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How to automatically understand and answer users’ questions (e.g., queries issued to a search engine) ex-
pressed with natural language has become an important yet difficult problem across the research fields of Infor-
mation Retrieval (IR) and Artificial Intelligence (AI). In a typical interactive Web search scenario, namely Session
Search. To obtain relevant information, user usually interacts with the search engine for several rounds in the forms
of, e.g., query reformulations, clicks and skips. These interactions are usually mixed and interwined with each other
in a complex way. For the ideal goal, an intelligent search engine can be seen as an AI agent that is able to infer the
user’s information need from these interactions. However, there still exists a big gap between the current state of the
art and this goal. In this paper, in order to bridge the gap, we propose a Markov Random Field based approach to
capture dependencies among interactions, queries and clicked documents for automatic query expansion (as a way
of inferring the user’s information need). Extensive empirical evaluation is conducted on large scale web search
datasets, and the results demonstrate the effectiveness of our proposed models.
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1. INTRODUCTION
An ideal artificial intelligence system (e.g., one that passes the turing test) is expected

to respond to users’ questions (or queries) naturally like a real human does. To achieve this
ultimate goal involves obtaining, interacting and reasoning about information that is relevant
to the questions, thus requiring a synergy across the research fields of information retrieval
(IR), artificial intelligence (AI) and human computer interaction (HCI). A large number of
IR models are proposed to retrieve relevant information from large scale web or local data
repositories. An intelligent IR system can be seen as an AI agent (Guan et al., 2013; Zhang
et al., 2013), which allows the user to continuously interact with the system, and is able to
automatically infer the user’s hidden information need from these interactions, e.g., through
query reformulations.

In interactive Web search scenario, users usually interact with the search engine many
times in order to accomplish a complex search task. This typical interaction process can
be seen as a search session (Guan et al., 2013; Zhang et al., 2013; Huang et al., 2004).
In contrary to the traditional Ad Hoc search, session search allows IR models to retrieve
documents by utilizing the historical interaction information within the same session. As
illustrated in Figure 1, in a user’s search session, there exists a sequence of interactions
in multiple forms (e.g., query reformulations, clicks and skips), which can be viewed as
the user’s implicit relevance feedback. For example, the current query reflects the current
information need directly (which may be insufficient and need to be refined); clicks may
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FIGURE 1. Session search allows IR models to retrieve documents by utilizing an entire ses-
sion, denoted as S = {I1, I2, ..., In, Q}, where Ii is a interaction unit which contains a series
of behaviors, e.g., skip (irrelevant results), click (relevant results) and query reformulations,
etc., and Q is the current query of a session.

imply that users are interested in the viewed content (Li et al., 2014); the skip over some
results may be a strong signal reflecting that the corresponding documents are irrelevant;
reformulations of queries in a session imply that the user wants to search for some novel
topics (reflecting an evolving information need) or enhance the queries’ representation power
for the current information need; and the whole session reflects the evolution of user’s
information need in response to the interactions; and so on. It is important to note that
these interactions are usually mixed and intertwined with each other in a complex way (e.g.,
clicking on a document may lead to skipping another document or a query modification),
making the session search a difficult task. Thus it is crucial to model and exploit such
complex interactions and their interdependencies, in order to predict the user’s hidden search
intent.

Query expansion, as an important means to represent users’ hidden search intent (Zhang
et al., 2016; Carpineto and Romano, 2012), expands the user’s original query by select-
ing relevant terms from a series of feedback documents (e.g., through pseudo-relevance
feedback that simply assumes the top-ranked documents as relevant, or estimated based on
the user interactions as implicit relevance feedback as described above). A representative
query expansion method is the Relevance Model (Lavrenko and Croft, 2001), which selects
expansion words by considering the likelihood of relevance between original query and
feedback documents. Later, a positional relevance model (PRM) (Lv and Zhai, 2010) selects
expansion words that are focused on the query topic, based on their positions and proximities
to the query terms in feedback documents. Existing query expansion models do not explicitly
consider two types of dependency relationships when assigning weights to expansion terms.
They are (1) between query terms and multiple interaction behaviors; (2) between feedback
documents and interaction behaviors.

In this paper, we propose to utilize the Markov Random Field (MRF) as a unified
framework to model the dependencies among different interaction events in a search session,
based on which three query expansion models are derived. Different from traditional query
expansion models which only consider the relationship between feedback documents and
original query, we introduce an additional variable to represent the multiple interactions.
Specifically, we explicitly consider three types of information in the process of query expan-
sion. They are the current query Q, the feedback documents D (including implicit-relevance
feedback documents and pseudo-relevance feedback documents), and the interaction behav-
iors I (including skips, clicks and reformulations, etc.).

Before building an expanded query model, we first need to obtain a candidate set of
words for expansion. For each candidate expansion word, we compute its weight based
on the MRF model constructed from the interaction data. A series of feature functions
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FIGURE 2. Dependency graphs for three weighting functions based on different dependence
assumptions between the components of the mixed-feedback. w is a word, Q is current query,
I is the interaction behaviors, and D is a feedback document (a clicked document or pseudo-
feedback document).

are proposed for the MRF framework, so that different interaction information in search
sessions are captured. We systematically investigate three different MRF models that are
respectively underpinned by three different dependency assumptions (see Figure 2). The
Full Independence Model (FIM) considers that Q, D and I determine the weight of an
expansion word independently, and assumes that the importance of all feedback documents
D is uniform (see Figure 2-(1)). The Query-Document Dependence Model (also called as
Partial Dependence Model, PDM) assumes that the selection of feedback documents should
be dependent on the original query (Figure 2-(2)). Finally, in the Full Dependence Model
(FDM), we assume that the selection of feedback documents are also dependent on the
dynamic interaction behaviors (Figure 2-(3)).

