
 1 

Applying Dynamic Training-Subset Selection Methods Using Genetic 

Programming for Forecasting Implied Volatility 

Sana Ben Hamida (sana.ben_hamida@u-paris10.fr) 

Paris West University, Department of Mathematics and Computer Science, NANTERRE, FRANCE 

 

Wafa Abdelmalek (wafa.abdelmalek@fsegs.rnu.tn) 

Research Unit MODESFI, Faculty of Economics and Business, SFAX, TUNISIA 

 

Fathi Abid (fathi.abid@fsegs.rnu.tn) 

Research Unit MODESFI, Faculty of Economics and Business, SFAX, TUNISIA 

 
Abstract:  

Volatility is a key variable in option pricing, trading and hedging strategies. The purpose of this paper is to 

improve the accuracy of forecasting implied volatility using an extension of genetic programming (GP) by 

means of dynamic training-subset selection methods. These methods manipulate the training data in order to 

improve the out-of-sample patterns fitting. When applied with the static subset selection method using a single 

training data sample, GP could generate forecasting models which are not adapted to some out-of-sample 

fitness cases. In order to improve the predictive accuracy of generated GP patterns, dynamic subset selection 

methods are introduced to the GP algorithm allowing a regular change of the training sample during evolution. 

Four dynamic training-subset selection methods are proposed based on random, sequential or adaptive subset 

selection. The latest approach uses an adaptive subset weight measuring the sample difficulty according to the 

fitness cases’ errors. Using real data from S&P500 index options, these techniques are compared to the static 

subset selection method. Based on MSE total and percentage of non fitted observations, results show that the 

dynamic approach improves the forecasting performance of the generated GP models, especially those obtained 

from the adaptive-random training subset selection method applied to the  whole set of training samples.   

 

Keywords: Genetic Programming, implied volatility forecast, static training-subset selection, 

dynamic training-subset selection, mean squared errors, percentage of non fitted observations. 

 

 

I. INTRODUCTION 

Financial market volatility is a key variable in financial investment decisions and plays a central 

role in derivative valuation and in conducting dynamic hedging strategies. To assess the fair value of 

an option or to hedge market risk, an investor needs to specify his expectations regarding future 

volatility. Due to their forward-looking nature, option prices are especially useful for extracting such 

information. A number of investigations supported the idea of using implied volatility as a good 

predictor of future volatility (Latané and Rendelman (1976), Chiras and Manaster (1978), Fleming 

(1993), Blair et al. (2001), Corrado and Miller (2005)). Assuming that an option pricing model 

correctly represents investors’ behavior, the implied volatility can be derived from observed option 

prices by appropriately inverting the option pricing model. In contrast, Genetic Programming (GP) 

offers explicit formulas which can compute directly the implied volatility expressed as a function of 

option prices and other observable variables. This volatility's forecasting approach should be free of 

strong assumptions and more flexible than parametric models. GP (Koza (1992)) is an evolutionary-

based search technique which is based on the principles of natural evolution. Using its basic and 

flexible tree-structured representation, GP is capable of solving some difficult problems without 

requiring the user to know or specify the form or the structure of the solution in advance. 

 GP has proved successful at forecasting time series volatility in different markets, such as foreign 

exchange and index markets. Neely and Weller (2002) have tested the forecasting performance of GP 

for USD-DEM and USD-YEN daily exchange rates against that of the generalized autoregressive 

conditional heteroskedasticity (GARCH) model (Baillie et al. (1996))  and a related RiskMetrics 

volatility forecast over different time horizons. According to various accuracy criteria, GP has 

produced significantly superior results. Using high frequency foreign exchange USD-CHF and USD-
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JPY time series, Zumbach et al. (2001) have compared the GP forecasting accuracy to that of 

historical volatilities and some popular autoregressive conditional heteroskedasticity (ARCH) type 

models, notably the generalized ARCH (GARCH (1,1)) model of Bollerslev (1986), the fractionally 

integrated GARCH (FIGARCH) model of Baillie et al. (1996) and the heterogeneous ARCH 

(HARCH) model of Müller et al. (1997). According to the root-mean squared errors, the generated GP 

volatility models have outperformed the benchmarks. Using historical returns of Nikkei 225 and 

S&P500 indices, Chen and Yeh (1997) have applied a recursive genetic programming (RGP) approach 

to estimate volatility by simultaneously detecting and adapting to structural changes. Results have 

shown that RGP is a promising tool for the study of structural changes. Applying a combination of 

techniques such as evolutionary algorithms GA and GP, Ma et al. (2006, 2007) have proposed a 

systematic approach to address specifically nonlinear problems in the forecast of financial  indices 

using intraday data of S&P100 and S&P500 indices. As a result, accuracy of forecasting has reached 

an average of over 75% surpassing other publicly available results on the forecast of any financial 

index. Abdelmalek et al. (2009) have extended the studies mentioned earlier by forecasting the implied 

volatility of Black-Scholes from the S&P500 index call options instead of the integrated volatility 

based on historical returns. They have considered the problem of managing too large databases when 

training GP. As a consequence, they have proposed to split data into smaller subsets by time series and 

moneyness-time to maturity classes and to train GP separately on all learning sub-samples. The 

proposed approach is called static training-subset selection method. According to total and out-of-

sample mean squared errors (MSE), results have shown that time series models seem to be more 

accurate in forecasting implied volatility than moneyness-time to maturity models. Such an approach 

has provided some local solutions not adaptive to the enlarged data set, especially when learning with 

a moneyness-time to maturity sample. According to Gilli (2010), the relationship between in-sample 

fit and out-of-sample performance is not monotonous and an optimal in-sample solution might be 

ineffective when applied to out-of-sample data. 

  The present paper investigates the application of a dynamic subset selection method, in which the 

training subset samples change during the GP run. This allows GP to learn simultaneously on all 

training sub-samples rather than just a single subset, which seems to have better generalization ability. 

This technique aims to intensify search space exploration and thus enhance the robustness of GP with 

large data set. Robustness is an important feature of an evolved program (Ito et al. (1996)). It is 

defined as the ability to cope with noisy or unknown situations. The use of the dynamic training-subset 

selection method could reduce the problem of fitting out-of-sample patterns and could improve the 

forecasting accuracy. The major contribution of this paper is the use of the Adaptive Subset Selection 

method (ASS) which is performed in proportion to a ratio of difficulty associated to each training 

sample. Two other selection methods are used for purposes of comparison: the Random Subset 

Selection method (RSS) where samples are selected in a random way and the Sequential Subset 

Selection method (SSS) where samples are selected in a regular way. Comparative experiments are 

provided to show how dynamic training subset-selection methods are applied to improve the 

robustness of GP to generate general models relative to static training-subset selection method. Using 

Total MSE and percentage of non fitted observations (NFO) as performance criteria, results show that 

the forecasting accuracy is improved with the Adaptive Subset Selection method (ASS). 

