
Incorporating Intra-query Term Dependencies

in An Aspect Query Language Model

Dawei Song

Tianjin Key Laboratory of Cognitive Computing and Application, School of

Computer Science and Technology, Tianjin University, Tianjin, China &

Department of Computing, The Open University, United Kingdom

dawei.song2010@gmail.com

Yanjie Shi, Peng Zhang*

Tianjin Key Laboratory of Cognitive Computing and Application, School of

Computer Science and Technology, Tianjin University, Tianjin, China

{sandy.y.shi, darcyzzj}@gmail.com

Qiang Huang

School of Computing, University of East Anglia, Norwich, United Kingdom

h.qiang@uea.ac.uk

Udo Kruschwitz

School of Computer Science and Electronic Engineering, University of Essex,

Colchester, United Kingdom

udo@essex.ac.uk

Yuexian Hou, Bo Wang

Tianjin Key Laboratory of Cognitive Computing and Application, School of

Computer Science and Technology, Tianjin University, Tianjin, China

yxhou@tju.edu.cn, bo.wang.1979@gmail.com

corresponding author: Peng Zhang (Email: darcyzzj@gmail.com)

Abstract

Query language modeling based on relevance feedback has been wide-

ly applied to improve the effectiveness of information retrieval. However,

intra-query term dependencies (i.e., the dependencies between different

query terms and term combinations) have not yet been sufficiently ad-

dressed in the existing approaches. This paper aims to investigate this

issue within a comprehensive framework, namely the Aspect Query Lan-

guage Model (AM). We propose to extend the AM with a Hidden Markov

Model (HMM) structure, to incorporate the intra-query term dependen-

cies and learn the structure of a novel Aspect Hidden Markov Model

(AHMM) for query language modeling. In the proposed AHMM, the

combinations of query terms are viewed as latent variables representing

query aspects. They further form an Ergodic HMM, where the depen-

dencies between latent variables (nodes) are modelled as the transitional

probabilities. The segmented chunks from the feedback documents are

considered as observables of the HMM. Then the AHMM structure is op-

timized by the HMM, which can estimate the prior of the latent variables

and the probability distribution of the observed chunks. Our extensive

experiments on three large scale TREC collections have shown that our

method not only significantly outperforms a number of strong baselines in

terms of both effectiveness and robustness, but also achieves better results

than the AM and another state-of-the-art approach, namely the Latent

Concept Expansion (LCE) model.

Keywords: Information Retrieval, Query Language Model, Aspect Hidden

Markov Model, Intra-Query Term Dependency, Query Decomposition

1

1 Introduction

Language modeling (LM) has become a widely used approach in information re-

trieval (IR) (Ponte and Croft 1998; Miller et al. 1999; Hiemstra and Kraaij 2005;

Manning et al. 2008). Query language modelling based on relevance feedback

documents aims to further improve the retrieval effectiveness by computing a

refined query model that better represents the user’s information need (Lafferty

and Zhai 2001; Lavrenko and Croft 2001; Zhai and Lafferty 2001). A prominent

query language modeling approach is the Relevance Model (RM) (Lavrenko and

Croft 2001). Practically, variants of RM have shown encouraging performance

in ad-hoc search (Lavrenko and Croft 2001), cross-language retrieval (Laverenko

et al. 2002) and topic detection and tracking (Lavrenko et al. 2002), etc.

The relevance model computes P (w|R), which is interpreted as the probabil-

ity of observing a word w in documents relevant to an information need (R). In

practice, it is approximated by P (w|Q) for a query Q, e.g., P(defense|“star wars

NASA”). Computing this probability for every term w in the vocabulary yields

an estimate of the true relevance model. In RM, the query terms are considered

to be random samples from R, an unknown process from which words can be

sampled. The RM deals with the following question: if query terms q1, . . . , qm

have been sampled, what is the probability of term w will be sampled next.

In (Lavrenko and Croft 2001), two methods (RM1 and RM2) are developed to

compute the probability. RM1 assumes that w and qi are mutually independent

given an identical distribution M . RM2 picks a distribution Mj according to

P (Mj |w), in which the query terms are assumed to be independent from each

other, but still keep their dependencies on w. Operationally, the top ranked

documents retrieved by the query Q are used to obtain these distributions Mj .

Of particular importance to this article is that the query terms are sampled

independently of each other. Indeed, the independence between query terms

2

has been assumed in most other typical query language models, such as the

model-based feedback approach in (Zhai and Lafferty 2001).

These models neglect the relationships between query terms in determining

the query language model and therefore may lead to inappropriately high prob-

abilities being ascribed to terms that are not aligned with the given retrieval

context. In fact, there often exist dependencies between query terms (i.e., intra-

query term dependencies). The combinations of related query terms (e.g., “star

wars NASA” which is about the U.S. missile defense program) often carry more

information than single terms individually. Recent research has shown that

completely new meaning may emerge from the term combinations (Bruza et al.

2011). These query term combinations do not have to be grammatically valid

phases or adjacent query terms. In addition, there also exist dependencies even

between different query term combinations, e.g., “star wars NASA” and “star

wars”.

In response to the problem, there has been work in the incorporation of term

dependencies into language modeling (Cao et al. 2005; Bai et al. 2005; Metzler

and Croft 2005, 2007; Nallapati and Allan 2002), e.g., grammatical links (Gao

et al. 2004), term co-occurrence and WordNet relations (Cao et al. 2005). How-

ever, most of them do not directly incorporate the arbitrary combinations of

query terms. A related work is the Cross Term Retrieval model (CRTER),

to model the associations among query terms in probabilistic retrieval models

(Zhao et al. 2011). The influence to their neighboring text of a query term is

approximated by a kernel function, which gradually decreases with the distance

to the term. A Cross Term occurs when two query terms appear close to each

other and their impact shape functions have an intersection. The model only

computes the associations of two query terms. Another related approach to ours

is the Latent Concept Expansion (LCE) method based on the Markov Random

3

Field (MRF) (Metzler and Croft 2007), which takes into account query term

combinations in deriving the probabilities of words or multiple words, called

latent concepts, given the query. However, LCE is based on the sequential de-

pendence assumption, which assumes that dependencies exist between adjacent

query terms, and the dependencies between different query term combinations

are not considered. In their experiments, the available topics are split into a

training set and a test set, where the training set is used for parameter esti-

mation. This would increase the computational overhead and is less practical

when the training data are not available.

Moreover, there has been a trend of decomposing a query into different

combinations (subsets) of query terms, and exploiting term relationships de-

rived from the subsets of query terms rather than traditional pairwise term

co-occurrence. For example, the initial query ”star wars” can be decomposed

into ”star”, ”wars”, ”star wars”. A state of the art approach is the Aspect

Query Language Model (AM), which views different subsets of a query as its

different aspects and incorporates high-order term relationships in a Bayesian-

like structure (Song et al. 2012). The association rule mining is used to capture

the high-order term associations. It then establishes a query language model by

aggregating the high-order term associations between the different query subsets

and the observed terms in the relevance feedback documents, and optimizes the

prior probabilities of query subsets and the documents by an automated EM

learning process facilitated by an on-the-fly training data generation method.

