning
examples for that domain, and T be a finite set of annotated tasks for that domain. Let M be
the result of HTN-Maker(Σ, E, T , ∅) with verification tasks enabled. Let P = (Σ, s0, g) be
a classical planning problem and PH = (ΣH , s′0, w0) be an equivalent HTN planning problem
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with ΣH = (S′, A′, T,M, γ′). Let π be a plan produced by HTN-Solver as a solution to
PH .

Then, π is a solution to P .

For a proof of this theorem and of helpful lemmas, see Appendix A. For a discussion of
soundness without the use of verification tasks and methods, see Appendix C.

4.2 Completeness

We now establish the completeness of the HTN-Maker algorithm. We say that a set M
of HTN methods is complete relative to a set of annotated tasks T for a classical planning
domain description Σ if, for any classical planning problem P from the domain described
in Σ that is solvable and whose goals have an equivalent annotated task in T , the HTN-
equivalent problem PH is solvable using M .

As before, we present the theorem here and its proof in Appendix A.

Theorem 2. Let Σ be a classical planning domain description and T be a finite set of
annotated tasks for the domain.

Then, there exists a finite set of learning examples E for that domain such that the set of
methods M generated by HTN-Maker(Σ, E, T , ∅) can be used to solve the HTN equivalent
to every problem expressible using Σ and T .

We found a specific type of planning problems that can be expressed and solved using
the methods learned by HTN-Maker, which cannot be expressed in classical planning.
This type of problems is called classically-partitionable and intuitively are problems where
specific subproblems must be solved in a certain order (e.g., a problem requiring a vehicle
to go from location A to B and then going back to A). For details please see Appendix B.

5 Experimental Evaluation

There are two main questions that we would like to answer regarding HTN-Maker: how
many examples are required for HTN-Maker to learn a sufficient set of methods for a do-
main, and how useful are the learned methods for planning? To answer these two questions,
we performed two different types of experiments within five planning domains:

• Rate of convergence. To measure this, we generated training and testing prob-
lems in each domain and solutions to the testing problems. Then we measured the
percentage of testing problems that could be solved by an HTN planner using the
methods learned from the first training example, the first two training examples, and
so forth. If the methods learned from only a few examples are sufficient to solve most
of the testing problems, we say that the set of methods rapidly converges to one that
is complete.

• Planning speed. To measure this, we generated new sets of training problems of
varying sizes in each domain and attempted to solve them using the methods learned
in the first set of experiments, comparing with several other planners. If the HTN
planner using the learned methods is able to solve problems more quickly than classical
planners, we say that the methods are of high quality.
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Table 1: Configurations of HTN-Maker
Configuration Subsumption Generalization

WeakS Yes Weak
StrongS Yes Strong
WeakNS No Weak

StrongNS No Strong

The domains used in our experiments are Logistics, Blocks-World, Satellite,
Rovers, and Zeno-Travel, each of which was introduced in one of the past international
planning competitions. To be useful for our experiments, a domain needed to have a classical
representation that still produced interesting problems. For details about the domains,
including the annotated tasks used in the experiments, see Appendix D.

5.1 Implementation Details

The nondeterministic choice in Line 15 of Algorithm 3 allows a great deal of flexibility in the
algorithm. This choice determines how subtasks are grouped to form methods. Each of the
three decomposition trees shown in Figure 11 could be learned by HTN-Maker depending
on this choice. For the implementation tested in this evaluation we caused the algorithm to
make specific, deliberate choices. Each time the algorithm reaches Line 15, if there exists
one or more indexed instances x ∈ X ′ of methods learned in previous iterations, then we
consider only those as possible subtasks. (That is, the underlying action is not considered
as a possible subtask.) When X ′ contains multiple indexed instances of methods learned in
previous iterations, the instance that extends over the largest subplan is selected. (That is,
the instance with smallest beginning index xb.) If there are multiple such indexed method
instances, one is chosen arbitrarily and there is no backtracking to consider others. This
decision resulted in deep hierarchies (such as the third tree in Figure 11) rather than shallow
ones (such as the first tree in Figure 11) and maximized the potential for methods learned
from different examples to be used together.

We also required the first subtask of every method to be a primitive action. The reason
for this decision is that a reduction directly to a nonprimitive task does not change the state,
and thus does not change the set of applicable methods. Thus, poorly designed left-recursive
methods could potentially cause an HTN planner to enter a cycle in which it continues the
same series of reductions to an infinite depth.

A much earlier version of our implementation instead explored every possible outcome of
each nondeterministic choice in the algorithm, learning very many ways to express the same
problem solving strategy in different hierarchies. This created a sort of information overload
when problem solvers used the learned knowledge and did not capture any useful knowledge
that is not also captured with the carefully chosen nondeterministic choices described above.

5.2 Coverage Experiments

We tested the convergence rate of the set of methods learned by HTN-Maker in four
different configurations to determine the effectiveness of subsumption checking and the two
different models of generalization. These configurations are shown in Table 1.
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(!Unstack A C) (!Stack A B) (!Pickup C) (!Stack C A)

(Make-3Pile C A B)

(!Unstack A C) (!Stack A B) (!Pickup C) (!Stack C A)

(Make-3Pile C A B)(Make-2Pile A B)

(Make-3Pile C A B)

(!Unstack A C) (!Stack A B) (!Pickup C) (!Stack C A)

(Make-3Pile C A B)

(Make-3Pile C A B)

(Make-3Pile C A B)

(Make-3Pile C A B)

Figure 11: Three possible decomposition trees that could be learned by HTN-Maker.
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For each domain we generated 400 random problems of low complexity. For each of five
trials, 300 of these problems were randomly selected as a training set and the remaining
100 as a test set. The training and test problems in the Logistics domain had between 1
and 8 packages to be delivered, in the Blocks-World domain between 5 and 10 blocks
to reorganize, in the Satellite domain between 1 and 5 images to collect, in the Rovers
domain between 3 and 6 waypoints, and in the Zeno-Travel domain between 3 and 8
passengers to transport. Each trial also specified a random ordering over the problems in
the training set. Running multiple trials mitigated any bias that might occur from most
complex problems being placed in the testing set, or being among the first training examples
processed.

We first generated a solution to each of the training problems using the FastForward
(Hoffmann and Nebel, 2001) planner. For each training problem, the initial state of the
problem and the generated solution formed a learning example. The initial run of HTN-
Maker used as input the classical planning domain, a set containing the learning example
for the first training problem, the annotated tasks, and an empty set of methods. The second
run used as input the classical planning domain, a set containing the learning example for
the second training problem, the annotated tasks, and the set of methods produced in the
initial run. For each successive training problem we re-ran HTN-Maker, using the set of
methods learned from all previous training problems as input. After each run of HTN-
Maker, we recorded the number of test problems that could be solved by HTN-Solver
(our reimplementation of SHOP) within 30 minutes using the methods learned thusfar. (It
is possible but unlikely that some problems could have been solved given more time.)

This experiment was repeated for each of the four configurations of HTN-Maker. The
partitioning of problems into training and test sets and the order of the training set for a
given trial number are constant between experiments.