After obtaining the expansion terms for each session, we run the expanded Indri1 query
language in the Indri search engine to obtained the final search results. We have conducted
extensive empirical evaluation on the Session Track data in TREC (Text REtrieval Confer-
ence2) 2013 and 2014. The evaluation results demonstrate the effectiveness of the proposed
models in comparison with a number of state-of-the-art baselines.

In a nutshell, the main contributions of this paper can be summarized as follows:

• We proposed a framework based on Markov Random Field (MRF) which can model
the dependency relationships between interaction behaviors, current query and feedback
documents in query expansion for session search;

• We proposed a series of feature functions for the Markov Random Field models, so that
diversified interaction information can be captured within a unified framework;

• We conducted extensive comparative experiments on large scale session search bench-
marking datasets, and demonstrated the effectiveness of our proposed models.

The rest of this paper is organized as follows. Section 2 reviews the related work. The
proposed query expansion models are described in Section 3. Extensive evaluations are
conducted in Section 4. In Section 5, we will draw conclusions about this paper and discuss
on some possible directions for the future work.

2. RELATED WORK
Typical query expansion models can be based on explicit and implicit relevance feedback

(Buscher et al., 2008; Chirita et al., 2007; Cui et al., 2002, 2003), pseudo relevance feedback
(Bai et al., 2005; Lavrenko and Croft, 2001; Lee et al., 2008; Lv and Zhai, 2010; Rocchio,

1https://sourceforge.net/projects/lemur/
2http://trec.nist.gov/
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1971; White et al., 2002, 2005) and external knowledge (Arguello et al., 2008; Bodner and
Song, 1996; Gottipati and Jiang, 2011; Navigli and Velardi, 2003; Pan et al., 2013). In this
paper, we focus on implicit and pseudo relevance feedback based query expansion methods.

The implicit-feedback methods can be categorized into two directions: query log based
and Human-Computer Interaction (HCI) based. For example, Cui et al. proposed query ex-
pansion models based on user interactions recorded in user logs (Cui et al., 2002, 2003). They
selected high-quality expansion terms according to the correlations between query terms
and document terms extracted by analyzing query logs. Chirita et al. expanded the short
Web search queries with terms collected from each user’s Personal Information Repository,
in order to resolve the ambiguity of the Web search queries and personalize the search
results (Chirita et al., 2007). Gao et al. proposed a unified query expansion framework
based on query logs using the Path-Constrained Random Walks (Gao et al., 2013). Joachims
et al. (Joachims et al., 2007) examines the reliability of implicit feedback generated from
clickthrough data and query reformulations in WWW search, and concludes that clicks are
informative but biased. In addition to the log-based implicit feedback, there are attempts to
utilize HCI information to enhance the query expansion models. For example, Buscher et al.
employed eye tracking data to keep track of document parts that the user reads, and then the
information on the subdocument level is used as implicit feedback for query expansion and
document re-ranking (Buscher et al., 2008). More recently, Chen et al. (Chen et al., 2015)
proposed a query expansion model based on the real-time reading content captured by eye
tracker.

Pseudo-relevance feedback based query expansion assumes that the top-ranked docu-
ments from search engine are relevant. Rocchio proposed a classical query expansion model
based on pseudo-relevant documents for the SMART retrieval system (Rocchio, 1971). After
that, a series of pseudo-relevance feedback based models emerged. For example, Lavrenko
and Croft proposed the well known relevance model (RM) to estimate a language model
from feedback documents (Lavrenko and Croft, 2001), which can be used to estimate the
weights of expanded terms. RM3, a further variant of RM, interpolates the term weights
in RM with that in the original query language model (Lv and Zhai, 2009a). The tradi-
tional pseudo-feedback approaches utilize the whole feedback documents to extract words
for query expansion, which may contain considerable irrelevant information (Zhang et al.,
2009). To solve this problem, retrieval models based on subdocument (e.g., passages (Liu and
Croft, 2002)) or term positions (Lv and Zhai, 2010) have been proposed. Similarly, Miao et
al. exploit the proximity between candidate expansion terms and query terms in the process
of query expansion (Miao et al., 2012). Another directions to improve the performance of
pseudo-feedback models is to select more reliable pseudo-documents. For example, Lee et
al. presented a cluster-based resampling method to select better pseudo-relevant documents
based on the relevance model (Lee et al., 2008). Miao et al. integrate the topic space into
pseudo-relevance feedback in order to measure the reliability of the feedback documents
(Miao et al., 2016). Ye and Huang evaluate the quality level of pseudo-feedback documents
with Learning-to-Rank approach in pseudo relevance feedback (Ye and Huang, 2016).