In the empirical evaluation, significant improvements over a baseline LM and

the RM have been achieved. However it overlooks the intra-query term depen-

dencies, i.e., the dependencies between different query term combinations.

Building upon and extending the AM by incorporating dependencies among

query term subsets, in this paper, we propose an Aspect Hidden Markov Model

4

(AHMM) for query language modelling. Similarly as in the AM, we decompose

a query into different combinations (subsets) of query terms and consider them

as latent variables over the feedback documents or segmented chunks of the

documents (as observables). The AHMM can be constructed to connect a doc-

ument chunk d and a word w through the latent variables. The dependencies

between the latent variables are governed by an ergodic Hidden Markov Model

(HMM), where the Viterbi algorithm is applied to optimize parameters involved

in the AHMM, based on an on-the-fly training data construction method. Ex-

perimental results on various large TREC collections show that our approach

outperforms the RM, LCE and AM in terms of both mean average precision and

robustness. Some preliminary early work has been reported as a poster paper

in (Huang and Song 2008). This paper presents a substantial extension of the

previous work and more comprehensive and systematic evaluation results.

2 Preliminaries: The Aspect Query Language

Model (AM)

This section gives a brief description of the AM, where the subsets of query

terms are viewed as an initialization of a series of corresponding latent variables

(representing query aspects) over a number of top-ranked documents from the

initial retrieval. We treat the query aspects as latent variables, as they (and

their optimal weighting) can only be derived through the top ranked documents

we observe (Song et al. 2012).

The AM is a graphical model, with a Bayesian Network like structure, as

shown in Figure 1. Sj is a latent variable in the set S (S = {S1, · · · , SN}), and w

is a word whose occurrence probability in the expanded query model (formally

denoted as θQ) to be estimated. The latent variable Sj is generated from the

5

Figure 1: Structure of Aspect Model

original query Q= {q1, · · · , qM}, where each Sj is in general defined as a query

term or a combination of query terms. The size of S is (2M − 1) if we use all

the combinations of query terms. For instance, given Q = {q1, q2}, the set of

latent variables can be transformed into S = {{q1}, {q2}, {q1, q2}}. In practice,

we can only use the combinations of up to k query terms as latent variables in

order to reduce the computational complexity. Indeed, our experimental results

indicate little difference in effectiveness between the use of combinations of 2-3

terms and the combinations of more terms as states.

The relationship between a word w and a latent variable Sj is derived

through the relevance feedback documents. In practice, such as in the Web

search environment, the number of top ranked documents actually observed by

users is often small (Joachims et al. 2005), e.g., 5-15 (1 page), which will lead to

the data sparsity problem given the large number of latent variables for longer

queries. Even for a relevant document, it is not necessarily true that every

part within the document is relevant. Thus, in practice, segmented document

chunks, instead of whole documents, can be used to connect Sj and w in order

to expand the observation space to improve the quality of parameter optimiza-

tion. Let d denote the collection of relevance feedback documents or document

chunks segmented, e.g., by a sliding window.

6

Based on the relations among Sj , di and w, the expanded query model

P (w|θQ) can be estimated by the following equation:

P (w|θQ) =
∑

di∈d,Sj∈S

P (w|di, Sj)P (di|Sj)P (Sj) (1)

where P (Sj) is the prior distribution of latent variables, P (di|Sj) is the

probability of an observed document chunk di given a latent variable Sj , and

P (w|di, Sj) is the probability of a word w in a chunk di given Sj .

It was argued that the conditional probability P (w|di, Sj) is not easy to

estimate because of the data sparsity (Song et al. 2012). In order to estimate

P (w|di, Sj), one can assume that di and Sj are independent, where di denotes

a chunk and Sj denotes a query state. Based on this assumption, we can get

P (w|di, Sj) ∝ P (w|di)P (w|Sj). By further assuming that P (w|di) is uniform,

Equation 1 is simplified by replacing P (w|di, Sj) with P (w|Sj), leading to:

P (w|θQ) =
∑

di∈d,Sj∈S

P (w|Sj)P (di|Sj)P (Sj) (2)

The Expectation Maximization (EM) algorithm is used to fit the parameters

of Equation 2. An on-the-fly training data constraction method is develope-

d to automatically label the document chunks in the feedback document set

with query term(s). In the E-step, the posterior probability of the hidden vari-

able P (S|d,w)) is computed. In the M-step, the parameters P (S), P (d|S) and

P (w|S) are maximized. More technical details can be found in (Song et al.

2012).

As described above, the AM provides a comprehensive framework to inte-

grate the high-order term associations between query term subsets and words

observed in the feedback documents. Despite the success of the AM, it does

not take into account the intra-query term dependencies (i.e., dependencies be-

7

tween the latent variables in AM). As argued in the Introduction, we believe

that incorporating such dependencies into the AM will lead to further perfor-

mance improvement. To address this issue, in the next section, we propose a

novel Aspect Hidden Markov Model (AHMM) that extends the AM for query

expansion.

3 Aspect Hidden Markov Model

As emphasised in the previous sections, in order to better estimate the param-

eters in Eq. 1 to derive the expanded query model P (w|θQ), it is important

to take into account the dependencies between the latent variables, which gov-

ern the distribution of prior probabilities of variables Sj and the observation

probability of the document chunk di given Sj . In this section, we present our

AHMM approach that extends the original AM and allows a natural incorpora-

tion of the dependencies between the latent variables through a Hidden Markov

Model (HMM) mechanism. There has been evidence that the source of nat-

ural language text can be modelled as an ”ergodic” Markov process, meaning

the Markov chain is aperiodic (i.e., words can be separated by any number of

intermediate words) and irreducible (i.e., we can always get from one word to

another by continuing to produce text) (Hoenkamp et al. 2009).

As shown in Figure 2, based on the dependencies among Sj , dj and w, we

extend the AM by adding links between Sj and Sj+1.

The HMM is a finite set of states (S = {S1, · · · , SM}), each of which is asso-

ciated with a probability distribution (π = {P (S1), · · · , P (SM)}). Transitions

among the states (A = {Sj′,j}, Sj , Sj′ ∈ S) are governed by a set of proba-

bilities called transition probabilities. For a particular state, an observation di

can be generated according to the associated probability distribution denoted as

B = {P (di|Sj)}. Figure 3 shows an example structure of a three-state ergodic

8

Figure 2: Structure of Aspect Hidden Markov Model

Hidden Markov Model.

S
1
 S
2

S
3
d
i

d
i

d
i

Figure 3: An example of three-state Ergodic Hidden Markov Model

Taking the dependencies between the latent variables into consideration, we

need to design a parameter estimation framework based on effective optimization

mechanisms in HMM. The application of the HMM can not only estimate the

prior distribution of each Sj , but also integrate the dependence between any two

latent variables (as states) and their underlying observables (document chunks)

through a state transition matrix. When applied to our AHMM, the HMM can

deal with the following three aspects:

1. Given the observation chunks d = {d1, · · · , dT } and a model Λ = (A,B, π),

to compute P (d |Λ).