The results in the Logistics domain, averaged across the five trials, are shown in Fig-
ure 12. Configurations WeakS and WeakNS (those with weak generalization) learn more
quickly, but all four configurations solve more than 90% of test problems after learning from
50 training problems. The presence or absence of subsumption has only an extremely small
effect.

Figure 13 shows the similar data for the Blocks-World domain. There are no sig-
nificant differences among the four configurations. As in the Logistics domain, coverage
reaches 90% before 50 training problems, but there is a much longer tail.

Figure 14 contains the same information for the Satellite domain. Configuration
WeakS, with subsumption and weak generalization, performs relatively poorly in this do-
main, while the other three learn very quickly. In fact, under configuration WeakS coverage
of the domain decreases slightly when it encounters a specific problem, in violation to our
Lemma 4. What happens here is that while the new set of methods can still be theoretically
used to solve all of the problems that it could solve in the past, our planner is no longer able
to do so within a reasonable time limit. Because of the weak generalization and subsump-
tion used in configuration WeakS, HTN-Maker replaces one of the existing methods with
a more general version. This generalized method becomes applicable in ways that move
toward one solution to the problem, but because the base-case for that solution has not
been found, it then moves to a second potential solution where the same conditions are
true. Rather than moving on to the solution that can be completed, the planner continues
working toward those that cannot. Given enough training examples, even in configuration
WeakS we would learn this base case to reach a complete domain.

The Rovers domain (Figure 15) is the most difficult for HTN-Maker to learn. Config-
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Figure 12: Coverage in Logistics Domain
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Figure 13: Coverage in Blocks-World Domain
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Figure 14: Coverage in Satellite Domain
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Figure 15: Coverage in Rovers Domain
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Figure 16: Coverage in Zeno-Travel Domain

urations WeakS and WeakNS still learn reasonably rapidly, passing 80% coverage before
50 training examples, but strong generalization drastically decreases the learning rate. Un-
like the other domains in which we tested HTN-Maker, Rovers requires some pathfinding:
maneuverability between locations forms a directed graph that is strongly connected but
not complete. Thus, a plan to achieve a goal may reference quite a few locations: the one
in which the rover is initially located, the one from which a sample needs to be taken, all of
those in the path found between these two, the location from which the rover can commu-
nicate with the lander, all of those in the path found between the sample location and the
communication location, and the location of the lander itself. Requiring that these locations
be the same as (or different from) each other only as is strictly necessary to guarantee suc-
cess in using the methods (weak generalization) produces methods that can be used to solve
far more problems than requiring that the relationships among these locations be exactly
the same as in the plan from which the methods were learned (strong generalization).

In Zeno-Travel (Figure 16) the system is rapidly able to learn a complete domain
regardless of configuration.

We also recorded the total number of methods learned from the 300 training problems,
averaged over the five trials. This information is shown in Table 2. As expected, we find
that subsumption and weak generalization both decrease the number of methods learned.
In general, using subsumption has a more significant impact than the generalization scheme
selected.

Finally, we recorded the average time required to learn from a single plan with each of
the four configurations of HTN-Maker, which is shown in Table 3. HTN-Maker was
much faster in configurations WeakS and WeakNS, in which weak generalization was
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Table 2: Number of Methods Learned
Domain WeakS StrongS WeakNS StrongNS

Logistics 42.2 105.6 230.0 829.4
Blocks-World 146.0 176.7 1000.6 1056.4

Satellite 19.6 24.8 65.8 71.4
Rovers 152.2 419.8 763.6 1957.4

Zeno-Travel 11.0 16.2 4211.6 4371.0

Table 3: Average Number of Seconds to Learn from One Trace
Domain WeakS StrongS WeakNS StrongNS

Logistics 3.2 13.3 3.3 13.4
Blocks-World 6.8 15.2 6.4 10.9

Satellite 1.66 0.262 0.262 0.225
Rovers 23.7 116.0 21.7 116.0

Zeno-Travel 0.06 0.07 1.61 1.57

used. Surprisingly, although subsumption adds an additional step to the algorithm that is
in the worst case NP-complete, it does not significantly affect the average runtime in the
Logistics, Blocks-World, or Rovers domains. Our optimized subsumption algorithm
can be much faster than its worst-case complexity in the right conditions, and perhaps
whatever time was expended searching for methods that subsume one another was offset by
having a smaller method file to read and parse for each run.

5.3 Planning Speed Experiments

We also performed a second set of experiments, in which we measured the suitability of the
learned methods for quickly solving new problems. In each domain, we generated 20 random
classical planning problems of each of several problem sizes, with their HTN equivalents. We
then compared the time taken to solve these problems by seven competitors: FastForward
(Hoffmann and Nebel, 2001) with the classical version of the domain, SGPlan6 (Hsu and
Wah, 2008) with the classical version of the domain, HTN-Solver (the SHOP (Nau et al.,
1999) algorithm rewritten and optimized in C++) with a hand-crafted HTN version of the
domain, and HTN-Solver with an HTN version of the domain using the methods learned
in the first trial (chosen arbitrarily) of the experiments described in Section 5.2 for each
configuration of HTN-Maker.

Each planning system was given one hour of CPU time to attempt to solve each problem.
Not every competitor was able to solve every problem. In most cases this was because the
planner was still working at the end of the time limit. HTN-Solver with the learned
methods also failed to solve some problems because its methods did not contain sufficient

FastForward was selected as a “distinguished planner” in the second International Planning Compe-
tition in 2000 and remains a common benchmark, while an earlier version of SGPlan6 won the first prize
in the satisficing, deterministic planning track of the fifth IPC in 2006.
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Table 4: Success rates for each planning domain and planning system
Planner Logistics Blocks Satellite Rovers Zeno

FastForward 95.6% 94.0% 51.2% 100.0% 94.8%
SGPlan6 100.0% 99.0% 100.0% 100.0% 100.0%

HTN-Solver (HandHTN) 100.0% 100.0% 100.0% 100.0% 100.0%
HTN-Solver (WeakS) 93.6% 99.0% 100.0% 99.8% 99.2%

HTN-Solver (StrongS) 92.8% 97.0% 98.3% 92.6% 100.0%
HTN-Solver (WeakNS) 89.2% 99.0% 100.0% 99.8% 100.0%

HTN-Solver (StrongNS) 88.1% 94.0% 98.3% 92.4% 100.0%

domain knowledge. The percent of problems solved by each system, for each domain, is
shown in Table 4.

Figure 17 shows the average time to solve a problem of each size in the Logistics
domain. Note that the vertical axis on this and all other figures in this subsection is
logarithmically scaled. The primary result visible in Figure 17 is that FastForward scales
very poorly, performing admirably on small problems but taking about 10 times as long as
the worst of other competitors at 300 packages. SGPlan6 is better, but still lags behind all
configurations of HTN-Solver. Unsurprisingly, HTN-Solver works better with the hand-
crafted methods than with those learned by HTN-Maker. Except for two large outliers,
HTN-Solver takes about twice as long to solve problems with the learned methods than
it does with the hand-crafted methods, regardless of the configuration of HTN-Maker.
Among the learned method sets configuration WeakS is best and StrongNS worst, but
the differences are slight.