The remainder of the paper is organized as follows. Section 2 presents the research objectives and 

theoretical foundation regarding forecasting implied volatility and usefulness of subset selection 

methods. Section 3 illustrates the research design and methodology. Section 4 provides a description 

of the dynamic subset selection methods implemented. Section 5 reports and discusses the results of 

the comparison between static and dynamic selection methods. Finally, section 6 summarizes and 

gives perspectives. 

II. RESEARCH OBJECTIVES AND THEORETICAL FOUNDATION 

 This paper addresses the application of GP by means of a dynamic subset selection method for the 

purposes of forecasting implied volatility. The objective is to improve forecasting accuracy.   

In financial volatility forecasting, it is important to find accurate models fitting a maximum number of 

input cases from learning data. The goal is to correctly predict the volatility of new input data. By 

considering the assumption that there are inherently many different patterns in financial series 
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(Povinelli (1999)), instead of using one formula (model) to explain the entire data, a better idea would 

be to select a set of best models that could be combined and used to forecast future implied volatility 

values. As a consequence, the main interest of this work lies in applying a dynamic subset selection 

method for training GP on the full training samples, so that the entire input data become in-learning-

sample. The main contribution of this paper is the use of the adaptive subset selection method. This 

method is inspired by the dynamic subset selection proposed by Gathercole and Ross (1994). It is 

based on the assumption that there is a benefit in focusing the GP's abilities on difficult training 

samples, i.e., the ones that have the highest MSE. The challenge is to make GP adaptive to all training 

samples and be able to generate general models. The originality of this method is to assign weights to 

each training subset and update these weights through the generations. Initial weight is assigned 

according to the initialization method adopted (random or sequential) and increases each time an 

individual is not able to solve the corresponding fitness sample cases. This approach lightens the 

training task for GP and favors the discovery of solutions that are more robust across different data 

samples.  

In the following sub-sections, background information regarding implied volatility is first introduced. 

Second, a discussion about the usefulness of subset selection methods is made. This is to explain the 

originality of the dynamic selection methods created versus the use of previous sampling methods. 

2.1. Implied volatility 

There are two approaches to generate volatility forecasts. One is to extract information about the 

variance of future returns from their history; the second is to elicit market expectations about the 

future volatility from observed option prices. Options markets provide market participants and policy-

makers with a rich source of information for gauging market sentiment. An option contract is a 

derivative security that gives the holder the right to buy (call) or to sell (put) the underlying asset by a 

certain date for a certain price. The price in the contract is known as the exercise price or strike price. 

The date in the contract is known as the expiration date or maturity. American options can be 

exercised at any time up to the expiration date. European options can be exercised only on the 

expiration date itself. Options contracts can be divided into several classes according to either 

moneyness or term to expiration. By the term to expiration, an option contract can be short-term (ST), 

medium-term (MT) and long-term (LT). By the moneyness, a call option can be in-the-money (ITM) 

if the stock price is above the strike price (S>K), out-of-the-money (OTM) if the stock price is below 

the strike price (S<K) and vice versa for a put option. If the strike price is closest to the current value 

of the underlying stock (S=K), the option contract is said to be at- the- money (ATM). The difference 

between the stock price and the strike price represents the intrinsic value for a call option. It can be a 

positive number, or zero otherwise. The total value of an option called premium is basically the sum of 

its intrinsic value and its time value. 

In the Black-Scholes (BS) framework, the option price is a function of variables which are directly 

observable except for the volatility. The price of an option therefore depends on the market’s opinion 

about the future volatility of the underlying asset upon which the option is written.  

The Black-Scholes (1973) option pricing model assumes that volatility is constant. It was first derived 

for the European call option written on a non-dividend paying stock, as defined in equation (1).  
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BSC  denotes the price of a European call option, S is the market price of the underlying asset, K is the 

strike price of the option, r is the risk-free interest rate,  is the time to maturity, is the cumulative 

normal distribution function and σ is the volatility.  

By equating the observed market price 
*

tC  of an option with the BS price BSC and implicitly solving 

for σ, an implied volatility can be found.  
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According to the BS assumptions, this implicitly calculated volatility should be constant. However, it 

can be easily shown empirically that the implied volatility is not constant and changes with different 

option strike prices and expiry dates. For example, short-dated options will be less sensitive to implied 

volatility, while long-dated options will be more sensitive. This is based on the fact that long-dated 

options have more time value priced into them, while short-dated options have less. 

Besides, options with strike prices that are near the money are most sensitive to implied volatility 

changes, while options that are further in-the-money or out-of-the-money will be less sensitive to 

implied volatility changes. 

Implied volatility represents the expected volatility of a stock over the life of the option. As 

expectations change, option premiums react appropriately. Implied volatility is directly influenced by 

the supply and demand of the underlying options and by the market's expectation of the share price's 

direction. As expectations rise, or as the demand for an option increases, implied volatility will rise. 

Options that have high levels of implied volatility will result in high-priced option premiums. 

Conversely, as the market's expectations decrease, or demand for an option diminishes, implied 

volatility will decrease. Options containing lower levels of implied volatility will result in cheaper 

option prices. This is important because the rise and fall of implied volatility will determine how 

expensive or cheap time value is to the option. 

2.2. Subset selection methods: a discussion 

       Evolving programs is often a time consuming task, in particular in terms of fitness evaluation’s 

effort. When using GP with a large set of training cases and a large population size, a very large 

number of tree evaluations must be carried out every generation. Many methods try to reduce the 

number of such evaluations by selecting a small subset of the training data set during fitness 

evaluation.These methods differ in how they choose proper subsets from the set of all fitness cases
1
 for 

evaluation. The simplest technique is to use a static subset. However, using a single learning sample 

might lead to a local optimum that solves only a part of the fitness cases. To reinforce learning from 

different parts of the search space, some solutions were proposed such as carrying out several runs 

using one subset for each run and selecting the appropriate model from different resulting models 

(Abdelmalek et al. 2009). The Historical subset selection (Gathercole and Ross, 1994) extends the 

static subset selection by recording all fitness cases that are not solved by the best population member 

in any given generation over a small number of runs. These fitness cases become part of a static subset 

and are used in further GP runs.  