2. Given the observation chunks d = {d1, · · · , dT } and a model Λ = (A,B, π),

to choose a corresponding state sequence (S1, · · · , ST) that is optimal (i.e.,

9

best “explains” the observations).

3. To adjust the model parameters Λ = (A,B, π) to maximize P (d |Λ).

In order to run the HMM, the widely used Viterbi algorithm can be applied

to search the optimal state. The derivation of the Viterbi algorithm is presented

as follows:

To find the single best state sequence, denoting S = {S1S2 · · ·ST }, for a

given observation sequence d = {d1d2 · · · dT }, we define a quantity δt(j). It is

the highest probability along a single path, at time t, which accounts for the

first t observations and ends at the state j.

δt(j) = max
S1,S2,··· ,St−1

P (S1S2 · · ·St = j, d1d2 · · · dt|Λ) (3)

By induction we can obtain:

δt+1(j) = [max
j

δt(j)ajj′] · bj(dt+1) (4)

where ajj′ is an element of transition matrix A, and bj(dt) = P (dt|Sj). To

actually retrieve the state sequence, we need to keep tracking the arrangement

that maximizes Eq. 4, for each t and j. A detailed description of the Viterbi

algorithm can be found in (Rabiner 1989).

In this paper, the application of HMM does not have to strictly obey the

regular rule of HMM, because the query term subsets are used to initialize the

states (Sj). This means these states are not strictly ”hidden” in a strict sense.

In the process of learning the model, we utilize the Baum-Welch algorithm

to optimize the state distribution and transition matrix, and use the Viterbi

algorithm to search the optimal path and update the probability distribution of

each chunk in different states. The update of P (dt|Sj) is based on:

10

P (di|Sj) =

∑T
t=1,dt=di

γt(j)∑T
t=1 γt(j)

(5)

where γt(j) = P (Sj |dt,Λ). The value of γt(j) is estimated by using an

iterative computation (detailed later in Figure 4).

In summary, the HMM would seem to provide a well-established mechanism

to effectively utilize the dependencies among the states to estimate the param-

eters listed in Eq. 1. The detailed description of how the HMM is applied to

our AHMM is detailed in the next section.

4 Parameter Learning in AHMM

In order to compute the parameters in Eq. 1 under the AHMM framework,

we have designed an operational framework. The details of the framework are

shown in Figure 4.

4.1 Data Pre-processing (Step 1)

This step follows a similar approach as in the original AM. Step 1.1 takes the

query terms as states, which has been discussed in Section 3. Step 1.2 selects

true relevance feedback documents and pseudo-relevant documents. In order

to increase the observation space and estimate the relevance of the different

parts of a document with respect to the query (as discussed in Section 3), in

Step 1.3, an overlapped sliding window is used to segment each document into

chunks. This is based on the idea that the chunks can keep a more accurate

meaning than a document which is often a mixture of various meanings. It is

also motivated by the successful application of the HMM in speech recognition

through segmenting the speech signals for short-time fourier transformation.

We set the overlapping length to be 4/5 of the window size, a setting often used

11

1. Data Pre-processing

1.1 Generate states by combining query terms.

1.2 Select N top-ranked relevant or pseudo-relevant documents according to the
initial retrieval results.

1.3 Segment the selected document into chunks with an overlapped sliding window,
whose overlapping length is 4/5 of the sliding window size.

1.4 Retain the chunks containing any query terms and discard the rest.

1.5 Assign those chunks containing query terms into various clusters, labelled by
the states that share one or more query terms with the chunks.

2. Optimize Aspect Hidden Markov Model

2.1 Set the initial values of the model parameters.

P (Sj) = 1/M, (M = |S|, Sj ∈ S)

P (Sj′ |Sj) = 1/M, (M = |S|), Sj , Sj′ ∈ S)

P (di|Sj) =

∑T
t=1,dt=di

γt(j)∑T
t=1 γt(j)

where γt(j) = P (Sj |dt,Λ), and P (Sj |dt,Λ) can be approximately derived by the
pseudo code as follows:

di,k = {w1, · · · , wk}, di = di,K (K = |di|)
P (Sj |di,0) = P (Sj)

for k = 1 : K,

P (Sj |di,k) = 1
k+1

P (wk|Sj)P (Sj |di,k−1)∑
St

P (wk|St)P (St|di,k−1)
+

k
k+1

P (Sj |di,k−1)

end

P (Sj |di) = P (Sj |di,K)

The computation of P (wk|Sj) is detailed in Section 4.2.

2.2 Apply Viterbi algorithm to searching the optimal state sequences.

2.3 Collect the labelled chunks of each “state” and update the occurrence proba-
bility of the observed term wk, namely P (wk|Sj), then P (di|Sj).

2.4 Optimize the model iteratively by repeating Step2.1 ∼ Step2.3.

3. Derive the language model

Compute the final probability of PAHMM (w|θQ) using Eq. 1.

Figure 4: Outline of framework

on speech recognition, for optimizing the AHMM. An additional advantage of

using overlapped window is to increase the number of the observed chunks and

thus reduce the risk of over-fitting when optimizing the AHMM.

Step 1.4 can be seen as a coarse data refinement process. It is reasonable to

keep only those chunks containing at least one query terms because we believe

they contain more useful information than the chunks without containing any

query term. Step 1.5 can be considered as an on-the-fly training data construc-

12

tion process, which essentially clusters the selected chunks into classes labelled

by different states. For example, the state corresponding to {q1, q2} clusters the

chunks containing the query term q1 or q2 or both, and the state corresponding

to q1 only clusters the chunks containing the query term q1. According to these

clustered chunks, we can compute the initial word probability given a state Sj ,

denoted as P (w|Sj). These initial computations are then used to optimize the

AHMM in Step 2.

4.2 Model Optimization (Steps 2 & 3)

According to the description of the AHMM in Section 3, we initialize the mod-

el parameters by setting the state distribution P (Sj) and the state transition

probability P (Sj′ |Sj) to be the chance probability 1
M . Here M is the number

of states in the AHMM. A recursive method is then used to compute P (di|Sj),

as similarly used in (Blei and Moreno 2001). In this recursive equation, di,k

denotes the first k words in a chunk di and di,K = di, where K is the window

size. P (Sj |di,0) as an initial value is set to be P (Sj). P (di) is computed as

the occurrence frequency of chunk di over the collection of chunks generated by

segmenting the feedback documents.