Figure 18 shows the solution times for each configuration in the Blocks-World domain.
In this domain FastForward performs even worse, requiring more than 100 times as long
to solve large problems as any other competitor. SGPlan6 also scales poorly compared
to HTN-Solver, and again HTN-Solver performs better with the hand-crafted methods
than the learned ones. This time, there are significant differences between the times for
HTN-Solver using methods learned from the different configurations of HTN-Maker.
These curves are nearly flat (except for a large outlier in StrongNS), which indicates that
at these problem sizes the performance of HTN-Solver is dominated by overhead. It is
clear that WeakS has the least overhead and StrongNS the most, as would be expected
from the number of methods in Table 2.

Figure 19 shows the data for the Satellite domain. In this domain FastForward
performs so poorly that we were not able to collect data on it above a problem size of
150. As in the previous two domains, SGPlan6 performs very well on small problems but
appears to scale poorly compared to the HTN approaches. HTN-Solver performs best
with the hand-crafted methods, takes about twice as long with the methods learned from
configurations WeakS and WeakNS and about twice as much again for configurations
StrongS and StrongNS.

Figure 20 shows that FastForward is surprisingly fast in the Rovers domain, beat-
ing even the hand-crafted HTN methods. However, HTN-Solver with the handcrafted
methods does appear to be scaling better, such that with larger problems it would likely

Later, when presenting data about the average time to solve a problem in each of these systems, we
will use only those problems that were solvable by every configuration and show only those difficulty levels
where there are at least 10 such problems.
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Figure 17: Average problem solving times in Logistics domain
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Figure 18: Average problem solving times in Blocks-World domain
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Figure 19: Average problem solving times in Satellite domain
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Figure 20: Average problem solving times in Rovers domain
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Figure 21: Average problem solving times in Zeno-Travel domain

outperform FastForward as it already outperforms SGPlan6. HTN-Solver with any
learned methods performs very poorly. We suspect that this is because the HTN versions
of the domain solve a single goal at a time, while the classical planners may consider all of
the goals simultaneously and order actions to minimize the necessity of repetition. Among
the learned method sets, configuration WeakS is best and StrongNS is worst.

Figure 21 shows the problem-solving times in the Zeno-Travel domain, where Fast-
Forward is again quite poor. As before, HTN-Solver with the hand-crafted domain
performs best. SGPlan6 and HTN-Solver with the methods learned in configuration
StrongS are a bit slower, HTN-Solver with the methods learned in configurations
WeakNS and StrongNS are significantly slower, and HTN-Solver with the methods
learned in configuration WeakS is slower still.

5.4 Discussion

While it often does not learn a full domain description from the 100 learning examples,
HTN-Maker does learn very quickly to solve most problems in a given domain. Solutions
for problems in the five domains in which we tested are highly structured, and the HTN-
Maker algorithm is able to exploit this structure and generalize from examples to many
other problems on which it was not trained. As expected, FastForward is not competitive
with more recent planners in four of five domains. The knowledge learned by HTN-Maker
can be exploited by HTN-Solver to solve large problems more quickly than even a modern
classical planner in three of five domains. The learned HTN methods are not of the same
quality as hand-crafted ones, but they are surprisingly close.
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The various configurations of HTN-Maker make a significant difference. Subsumption
can decrease the number of methods learned by a factor of four or more without requiring
substantially more time during the learning process, and usually provides a small but notice-
able improvement in problem-solving speed. Using weak generalization makes HTN-Maker
run more quickly and generate a more compact set of methods, and requires fewer training
examples. Differences in planning times are slight, but also favor weak generalization.

6 Related Work

Structural modeling has led to a number of representations and formalisms, including frames
(Minsky, 1975), abstraction techniques (Amarel, 1968), goal graphs (Blum and Furst, 1997),
Teleoreactive Logic Programs (Choi and Langley, 2005), and Hierarchical Task Networks
(HTNs) (Currie and Tate, 1986; Tate, 1977; Erol et al., 1996; Wilkins, 1988). All of these
formalisms have in common the use of certain kinds of constructs (e.g., objects, goals,
activities, tasks, and skills) that represent knowledge of varying degrees of complexity and
that are connected through structural relations.

6.1 Learning HTNs

Previous work on learning HTNs can be classified according to the following dimensions:

• Task-subtask relations. This dimension refers to whether the learning algorithm as-
sumes that the possible task reductions for each task are given or if they are learned
by system.

• Preconditions. This dimension refers to whether the preconditions for each task re-
duction are given or if they are learned by the system.

• Complete state information. This refers to whether each action in the input traces is
annotated with the state that was valid before or after the action. Equivalently, this
also includes systems where only the initial state is given but a complete definition of
the actions is given, in which case these actions can be used to produce all intermediate
states.

• Task expressivity. This indicates whether the tasks must correspond directly to single
planning goals or may have richer semantics.

• Incremental. This indicates if the learning system requires a complete set of traces to
be able to solve problems or whether it can start solving problems when only a few
input traces are given and incrementally solve more problems as more input traces
are given. This is a generally desired property as otherwise the system will need to
wait until a sufficiently large number of traces is given as input before it can learn a
domain to start solving problems.

• Classically-partitionable. Whether or not the learned knowledge can be used to solve
classically-partitionable problems, as described in Appendix B. Being able to solve
classically-partitionable problems is a desirable property also related to the richness
of the expressivity of HTNs.

32



Table 5: Comparison of Hierarchical Learners
Name Task-Subtask Rel. Preconditions Complete State

HTN-Maker Learned Learned Yes
CaMeL Given Learned Yes
DInCAT Given Learned No

Light Learned Learned Yes
X-Learn Learned Learned Yes

Learn-HTN Given Learned No
L-HTN Partial Given Yes
Name Task Expressivity Incremental Classically Partitionable

HTN-Maker Complex Yes Yes
CaMeL Complex No Yes
DInCAT Complex Yes Yes

Light Simple Yes No
X-Learn Simple Yes No

Learn-HTN Complex No No
L-HTN Complex No Yes

Table 5 compares several HTN learning systems according to these dimensions. The first
row is HTN-Maker, which as explained throughout this article learns the task-subtask
relations and the preconditions of the methods. HTN-Maker requires that a complete
initial state and complete action definitions are included in the input. It can learn general
tasks accomplishing single or multiple goals at the same time, and it is incremental as the
methods that are learned from the point that it receives the first input trace can be used to
solve problems. Finally, the domains it learns can be used by an HTN planner like SHOP
to solve classically-partitionable problems.

In the second row is CaMeL (Ilghami et al., 2005). CaMeL assumes that the HTN
task reductions are given and that the intermediate states after each action are given in
the input trace as well. CaMeL first identifies the literals that change from state to state
and propagates these upwards through the given HTN trees. These propagated literals are
used as candidates for each task reduction in the HTN. CaMeL then uses the candidate
elimination algorithm to learn the best preconditions that cover all literals for each reduction.
For this purpose, it also assumes that it receives as input labeled incorrect literals for a
reduction, which serve as negative examples. Because it relies on the candidate elimination
algorithm it is not incremental. Also, because the task-subtask relationships are provided, it
can learn preconditions for methods of any type of tasks, and the methods that it produces
can be used by an HTN planner such as SHOP to solve classically-partitionable problems.