A more flexible method is to pick a variety of subsets during the course of a training run. There are 

many ways to select different subsets from the training set. The goal is to pick the right subsets to 

allow the learning algorithm to proceed as fast and as accurately as possible. The simplest method for 

picking a different set for each generation is random. Random subset selection (Gathercole and Ross, 

1994) chooses a new subset for each generation. Each learning data instance is selected independently 

with equal probability, which leads to varying subset sizes. Stochastic sampling (Nordin and Banzhaf, 

1997; Banzhaf et al., 1998) chooses a new subset for each generation and for each individual, 

respectively, where all data cases having the same probability of being selected. As a result, different 

individuals will probably be evaluated on different data samples, which cast some doubts on the 

fairness of the selection step in the evolutionary algorithm (section 3.2).  

More efficient criteria can be used to guide the selection of the new subset based on fitness-case 

topology or the performance of the current GP population. Fitness-case-topology based sampling 

(Lasarczyk and al., 2004) relies on creating a dynamic weight for each couple of fitness case that is 

updated by the evolutionary system according to the number of GP solutions able to solve both of the 

fitness cases of each couple. The learning subset is constructed by a random selection from the set of 

couples with small weights. Dynamic subset selection (Gathercole and Ross, 1994; Gathercole and 

                                                 
1
 A fitness case is an input/output pair, which measures how well an evolved individual predicts the output(s) 

from the input(s). 

http://www.investopedia.com/terms/i/inthemoney.asp
http://www.investopedia.com/terms/o/outofthemoney.asp
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Ross, 1997; Gathercole, 1998) makes use of the difficulty of each training case, i.e. how often it is 

misclassified, and its age, i.e. how many generations since it was last selected. This has worked well 

on some large classification problems, using less computer resources to produce better results than 

standard GP. 

However, the re-sampling procedure during the course of a training run increases the complexity of 

the GP system and requires the entire data set to be stored in the main memory. With GP systems, 

using the full learning data might be impossible when the input sample does not fit within the main 

memory and could cause serious problems in the realization of predictors. In this case, data reduction 

through the partitioning of the data set into smaller subsets seems to be a good approach (Abdelmalek 

et al. (2009)). 

In this paper, we suggest to construct subset data with a fixed size from the full database using data 

division schemes and to apply dynamic training-subset selection methods to select subsets already 

built up for learning process. With dynamic subset selection methods, a new subset is picked each g 

generations (g is the number of generations to change sample). These methods can be used to prevent 

a biasing influence of subset selection in evolution. These methods differ from the existing approaches 

as they don’t extract a fixed number of fitness cases from the training set, but select a subset from a set 

of sub-samples data already built up using the data division scheme, which avoids increasing the 

complexity of the GP engine. In this paper, we proposed four dynamic training-subset selection 

methods: Random Subset Selection method (RSS), Sequential Subset Selection method (SSS), 

Adaptive-Sequential Subset Selection method (ASSS) and Adaptive-Random Subset Selection method 

(ARSS). The RSS and SSS allow the genetic programming to learn on all training samples sequentially 

(SSS) or randomly (RSS). However, with these methods, there is no certainty that GP will focus on the 

samples which are difficult to learn. Then, the ASSS and the ARSS, which are variants of the adaptive 

subset selection (ASS), are introduced to focus the genetic programming’s attention onto the difficult 

samples i.e. having the greatest MSE and then to improve the learning algorithm. An adaptive weight 

is associated to each subset (Adaptive Subset Weight) and updated each generation according to the 

average fitness of the all cases in the corresponding sample.  

III. RESEARCH DESIGN AND METHODOLOGY 

 To achieve the research goals presented above, we followed three steps. The initial stage is devoted 

to the data preparation, to the implementation of GP
2
 and to the subset selection procedures. The 

second step is devoted to the learning process using static and dynamic subset selection methods. The 

last step is dedicated to results comparison and the selection of the best forecasting models. The 

following research steps are summarized in the scheme below. 

 

 

 

 

 

 

 

 

 

3.1. Data preparation 

 The data used to perform our empirical analysis are daily prices of European S&P500 index calls 

options, from the Chicago Board of Options Exchange (CBOE), for the sample period running from 

January 2, 2003 to August 29, 2003. The database includes the time of the quote, the expiration date, 

the exercise price and the option price. Similar information for the underlying S&P 500 index is also 

                                                 
2
 GP system is built around the Evolving Object library, which is an ANSI-C++ evolutionary computation 

Framework (EO library). 
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available on a daily basis. The daily bid and ask quotes for the call options are obtained from the 

CBOE. Following a standard practice, we use the average of an option’s bid and ask price as a stand-in 

for the market value of the option. Strike price intervals are 5 points, and 25 for far months. The 

expiration months, are three near term months followed by three additional months from the March 

quarterly cycle (March, June, September, and December). The risk free interest rate is approximated 

by using 3 month US Treasury bill rates.  

Two preparation procedures have been applied to the data before use, preprocessing and division. 

The data preprocessing serves the purpose of “smoothing” the raw data and removing what is not 

essential, before the machine learning algorithm is applied. It is widely accepted that preprocessing is 

usually beneficial and has positive effects on the learning process (Chen et al. (2007)).    

The original training set contains 42504 daily observations of call option prices and their 

determinants. To reduce the likelihood of errors, data screening procedures are used (Harvey and 

Whaley (1991, 1992)). Then, four exclusion filters are applied to construct the final sample. First, call 

options with time to maturity less than 10 days are excluded from the sample. This can be explained 

by the fact that implied volatilities of short-term options are very sensitive to small errors in the call 

price and may convey liquidity-related biases. Second, call options with low quotes are eliminated to 

mitigate the impact of price discreteness on option valuation. Third, deep-ITM and deep-OTM option 

prices are also excluded due to the lack of trading volume. Finally, option prices not satisfying the 

arbitrage restriction (Merton (1973)),
rKeSC  , are not included. The final sample contains 6670 

daily option quotes, with at-the-money (ATM), in-the-money (ITM) and out-of-the-money (OTM) 

options respectively taking up 37%, 34% and 29% of the total sample. 

 For the data sub-sampling procedure, two schemes were used. For the first division scheme, the 

full sample is sorted by time series (TS), and for the second, by moneyness-time to maturity (MTM). 

For time series, data are divided chronologically into successive samples (S1, S2… S10), each 

containing 667 daily observations. These samples will be used simultaneously for training and test 

steps. For moneyness-time to maturity, data are divided into nine classes with respect to moneyness 

and time to maturity
3
. Each class Ci is divided into a training set Ci

L
 and a test set Ci

T
, which produces 

respectively nine training and nine test moneyness- time to maturity sub-classes. Figure 1 illustrates 

the two division schemes. 