To initialize the P (wk|Sj), we use the Apriori algorithm for association rule

(AR) mining, as in the original AM. We consider the chunks as transactions

and terms as items. The dependency between Qj and wk corresponds to the

associated rule Qj ⇒ wk. Association rule mining has had a proven track record

in discovering useful associations from transaction data (Srivastava et al. 2000;

Luo and Bridges 2000; Creighton and Hanash 2003). Therefore we consider it

an effective way to compute P (wk|Sj). Setting the initial P (wk|Sj) to be the

derived values of using AR is more sensible than setting them to be uniform

values. It can accelerate the convergence and also in some sense prevent the

13

model from converging to a local maximal point. There are two measurements

for estimating the degree of dependency: support and confidence.

supp(X ⇒ Y) = supp(X ∪ Y) =
CXY

N
(6)

conf(X ⇒ Y) =
supp(X ∪ Y)

supp(X)
(7)

CXY is the number of transactions which contain all the items in X and

Y , and N is the total number of transactions. Support, in Eq. 6, is defined as

the fraction of transactions in the database which contain all items in a specific

relationship, such as X ⇒ Y (Agrawal et al. 1993). Confidence, in Eq. 7, is

an estimate of the conditional probability P (EY |EX), where EX (EY) is the

occurrence of X (Y) in a transaction (Hipp et al. 2000). In this paper, we set

Sj to be X and wk to be Y , and the normalized confidence value is used as the

probability of word wk given Sj . The probability P (wk|Sj) is then applied to

the recursive equation to compute P (Sj |di).

In Step 2.2, we apply the Viterbi algorithm to searching the optimal state

sequence, then we update the HMM iteratively by re-computing the model pa-

rameters Λ = {π,A,B}. Finally, the two probability parameters P (Sj) and

P (di|Sj) in Eq. 1 are updated according to the updated HMM. In order to

compute the third probability parameter P (w|di, Sj), we use the following e-

quation:

P (w|di, Sj) = P (w|Sj) ·
#w∑
k #wk

(8)

#w is the frequency of word w occurring in chunk di and the denominator is

the total number of words in di.

14

5 Model Integration

As previously described, the HMM is used to learn the structure of the AHMM

for query expansion. However, it is inevitable that the probability estimations

may not be accurate due to data sparsity (only a few feedback documents are

used) and the possible query drift when expanding the original query.

To alleviate this problem, it is disirable to regularize the model estimation

with the original query model. Similar consideration has also been taken into

account in state-of-the-art approaches, such as RM, AM and LCE, which smooth

the derived query model with the original query model.

In this paper, the original query model is defined as:

P (qk|Q) =
#qk · IDF (qk)∑

j∈{1···|Q|} #qj · IDF (qj)
(9)

where #qk is the frequency of query term qk in Q and IDF (qk) is the inverse

document frequency (IDF) of qk.

To integrate the original query model into the expanded query model de-

rived by AHMM, a traditional approach is the linear interpolation of the two.

We refer it as AHMM-I. The main limitation of this method is that it in-

volves manual adjustment of the interpolation coefficient to generate optimal

retrieval performance. In this paper, we propose an automatic method, denoted

as AHMM-II, to integrate the original query model directly into the AHM-

M. Here, we focus on the AHMM-II and compare it with the baselines. More

discussion on using AHMM-I will be given in Section 7.4.

Specially, AHMM-II considers the original query model as a state SQ in

the AHMM. Although there is already a state Sj in the AHMM structure which

consists of all query terms, the model corresponding to Sj is an expanded model

containing additional words rather than only the query terms. To strengthen

15

the effects of original query terms, we propose adding an additional state SQ

which links to the original query terms only. Accordingly Eq. 1 is changed to:

PAHMM−II(w|θQ) =
∑
di∈d

∑
Sj∈{S,SQ}

P (w|di, Sj)P (di|Sj)P (Sj) (10)

where the state SQ contains only the query terms and the probability distribu-

tion of each query term is computed according to Eq. 9. We can then run the

AHMM directly to estimate the combined query language model.

6 Data and Experimental Set Up

6.1 Data

We evaluate our methods using TREC topics 151–200 on AP88–90 (TREC disks

1, 2 and 3); topics 601–700 on ROBUST (TREC disk 4 and 5, excluding the

Congression Record); and topics 501–550 on WT10G (Disk WT10G), respec-

tively. Only the titles of the TREC topics are used as queries. This is to simulate

typical Web search scenarios where users tend to submit short queries typically

around 2-3 words. Table 1 provides a summary of the TREC data used. These

data sets are selected because they have varied content and document proper-

ties. The AP88–90, and ROBUST collections are generally homogeneous news

articles while WT10G documents are Web pages with a variety of subjects and

styles. In our experiments, a stopword list and Porter stemmer are applied to

all data collections. Note that the same experimental setting is also used in

(Metzler and Croft 2007). This allows a direct comparison between our method

and the LCE model (Metzler and Croft 2007).

16

Table 1: Overview of TREC collections and topics.
Collection Description Size # of Docs Topics
AP88-90 Associated Press (88–90) 730MB 242,918 151–200
ROBUST Robust 2004 1.9GB 528,155 601–700
WT10G TREC Web collection 10.9GB 1,692,096 501–550

6.2 Experimental Set Up

In order to fully test the performance of the proposed AHMM approach, we

apply it to two scenarios: pseudo-relevance feedback and simulated true

relevance feedback. The pseudo-relevance feedback is a way of automatic

query expansion by assuming top ranked documents after initial retrieval to be

relevant, and the true relevance feedback only selects those top-ranked docu-

ments that are truly relevant (simulated according to the TREC ground truth

data). The latter is very useful in simulating real user-based retrieval and also

shows the potential upper bound of our approach.

Three baselines are used for comparison including a language model based on

Kullback-Leibler (KL) divergence and two variants of Relevance Models (RM1

& RM2). For pseudo-relevance feedback, all the methods are tested with various

numbers (N = 10, 30, 50) of top-ranked documents from the initial retrieval

results. We not only compare our methods with the LCE model based on its

results reported in (Metzler and Croft 2007), but also compare our methods

with the original Aspect Model. For true relevance feedback, we only use fewer

number of feedback documents (N = 5, 10, 15). This is based on the observation

that real users often prefer selecting a small number of relevant documents as

feedback (Iwayama 2000; Al-Maskari et al. 2008).

All the experiments are carried out using Lemur toolkit 4.0 (Lem). The

initial retrieval is performed by using the KL-divergence based language model

(KL). The new query language models derived from different query language

modeling methods (RM1, RM2, AM and our AHMM) are used to perform the

17

second round of retrieval using KL. For each of the RM1, RM2 and AM, the

new query model is generated by linearly combining the expanded model and

the original model. For AHMM, its two variants, i.e., AHMM-I (based on linear

combination) and AHMM-II (based on integration of the original query into the

AHMM) are used. For each model using linear combination, we have tested a

range of linear combination coefficients and only the best performing result is

reported.

6.3 Performance Measurements

Following the TREC standard, we retrieve 1,000 documents for each query.

Our primary evaluation metric is mean average precision (MAP). The Wilcoxon

singed rank test is used to measure the statistical significance. We also analyze

the robustness of our methods against the baselines, using the robustness mea-

sure introduced in (Metzler and Croft 2007). It is defined as the number of

queries whose effectiveness are improved/impaired after applying the query lan-

guage modeling tested, in comparison with the baseline. We let #Pos. denote

the number queries whose effectiveness are improved, and let #Neg. denote

the number of impaired queries. The bigger the value of #Pos.-#Neg. is, the

more robust the model is. A highly robust expansion technique will significantly

improve many queries and only minimally hurt a few.

7 Experimental Results

In this section we present our experimental results and compare with the base-

lines and other state-of-art methods, such as LCE and AM. The details of ex-

perimental analysis are described from four perspectives:

• Evaluation in pseudo-relevance feedback.