In this paper, we select expanded terms from both clicked documents (implicit relevance
feedback documents) and top-ranked documents in initial retrieval results (pseudo-relevant
feedback documents). The clicked documents in previous queries can reveal the information
need in current search session, and the pseudo feedback documents can reflect the informa-
tion need for current query to some extent. The weighting functions for expanded terms will
take into account both interaction behaviors in the same session and the relevance of pseudo
feedback documents. In our model, the position information is also considered, inspired
by the positional language model (Lv and Zhai, 2009b) and positional relevance model(Lv
and Zhai, 2010). The dependencies among mixed and multiple types of interactions are
modeled in the principled framework of MRF, which has been applied in IR successfully.
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For example, Metzler and Croft modeled the term dependencies in queries when ranking
documents (Metzler and Croft, 2005) with MRF, and then utilize it to model term dependen-
cies in query expansion (Metzler and Croft, 2007). In addition, a previous work on Markov
Random Field models for session search have been proposed(Gao and Zhang, 2012) in order
to capture the relationship between document and interactions. The MRF models in this
paper are proposed in order to capture the relationship between expansion terms and multiple
interaction behaviors.

3. INCORPORATING MULTIPLE INTERACTIONS IN MRF FOR QUERY
EXPANSION

In this section, we first present a framework, based on the Markov Random Field, to
estimate a query expansion model for session search, namely a session language model.
Then, we formalize a series of feature functions based on three dependence assumptions.
More details for the parameters estimation are also given.

3.1. A MRF Based Session Language Model Framework
We propose to estimate a Session Language Model (SLM) θS with the Markov Random

Field, based on which we can generate needed expanded terms w. According to Figure 1,
we can estimate the SLM with current query and the interaction behaviors. The estimation
framework of the SLM is formalized as follows:

P (w|θS) = P (w|Q, I) ∝ P (w,Q, I) =
∑
D∈F

P (w,Q, I,D) (1)

where Q and I are the current query and the interaction behaviors respectively, and D ∈ F is
a feedback document (clicked document or pseudo-feedback document). Now, the estimation
of SLM becomes a problem of estimating the joint probability P = P (w,Q, I,D). Note that
in this paper we distinguish the interaction behaviors I from the feedback documents D. I
is particularly focused on the general “behaviors” (e.g., skip the irrelevant results, click on
the possibly relevant documents, and query reformulations, etc.), rather than a specific text
document.

In order to estimate the joint probability P (w,Q, I,D), we construct a Markov Random
Field (MRF) based on each of the dependence graphs G in Figure 2. Each node in the graph
represents a random variable. Particularly, the random variables are mutually independent if
there is no edge between them. Therefore, we can make different dependence assumptions
by deploying corresponding edge configurations in the MRF graph, which will be presented
in next subsection in more detail. In this framework, the MRF graph G contains 4 nodes, i.e.,
w, I , D and Q. The joint probability distribution over the 4 random variables is defined as
follows, in a similar way to (Metzler and Croft, 2005):

PΛ = PΛ(w,Q, I,D) =
1

ZΛ

∏
c∈C(G)

φ(c; Λ) (2)

where C(G) is the set of cliques in the MRF graph G, φ(c; Λ) ⩾ 0 is a potential function
over a clique c (c includes a series of nodes which are fully connected by edges between
each other, see Figure 3), Λ is a series of parameters which are need to be estimated, ZΛ =∑

w,Q,I,D

∏
c∈C(G) φ(c; Λ) is a normalization factor. However, it is generally infeasible to

compute ZΛ, since the number of terms in the summation is extremely large. To address
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FIGURE 3. All cliques in Markov Random Fields circled by elliptical and squared dotted
lines.

this issue, we utilize an exponential function to guarantee the non-negative property of the
function (as in (Metzler and Croft, 2005)), formalized as follows:

φ(c; Λ) = exp [λcfc(c)] (3)
where fc(c) is a real-valued feature function over the clique c, λc is the importance weight
for a specific feature function. Substituting this potential function back into the Equation 2,
we obtain the joint probability distribution:

PΛ ∝ exp

 ∑
c∈C(G)

λcfc(c)

 (4)

3.2. Variants of MRF
In this subsection, we describe and analyze three variants of MRF model underpinned by

three different dependence assumptions respectively. The Full Independence (FI) assumption
considers Q, I and D are independent of each other, so is the generation of an expanded term
w from them respectively. The Partial Dependence (PD) assumption (namely the Query-
Document Dependence assumption) assumes that the selection of a feedback document
should depend on the current query. This is similar to the underlying idea for the classic
Relevance Model (RM1) (Lv and Zhai, 2009a), which assigns each feedback document a
weight with the query likelihood. The Full Dependence (FD) assumption assumes that the
selection of feedback document is dependent on both the current query and the previous
interaction behaviors. These three assumptions lead to three variants of MRF, which are
detailed next.