The third system is DInCAT (Xu and Munoz-Avila, 2005). Like CaMeL, it assumes
that the task-subtask relationships are given. It also assumes that HTN reductions are
annotated with applicability conditions, although they do not need to be complete, and
that a taxonomy of the types of objects in the domain are given. It then uses inductive
generalization techniques to learn the preconditions of methods based on (1) the provided
annotations and (2) generalizations of the arguments in these literals based on the taxonomy.
It is incremental. Because the HTNs are given, it can learn to solve tasks achieving multiple
goals and when given to SHOP its output can solve classically-partitionable problems.
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The Icarus cognitive architecture (Langley and Choi, 2006) uses a variant of HTNs
called teleoreactive logic programs. Unlike other systems discussed so far, it does not assume
that input traces are given. Instead, it maintains two knowledge bases. The first is called
concepts and consists of Horn clauses that indicate relationships between goals and subgoals.
The second is called skills and consists of both constructs similar to actions and constructs
similar to methods. When solving a new problem, if Icarus finds a gap in its library of
skills such that it does not know how to proceed from a state it reached to achieve a goal,
it uses first-principles planning techniques to fill these gaps. The resulting plan is examined
based on the concept and skill hierarchies to explain these gaps and learn new skills that can
be used in the future. As a result it is incremental. It requires complete state information.
In its current form its tasks are single goals although extensions have been proposed.

The Light system (Nejati et al., 2006; Li et al., 2009) uses similar procedures to learn
teleoreactive logic programs from observing an expert. Light formalizes the notion of
goal-indexed HTNs as a particular special case of HTN formalism that depends on the
teleoreactive logic programs. Our indexed method instances, on the other hand, are derived
from task-reduction methods in HTN planning.

The skills learned by Icarus, Light, and other variants cannot be used to solve class-
ically-partitionable planning problems because the skills must achieve a classical goal and
need the classical goal statement in their input due to the use of means-ends analysis.
One way to enable Icarus to learn HTN methods for a classically-partitionable planning
problem is to re-factor the problem into a series of classical problems and give each problem
as input to Icarus. However, this would require a supervisor system that would do the
translation, run Icarus on the subproblems, and combine the results. HTN-Maker, on
the other hand, can learn from any initial state and sequence of actions, without requiring
that they accomplish a particular goal statement.

X-Learn (Reddy and Tadepalli, 1997) receives planning traces as input and uses in-
ductive generalization to learn d-rules, which, similar to the skills of Icarus, indicate how
to reduce a goal into actions and/or other subgoals. X-Learn has been conceived in the
context of bootstrap learning where it assumes that the initial input traces solve simple
goals and then more complex traces are given to solve more complex goals. X-Learn is
designed to exploit this by reducing complex goals into subgoals it has already learned to
solve. It is incremental and it can solve single goals. It cannot learn how to solve classically-
partitionable problems.

Like CaMeL, Learn-HTN (Zhuo et al., 2009) receives as input the traces and the
HTN decompositions used to generate them. But unlike CaMeL it does not assume that
the complete intermediate states are given and hence it is designed to learn HTN precon-
ditions when there is limited observability about the state of the world and possibly under
noisy conditions. Learn-HTN is based on the action-model learner ARMS, but generalizes
the latter to produce HTN preconditions in addition to action models. We discuss ARMS
in the subsequent paragraphs. Learn-HTN works in three steps: it first builds constraints
from given observed decomposition trees to build action models and method preconditions.
Second, it then solves these constraints using a weighted MAX-SAT solver. Third, the
weighted MAX-SAT solution is then converted to obtain action models and method precon-
ditions. Since the HTNs are given it can learn to solve any tasks and when given to SHOP
its output can solve classically-partitionable problems. However, it is not incremental be-
cause it usually requires a large number of input traces before a good set of preconditions
is learned.
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L-HTN (Yang et al., 2007) assumes that a decomposition hierarchy is partially given:
it knows the tasks at each level but it does not know how they are reduced into the next
level (i.e., which tasks at level n are the parent tasks of which tasks at level n + 1). It
assumes that the tasks at each level are not interleaved (i.e., every nonprimitive task at
level n will be reduced into a sequence of contiguous tasks at level n+ 1) and that complete
state information is given. It models this learning problem as a Markov Decision Process.
Since the HTNs are partially given, it can learn to achieve any task and solve classically-
partitionable problems. It is not incremental because it requires enough examples before
the MDP converges to a policy.

The work of Biundo and Schattenberg (2001) does not involve learning, but uses struc-
tures equivalent to our annotated tasks. In their work, these annotations are used during the
planning process so that task-reduction planning can be combined with state-based classical
planning to fill in gaps where appropriate methods do not exist.

In our work, we assume that task annotations are provided by a human and that meth-
ods should be learned. Marthi et al. (2008), by contrast, assume that methods (called
immediate refinements in their terminology) are given but that task annotations are not.
They demonstrate that several sets of task postconditions may be automatically computed,
such as the set of atoms that are guaranteed to become true no matter what refinements
are applied or the set of atoms that could possibly become true depending on which refine-
ments are applied. Thus, they provide a way to unify the semantics of SHOP-like systems
(determined entirely by the available methods) with those we are using (determined entirely
by preconditions and postconditions).

6.2 Other Works on Learning Structural Knowledge

Research on learning HTNs is also related to learning macro-operators, learning action
models and learning abstraction. We now discuss these.

Work on learning macro-operators (Mooney, 1988; Botea et al., 2005) is designed to
speed up classical planning, as is work on learning search control knowledge (Etzioni, 1993;
Minton, 1998; Fern et al., 2004). The aim of search control knowledge algorithms is to
learn knowledge constructs that when reused allows the planner to reach its goals more
rapidly. For example, macro-operators indicate sequences of two or more actions to be
performed when the conditions indicated by the macro-operator are met in the current
state. Hence, search control knowledge does not increase the number of problems that
theoretically can be solved. However, from a practical stand point, these systems increase
the number of problems that can be solved within a reasonable amount of time. Since
the learned constructs are part of the classical planning paradigm, they cannot represent
classically-partitionable problems.

Fikes et al. (1972) store plans as triangle tables, which annotate the reasons that actions
were chosen and the relationship between them – essentially the same information com-
puted during goal regression. Triangle tables are then generalized and used to monitor plan
execution for correctable failures or surprises. Both entire generalized triangle tables and
subtables may be reused as macro-operators in subsequent planning sessions.

Other researchers assumed that hierarchies are given as inputs for learning task models.
Garland et al. (2001) use interactive elicitation in which the user provides examples show-
ing how to correctly perform a task and annotates other ways to perform the task in the
examples. Tecuci et al. (1999) learn task models where the user interacts with the system
providing demonstration and refinement of the models.
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Inductive approaches have been proposed for learning action models for classical planning
(Martin and Geffner, 2000; McCluskey et al., 2002; Winner and Veloso, 2003). For example,
the Distill system learns domain-specific planners from an input of plans that have certain
annotations (Winner and Veloso, 2003). The input includes the initial state and a complete
action model. Distill elicits a programming construct for plan generation representing the
action model and search control strategies.

Walsh and Littman (2008) present an algorithm to learn operator schemas by observing
an agent executing actions, some of which succeed and some of which may fail for unknown
reasons, and using a teacher who provides correct plans when the agent makes a mistake.
They demonstrate that the number of mistakes made by their algorithm is polynomial in
the number of predicates that can be used for preconditions and effects of operators and in
the number of actions.