18

Table 2: Comparison of AHMM-II, KL, RM1, RM2 and AM, in Pseudo-
relevance Feedback

docs(N) KL RM1 RM2 AM AHMM-II

10 0.2077 0.2578 0.2639 0.2689 0.2795α,β,γ

AP88-90 30 0.2077 0.2603 0.2676 0.2706 0.2814α,β,γ

50 0.2077 0.2625 0.2706 0.2694 0.2736α

10 0.2920 0.3129 0.3143 0.3510 0.3613 α,β,γ

ROBUST 30 0.2920 0.3250 0.3271 0.3427 0.3561α,β,γ

50 0.2920 0.3238 0.3289 0.3326 0.3424α,β

10 0.2032 0.2131 0.2134 0.2210 0.2305α,β,γ

WT10G 30 0.2032 0.2077 0.2079 0.2175 0.2279α,β,γ

50 0.2032 0.2082 0.2088 0.2093 0.2136α

• Evaluation in true relevance feedback.

• Impact of the window size in document segmentation.

• Acquisition of optimal performance.

7.1 Evaluation in Pseudo-Relevance Feedback

The evaluation results in the context of pseudo-relevance feedback are summa-

rized in Table 2, where we compare the performances of the proposed AHMM

with the KL, the two relevance models (RM1 and RM2) and the Aspect Model

(AM). We first compare our methods with the baselines according to the MAP

values obtained by using three different numbers (i.e., 10, 30, 50) of feedback

documents.

As shown in Table 2, our method (AHMM-II) significantly outperforms KL,

RM1 and RM2 in all cases. The superscripts α, β and γ indicate statistically

significant improvements (at the level of 0.05 corresponding to Wilcoxon-test)

over KL, RM1, and RM2, respectively. In Table 3, we list the improvements of

AHMM-II over other four methods (KL, RM1, RM2 and AM). When selecting

a smaller number of documents (N=10), the AHMM-II shows significant im-

provements over KL, RM1, and RM2 by 34.6%, 8.4%, and 5.9% on AP88-90;

19

Table 3: Improvements of AHMM-II over KL, RM1, RM2 and AM, in Pseudo-
Relevance Feedback

docs Impr. using AHMM-II over (%)
(N) KL RM1 RM2 AM
10 +34.6* +8.4* +5.9* +3.9

AP88-90 30 +35.5* +8.1* +5.2* +4.0
50 +31.7* +4.2 +1.1 +1.6

10 +23.9* +15.5* +14.9* +2.9
ROBUST 30 +21.9* +9.6* +8.9* +3.9

50 +17.3* +5.7* +4.1 +2.9

10 +13.4* +8.2* +8.1* +4.3
WT10G 30 +12.2* +9.7* +9.6* +4.8

50 +5.1* +2.6 +2.3 +2.1
∗ The improvement is statistically significant at the level of 0.05

according to the Wilcoxon signed rank test

23.9%, 15.5%, and 14.9% on ROBUST; and 13.4%, 8.2%, and 8.1% on WT10G,

respectively. This indicates the effectiveness and efficiency of our approach,

where selecting fewer documents can reduce the computational time and im-

prove the retrieval effectiveness.

In comparison with the original AM (Song et al. 2012), as shown in Table

2, AHMM-II demonstrates a better performance. This verifies our hypothesis

that incorporating intra-query dependencies can improve retrieval performance.

Table 4: MAP for LCE and AHMM-II
LCE AHMM-II Impr. over LCE (%)

AP88-90 0.2692 0.2814 +4.5
ROBUST 0.3601 0.3613 +0.3
WT10G 0.2269 0.2305 +1.6

In addition, we compare the MAPs of AHMM-II and LCE (Metzler and

Croft 2007) in Table 4. Due to the lack of the implementation details, we do

not implement the actual LCE model. Instead, we use the results reported in

(Metzler and Croft 2007). Thus, we are unable to do the statistical significance

test. In comparison with the state-of-the-art LCE model, AHMM-II still shows

better performance on three data sets. Specifically, AHMM-II achieves 4.5% an

improvement over LCE on AP88–90, and marginal improvement on the largest

20

data set WT10G. The results are remarkable, as our method does not require

extra training data for parameter optimization while the LCE does.

We now analyze the robustness of different methods. The robustness mea-

sure used here is described as the number of queries whose average precisions are

improved/hurted as the result of applying the proposed methods over the base-

lines. A highly robust expansion technique is expected to improve the average

precisions for a majority of queries.

Table 5: Comparison of Robustness of AHMM-II vs. KL, RM1, RM2 and AM
Methods #Pos. #Neg. #Eq. # Pos.-Neg.

Test Q151–200 on AP88–90
AHMM-II vs. KL 35 15 0 +20
AHMM-II vs. RM1 30 20 0 +10
AHMM-II vs. RM2 27 23 0 +4
AHMM-II vs. AM 28 20 2 +8

Test Q601–700 on ROBUST
AHMM-II vs. KL 65 34 0 +29
AHMM-II vs. RM1 65 33 1 +32
AHMM-II vs. RM2 64 34 1 +30
AHMM-II vs. AM 59 40 0 +19

Test Q501–550 on WT10G
AHMM-II vs. KL 31 18 1 +13
AHMM-II vs. RM1 29 19 2 +10
AHMM-II vs. RM2 28 22 0 +6
AHMM-II vs. AM 34 15 1 +19

Table 5 provides an analysis of the robustness of AHMM-II vs. KL, RM1, R-

M2 and AM. Pos. denotes the number queries whose effectiveness are improved,

and Neg. denotes the number of impaired queries. Eq. means the same effec-

tiveness. Our method exhibits a strong level of robustness on each data set. For

WT10G, our method improves 31, 29, 28 and 34 queries over KL, RM1, RM2

and AM respectively, and only impairs 18, 19, 22 and 15 queries respectively.

For ROBUST, AHMM-II respectively improves 65, 65, 64 and 59 queries, but

only impairs 34, 33, 34 and 40 in the comparison with KL, RM1, RM2 and AM.

For AP88–90, compared with KL, RM1, RM2 and AM, AHMM-II improves 35,

30 , 27 and 28 queries, and impairs 15, 20 , 23 and 20 queries. Note that there

are no judgements for topics 151–200 in collection AP90, which can be seen as

an interference to the retrieval performance. Our method shows a sound ability,

21

Table 6: Comparison of AHMM-II, KL, RM1, RM2 and AM, in True Relevance
Feedback

docs(N) KL RM1 RM2 AM AHMM-II

5 0.2077 0.3194 0.3184 0.3543 0.3591α,β,γ

AP88-90 10 0.2077 0.3106 0.3354 0.3816 0.4001α,β,γ

15 0.2077 0.3218 0.3427 0.3886 0.4034α,β,γ

5 0.2920 0.3810 0.4095 0.4263 0.4554α,β,γ

ROBUST 10 0.2920 0.4017 0.4305 0.4663 0.4835α,β,γ

15 0.2920 0.4126 0.4432 0.4806 0.5014α,β,γ

5 0.2032 0.2107 0.2232 0.3426 0.3274α,β,γ

WT10G 10 0.2032 0.2382 0.2629 0.3691 0.3788α,β,γ

15 0.2032 0.2571 0.2993 0.3888 0.3946 α,β,γ

and obtains a better performance in robustness than the comparative methods.