3.2.1. Full Independence Model (FIM). Underpinned by the full independence assump-
tion, we can construct the MRF model FIM (Figure 3-(1)), in which the three nodes,
corresponding to the current query Q, interaction behaviors I and feedback document D, are
independent of each other when w is known. It contains three cliques, i.e., {I, w}, {D,w}
and {Q,w}. Their corresponding feature functions are defined as follows:

fQ(Q,w) = logP (w|Q)P (Q) ∝ logP (w|Q)

fD(D,w) = logP (w|D)P (D) ∝ logP (w|D)

fI(I, w) = logP (w|I)P (I) ∝ logP (w|I)
(5)

where P (Q), P (I) and P (D) are removed from the feature functions, since they can be
regarded as certain events that have occurred (thus P (Q) = 1, P (I) = 1 and P (D) = 1).
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In the proposed feature functions, fQ(Q,w) quantifies how likely the word w and query
terms co-occur in the same documents, fD(D,w) measures the probability of w occurring
in the feedback document D, and fI(I, w) models the possibility that the user utilizes w to
represent the current information need in mind. Substituting this three feature functions back
into Equation 4, we obtain the joint probability distribution

PΛ = exp [λQfQ(Q,w) + λDfD(D,w) + λIfI(I, w)] (6)
where λQ, λD and λI are three positive free parameters which satisfy condition λQ + λD +
λI = 1. In Section 3.3, we will describe the computation details for these feature functions.

3.2.2. Partial Dependence Model (PDM). The full independence assumption in previ-
ous model has an obvious limitation, since intuitively the selection of feedback documents
should depend on the original query. Therefore, we can add an edge between the current
query node Q and the feedback document node D. The motivation is to reward the expanded
terms from the feedback documents that are more relevant to original query. Compared with
FIM , PDM contains one more clique {Q,D,w}. We define its feature function as below:

fQ,D(Q,D,w) = logP (w|Q,D)P (D|Q)P (Q) ∝ logP (w|Q,D)P (D|Q) (7)
In this feature function, P (D|Q) is the relevance probability of feedback document D

with respect to the original query Q. P (w|Q,D) is the probability that the document and
query jointly generate the expansion terms w, which rewards the terms that are close to the
query terms in the documents. Overall, the joint probability distribution estimated with this
Partial Dependence Model (PDM) can be formalized as follows:

PΛ = exp[λQfQ(Q,w) + λDfD(D,w) + λIfI(I, w) + λQ,DfQ,D(Q,D,w)] (8)
where the positive free parameters should satisfy condition λQ+λD +λI +λQ,D = 1. This
model can integrate more dependence information than the Full Independence Model. The
computation details will be described in Section 3.3.

3.2.3. Full Dependence Model (FDM). The Full Dependence Model (FDM) considers
that the selection of feedback documents is dependent on both the original query and the
previous interaction behaviors. Some feedback documents are relevant to users’ information
need for current session, while some others are not. Intuitively, the relevant feedback doc-
uments should have an influence on the selection of expanded terms. However, the PDM
method only uses the original query to estimate the relevant degree of a feedback document.
To estimate the importance of each feedback document more precisely and generate more re-
liable expansion terms, we further improve the MRF model by adding another edge between
I and D. In this way, richer interaction information is integrated into the model. Accordingly,
a new clique {I,D,w} is brought into the MRF graph. For the added clique, we define its
feature function as follows:

fI,D(I,D,w) = logP (w|I,D)P (D|I)P (I) ∝ logP (w|I,D)P (D|I) (9)
where P (D|I) is the relevance probability of feedback documents estimated based on the
interaction information, P (w|I,D) is the generative probability given the interactions and
the feedback documents. In this way, we can obtain a new joint probability distribution based
on the feature functions over all cliques in FDM graph:

PΛ = exp[λQfQ(Q,w) + λDfD(D,w) + λIfI(I, w)

+ λQ,DfQ,D(Q,D,w) + λI,DfI,D(I,D,w)]
(10)
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Similarly, the positive free parameters should satisfy condition λQ+λD +λI +λQ,D +
λI,D = 1. The computation of the feature functions will be detailed in Section 3.3.

3.3. Computation for Feature Functions
To compute all feature functions defined in previous sections, we need to estimate fol-

lowing probabilities: P (w|Q), P (w|D), P (w|I), P (D|Q), P (w|Q,D), P (D|I) and P (w|D, I).

3.3.1. Estimating P (w|Q), P (w|D) and P (D|Q). The conditional probability of term
w conditioned on the query Q is computed as follows:

P (w|Q) = λ
co df(w, q1, ..., qn)

co df(q1, ..., qn)
+ (1− λ)

n∑
i=1

δi
co df(w, qi)

df(qi)
(11)

where q1, .., qn are query terms, co df(t1, ..., tn) is the co-occurrence frequency of terms
t1, ..., tn, df(t) is the document frequency of term t. Moreover, in the equation, the first item
is the main part, the second item is the smoothing part, λ is the smoothing parameter (in this
paper, λ = 0.8), δi is the importance weight of a query term in the query, δi =

tfidf(qi)∑n
j=1 tfidf(qj)

,

tfidf(t) = tf(t) × log NC
df(t) , tf(t) is the term frequency of term t in the collection, NC is

the total number of documents in the collection.
The probability of w occurring in a feedback document D is estimated as follows:

P (w|D) =
tf(w,D) + µP (w|C)

|D|+ µ
(12)

where tf(w,D) is the term frequency of w in D, P (w|C) is the prior probability of w
occurring in the collection, and µ = 2500 is the smoothing parameter.