Yang et al. (2007) propose an algorithm called ARMS for learning action models from
input plan traces whose intermediate states are partially observable. ARMS uses a series of
weighted constraints encoded by the user and extracted from the input traces. For example,
one of the constraints says that if a literal occurs in the state before an action but not
in the state after the action then it is likely that literal is a negative effect of the action
(another plausible explanation is that the literal occurred in the state after the action but
was not observed). Traces are parsed and all such constraints are extracted and passed to
a weighted MAX-SAT constraint satisfier, which results in truth values for atoms having a
high degree of support. These constraints are then used to encode a best-guess model of
the preconditions, negative effects, and positive effects of each of the actions.

Another related work is case-based planning (CBP), in which existing plans are stored
as cases and then reused for domain or search control knowledge. Systems that use cases to
represent domain knowledge, such as the Chef system (Hammond, 1986) or the BioPlanner
(Jin et al., 2009), can be very efficient as the adaptation procedures are specialized for the do-
main. Their main drawback is that they require the encoding of a new adaptation procedure
for every new domain and, hence, the adaptation process lacks clear semantics. Systems that
use cases as search control knowledge, such as in the Prodigy/Analogy system (Veloso,
1994) or the ADJ system (Gerevini and Serina, 2010), use a domain-independent adaptation
procedure (i.e., the adaptation procedure remains the same regardless of domain), but can
be less efficient than domain-specific procedures.

Another related work is abstraction in planning such as the Alpine (Knoblock, 1993)
and the Paris (Bergmann and Wilke, 1995) systems. These systems take a concrete plan
and generalize it. By doing so, it allows the reuse of the generalized plan in different
problems by instantiating its conditions. These systems require both an action model and
an abstraction model that indicates how to produce abstractions of concrete plans, to be
given as input.

Darmok (Ontañón et al., 2009) learns plan snippets by observing an annotated trace of
a human playing of a Real-Time Strategy game. These plan snippets consist of actions to
be taken either in parallel or in sequence and possibly subgoals to achieve, and are indexed
by the goal that the human indicates they were attempting to achieve with various con-
ditions regarding the state of the world. During planning and execution Darmok selects
an appropriate plan snippet to achieve the current goal and, when it encounters a subgoal,
selects another plan snippet to achieve it. In this way, plan snippets can be used to rep-
resent hierarchical structure similarly to HTNs. Unlike HTN-Maker, Darmok depends
on the expert annotations to determine the purpose of each action and does not compute
preconditions for snippets.
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7 Conclusions

HTN planning is an effective problem-solving paradigm, but the high knowledge engineering
cost of developing an HTN domain description is a significant impediment to the wider
adoption of HTN planning technology. We have described a new algorithm, HTN-Maker,
for incrementally learning HTN domain knowledge in the form of task-reduction methods
from planning states and plans applicable to those states. HTN-Maker produces a set of
HTN methods by learning the decomposition structure of tasks from annotated tasks and
plans. The learner constructs a hierarchy in a bottom-up manner by analyzing the sequences
of actions in a plan trace and determines the preconditions of methods by regressing goals
through the subtasks of those methods.

We have presented theoretical results showing that the methods learned by HTN-Maker
are sound and complete relative to the set of goals for which annotated tasks are provided.
Our experiments in five well-known planning domains demonstrated that HTN-Maker
converged toward a set of HTN methods that solve all problems in the domain as more
problems are presented. In three of the five domains, an HTN planner using the learned
methods could solve large problems much more quickly than a modern classical planner.

We intend to expand this work in several future directions. First, our experiments
currently use very simple annotated tasks, but our formalism and algorithms support more
complex ones. We believe that exerting more knowledge engineering effort to carefully design
annotated tasks may allow HTN-Maker to learn a complete set of methods from fewer
problems, or to learn sets of methods that enable quicker problem solving, and would like
to explore this empirically.

Second, we are currently developing techniques for using reinforcement learning mecha-
nisms on top of HTN-Maker in order to learn the expected values of the HTN methods
produced by the algorithm. This will enable us to study optimality and usefulness properties
of the learned HTNs.

Third, the heuristics described in Section 5.1 were developed through intuition and
experimentation, but there may be much better ways to pick and choose among the types of
methods that HTN-Maker is capable of generating. We would like to qualitatively compare
our current results against other possible implementations, with an aim toward developing
a formal notion of method quality independent of the numerical approach suggested above.

Fourth, we would like to expand the representation of preconditions in our annotated
tasks and methods. Currently, preconditions are sets of atoms from the domain. This means
that, in the Blocks-World domain for example, a method can have as preconditions one
block be directly on top of another, or that there be one block between them, or two, or
three, and so forth. But it is not currently possible for a method to have as its preconditions
that the first block be somewhere above the second without specifying exactly how many
blocks are between them. Other planners, including SHOP, allow method preconditions to
include derived predicates that could represent something like “is somewhere above”. We
would like to experiment with modifying HTN-Maker to replace atoms in the preconditions
of methods with predicates that can be derived from them. This would make the methods
learned much more general, and likely mean that fewer learning examples would be needed.

Fifth, it would be interesting to use HTN-Maker in an active learning environment
similar to how Icarus (Langley and Choi, 2006) works. This would mean attempting to
solve problems with an HTN planner using an existing knowledge base and if this fails falling
back on a classical planner, then using the result of that classical planner as a new learning
instance for HTN-Maker to improve the HTN planner’s knowledge base before attempting
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future problems. Furthermore, having pre- and postconditions on tasks would allow us to
build a planner that interleaves hierarchical and classical planning within the processing of
a single problem. Such a planner would use HTN planning whenever possible, but when
it finds no applicable methods to reduce a task t from a state s it could use any classical
planning technique to find a plan from that state s that accomplishes the postconditions
associated with t and then continue reducing later tasks for which it does have sufficient
knowledge, after learning from the example provided by the classical planning component.
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A Lemmas And Proofs

Theorem 1 from Section 4.1 supports the soundness of our learning procedure. Here we
present two lemmas that will assist in proving that theorem, then restate the theorem and
provide a proof of it.

Lemma 1. Let Σ be a classical planning domain, E be a finite set of learning examples for
that domain, and T be a finite set of annotated tasks for that domain. Let M be the result
of HTN-Maker(Σ, E, T , ∅).

Then, for each annotated task τ = (τh, τφ, τ+) ∈ T there exists a method m = (τh, τφ ∪
τ+, 〈〉) ∈M .

Proof. The Make-Trivial-Methods subroutine of HTN-Maker generates such a method
for every annotated task.

Lemma 1 simply states that there is a base-case method for each annotated task that
allows that task to be reduced to the empty task network when in a state where both the
preconditions and postconditions of the annotated task hold.

Lemma 2. Let P = (Σ, s0, g) be a classical planning problem with Σ = (S,A, γ), and
PH = (ΣH , s′0, w0) be an equivalent HTN planning problem with ΣH = (S′, A′, T,M, γ′),
where M is the result of HTN-Maker(Σ, E, T , ∅). Let π = 〈a0, a1, . . . , an〉 be a plan
produced by HTN-Solver (Algorithm 1) as a solution to PH .