  

 

 

 

 

 

 

 
 

 

Figure 1: Data division schemes 

3.2. The design of genetic programming 

     There are several GP techniques that might be used to deal with financial forecasting. People are 

familiar with regression analysis. One problem with regression analysis is that the results of the 

analysis depend very much on the skills and inventiveness of the experimenter. Furthermore, in many 

application areas there is a considerable tradition of using only linear or quadratic models, even when 
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the data might be better fitted by a more complex model. Symbolic regression attempts to go beyond 

this. It consists in finding a function that fits some target values without making any assumptions 

about the structure of that function. Symbolic regression was one of the earliest applications of GP 

(Koza, 1992), and has continued to be widely studied (Cai et al. (2006); Gustafson et al. (2005); 

Keijzer (2004); Lew et al. (2006)). The steps necessary to implement the GP's symbolic regression are 

summarized in algorithm 1.  

 

Initialize population 

while (termination condition not satisfied) do 

begin 

Evaluate the performance of each individual according to the fitness criterion 

Until the offspring population is fully populated do  

  - Select individuals in the population using the selection algorithm 

  - Perform crossover and mutation operations on the selected individuals 

  - Insert new individuals in the offspring population 

      Replace the existing population by the new population 

end while 

Report the best solution found 

end 

Algorithm 1: Pseudo code of Genetic Programming. 

Terminal and function sets  
The standard GP tree is a simple structure, made by terminal (or leaf) nodes, and non-terminal (or 

function) nodes with branches. Terminal and function sets, which are described in Table 1, define the 

ingredients that GP can use to create function models and to construct potential solutions.   

 

Expression Definition 

Terminal 

Set 

C/K Call price / Strike price 

S/K Index price / Strike price 

  Time to maturity 

Function 

Set 

+ Addition 

- Subtraction 

* Multiplication 

0
0  Protected division: x 0

0 y = 1 if y=0;   x 0
0 y =  x 0

0 y otherwise 

cos Cosinus function  

Sin Sinus function 

ln Protected natural log:    xx lnln   

Exp Exponential function:   xex exp  

Sqrt Protected square root: xx   

Ncdf Normal cumulative distribution function   

 

Table 1: Terminal set and function set. 
 

The terminal set includes input variables, mainly, the call option price divided by strike price
K

C , the 

index price divided by strike price 
K

S

 
and time to maturity . The predictive target output is the 

implied volatility 
BS

t computed using the Black-Scholes formula. The function set includes basic 

mathematical operators and Black Scholes components. The mathematical operators we use are the 

basic arithmetic operators together with the cosine functions and the sine functions. The Black Scholes 

components involve the log function (ln), the exponential function (exp), the square root function 
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  and the normal cumulative distribution function ( ), which may be useful for implied volatility 

models. 

Initialization 

GP starts by randomly creating an initial population of trees, which are generated by randomly 

picking nodes from a given terminal set and function set (table 1). The initialization scheme used in 

this paper is the ramped half-and-half method (Koza (1992)), which is a combination of the full and 

grow initialization methods. This method involves generating an equal number of trees using a 

maximum initial depth that ranges from 2 to 6, as specified in Table 2. For each level of depth, half of 

initial trees are generated via the full method, and the other half is generated via the grow method.  

Fitness function 

 The evolutionary process is driven by a fitness function that evaluates the performance of each 

individual (tree) in the population. The fitness criterion used for the selection of the best individuals is 

the mean squared error (MSE) between the target output volatility (
BS

t ) and the generated GP 

volatility ( t̂ ), computed as follows:  

                                                                  
2N

1t
t

BS

t
ˆ

N

1
MSE 


                                                   (3)                                                                                                           

Where, N is the number of fitness cases in the learning sample. At the end of evolution, each 

individual is evaluated according to the MSE computed with the equation (3) using a test sample 

which must be different from the learning sample.  

Selection 

Based on fitness measure, GP probabilistically selects the fitter individuals from the population to 

act as the parents of the next generation. Selection determines which individuals of the population will 

have all or some of their genetic material passed to the next generation. In general, parents displaying 

a higher level of performance are more likely to be selected with the hope that they can produce better 

offspring with larger chance. The most commonly used method for selecting individuals in GP is 

tournament selection. In tournament selection, a number of individuals, called the tournament size, are 

selected randomly from the population and they compete with each other. The best is to be selected. 

As specified in Table 2, the tournament size used for experiments is equal to 4. 

 

Genetic operators 
 Crossover and mutation are the two basic operators which are applied to the selected individuals in 

order to generate new individuals for the next generation. They are needed to explore the search space.  

Crossover operator:    

The most commonly used form of crossover is subtree crossover. Given two parents, subtree crossover 

randomly selects a crossover point (a node) in each parent tree. Then, it creates the offspring by 

replacing the subtree rooted at the crossover point in a copy of the first parent with a copy of the 

subtree rooted at the crossover point in the second parent. All non-terminal nodes (except the root 

node) have the same probability to be selected. The generated offspring should not surpass the fixed 

size. As indicated in Table 2, the crossover operator is used to generate about 60% of the individuals 

in the population. 

The maximum tree size (measured by depth) allowed after the crossover is 17. This is a popular 

number used to limit the size of the tree (Koza (1992)). It is large enough to accommodate 

complicated formulas and works in practice. 

Mutation operator:  

The basic role of the mutation operator in the evolutionary process is to ensure diversity in the 

population. It affects small random changes in a tree by randomly altering nodes or sub-trees to create 

a new offspring and continue the search process. Many mutation operators are used in GP. The most 

commonly used form of mutation in GP is subtree (or branch) mutation. It replaces a randomly 

selected subtree with another randomly created subtree (Koza (1992)). Another common form of 
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mutation is point mutation (or node replacement), which randomly changes a node in the individual 

and replaces it with another node with the same arity (McKay et al. (1995)). Expansion mutation 

randomly selects a terminal node in the tree, and then replaces it with a new randomly-generated 

subtree. As indicated in Table 2, Branch mutation is applied with a rate of 20%; Point and Expansion 

mutations are applied with a rate of 10% respectively. 

The parameter choices for crossover and mutation are clearly critical in ensuring a successful GP 

application. They impact on populational diversity and the ability of GP to escape from local optima 

(Yin et al. (2007)).  

Replacement 

Once the new population has been created, the current population (parents) is replaced by the new 

one (offspring). We use a comma replacement method to replace parents for the next generation 

(Schwefel (1995)). This method selects the best offspring to replace the parents. If µ is the population 

size and λ is the number of new individuals (which can be larger than µ), the population is constructed 

using the best µ out of the λ new individuals.  