7.2 Evaluation in True Relevance Feedback

In this section, we compare our approach with KL, RM and AM in the context of

true relevance feedback, i.e., only using the truly relevant top-ranked documents

as the feedback documents.

Table 6 shows the MAPs of different models. In Table 7, we also list the

improvements of AHMM-II over other four methods (KL, RM1, RM2 and AM).

Since in true relevance feedback, users often only want to provide a small num-

ber of feedback documents relevant to their information need, we set the number

of feedback documents as 5, 10, 15, respectively, in this set of experiments. Our

approach (AHMM-II), again, achieves significantly better results over the base-

line language model, and the two Relevance Models. We can see that AHMM-II

also shows better performance than AM. When we are using 5 relevant doc-

uments, for AP88–90 and ROBUST, the improvements over the baselines are

not as large as the improvements when using 10 and 15 feedback documents.

However, for the Web data set (WT10G), the performance seems less dependent

on the number of feedback documents used. This appears to be an interesting

phenomenon, and a detailed analysis is given as follows.

22

Table 7: Improvements of AHMM-II over KL, RM1, RM2 and AM, in True
Relevance Feedback

docs Impr. using AHMM-II over (%)
(N) KL RM1 RM2 AM
5 +72.9* +19.9* +12.8* +1.4

AP88-90 10 +92.6* +28.8* +19.3* +4.9
15 +94.2* +25.3* +17.7* +3.8

5 +56.0* +19.5* +11.2* +6.8*
ROBUST 10 +65.6* +20.6* +12.3* +3.7

15 +71.7* +21.5* +13.1* +4.7

5 +61.1* +55.4* +46.7*
WT10G 10 +86.4* +59.0* +44.1* +2.6

15 +94.2* +53.5* +31.8* +1.5
∗ The improvement is statistically significant at the level of 0.05

according to the Wilcoxon signed rank test

In the AHMM-II, by setting the subset of query Qj as a state in the HMM,

estimating the dependencies between Qj and the observed words and the de-

pendencies between the document chunks and Qj , we can easily build a good

query language model when an appropriate number of relevance feedback docu-

ments are selected. However, when a very small number of relevant documents

are used, the number of chunks generated may be too small to optimize our

model. In pre-processing of the feedback documents, we only select the chunks

containing at least one query terms. This further reduces the number of samples

for optimizing our model. In addition, the reduction of samples results in less

observed terms occurring in those chunks, which may lead to an information

loss. As a result, the parameters can be over-estimated, impairing the overall

performance. On the other hand, for WT10G, two factors contribute to the

more robust performance with respect to the number of feedback documents.

The first is the style of data sets. Both AP88–90 and ROBUST are the data

sets containing homogeneous news articles, which are often compact documents,

while WT10G documents are web pages with a variety of subjects and styles.

The second is the size of documents. The average document length in WT10G

(378) is about 50% larger than that of the AP88-90 (245) and ROBUST (254).

23

A more systematic investigation in the impact of data set characteristic is out

of scope of this paper and will be left as in interesting future research direction

on its own.

Table 8: Comparison of Robustness of AHMM-II vs. RM2
No. of docs (N) #Pos. #Neg. #Eq. # Pos.-Neg.

Test Q151–200 on AP88–90
5 32 18 0 +14
10 36 14 0 +22
15 35 15 0 +20

Test Q601–700 on ROBUST
5 73 25 1 +48
10 88 11 0 +77
15 90 9 0 +81

Test Q501–550 on WT10G
5 32 18 0 +14
10 36 14 0 +22
15 30 20 0 +10

We also compare the robustness of different approaches in the true relevance

feedback scenario. Table 8 shows the robustness when using different num-

ber of relevance-feedback documents over the three data collections (AP88-90,

ROBUST, and WT10G). Here, we compare the AHMM-II with RM2. The com-

parisons of AHMM-I with other models show a similar trend. The same as we

have analyzed above, although the AHMM-based approach impairs a few more

queries when selecting a smaller number (i.e., 5) of documents, significant im-

provements are obtained in all settings. When 10 relevance-feedback documents

are selected, AHMM-II improves 36, 88 and 36 queries while only impairs 14,

11 and 14 queries. When 15 documents are selected, AHMM-II improves 35, 90

and 30 queries while impairs 15, 9 and 20 queries.

7.3 Effects of Window Size

In an information retrieval system, a high-quality model can obtain better per-

formance with fewer manually tunned parameters. In the process of building a

high-quality model, the parameters used in the model should always occur in a

fixed range, or the model should be less sensitive to the parameters.

24

Some state-of-the-art methods, such as the relevance models, have shown

good retrieval performance. However, they still need to manually tune or learn

some parameters to optimize the retrieval performance for different data sets.

In the experiments, our method has one parameter to set: the size of the sliding

window. We will show how our method is relatively insensitive to this parameter.

In this paper, we use a sliding window to segment the top-ranked docu-

ments into chunks. Thus, we need to compare the retrieval performances based

on the different window sizes. Here, we select 10 documents as feedback in

the settings of pseudo-relevance feedback and true relevance feedback. Figure 5

shows the impact of window size on MAP when using AHMM-II on three data

sets with different window sizes, containing 15, 25, 35, 50, 100 words respec-

tively. In each figure, three curves are shown, which are AHMM-II based on

pseudo-relevance feedback (AHMM-II PRF), AHMM-II based on true relevance

feedback (AHMM-II RF), and the baseline language model (KL), respectively.

According to the figures, using a sliding window with size in the range of

15–50 words can obtain almost identical retrieval performances. When the s-

liding window of 100 words is used, the performance slightly drops compared

with using a smaller window size, but in general, the performances stay rather

stable with respect to different window sizes. Therefore, our proposed approach

seems quite insensitive to the window size. This may be due to the use of over-

lapping window which can help stablize the effect of window size and improve

the acquisition of the dependencies between terms.

7.4 Acquisition of the Optimal Performance

In Section 5, we discussed two options for integrating the derived query model

with the original query model, namely, AHMM-I and AHMM-II. AHMM-II is

a fully automatic approach and has been described in detail in the previous

25

(a) Test Q151–200 on AP8890 (b) Test Q601–700 on ROBUST

(c) Test Q501–550 on WT10G

Figure 5: Effect of the window size on MAP

sections. Unlike AHMM-II, the construction of model using AHMM-I, which is

based on linear interpolation of two query models, needs some manual adjust-

ment or extra supervised learning to set the interpolation coefficient. Therefore,

in this subsection, we take a brief look into the performance of AHMM-I in com-

parison with AHMM-II. The definition of AHMM-I is given as below:

PAHMM−I(w|θQ) = λP (w|θQ) + (1− λ)P (w|Q) (11)

26

PAHMM−I(w|θQ) is the model learned from the AHMM. P (w|Q) = 0 when the

term w does not occur in the original query.