Based on the Bayes Rule and the law of total probability, the relevance probability of D
to the original query Q can be estimated as follows:

P (D|Q) =
P (Q|D)P (D)

P (Q)
=

P (Q|D)P (D)∑
d∈F P (Q, d)

=
P (Q|D)P (D)∑
d∈F P (Q|d)P (d)

∝ P (Q|D)∑
d∈F P (Q|d)

(13)
where each prior probability of feedback documents P (d) or P (D) are assumed to be
uniform, P (Q|D) =

∏n
i=1 P (qi|D) ∝

∑n
i=1 log P (qi|D), n is the number of words in

the current query Q. The final formula can be regarded as the normalized query likelihood
of each feedback document based on all feedback documents.

3.3.2. Estimating P (w|Q,D). Inspired by the Positional Language Model (PLM) (Lv
and Zhai, 2009b) and Positional Relevance Model (Lv and Zhai, 2010), we develop a po-
sitional estimation method for the probability of a word w conditioned on the joint of the
original query Q and a feedback document D. This model rewards the expanded terms that
are within a closer proximity to the query terms in feedback documents. The estimation
method is shown as follows:

P (w|Q,D) =

∑|D|
i=1 c(w, i) ·

∑|Q|
j=1 δj · exp

[
−(i−pj)

2

2σ2

]
+ µP (w|C)

|D|+ µ
(14)

where i is a absolute position in the document D, c(w, i) ∈ {0, 1} is the occurrence of term
w in position i, δj is the importance weight of the jth query term in original query Q which is
also defined in Equation 11, pj is the nearest position of query term qj to the expanded term
w in the document. Note that, if qj is not in the document, then pj = i. We follow the setting
of σ = 200 as used in (Lv and Zhai, 2010). P (w|C) and µ are the same as in Equation 12.
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3.3.3. Estimating P (w|I). The conditional probability P (w|I) models how likely a
word w is generated conditioned on a user’s rich interaction behaviors in the session. To
compute the probability, we define three frequently observed behaviors in users’ interaction
histories, i.e., skips, clicks and query reformulations, formalized as I = {skip, click,QR}.
QR is abbreviation of Query Reformulations. Users usually skip some irrelevant results
before deciding to click a document which looks like relevant to current information need
after a series of query reformulations. Therefore, we regard “skip” as a kind of negative
feedback which indicates the irrelevance of the skipped results, while we regard “click” as
positive feedback indicating the relevance of clicked results. Different from the feedback
information of “skip” and “click” at the document level, “query reformulations” can signal
the relevance or irrelevance at query terms level. Based on these intuitions and inspired by
the Query Change Model (QCM) (Guan et al., 2013; Zhang et al., 2013), we propose to
model the conditional probability of w conditioned on the interaction behaviors as follows:

P (w|I) =
n∑

i=1

ωiP (w|Ti) (15)

where Ti is a transition unit from the ith interaction unit to (i + 1)th interaction unit. Each
Ti can stand for transition between different interaction behaviors including “skip”, “clicks”
in Ii and the “query reformulations” between Qi+1 and Qi, corresponding to Ii+1 and Ii.
Tn is the transition from last interaction unit In to current query Q, n is the total number
of the interaction units in the session. P (w|Ti) is the conditional probability conditioned on
the transition unit. ωi = Zn log(1 + i) is the discount factor for ith transition unit which
penalizes the distant transition units to current query, where Zn = 1/

∑n
i=1 log(1 + i) is the

normalization factor. We further model the interaction behaviors in each transition unit to
estimate the probability P (w|Ti) as follows:

P (w|Ti) =
1

1 + exp [P (w|Dskip)− P (w|Dclick)]

×
[
αP (w|T rmv

i ) + βP (w|T com
i ) + γP (w|T add

i )
] (16)

where T rmv
i , T com

i and T add
i respectively denote the removed query terms, common query

terms and the added query terms, compared between Qi+1 and Qi, i.e., the query reformu-
lation information.

For example, suppose Qi+1 = “abd” and Qi = “abc”, then the corresponding refor-
mulations are T rmv

i = “c”, T com
i = “ab” and T add

i = “d”. The conditional probability of
w conditioned on reformulation terms (i.e., T rmv

i , T com
i and T add

i ) can be estimated with
Equation 11. α, β and γ are the importance factors corresponding to three categories of
reformulation terms. We should penalize the removed terms, reward the common terms
and the added terms in different degrees when generating expanded terms, since query
reformulations can reflect the trend of how a user’s search intent changes in the session
(Guan et al., 2013; Zhang et al., 2013). To this end, we must guarantee that the conditions
α < β < γ and α+ β + γ = 1 are satisfied.

In order to quantify the importance factors (α, β and γ), we first formalize their non-
normalized formulas, α′ = 1 −

∑
t∈T rmv

i
P (t|Di), β′ = 1 +

∑
t∈T com

i
P (t|Di) and γ′ =

max
[∑

t∈Tadd
i

log NC
df(t) , β

′
]
, where Di is the concatenation (can be seen as a special docu-

ment) of all snippets for the viewed search results in ith interaction unit, P (t|Di) is estimated
with Equation 12. Then, they will be normalized, e.g., α = α′/(α′+β′+γ′). The coefficient
term before “×” in the Equation 16 models the positive and negative feedbacks indicated
by “click” and “skip” behaviors. We will reward the expanded terms occurring in clicked
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snippets frequently and penalize those terms occurring in the skipped snippets frequently.
Dclick and Dskip denote the concatenations of all snippets for clicked results and skipped
results. Note that, if the user has not clicked any result, we will select the snippets for all non-
clicked results to form Dskip. P (w|Dclick) and P (w|Dskip) can be estimated with Equation
12.