Termination criterion 

The termination criterion we use is the maximum number of generations to be run. We take 400 

and 1000 for static and dynamic training-subset selection, respectively. In the dynamic training- subset 

selection approach, the maximum number of generations is increased to allow GP to train on the 

maximum of samples simultaneously. Typically, the single best-so-far individual is then obtained and 

designed as the result of the run. 

Parameters of the GP design used in this work are summarized in Table 2. The optimal set of genetic 

parameters is determined based on a series of trial and error experiments. 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 

Table 2 : Summary of GP parameters. 

IV.  DESCRIPTION OF DYNAMIC TRAINING-SUBSET SELECTION METHODS 

 To implement the dynamic training-subset selection methods, two supporting decision-designs are 

necessary to be fixed. First, the frequency of the replacement of the current training subset; such a 

frequency is designed by a fixed iteration number (g) added as a parameter to the GP system. The 

value of this parameter must be chosen such as the GP system has enough time to adapt the genetic 

material in the population to make it able to solve the current subset. However, g does not have a very 

high value in order to keep the population diversity necessary for the next learning step.  

 Second, the procedure of replacement and selection of the new training sample is determined. To 

design the subset replacement protocol, two approaches are available. In the first approach, all sub-

samples are treated equally. Sub-samples are then selected with a uniform probability (Random Subset 

Selection method or RSS) or in a regular way, by taking the samples in turn (Sequential Subset 

Selection method or SSS). In the second approach, subset selection is performed proportionally to a 

predefined ratio of difficulty (Adaptive Subset Selection method or ASS). It involves an Adaptive 

Population size: 

Offspring size: 

Generations' number for static method: 

Generations' number for dynamic method: 

Generations' number to change sample  

Maximum depth of new individuals: 

Maximum depth of the tree: 

Tournament size: 

Crossover probability: 

Mutation probability: 

Branch mutation: 

Point mutation: 

Expansion mutation: 

100 

200 

400  

1000  

20-100 

6 

17 

4 

60% 

40% 

20% 

10% 

10% 
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Subset Weight updated at each g generations, according to the fitness of the best current model 

computed according to all observations in each subset. The lower the sample performance is, the 

higher the selection pressure is. Samples having a great weight are selected more frequently in the 

learning process. The goal of this approach is to focus on the samples having the fitness cases the most 

difficult to learn. The GP is then guided to adapt its models to the more difficult samples. Only the 

individuals with the desirable characteristics that are well adapted to the environmental change will 

survive. Thereby, the problem of over-fitting that can be encountered with the static subset selection 

can be prevented. We have two variants of ASS: Adaptive-Sequential Subset Selection method (ASSS) 

and Adaptive-Random Subset Selection method (ARSS), differing on the initialization procedure of the 

sample weights. The operating principle of the dynamic selection is as follows. 

 Let S be the set of training samples Si (i=1…k), where k is the total number of samples. A selection 

probability P (Si) is assigned to each sample Si which is changed each g generation (g is the number of 

generations to change sample) according to the dynamic training-subset selection method used. Once a 

new training sample is selected, the best individuals are used as population for the next training 

samples. This procedure is repeated until the maximum number of generations is reached. This permits 

GP to adapt its generating process to changing data in response to feedback from the fitness function.  

To decide the training subset to select with the ASS method, an Adaptive Subset Weight (ASW) is 

computed for each subset according to the MSE values obtained along the last g generations.  The 

ASW and the four proposed methods, RSS, SSS, ASSS and ARSSS, are described in the following. 

4.1. Adaptive Subset Weight 

For Adaptive Subset Selection method, the selection probability depends on the subset weights 

computed proportionally to the sample's average fitness. After g generations, the weight of the 

learning sample Si is updated as follows:  

                                                               
 

g*M

Xf

SW

g

1t

M

1j
j

i







                                                               (4) 

Where M is the population size, g is the number of generations to change sample, and  
jXf  is the 

MSE of the individual
jX , where

tj PX  (
tP  is the current population). 

If several individuals in the population have difficulty to solve some fitness cases in a sample Si, then 

this sample will have a high subset weight and a great probability to be selected for the next learning 

step.  

The update of the subset weights does not increase the complexity of the GP program and does not 

need   additional computational cost as some dynamic subset selection methods yet proposed in the 

literature (Gathercole and Ross, 1997; Lasarczyk and al., 2004). Indeed, the individuals’ fitness (used 

in equation (4)) are computed by the GP system and the subsets selection probabilities are computed 

only each g generation. 

4.2. Random training-Subset Selection method (RSS):  

 This method randomly selects the training samples with replacement. All the samples from S have 

the same probability to be selected: P (Si) =1/k, 1≤ i ≤ k. Figure 2 illustrates an example of the best 

fitness (MSE) curve along evolution using the RSS method. As selection of training samples is 

random, the performance of the current population changes with the training sample used for evolving 

the genetic program.  
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Figure 2: Example of fitness curve of the best individuals generated by GP using RSS method for TS samples 

 

4.3. Sequential training-Subset Selection method (SSS)  

 This method selects all the training samples in turn. All the learning subsets are used during the 

evolution in an iterative way. If, at generation g-1, the current training sample is Si, then at generation 

g: P (Sj) = 1, with j= i+1 if i<k, or j=1 if i=k. Figure 3 illustrates an example of the best fitness (MSE) 

curve along evolution using the SSS method. It shows that all the learning subsets are used during the 

evolution in an iterative way.  

 

 

 
 

Figure 3: Example of fitness curve of the best individuals generated by GP using SSS method for MTM classes 

 

4.4. Adaptive training-Subset Selection method (ASS):  

Instead of selecting a training subset data in a random or sequential way, one can use an adaptive 

approach to dynamically select “difficult” training subset data having high fitness errors (MSE). This 

approach is inspired by the dynamic subset selection method of Gathercole and Ross (1994), which is 

based on the idea of dynamically selecting instances, not training samples, which are difficult and/or 

have not been selected for several generations. ASS simplifies this method by selecting training 

samples, not instances, containing unsolved fitness cases.  

Selection is made according to the Adaptive Subset Weight (ASW). After g generations, training 

samples are re-ordered, so that the most difficult training samples, those having  higher ASW, will be 

moved to the beginning of the ordered training list, and the easiest training samples, those having 

smaller ASW, will be moved to the end of the ordered training list. 
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a. Adaptive-Sequential training-Subset Selection method (ASSS):  

 The initial weights are initialized with a constant and the selection of samples is done in an iterative 

way: W(Si) = C, 1≤ I ≤ k. Then, for the k first generations, selection of training samples is made in the 

order using the SSS method (subsection 4.1). Later, from the generation k+1, samples are selected for 

the next step according to the adaptive approach based on the re-ordering procedure (equation (4)). 