This method needs to determine the linear interpolation coefficient λ. The

interpolation method has been widely used in information retrieval. For exam-

ple, the LCE model in (Metzler and Croft 2007) also needs training to estimate

the mixture coefficients used in the MRF model and set the experience value

for the related interpolation factor used in the feature functions.

According to Equation 11, a larger λ means a smaller effect of the original

query model. Our experiments show that the MAP reaches the largest value

when λ is selected in certain fixed range. For both pseudo-relevance feedback

and true relevance feedback, the largest MAP values are obtained when λ is

set to be 0.98 on AP8890 and ROBUST. For WT10G, the optimal MAP is

achieved when λ is set to be 0.85 for pseudo-relevance feedback and 0.9 for rel-

evance feedback. As shown in Section 6.1, the characteristics of the data sets

could play an important role because the AP88–90 and ROBUST collections are

generally homogeneous news articles while WT10G documents are Web pages

with a variety of subjects and styles. As a comparison, we list the MAPs ob-

tained by AHMM-II and AHMM-I (with manually determined best performing

interpolation coefficients) in Table 9.

Table 9: Comparison of Optimal MAPs using AHMM-I and AHMM-II
Pseudo-relevance Feedback

Collection AHMM-II AHMM-I Impr. (%)
(AHMM-I over AHMM-II)

AP88–90 0.2814 0.2830 +0.5
ROBUST 0.3613 0.3660 +1.3
WT10G 0.2305 0.2370 +2.8

Relevance Feedback
Collection AHMM-II AHMM-I Impr. (%)

(AHMM-I over AHMM-II)
AP88–90 0.4034 0.4168 +3.3
ROBUST 0.5014 0.5122 +2.1
WT10G 0.3764 0.3859 +2.5

It is found that using AHMM-I with the manually adjusted best performing

27

setting can only obtain slightly and insignificantly better performances than

AHMM-II. However, AHMM-I is a somehow heuristic approach compared with

AHMM-II which integrates original query model neatly in the AHMM in a fully

automatic way. Therefore, the AHMM-II has demonstrated its robustness and

effectiveness from both theoretical and practical perspectives.

7.5 Remarks

AHMM-II shows a superior ability to detect and estimate the dependencies

between the observed terms and document chunks, and the subsets of query

terms based on the following methods:

Remarks (1): In our experiments, for both pesudo-relevance feedback true

relevance feedback scenarios, we may be encountered the data sparsity issue for

model estimation. In the process of building the model, we need to run the

AHMM over a limited number of chunks, which sometimes are generated from

only e.g., 10 relevance feedback documents. Therefore, in our experiments, the

iteration only runs once because the issue of over-fitting may lead AHMM to

converge to a local maximum.

Remarks (2): In addition, we compare the time complexity of our proposed

AHMM model with the basic AM model. All the experimental runs were based

on the configuration of a computational server with 3200 MHz CPU and 4GB

main memory. Our methods were implemented in Perl.

The Step 1 in Figure 4 is the query processing and document processing. The

data pre-processing of the AHMM is the same as the AM. Suppose the number

of terms in a query Q is |Q|. For query decomposition, the time complexity of

this part is 2|Q|. The window size is k = 25. The overlapping length is 4/5

of the window size. For one document D, the document length is |D| and the

number of the chunks is ⌈(|D| − k)/5⌉. For each document, it turns out that

28

the time complexity is O(2|Q| · (|D|)) for the data-processing. We measured

that the data pre-processing runs about 0.28 second per query (ROBUST2004

collections, topics 601-700).

In both AM and AHMM, we need to optimize the model parameters P (d|S),

P (w|S), P (S). Then those learned parameters are used to estimate the models.

For AM model, the Expectation Maximization (EM) algorithm is used in the

optimization process. For AHMM, a Viterbi process is adopted to optimize those

parameters (Figure 4). The computational cost of AM and AHMM depend on

the convergence performance of the optimization algorithms. We measured the

efficiency of the proposed AHMM and AM by recording the time of optimization

process. One of the baseline, e.g., RM1, the average time for query expansion

process is about 1.13 second. The average time to complete the optimization

process is approximately 0.9 second (for AM) and 1.29 second (for AHMM) per

query. This gap is mainly due to that AM takes into account the on-the-fly

EM optimization, while AHMM utilizes Viterbi algorithm to search the optimal

state sequences. We consider it as a worthwhile tradeoff, as AHMM can improve

the performance by about 4% (on average) over AM model when N=30 in Table

3.

Remarks (3): We have also done some evaluation of the AHMM model

using the description field of topic as long queries, with the same setting of the

maximum length of Sj . The model shows large improvements over the baselines

for long queries as well. For ROBUST2004, in the comparison with KL, AM

and RM models, our AHMM model improves the performance by 12.1%, 15.1%

and 18.2% separately (Song et al. 2013). By adding the HMM layer on top of

the AM structure, the performance has been largely improved. This may be

because our method has learnt reasonable weights for query terms during the

HMM model optimization process. These can reflect the effectiveness of our

29

AHMM more comprehensively.

8 Conclusions and Future Work

In this paper, we present a novel Aspect Hidden Markov Model for query ex-

pansion, with focus on incorporating the dependencies between query terms via

an ergodic Hidden Markov Model. The HMM is used to estimate the structure

of the AHMM, without needing any pre-existing training data.

Our experimental results show that our method always obtains significant

improvements in comparison with a number of strong baselines (KL, RM1 and

RM2). Even when compared with the state-of-the-art LCE used in (Metzler

and Croft 2007) and the Aspect Query Language Model in (Song et al. 2012),

our method shows a better performance in MAP on three large data sets. We

have also evaluated the robustness of our method against the comparative mod-

els. Our method has shown a better robustness on all the three data sets. In

addition, our method not only generates a good performance, but also needs

fewer parameters to tune.

In terms of future work, it would be interesting to continue the studies on

how to measure the quality of feedback documents and the relevant contents in

these documents. In addition, checking the impact of the dataset characteristics

on the setting of parameters and further reducing the model’s sensitivity to the

number of feedback documents are also challenging topics. Another issue that

needs further exploration is how to reduce the impact of data sparsity when a

small number of documents are selected.

30

9 Acknowledgments

This work is funded in part by the Chinese National Program on Key Basic

Research Project (973 Program, grant no. 2013CB329304), the Natural Science

Foundation of China (grant no. 61272265, 61070044, 61105702), and the Eu-

ropean Union Framework 7 Marie-Curie International Research Staff Exchange

Programme (grant no. 247590).

References

The lemur toolkit for language modeling and retrieval. In

http://www.lemurproject.org.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets

of items in large databases. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 207–216, Washington D.C., May

1993.

A. Al-Maskari, M. Sanderson, and P. Clough. Accurately interpreting click-

through data as implicit feedback. In Proceedings of the 31st annual interna-

tional ACM SIGIR conference on Research and development in information

retrieval(SIGIR’2008), pages 683–684, 2008.

J. Bai, D. Song, P. Bruza, J. Nie, and G. Cao. Query expansion using term

relationships in language models for information retrieval. In CIKM 2005,

pages 688–695, 2005.