3.3.4. Estimating P (D|I). P (D|I) measures the relevance probability of a feedback
document D given the interaction behaviors, under the assumption that a more relevant
feedback document will have a greater influence on generating expanded query terms. For
simplicity, we propose an approximation method for estimating the conditional probabil-
ity, since we are concerned about the relative relevance between feedback documents. The
formula is presented as follows:

P (D|I) = Score(D, I)∑
d∈F Score(d, I)

(17)

where Score(•, I) is the relevance score of a feedback document (represented with •) given
a series of interaction behaviors, F is the set of all feedback documents. Inspired by the
idea utilizing the whole session to score the retrieved documents in (Guan et al., 2013), we
develop a novel scoring function for modeling the complex interaction behaviors (i.e., skip,
click and query reformulations etc.) in the whole session as follows (which is similar to
Equations 15 and 16):

Score(d, I) =
n∑

i=1

ωiScore(d, Ti) =
n∑

i=1

ωi ×
1

1 + exp [sim(d,Dskip)− sim(d,Dclick)]

×
[
αQL(d, T rmv

i ) + βQL(d, T com
i ) + γQL(d, T add

i )
]

(18)
where the meanings and computation approaches for Ti, ωi, Dclick, Dskip, T rmv

i , T com
i ,

T add
i , α, β and γ are the same as those in Equations 15 and 16. sim(d, •) is the Cosine

similarity between a feedback document d and the special document Dclick or Dskip, in
which all documents are represented with tf × idf vectors (Salton et al., 1975). The func-
tion 1/ [1 + exp(•)] maps the reward values for “click” and the penalty values for “skip”
into the interval of (0, 1). We utilize the query likelihood function to compute QL(d, •):
specifically, QL(d,Q) =

∏
t∈Q P (t|d) ∝

∑
t∈Q logP (t|d), where P (t|d) is estimated by

the maximization likelihood approximation with Dirichlet smoothing (Zhai, 2008), and the
smoothing parameter is set as µ = 1500 empirically.

3.3.5. Estimating P (w|D, I). Similar to P (w|I) and P (D|I), we also estimate P (w|D, I)
by utilizing the whole session and considering the positive feedbacks, negative feedbacks and
all query reformulations, formalized as follows:

P (w|D, I) =

n∑
i=1

ωiP (w|D,Ti) =

n∑
i=1

ωi ×
1

1 + exp [P (w|Dskip)− P (w|Dclick)]

×
[
αP (w|T rmv

i , D) + βP (w|T com
i , D) + γP (w|T add

i , D)
] (19)

where most parameters have appeared in previous equations (i.e., Equations 15, 16, 17 and
18). The conditional probability of w conditioned on query reformulations and a feedback
document P (w|•, D) can be estimated with Equation 14.
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Algorithm 1 : Parameter Tuning Algorithm.
1: C

FIM

 �; // the parameter space for FIM
2: C

PDM

 �; // the parameter space for PDM
3: C

FDM

 �; // the parameter space for FDM
4: for �

Q

= 0; �
Q

6 1; �
Q

+= step do
5: for �

D

= 0; �
D

6 1� �

Q

; �
D

+= step do
6: �

I

 1� �

Q

� �

D

;
7: Add configuration c = {�

Q

,�

D

,�

I

} into C
FIM

;
8: end for
9: end for

10: Retrieving with each configuration c 2 C
FIM

and get the best configuration c

0
=

{�0
Q

,�

0
D

,�

0
I

} for FIM;
11: for �

Q,D

= 0; �
Q,D

6 1; �
Q,D

+= step do
12: t 1� �

Q,D

; // t is a temp value
13: �

Q

 �

0
Q

⇥ t; �
D

 �

0
D

⇥ t; �
I

 �

0
I

⇥ t;
14: Add c = {�

Q

,�

D

,�

I

,�

Q,D

} into C
PDM

;
15: end for
16: Retrieving with each c 2 C

PDM

and get the best configuration c

00
= {�00

Q

,�

00
D

,�

00
I

,�

00
Q,D

}
for PDM;

17: for �

I,D

= 0; �
I,D

6 1; �
I,D

+= step do
18: t 1� �

I,D

;
19: �

Q

 �

00
Q

⇥ t; �
D

 �

00
D

⇥ t;
20: �

I

 �

00
I

⇥ t; �
Q,D

 �

00
Q,D

⇥ t;
21: Add c = {�

Q

,�

D

,�

I

,�

Q,D

,�

I,D

} into C
FDM

;
22: end for
23: Retrieving with each c 2 C

FDM

and get the best configuration c

000
=

{�000
Q

,�

000
D

,�

000
I

,�

000
Q,D

,�

000
I,D

} for FDM;

TABLE 1. The distributions of session number on current query Length (CQLen) and sessions’ interaction
unit count (#I) for TREC 2013 and 14.

CQLen 2013 2014 #I 2013 2014
1 0 3 1 20 19
2 17 17 2 18 12
3 13 34 3 14 18
4 20 22 4 6 26
5 16 9 5 7 12
6 9 8 6 6 4

7+ 12 7 7+ 16 9
#ALL 87 100 - - -

posed models, we conduct extensive experiments on the Session Track data of TREC (Text
REtrieval Conference) 2013 and 2014 with the Clueweb12 Full corpus.