Then, π is applicable to the initial state of P , s0.
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Proof. Because PH is an HTN planning problem equivalent to P , we know that s0 = s′0,
S = S′, A = A′, and γ = γ′. The correctness of HTN-Solver (which has previously been
proven in Ghallab et al. (2004)) means that π must be applicable to s′0, which is s0.

Lemma 2 does not depend on any property of the methods in the input, only on the fact
that HTN-Solver enforces the preconditions of the actions in the plans that it produces.

Theorem 1. Let Σ = (S,A, γ) be a classical planning domain, E be a finite set of learning
examples for that domain, and T be a finite set of annotated tasks for that domain. Let M be
the result of HTN-Maker(Σ, E, T , ∅) with verification tasks enabled. Let P = (Σ, s0, g) be
a classical planning problem and PH = (ΣH , s′0, w0) be an equivalent HTN planning problem
with ΣH = (S′, A′, T,M, γ′). Let π be a plan produced by HTN-Solver as a solution to
PH .

Then, π is a solution to P .

Proof. In order to prove that π is a solution to P we must show both that it is applicable
to s0 and that it produces a state in which g holds. Lemma 2 guarantees the first part. The
remainder of this proof demonstrates the second part.

Because PH is an equivalent HTN planning problem to P , we know that s0 = s′0,
S = S′, A = A′, and γ = γ′. Furthermore, we know that there exists an annotated task
τ = (τh, ∅, g) ∈ T such that w0 = 〈τh〉.

If π is the empty plan, then the task τh must have been reduced using the method
described in Lemma 1. Thus, s′0 |= g. Since s′0 = s0 and there are no actions in the plan,
s′0 is the result of γ(s0, π), and we have shown that it satisfies the goals.

If π is not the empty plan, then some reductions were performed using learned methods to
produce it. Consider the method used for the very first reduction. Because it was generated
by HTN-Maker with verification tasks enabled, its final subtask will be a verification task
t′. There exists one and only one method, m = (t′, g, 〈〉) for this verification task. The very
last step taken by HTN-Solver to produce π will have been a reduction of this verification
task using that only method. Because this method was applicable, the planner’s current
state was one in which the goals were satisfied. Because this is the last step, that current
state is also the final state γ(s0, π).

Theorem 2 from Section 4.2 supports the completeness of our learning procedure. Here
we present two lemmas and a proof of that theorem.

Lemma 3. Let Σ be a classical planning domain description, T be a set of annotated
tasks for the domain, P = (Σ, s0, g) be a classical planning problem from the domain, τ =
(τh, ∅, g) ∈ T be the equivalent annotated task to g, and π be a solution to P .

Then, the set of methods M learned by HTN-Maker from a single learning example
e = (s0, π) can be used to solve the HTN-equivalent problem PH = (ΣH , s0, 〈τ〉).

Proof. If π is empty or g is satisfied in s0, then the trivial method for τ is sufficient to
solve the problem. Otherwise, HTN-Maker will have learned at least one method for
accomplishing τ from π. This method must be applicable to s0 because its preconditions were
computed by regressing g through the actions of π, which is applicable to s0. Furthermore,
our goal regression procedure guarantees that whenever the preconditions of a method are
satisfied there must be some way to reduce that method’s subtasks using other methods
from whose indexed instances those subtasks were chosen.
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Lemma 4. Let Σ be a classical planning domain description, T be a set of annotated tasks
for the domain, and M be a set of methods learned by HTN-Maker from any finite set
of learning examples E in the domain. Let e = (s0, π) be any learning example from the
domain, which may or may not be a member of E. Let M ′ be the set of methods that
HTN-Maker learns from e when starting with M .

Then, if M can be used to solve a problem PH then M ′ can be used to solve PH as well.

Proof. If subsumption checking (see Section 3.4.3) is not enabled, then HTN-Maker never
erases a method and hence M ⊆ M ′. When subsumption checking is enabled, a method
m is never removed from the set of methods unless a method m′ is being added that is
applicable whenever m is applicable and that encodes the same problem-solving strategy.
Neither adding an additional method nor replacing a method with a more general version
can reduce the set of solvable problems.

Theorem 2. Let Σ be a classical planning domain description and T be a finite set of
annotated tasks for the domain.

Then, there exists a finite set of learning examples E for that domain such that the set of
methods M generated by HTN-Maker(Σ, E, T , ∅) can be used to solve the HTN equivalent
to every problem expressible using Σ and T .

Proof. Consider the set S of states in Σ and the set of goal statements G that have an
equivalent annotated task in T . Every solvable problem in Σ with an equivalent HTN
problem has the form P = (Σ, s0, g) where s ∈ S and g ∈ G. Because the sets S and G
are finite, there is a finite number of such problems. Let the set of learning examples E
consist of the initial state of each such problem paired with any solution to that problem.
Lemmas 3 and 4 state that the methods that HTN-Maker would learn from the set of
learning examples E can be used to solve the HTN equivalents of each of the problems that
form a learning example in E. We have previously shown that this includes every solvable
problem in the domain that has an HTN equivalent problem using tasks from T .

Intuitively, this means that HTN-Maker is able to learn a complete HTN description
of any classical planning domain. Although our theoretical result shows only that the worst
case requires learning from every problem in the domain, our experience indicates that far
fewer problems are needed in practice. In one experiment, we were able to solve all solvable
Logistics domain problems that required delivering a single package to a location after
learning from six carefully chosen learning examples.

B Classically-Partitionable Planning

Simple Task Network planning, using methods with totally ordered subtasks as discussed
in this paper, is strictly more expressive than classical planning, and general HTN planning
is even more expressive than STN planning (Erol et al., 1996). In general, HTN planning is
undecidable, STN planning is EXPSPACE-hard, and classical planning, even with macro-
operators, is NP-complete. In the rest of this section we formalize a class of planning
problems that are more expressive than classical planning but less expressive than general
STN planning, and show that the methods learned by HTN-Maker can be used to solve
planning problems in this class, even though they were learned from solutions to classical
planning problems.
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Consider again the Blocks-World planning domain, in which a robotic arm moves
blocks around on a table. Suppose we have a planning problem in which block A is initially
on the table and needs to be moved first to on top of block B, then to on top of block C,
then back to the table. This cannot be represented as a classical planning problem without
introducing function symbols into the representation language or otherwise modifying the
domain to directly encode information about what facts were true in previous states. On the
other hand, it could easily be represented as an HTN planning problem, where the initial
task network is <(Put-On-Block A B), (Put-On-Block A C), (Put-On-Table A)>. The
methods learned by HTN-Maker on learning examples from the classical Blocks-World
domain can be used by an HTN planner to solve problems of this form.

Figure 22: Expressivity of classically-partitionable planning problems.

We formalize the notion of the class of planning problems described above as follows.
Let ~G = 〈g0, g1, . . . gn〉 be a sequence of goal statements from a classical planning domain.

Then PP = (Σ, s0, ~G) is a classically-partitionable planning problem. A plan π is a solution
to PP if and only if π may be partitioned into a sequence of subplans 〈π0, π1, . . . , πn〉 such
that each πi is applicable in si and produces state si+1 such that si+1 |= gi.