D. M. Blei and P. J. Moreno. Topic segmentation with an aspect hidden markov

model. In Proceedings of ACM 24th SIGIR Conference on Research and Devel-

opment in Information Retrieval(SIGIR’2001), pages 343–348, New Orleans,

Louisiana, USA, September 2001.

31

P. Bruza, K. Kitto, L. Sitbon, D. Song, and S. Blomberg. Quantum-like non-

separability of concept combinations, emergent associates and abduction. Log-

ical Journal of the IGPL, pages 445–457, 2011.

G. Cao, J. Nie, and J. Bai. Integrating term relationships into language models.

In Proceedings of ACM 28th SIGIR Conference on Research and Development

in Information Retrieval(SIGIR’2005), pages 298–305, 2005.

C. Creighton and S. Hanash. Mining gene expression databases for association

rules. bioinformatics. Bioinformatics, pages 79–86, 2003.

J. Gao, J. Nie, G. Wu, and G. Cao. Dependence language model for information

retrieval. In Proceedings of ACM 28th SIGIR Conference of Research and

Development in Information Retrieval(SIGIR’2004), pages 170–177, 2004.

D. Hiemstra and W. Kraaij. A language modeling approach to the text retrieval

context. Digital Libraries and Electronic Publishing, pages 373–396, 2005.

J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for association rule min-

ing - a general survey and comparison. ACM SIGKDD Explorations NewsLet-

ter, pages 58–64, 2000.

E. Hoenkamp, P. Bruza, D. Song, and Q. Huang. An effective approach to

verbose queries using a limited dependencies language model. In Proceed-

ings of The 2nd International Conference on the Theory of Information Re-

trieval(ICTIR’2009), pages 116–127, 2009.

Q. Huang and D. Song. A latent variable model for query expansion using the

hidden markov model. In Proceedings of ACM 17th Conference on Informa-

tion and Knowledge Management (CIKM), 2008.

M. Iwayama. Relevance feedback with a small number of relevance judgements:

incremental relevance feedback vs. document clustering. In Proceedings of the

32

23rd annual international ACM SIGIR conference on Research and develop-

ment in information retrieval(SIGIR’2000), pages 10–16, 2000.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately in-

terpreting clickthrough data as implicit feedback. In Proceedings of ACM

28th SIGIR Conference on Research and Development in Information Re-

trieval(SIGIR’2005), pages 154–161, 2005.

J. Lafferty and C. Zhai. Document Language Models, Query Models, and Risk

Minimization for Information Retrieval. In Proceedings of the 24th Annu-

al ACM Conference of Research and Development in Information Retrieval

(SIGIR’2001), pages 111–119. ACM Press, 2001.

V. Laverenko, M. Choquetto, and W. B. Croft. Cross-lingual language models.

In Proceedings of ACM 25th SIGIR Conference on Research and Development

in Information Retrieval, 2002.

V. Lavrenko and W. Croft. Relevance-based language models. In Proceedings of

ACM 24th SIGIR Conference On Research and Development in Information

Retrieval(SIGIR’2001), pages 120–127, 2001.

V. Lavrenko, J. Allan, E. DeGuzman, D. LaFlamme, V. Pollard, and S. Thomas.

Relevance models for topic detection and tracking. In Proceedings of the

Conference on Human Language Technology (HLT), pages 115–121, 2002.

J. Luo and S. Bridges. Mining fuzzy association rules and fuzzy frequency

episodes for intrusion detection. International Journal of Intelligent Systems,

pages 687–703, 2000.

C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Re-

trieval. Cambridge University Press, 2008.

33

D. Metzler and W. B. Croft. A markov random field model for term depen-

dencies. In Proceedings of ACM 28th SIGIR Conference on Research and

Development in Information Retrieval(SIGIR’2005), pages 472–479, 2005.

D. Metzler and W. B. Croft. Latent concept expansion using markov random

fields. In Proceedings of ACM 30th SIGIR Conference on Research and De-

velopment in Information Retrieval(SIGIR’2007), pages 311–318, 2007.

D. R. H. Miller, T. Leek, and R. M. Schwartz. A hidden markov model infor-

mation retrieval system. In Proceedings of SIGIR conference on research and

development in information retrieval(SIGIR’1999), pages 214–221, Berkeley,

California, USA, 1999.

R. Nallapati and J. Allan. Capturing term dependencies using a language model

based on sentence trees. In Proceedings of the 11th International Conference

on Information and Knowledge Management (CIKM), pages 383–390, 2002.

J. Ponte and W. Croft. A language modeling approach to information retrieval.

In Proceedings of the 21st Annual ACM Conference of Research and Devel-

opment in Information Retrieval(SIGIR’1998), pages 275–281, 1998.

L. R. Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. In Proc. IEEE, pages 257–286, 1989.

D. Song, Q. Huang, P. Bruza, and R. Lau. An aspect query language model

based on query decomposition and high-order contextual term associations.

Computational Intelligence, pages 1–23, 2012.

D. Song, Y. Shi, P. Zhang, Y. Hou, B. Hu, Y. Jia, Q. Huang, U. Kruschwitz,

D. Roeck, and P. Bruza. Optimization of an integrated model for automat-

ic reduction and expansion of long queries. In Lecture Notes in Computer

Science (LNCS), 2013.

34

J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan. Web usage mining:

Discovery and applications of usage patterns from web data. ACM SIGKDD

Explorations NewsLetter, pages 12–23, 2000.

C. Zhai and J. Lafferty. Model-based feedback in the language modeling ap-

proach to information retrieval. In Proceedings of ACM 10th Conference on

Information and Knowledge Management (CIKM), pages 403–410, 2001.

J. Zhao, J. X. Huang, and B. He. Crter: using cross terms to enhance proba-

bilistic information retrieval. In Proceedings of the 34th international ACM

SIGIR conference on Research and development in Information Retrieval,

pages 155–164, 2011.

APPENDIX

The equation in Figure 4

P (Sj |di,k) = 1
k+1

P (wk|Sj)P (Sj |di,k−1)∑
St

P (wk|St)P (St|di,k−1)
+ k

k+1P (Sj |di,k−1)

The derivation is showed as follows:

for k = 1 : K

P (Sj |di,k)

= P (Sj |di,k−1, wk)

=
P (Sj ,wk|di,k−1)
P (wk|di,k−1)

=
P (wk|Sj ,di,k−1)P (Sj |di,k−1)

P (wk|di,k−1)

=
P (wk|Sj ,di,k−1)P (Sj |di,k−1)∑

St
P (wk|St)P (St|di,k−1)

When wk is independent from di,k−1, P (Sj |di,k) ∝ P (wk|Sj)P (Sj |di,k−1)∑
St

P (wk|St)P (St|di,k−1)

When wk is independent from di,k−1, P (Sj |di,k) ∝ P (Sj |di,k−1)

Then, P (Sj |di,k) = 1
k+1

P (wk|Sj)P (Sj |di,k−1)∑
St

P (wk|St)P (St|di,k−1)
+ k

k+1P (Sj |di,k−1)

end

35