4.1. Data Statistics
The evaluation data sets for our models are from the TREC2013 and TREC2014. TREC

released 87 session search tasks (sessions) in 2013 and 1021 tasks in 2014. However, the
TREC 2014’s official ground truth only contains the first 100 sessions, we only select 100
sessions for TREC 2014 in our evaluations. In the ground truth, documents are labeled with
graded relevance degree (i.e., -2, 0, 1, 2, 3 and 4, where -2 indicates the document is a spam

FIGURE 4. Parameter Tuning Algorithm.

3.4. Strategies of Parameter Tuning
Given the formalized joint distribution and a set of feature functions, we should further

tune the free parameters for each model, i.e., λQ, λD, λI , λQ,D and λI,D. It is infeasible to
obtain a globally optimized parameter configuration. To address this challenge, we develop
an approximation algorithm to find the best parameter configurations in relatively small
parameter spaces, which is shown in Figure 4 (Algorithm 1). This algorithm can reduce the
parameter space greatly (the variable step controls the actual size of the parameter space),
and the tuning speed will depend on the retrieval speed and the number of queries in training
set. Specifically, we first search the optimized parameter configuration ({λQ, λD, λI}) for
FIM. Then, control the relative ratio for parameters of FIM and search λQ,D for PDM.
Finally, we control the relative ratio for parameters of FDM and search λI,D.

4. EMPIRICAL EVALUATION
We have developed three query expansion approaches for session search by modeling

mixed interactions based on Markov Random Field. To verify the effectiveness of the pro-
posed models, we conduct extensive experiments on the Session Track data of TREC (Text
REtrieval Conference) 2013 and 2014 with the Clueweb12 Full corpus.
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TABLE 1. The distributions of session number on current query Length (CQLen) and sessions’ interaction
unit count (#I) for TREC 2013 and 14.

CQLen 2013 2014 #I 2013 2014
1 0 3 1 20 19
2 17 17 2 18 12
3 13 34 3 14 18
4 20 22 4 6 26
5 16 9 5 7 12
6 9 8 6 6 4

7+ 12 7 7+ 16 9
#ALL 87 100 - - -

4.1. Experimental Setup
The evaluation datasets are from the TREC 2013 and TREC 2014. TREC released 87

session search tasks (sessions) in 2013 and 1021 tasks in 2014. However, given that the
TREC 2014’s official ground truth only contains the first 100 sessions, we only select 100
sessions for TREC 2014 in our evaluations. In the ground truth, documents are labeled with
graded relevance degrees (i.e., -2, 0, 1, 2, 3 and 4, where -2 indicates the document is a spam
document, 0 stands for irrelevant document, 1-4 represents different relevance degrees of the
document) with respect to the current query. Each search session includes a current query
and a series of interaction units (see Figure 1), where each interaction unit records a historical
query, the corresponding search results, and some interaction information (e.g., skip, click
and dwell time etc.). Session search allows to utilize the whole session to retrieve documents
for the current query. We classify all search sessions into several classes according to the
lengths of the current queries and the number of interaction units in sessions as shown in
Table 1. From the table, we can find that the current-query-lengths of most sessions fall in
the interval between 2 and 5. Most sessions have 1 to 5 interactions units.

The document collection used in retrieval is Clueweb12 Full corpus3 which consists of
733,019,372 English web pages, collected between February 10, 2012 and May 10, 2012.
We clean the Clueweb12 corpus by filtering out the spam documents whose Waterloo Spam
Ranking scores are less than 70 (Cormack et al., 2011). The corpus is indexed by Indri4 5.6.
In the indexing process, the stop words are removed and all words are stemmed by porter
Stemmer (Porter, 1980). Furthermore, we compare seven retrieval models in our evaluations:

• LM (Baseline): The classical language model with Dirichlet smoothing. Negative KL
dervergence between language models of query and document is used as ranking function.

• RM-PF: Traditional Relevance Model based on pseudo-feedback documents only. We re-
implement it to expand the original query based on pseudo-relevance feedback documents.

• RM-MF: Relevance Model based on mixed-feedback documents including pseudo feed-
back documents and clicked documents in interaction histories.

• PRM-PF: Positional relevance model (Lv and Zhai, 2010) only based on pseudo-feedback
documents, we re-implement it to expand the original query from pseudo relevance feed-
back documents.

• PRM-MF: Positional relevance Model based on mixed-feedback documents including
pseudo feedback documents and clicked documents in interaction histories.

• QCM: Query Change Model for session search proposed in (Guan et al., 2013). We re-
implement it as a re-ranking approach.

• FIM: Full Independence Model.
• PDM: Partial Dependence Model.

3http://www.lemurproject.org/clueweb12/index.php
4https://sourceforge.net/projects/lemur/
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TABLE 2. Optimal parameter configurations for different retrieval models.