Note that classically-partitionable planning problems appear in many planning domains,
including Logistics, Blocks-World, Rovers, and others that were used as benchmarks
in the past International Planning Competitions.

Given a classically-partitionable planning problem PP = (Σ, s0, 〈g0, g1, . . . , gn〉), and
a finite set of annotated tasks T , there is an equivalent HTN planning problem PH =
(ΣH , s0, 〈t0, t1, . . . , tn〉), where Σ = (S,A, γ), ΣH = (S,A, T,M, γ), each task in T has an
annotated version in T , and for each 0 < i ≤ n there exists an annotated task τ = (ti, ∅, gi) ∈
T . Informally, the initial task network of any equivalent HTN planning problem contains the
equivalent annotated task to each goal set in the classically-partitionable planning problem,
in the same order. For any classically-partitionable planning problem PP = (Σ, s0, ~G),
we can construct an equivalent HTN planning problem PH = (ΣH , s0, w0) by making an

equivalent annotated task for each goal set in ~G.

Theorem 3. Let PP = (Σ, s0, ~G) be a solvable classically-partitionable planning problem
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and T be a finite set of annotated tasks such that PH = (ΣH , s0, w0) is an equivalent HTN
planning problem to PP .

Then, there exists a finite set of learning examples E such that the set of methods M
learned by HTN-Maker(Σ, E, T , ∅) will allow an HTN planner to solve PH .

Proof. Theorem 2 guarantees that there exists a finite set of learning examples E such
that a set of methods M generated by HTN-Maker(Σ, E, T , ∅) can be used to solve the
HTN equivalent to every solvable classical planning problem expressible with Σ and T . We
will show that any set of methods that can solve the HTN equivalent to every classical
planning problem expressible with Σ and T can also solve the HTN equivalent to every
classically-partitionable planning problem expressible with Σ and T .

If PP has a single goal set, then the HTN equivalent to it is the same as the HTN
equivalent to the classical planning problem that uses that goal set. Thus, it can be solved
using M .

Suppose that PP has n > 1 goal sets and that this theorem has been proven for all
classically-partitionable planning problems with n − 1 goal sets. Then an HTN planner
using M can solve the HTN equivalent to the classically-partitionable planning problem
(Σ, s0, 〈g0, g1, . . . gn−1〉). Solving this produces a state s and an empty task network. If the

classically-partitionable planning problem had instead included goal set gn at the end of ~G,
then the planner would reach a point at which the current state is s and the current task
network is tn by following the same sequence of steps. This is itself the HTN equivalent to
a classical planning problem in the domain, and thus M can be used to solve it.

C Necessity Of Verification Tasks

In Section 4.1 we showed that any solution generated by a sound HTN planner on an HTN
planning problem using methods learned by HTN-Maker is guaranteed to be a solution to
the equivalent classical planning problem, but only because of the use of verification tasks
and verification methods. Without verification tasks, there are specific cases in which the
methods learned by HTN-Maker might be used to find a solution to an HTN planning
problem that is not a solution to the equivalent classical planning problem. This possibility
exists because in a sequence of nonprimitive subtasks, a particular valid reduction of a
later nonprimitive subtask may negate an effect of an earlier nonprimitive subtask that was
needed to accomplish the highest-level task. We now show a concrete example illustrating
this situation.

( :task Make-2Pile

:parameters (?x ?y)

:precondition ()

:postcondition (on ?x ?y) )

( :task Make-3Pile

:parameters (?x ?y ?z)

:precondition ()

:postcondition ( and

(on ?x ?y) (on ?y ?z) ) )

Figure 23: Alternate annotated tasks for the Blocks-World domain.

Consider the annotated tasks shown in Figure 23, which could be used in the Blocks-
World domain. These tasks are used for creating piles of varying numbers of blocks, but
unlike the task of Figure 5 these allow piles to be nested. That is, if A is on B and B is on
C, then A-B-C is a 3-pile, A-B is a 2-pile, and B-C is a 2-pile, and these statements are true
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A

B

C A

B

C

A

B

C

A

B

C

(!Stack B C) (!Pickup A) (!Stack A B)

State s0 State s1 State s2 State s3

Action a0 Action a1 Action a2

(Make-2Pile A B)

Method m0

(Make-3Pile A B C)

Method m1

Figure 24: An example plan in the Blocks-World domain with learned methods.

A

B

C A

B

C A B C

A

B C

A

BC

(!Unstack B C) (!Putdown B) (!Pickup A) (!Stack A B)

State s0 State s1 State s2 State s3 State s4

Action a0 Action a1 Action a2 Action a3

(Make-2Pile A B)

Method m2

(Make-2Pile A B)

Method m3

Figure 25: A second example plan in the Blocks-World domain with learned methods.
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( :method Make-3Pile

:parameters (?x ?y ?z)

:precondition ( and

(on-table ?x) (clear ?x)

(clear ?z) (holding ?y) )

:subtasks < (!Stack ?y ?z),

(Make-2Pile ?x ?y) > )

( :method Make-2Pile

:parameters (?x ?y)

:vars (?z)

:precondition ( and

(on-table ?x) (clear ?x)

(on ?y ?z) (clear ?y)

(hand-empty) )

:subtasks < (!Unstack ?y ?z),

(Make-2Pile ?x ?y) > )

Figure 26: Details of methods m1 (left) and m3 (right) from Figures 24 and 25.

regardless of whether or not there are additional blocks below C or above A. This is not
necessarily a wise way to define annotated tasks for the Blocks-World domain, but it is
legal.

Suppose that the learning example shown in Figure 24 were an input to HTN-Maker
with these annotated tasks. In addition to many others, HTN-Maker could learn methods
m0 and m1 shown in the figure. Further suppose that the learning example shown in
Figure 25 were an input to HTN-Maker with these annotated tasks. In addition to many
others, HTN-Maker could learn methods m2 and m3 shown in the figure.

Figure 26 shows the details of methods m1 (on the left) and m3 on the right. Method m1

seems logical: the first subtask puts the bottom part of the pile together, then the second
subtask completes the top part of the pile. But there is no way for this method to guarantee
that the way the planner chooses to accomplish the second subtask will not destroy the
bottom part of the pile. Indeed, method m3 does exactly that.

But methods m1, m2, and m3 could be used by a sound HTN planner to produce the plan
of Figure 27 when given that initial state and task. Note that (on B C) is not true in state
s5 of this figure, which means that the postconditions of the annotated task (Make-3Pile

A B C) do not hold. Thus, this plan is a solution to the HTN planning problem but not to
its equivalent classical planning problem.

D Experimental Domains

We used five different planning domains to experimentally evaluate HTN-Maker. The
HTN-Maker algorithm works only for planning domains that have a classical representa-
tion. It does not support conditional effects, numerical values, temporally-extended goals,
or other extensions included in the ADL language. Extending HTN-Maker to work in
domains that require this more expressive representation language remains future work.

The first, Logistics, was first introduced by Veloso (1994) and was used in the 2nd
International Planning Competition (IPC-2). In Logistics the objective is to deliver pack-
ages between locations in various cities using trucks for intracity transport and airplanes for
intercity (and possibly intracity) transport.