Figure 4 illustrates an example of the best fitness (MSE) curve along evolution using the ASSS 

method. 
 

 
 

Figure 4: Example of curve fitness of the best individuals generated by ASSS method for TS samples 

 

b. Adaptive-Random training-Subset Selection method (ARSS):  

 The ARSS method uses the same procedure as the ASSS method, except that the initial weights are 

generated randomly at the start of running, rather than initialized with a constant: For t=0,

    .ki1,1,0P
~

,P
~

SW iii  Then, for the few first generations, samples are selected using the RSS 

method (subsection 4.2). After, the selection of samples is made using the adaptive approach based on 

the re-ordering procedure (equation (4)). Figure 5 illustrates an example of the best fitness (MSE) 

curve along evolution using ARSS method. 

 

Figure 5: Example of curve fitness of the best individuals generated by ARSS method for MTM classes 

 

 

V. FINDINGS AND RESULTS ANALYSIS 

5.1.  Experiments 

 The experiments were performed in two major phases: static subset selection experiments (phase 1) 

and dynamic subset selection experiments (phase 2). 
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Phase 1: First, the genetic program is trained separately on each of the first nine TS sub-samples 

(S1,…, S9) using ten different seeds and is tested on the subset data from the immediately following 

date (S2,…, S10). Second, using the same genetic parameters and the random seeds applied on TS data, 

GP is trained separately on each of the first nine MTM sub-classes (C1
L
,…, C9

L
) and is tested on the 

second nine MTM sub-classes (C1
T
,…, C9

T
). Actually, each sub-sample is independently evolvable by 

GP and the best individual generated from each sub-sample is selected. 

Phase 2: First, the genetic program is trained on the first nine TS sub-samples simultaneously 

(S1,…, S9) using ten different seeds and it is tested only on the tenth sub-sample data (S10). Second, GP 

is trained on the first nine MTM sub-classes simultaneously (C1
L
,…, C9

L
), and it is tested on the 

second nine MTM sub classes regrouped in one test sample data (C1
T 

+ C2
T
 …+ C9

T
). Third, GP is 

trained on both the nine TS sub-samples and the nine MTM sub-classes simultaneously (S1, …, S9 ; 

C1
L
, …, C9

L
 ), and it is tested on one test sample data composed of the TS and MTM test data (S10  + 

C1
T 

+ C2
T
 …+ C9

T
). 

 

Table 3 summarizes the training and test data samples used for static and dynamic training-subset 

selection methods respectively. 

 

 
Subset Selection Learning data sample Test data sample 

Static Subset 

Selection 

1. Si   TS samples (S1, …, S9) 

(1 subset for a run) 

The successive TS sample Sj, j=i+1 

2. Ci
L
   MTM training samples  

(C1
L
, …, C9

L
)   (1 subset for a run) 

The corresponding MTM test  sample Ci
T
 

Dynamic Subset 

Selection 

(RSS/SSS/ASSS/AR

SS) 

 

1. TS samples S1, …, S9  

(9 subsets for a run) 

The last subset  in  TS samples set (S10) 

2. MTM training samples  

C1
L
, …, C9

L
  (9 subsets for a run) 

The nine MTM test  samples  

(C1
T 

+ C2
T
 …+ C9

T
)  

3. TS samples + MTM samples 

(S1, …, S9, C1
L
, …, C9

L
  ) 

(18 subsets for a run) 

The last TS sample with the nine MTM test  

samples  

 (S10  + C1
T 

+ C2
T
 …+ C9

T
) 

Table 3: Definition of training and test data samples for static and dynamic training-subset selection 
methods. 

For each case, the best individual (tree function) is selected according to the MSE’s fitness measure. 

Selected models are then analyzed and compared with each other according to different measures as 

described in the following. 

 

5.2. GP model selection 

 
 Results analysis focuses on the comparison between GP solutions given by static and dynamic 

training-subset selection methods in terms of their ability to forecast implied volatility. GP models 

subject to the comparative study are selected as follows. 

 First, selection of the best generated GP volatility model, relative to each training set, for time 

series (TS), moneyness-time to maturity (MTM), and both TS and MTM classifications, is made 

according to the training and test MSE. For static training-subset selection method, nine generated GP 

volatility models (M1S1…M9S9) are selected for TS samples and similarly, nine generated GP 

volatility models (M1C1…M9C9) are selected for MTM classes.  

 Second, for dynamic training-subset selection methods (RSS, SSS, ASSS and ARSS), four 

generated GP volatility models are selected for TS classification (MSR, MSS, MSAS and MSAR). 

Similarly, four generated GP volatility models are selected for MTM classification (MCR, MCS, 

MCAS and MCAR) and four generated GP volatility models are selected for global classification 

using both TS and MTM classes (MGR, MGS, MGAS and MGAR). The following table summarizes 

the 30 volatility models selected for the comparative study. 
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Subset Selection Learning data  GP volatility models 

Static Subset 

Selection 

TS samples (S1, …, S9) M1S1…M9S9 (TS models) 

MTM classes  (C1
L
, …, C9

L
)   M1C1…M9C9 (MTM models) 

Dynamic Subset 

Selection 

 

 RSS SSS ASSS ARSS 

TS series (S1, …, S9) MSR MSS MSAS MSAR 

MTM classes  (C1
L
, …, C9

L)
   MCR MCS MCAS MCAR 

TS series + MTM classes 

(S1, …, S9, C1
L
, …, C9

L
  ) 

MGR MGS MGAS MGAR 

Table 4: Definition of GP generated models given by static and dynamic training-subset selection 
methods. 

5.3. Results analysis 

To assess the accuracy of the training-subset selection methods applied as well as the generated GP 

volatility models selected, two measures are used. First, the MSE Total is computed using the same 

formula as the basic MSE (equation 3) but according to the enlarged data sample. The best model is 

that provides the smallest forecasting error. MSE Total aims to measure the generalization ability of 

the GP generated models. Second, the number of non-fitted observations (NFO) for a given data 

sample is used to describe how well a model fits the sample observations; otherwise it measures the 

model’s ability to solve all fitness cases in the corresponding subset. An observation is supposed to be 

well fitted if the corresponding error (The absolute difference between target and forecasted output 

volatility) is less than 0.1 (value determined according to the experimental results). NFO aims to 

compare the final solutions in terms of adaptation level to all input fitness cases.  

Figure 6 describes the performance of the best generated GP volatility models, using static and 

dynamic training-subset selection methods, according to the MSE total for all data samples. 

 

 
 

Figure 6 (a)                                                              Figure 6 (b) 

Figure 6: Performance of the generated GP volatility models, using static and dynamic training-subset selection 

methods, according to the MSE total for TS samples (S1…S9), MTM classes (C1
L
…C9

L
) and both TS and 

MTM samples (S1…S9, C1
L
…C9

L
).  

 

Figure 6 (a) presents the MSE total relative to the 18 generated GP volatility models, using static 

training-subset selection method, selected for TS samples and for MTM classes. Some extreme MSE 

values for MTM data are not shown in this figure. As shown, the performance of the static models is 

not uniform. Total errors are higher for the MTM classes than for the TS samples. Indeed, the MSE 

exceed 1 with some fitness cases of MTM classes, and it doesn’t reach 0.006 for all TS sample cases. 

Thus, it seems that TS models are more general than MTM models. The difference in accuracy 

between GP applied on TS samples and GP applied on MTM classes is very striking. With MTM 

classes, GP was unable to find satisfactory models with high forecasting ability, which might be 

caused by insufficient search intensity. Furthermore, Figure 6 (a) shows that the generated GP models 
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M4S4 and M4C4 have the smallest MSE in enlarged sample, for the TS and for the MTM classes 

respectively. They seem to be more accurate in forecasting implied volatility than the other models.  

Figure 6 (b) illustrates the MSE relative to the 12 generated GP volatility models, using dynamic 

training-subset selection methods (RSS, SSS, ASSS and ARSS), selected for TS samples, for MTM 

classes and for global classification using both TS and MTM classes. It appears throughout Figure 6 

(b) that the generated GP volatility models, relative to each dynamic subset selection method, are 

performing on the enlarged sample and present forecasting errors which are small and much close. The 

MSE relative to these models don’t reach 0.003 for all sampling scheme data, except the MCS model 

generated using the SSS method for MTM classes. Figure 6 (b) shows that, for the TS samples, the 

MSS model generated using the SSS method has the smallest MSE on the enlarged sample. For the 

MTM classes, the MCAR model generated using ARSS method outperforms the other models 

generated using the other methods. For both TS and MTM data, the MGAR model generated using 

ARSS method presents the highest accuracy in enlarge sample. Overall, the best forecasting's 

performance is achieved by the ARSS method. This can be explained by the fact that this method 

permits to generate more general models adaptive to all sample data.  

Comparison between static (Figure 6 (a)) and dynamic training- subset selection methods (Figure 6 

(b)) in terms of MSE reveals that the quality of the generated GP models has been improved with the 

dynamic training, particularly for MTM classes. The amplitude of forecasting errors relative to MTM 

classes is lower for the models generated using dynamic training- subset selection methods than for 

the models generated using static training- subset selection method.  

In order to demonstrate more explicitly the improvements accomplished by the dynamic subset 

selection, the percentage of non fitted observations (NFO) in the whole learning sample is computed 

for the best generated GP models using static and dynamic training-subset selection methods. Results 

are illustrated in Figure 7 for TS samples, MTM classes and both TS and MTM samples.  

 

Figure 7 (a)                                                              Figure 7 (b) 

Figure 7: Performance of the generated GP volatility models, using static and dynamic training- subset 
selection methods, according to the percentage of non fitted observations (NFO) for TS samples (S1…S9), 

MTM classes (C1
L
…C9

L
) and both TS and MTM data (S1…S9, C1

L
…C9

L
). 

 

Figure 7 (a) describes the performance of the 18 generated GP volatility models relative to TS 

samples and MTM classes, using static training- subset selection method, according to the percentage 

of NFO.  

It appears throughout Figure 7 (a) that the TS models are best-fit patterns compared to MTM models. 

In fact, the percentages of NFO given by TS models are markedly lower than those achieved by MTM 

models for the enlarged sample. The NFO percentages given by TS models do not exceed 12%, but 

they reach 62% with MTM models. Indeed, training is more homogeneous with TS samples than with 

MTM classes. This leads us to affirm that the static subset selection depends on the sampling scheme. 

Otherwise, it's important to note that each model (from TS models or MTM models) fits well to the 

data on which is trained. Actually, the generated GP volatility models M4S4 and M4C4 present the 

lower percentages of NFO for TS and MTM samples respectively. 

Results show that the gap between the models’ performances is more remarkable for MTM classes. 

This can be explained by the fact that the majority of models fit well their training classes but not 

other out-of samples. GP is most generally not efficient when the training data pattern is different from 

the one relative to out-of-sample data (Chen (2007)).  
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Figure 7 (b) describes the performance of the 12 generated GP volatility models relative to TS 

samples, MTM classes and both TS and MTM classes, using dynamic training-subset selection 

methods, according to the percentage of NFO in the enlarged sample. This percentage varies from 

0.63% (MGS) to 4.27% (MGR) for global data training, and from 1 % (MSAS) to 6.52 % (MSR) for 

TS training. Corresponding solutions could be considered as robust models with high forecasting 

accuracy. For MTM training, the NFO percentage is relatively high and varies from 3.36% (MCR) to 

10.25% (MCS).  

It could be observed that the dynamic methods (SSS, ASSS, ARSS) have the highest performance 

with global classification data (both TS and MTM) than with TS samples or MTM classes. In fact, the 

GP volatility models generated using these methods have NFO percentages lower for global 

classification (MGS, MGAS and MGAR) than for TS samples (MSS, MSAS and MSAR) and MTM 

classes (MCS, MCAS and MCAR) respectively. The RSS method gives high training quality for the 

MTM classes. This can be attributed to the randomness of the learning sample order which allows a 

better adaptation of the population to the environmental changes. Although the SSS method provides 

the best accuracy with global classification (NFO =0.63%) and less to TS samples (NFO=1.2%), it 

was unable to provide high performance for MTM classes (NFO=10.25%). This can be explained by 

the fact that the sample selection scheme with the SSS method is steady and unchanged along 

evolution.  

Comparison between static (Figure 7 (a)) and dynamic training- subset selection methods (Figure 

7 (b)) reveals that the percentages of NFO are in most cases lower for the models generated using 

dynamic training- subset selection methods than for the models generated using static training-subset 

selection method. The NFO percentage is reduced for most samples, in particular the MTM classes 

when using dynamic training-subset selection methods. 