The second domain, Blocks-World, has long been used as a testbed and was also
used in IPC-2. This domain consists of a number of blocks sitting on a table (possibly on
top of each other) and a robotic hand that can grasp one block at a time. The objective is
to change the configuration of the blocks on the table using the robotic hand. While this
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A

B C

A

B C

(!Stack B C)(!Unstack B C)(!Putdown B) (!Pickup A) (!Stack A B)

State s0 State s1 State s2 State s3 State s4 State s5

Action a0 Action a1 Action a2 Action a3 Action a4

(Make-2Pile A B)

Method m2

(Make-2Pile A B)

Method m3

(Make-3Pile A B C)

Method m1

Figure 27: A plan generated from the methods learned in Figures 24 and 25.
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domain is conceptually simple, large problems remain quite a challenge for planners.
Satellite and Rovers were introduced for IPC-3. The Satellite domain involves

using instruments on satellites to record images of various types and targets. The Rovers
domain involves control of a set of robots navigating Mars, taking images as in the Satel-
lite domain and analyzing rock and soil samples from various locations.

The fifth, Zeno-Travel, was also first used in IPC-3. It uses airplanes to transport
passengers between cities. The interesting feature of the Zeno-Travel domain, in the
classical planning variant, is that moving an airplane requires the use of fuel, and thus
airplanes may need to be refueled between flights.

In the Logistics domain, our measure of problem size is the number of packages to be
delivered. In the Blocks-World domain, our measure of problem size is the number of
blocks to be reorganized. In the Satellite domain, our measure of problem size is the
number of images to be collected. In the Rovers domain, our measure of problem size
is the number of waypoints, each of which has a 33% probability of having a rock and/or
soil sample. In the Zeno-Travel domain, our measure of problem size is the number of
passengers to be transported. In each of these domains there are many factors that determine
the difficulty of a problem, but the feature we have chosen to measure problem size is that
which most directly matches the number of goals the planner must achieve. For example, at
each problem size in the Logistics domain, some problems have twelve locations and four
trucks divided between three cities, while others have twenty-three locations and six trucks
divided between four cities.

The formal notion of equivalence between a classical planning problem and an HTN
planning problem, as defined in Section 2.3, requires that there be a single task in the initial
task network of the HTN planning problem, and that the annotations on that task include
all of the goals of the classical planning problem. In practice, strictly following this scheme
can make the evaluation difficult. This would require the construction of one annotated task
for each possible goal atom, one annotated task for each conjunction of two goals, another
for each conjunction of three goals, and so forth.

We would like to be able to learn methods from solutions to problems with few goals and
use them to solve problems with many goals. Therefore, we have designed our annotated
tasks in such a way that an ordered sequence of tasks, each of which represents one goal, will
be equivalent to a single task that represents all of the goals together. In short, this means
that the tasks must be designed in such a way that nothing the planner does to accomplish
tasks ti through tn will remove the postcondition associated with task ti−1.

( :task Deliver-Pkg

:parameters ( ?obj ?dst )

:precondition ()

:postcondition

( obj-at ?obj ?dst ) )

Figure 28: Annotated tasks in Logistics

Figure 28 contains the only annotated task used for our experiments in the Logistics
domain, which causes a package ?obj to be at a location ?dst. For a classical planning prob-
lem with goals g0, g1, . . . gn, the initial task network of the pseudo-equivalent HTN planning
problem will consist of n instances of the Deliver-Pkg task with different parameters. The
ordering of these tasks is arbitrary. The nature of the Logistics domain is such that only
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two types of actions can remove the ( obj-at ?obj ?dst ) predicate: loading the object
into a truck and loading the object into an airplane. Taking either of these actions has
no effect on any object in the domain other than ?obj, and thus HTN-Maker will not
learn any method for accomplishing a delivery task that loads any package into a truck or
airplane other than the one that it is delivering. Thus, once an object has been delivered to
its destination the planner will not move it.

( :task Put-On-Table

:parameters ( ?b )

:precondition ()

:postcondition ( on-table ?b ) )

( :task Put-On-Block

:parameters ( ?b1 ?b2 )

:precondition ()

:postcondition ( on ?b1 ?b2 ) )

Figure 29: Annotated tasks in Blocks-World

The Blocks-World domain requires two tasks, which are shown in Figure 29. To
preserve the postconditions of earlier tasks when accomplishing latter tasks, they must be
serialized in a particular order: no block is placed until all blocks underneath it have been
placed. Similarly to Logistics, it is never beneficial to move a block unless it is either the
block that is being placed, currently above the block that is being placed, or currently above
the block it is to be placed upon. Thus, HTN-Maker will not learn a method that moves
a block that is not in one of these three categories. A block that is already in position
and that has all blocks below it already in position will never fall into such a category.
Thus, the more complex task shown in Figure 5 can be simulated with the sequence of tasks
<( Put-On-Table B ), ( Put-On-Block A B )>.

( :task Get-Image

:parameters ( ?dir ?mode )

:precondition ()

:postcondition

( have_image ?dir ?mode ) )

Figure 30: Annotated tasks in Satellite

Figure 30 contains the single annotated task used in the Satellite domain, which takes
an image in a certain direction ?dir of type ?mode. Once an image has been collected, there
is no action in the domain that can remove this fact. Therefore, this annotated task trivially
satisfies our requirements regardless of ordering.

Three tasks are needed to model the Rovers domain. Figure 31 shows these three
tasks, one of which is very similar to the task from the Satellite domain. The other
two cause a sample of soil or rocks to be collected from a location ?loc and information
about it communicated back to the base station.Once a sample or image of any type has
been collected and transmitted back to the lander, there is no action in the domain that
can remove this fact. Therefore, these annotated tasks trivially satisfy our requirements
regardless of ordering.

The annotated task for the Zeno-Travel domain is listed in Figure 32. It transports a
passenger ?p to a city ?c. Like the similar Logistics domain, there is no reason to move a
passenger that is currently in a city and not listed in the current task, so a passenger who
is at his destination will remain there regardless of task ordering.
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( :task Get-Soil-Data

:parameters ( ?loc )

:precondition ()

:postcondition

( comm_soil_data ?loc ) )

( :task Get-Rock-Data

:parameters ( ?loc )

:precondition ()

:postcondition

( comm_rock_data ?loc ) )

( :task Get-Image-Data

:parameters ( ?dir ?mode )

:precondition ()

:postcondition

( comm_image_data ?dir ?mode ) )

Figure 31: Annotated tasks in Rovers

( :task Transport

:parameters ( ?p ?c )

:precondition ()

:postcondition

( person-at ?p ?c ) )

Figure 32: Annotated tasks in Zeno-Travel

Although it is possible to define annotated tasks with richer semantics, for these exper-
iments we have chosen to provide the minimum amount of knowledge to our system. The
goals of a classical planning problem have no explicit ordering, but the tasks of a Simple
Task Network problem do have a strict ordering, which must be provided by the prob-
lem’s author. As discussed above, we used an arbitrary ordering in all domains except for
Blocks-World. In some circumstances this might be considered to give our STN planner,
HTN-Solver, an advantage, because it does not need to waste time attempting possible
goal serializations that cannot be completed. In other circumstances this puts HTN-Solver
at a disadvantage, because it will be unable to interleave actions that accomplish multiple
subgoals as a classical planner would.

53