Overall, according to the MSE Total and the NFO percentage, the generated GP models using 

dynamic training- subset selection methods exhibit a very high accuracy relative to that using static 

training-subset selection method. This observation is confirmed by the measures in Table 5, which 

illustrates the average of MSE total and NFO percentage for all the models obtained with static and 

dynamic subset selection for each set of learning data samples (TS series, MTM classes and both TS 

series and MTM classes). The dynamic subset selection was able to achieve the desired goal and 

improve the GP research process in order to fit better the whole learning data. It presents the smallest 

averages of MSE Total and NFO percentage. Otherwise, we can note that the diversity of the input 

samples in the case of dynamic selection applied on both TS and MTM samples makes GP more 

robust in supervised learning and so as the generated forecasting models outperform all other models. 

  

 

Measures              Methods 

Static Subset Selection Dynamic Subset Selection 

TS series MTM classes TS series TM classes TS series + MTM 

classes 

Average of MSE Total 0.002599 

(0.064383) 

0.416320 

(56.067) 

0.002372 

(0.003894) 

0.003600 

(0.126530) 
0.002033 

(0.003506) 

Average of NFO percentage 4.27% 20.29% 3.41% 5.67% 1.77% 

Table 5: Average of MSE Total and NFO percentage for static and dynamic subset selection applied to the 
different learning data sets. The numbers in parentheses are the standard deviation corresponding to MSE 

values of all observations in each sample set. 

 The last step of the present work is the selection of the most accurate models from the 30 GP 

generated models as listed in table 4.  

Based on the MSE total and the percentage of NFO as performance criteria, the generated GP 

volatility models M4S4 and M4C4 are selected for static training-subset selection method. Similarly, the 

generated GP volatility models MSS, MCAR and MGAR are selected for dynamic training-subset 

selection method. Table 6 reports the performance of these selected models.  
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Models MSE total Percentage of NFO  
M4S4 

M4C4 
0.001444 (0.002727) 

0.001710 (0.004624) 
0.67% 

1.66% 
 

MSS 

MCAR 

0.002076 (0.004044) 

0.001424 (0.003527) 

1.20% 

3.40% 
 

MGAR 0.001599 (0.003590) 1.45%  
Table 6: Selection of the best generated GP volatility models, using static and dynamic training-subset 

selection methods, in terms of MSE total and percentage of NFO. 

 Results show that according to MSE total and NFO percentage, the TS model M4S4 seems to be 

more performing than the MTM model M4C4 for static training-subset selection method. It presents the 

lowest MSE and percentage of NFO. 

According to MSE total, the MCAR and MGAR models generated using the ARSS method seem to 

outperform the MSS model generated using the SSS method. Although the latter has the lowest 

percentage of NFO, it seems to be less performing than the MCAR and MGAR models. This can be 

explained by two points. First, the time series model MSS presents the highest MSE relative to the 

other models. Second, the total of error values computed for the non fitted observations are higher for 

MSS than the other models even it presents the lowest percentage of NFO.    

 Comparison between models reveals that the best models generated respectively by static (M4S4) 

and dynamic selection methods (MCAR and MGAR) present small and very close total MSE values. 

While the generated GP volatility models M4S4 and MCAR have total MSE smaller than the MGAR 

model, the latest seems to be more accurate in forecasting implied volatility than the other models. 

This can be explained by the fact that, on one hand, the difference between forecasting errors is small, 

and on the other hand, the MGAR model is more general than MCAR and M4S4 models because it is 

adaptive to all time series and moneyness-time to maturity classes simultaneously. According to the 

percentage of NFO, the MGAR model presents a percentage of NFO relatively higher than the M4S4 

model, trained only on time series data, and relatively smaller than the MCAR model, trained only on 

MTM classes. 

The decoding of these models yields the following GP volatility forecasting formulas: 
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VI. CONCLUSION 

 

This article presents a Genetic Programming based technique to generate implied volatility 

forecasting models from S&P500 index options. We have demonstrated that the accuracy of the 

generated models depends on the training sample, especially when learning with moneyness- time to 

maturity classes. To reduce the gap between in-sample fit and out-of-sample performance, we 

introduced the dynamic training which aims to enlarge the training set to the whole input data. Four 
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techniques of dynamic subset selection are proposed: Random training-Subset Selection (RSS) where 

samples are selected in random way, Sequential training-Subset Selection (SSS) where samples are 

selected in a regular way, Adaptive-Sequential training-Subset Selection (ASSS) and Adaptive-

Random training-Subset Selection (ARSS) which use a training instance weight to enhance learning 

on the “difficult” fitness cases. These techniques are applied on the time series samples and on 

moneyness- time to maturity classes, and compared to the static training subset selection method using 

a single sample for the learning process. 
 

 Experiments indicate that using the dynamic training with GP yields better results than applying the 

static training, especially when learning on time series and moneyness- time to maturity samples 

simultaneously. Otherwise, based on the MSE total and the percentage of NFO as performance 

criteria, three generated GP volatility models are selected: M4S4 generated using the static training-

subset selection method, MCAR generated using the ARSS method applied on moneyness- time to 

maturity classes and MGAR generated using the ARSS method applied on times series and 

moneyness- time to maturity classes regrouped. However, the MGAR seems to be more accurate in 

forecasting implied volatility than MCAR and M4S4 models. This means that the MGAR model is 

more general than MCAR and M4S4 models because it is adaptable to all time series and moneyness- 

time to maturity classes simultaneously. 
 

Our results revealed some interesting issues for further investigation. First, the dynamic training 

GP can be used to forecast implied volatility of other models than BS model, notably stochastic 

volatility models and models with jump. Second, this work can be reexamined using data from 

individual stock options, American style index options, options on futures, currency and commodity 

options. Third, the performance of the generated GP volatility models can be measured in terms of 

trading and hedging. Finally, the GP approach can be applied to extract risk-neutral densities, which 

provide valuable information about market expectations. We believe that these extensions are of 

interest for application and will be the object of our future works. 

 

 

 

Appendix: Symbols and abbreviations 

Genetic Programming Symbols  

GP : Genetic Programming 

GA: Genetic algorithms 

NFO: non fitted observations 

MSE: mean squared error 

Dynamic subset selection Symbols 

SSS: Sequential Subset Selection method  

RSS: Random Subset Selection method  

ASS: Adaptive Subset Selection method  

ASSS: Adaptive-Sequential Subset Selection method  

ARSS: Adaptive-Random Subset Selection method  

 

Financial symbols  

C:  call option price  

K: strike price 

S: the index price  

 : time to maturity 

ITM: in-the-money  

OTM : out-of-the-money  

ATM : at-the-money  

ST: short-term  

MT: medium-term   

LT: long-term  

TS: times series  

MTM: moneyness-time to maturity  
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