Models Optimal Parameter Configurations
PRM-PF λ = 0.1, σ = 200 (Lv and Zhai, 2010)
PRM-MF λ = 0.1, σ = 200 (Lv and Zhai, 2010)

QCM α = 2.2, β = 1.8, ϵ = 0.07, δ = 0.4, γ = 0.92 (Guan et al., 2013)

FIM

TREC 2013 Part A: λQ = 0.2, λD = 0.16, λI = 0.64;
TREC 2013 Part B: λQ = 0.4, λD = 0.36, λI = 0.24;
TREC 2014 Part A: λQ = 0.2, λD = 0.64, λI = 0.16;
TREC 2014 Part B: λQ = 0.2, λD = 0.16, λI = 0.64

PDM

TREC 2013 Part A: λQ = 0.16, λD = 0.13, λI = 0.51, λQ,D = 0.2;
TREC 2013 Part B: λQ = 0.32, λD = 0.29, λI = 0.19, λQ,D = 0.2;
TREC 2014 Part A: λQ = 0.16, λD = 0.51, λI = 0.13, λQ,D = 0.2;
TREC 2014 Part B: λQ = 0.04, λD = 0.03, λI = 0.13, λQ,D = 0.8;

FDM

TREC 2013 Part A: λQ = 0.26, λD = 0.23, λI = 0.15, λQ,D = 0.16, λI,D = 0.2;
TREC 2013 Part B: λQ = 0.26, λD = 0.23, λI = 0.15, λQ,D = 0.16, λI,D = 0.2;
TREC 2014 Part A: λQ = 0.26, λD = 0.23, λI = 0.15, λQ,D = 0.16, λI,D = 0.2;
TREC 2014 Part B: λQ = 0.26, λD = 0.23, λI = 0.15, λQ,D = 0.16, λI,D = 0.2;

• FDM: Full Dependence Model.

For all expansion models RM-PF, RM-MF, PRM-PF, PRM-MF, FIM, PDM and FDM, the
common free parameters are set to the same values. Specifically, when retrieving for a query,
we apply corresponding model to select 50 weighted terms from the feedback documents
and expand the representation of original query. Top 10 retrieved documents in the first
round search results with language model are selected as pseudo-feedback documents, since
existing work has indicated that pseudo-feedback models often gain the best performance
when selecting about 10 pseudo relevance feedback documents (Lv and Zhai, 2009a). The
second round search results are obtained by running the expanded queries with the Indri
search engine. The TREC’s official evaluation metrics, NDCG and MAP, are adopted to eval-
uate the performance of aforementioned retrieval models. Note that, we compute the MAP

based on top N retrieved documents rather than all, namely, MAP@N =
∑Q

q=1 APq@N

Q ,

where Q is the number of tested queries and APq@N =
∑n

k=1(Pq(k)×rel(k))
N , where Pq(k) =

|{relevant documents}∩{top k retrieved documents}|/k, rel(k) is an indicator function
equaling 1 if the item at rank k is a relevant document, zero otherwise. The difference
between the definition of AP in this paper and the standard AP is that we use the number
of top N retrieved documents as the denominator rather than the number of all retrieved
documents. In this paper, we report the MAP values based on different N values.

4.2. Evaluation Results
In this subsection, we test different retrieval models with corresponding optimal param-

eters (tuned in previous section) on large scale data, i.e., all Session Track Tasks in TREC
2013 and 2014 as reported in Table 1. The best parameter configurations for all tested models
are summarized in Table 2. We tune the parameters for the proposed models (i.e., FIM, PDM
and FDM) on different subsets of data. Specifically, we separate TREC 2013 (and 2014) data
into two parts (i.e., Part A and B) randomly. For TREC 2013, there are 44 sessions in Part
A and 43 sessions in Part B. For TREC 2014, there are 50 sessions in two parts. We use
one part as training set (tuning parameters) and another as the testing set (using the trained
parameter for testing). We apply Algorithm 1 described in Figure 4 to tune parameters. In
Table 2, we report the used parameters for each testing part. The overall average performance
are analyzed respectively.

Table 3 reports the performance of retrieval models on TREC 2013 and 2014 evaluated
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with NDCG and MAP. The table shows that all query expansion models and query change
model outperform the baseline (LM), which demonstrates that the exploitation of session
interaction information can significantly benefit for the search performance.

Moreover, our models outperform other query expansion models (i.e., RM and PRM)
with respect to all evaluation metrics. Specifically, our models outperform the RM and PRM
models on both data sets. From the table, we can also find that our models are competitive
with the state-of-the-art session search model, i.e., QCM, with respect to most evaluation
metrics (except for NDCG@10). According to the reported results, we find that, for TREC
2013, our proposed models are similar to QCM in terms of different evaluation metrics.
For TREC 2014, our proposed models can significantly outperform QCM. This phenomena
may be resulted from the different features (e.g., query length and interaction unit count) of
TREC 2013 and TREC 2014. Specifically, from the Table 1, we find that the proportion of
long sessions (i.e., #I ⩾ 3) in TREC 2014 (69%) is larger than that in TREC 2013 (56.3%),
which shows that our proposed models can better handle the long sessions than QCM by
effectively modeling the dependency among different interactions.

Comparing between RM-PF and RM-MF, we find that the retrieval performances of
RM-MF are better than RM-PF on both TREC 2013 and 2014 with respect to all evalua-
tion metrics. This demonstrates that utilizing clicked documents as implicit feedback when
expanding the original query can improve the quality of expansion terms significantly. This
also shows that “click” is one of the positive feedback interaction behaviors. An unexpected
phenomenon is that PRM-MF fails to outperform PRM-PF consistently. The possible reason
my be that Positional Relevance Model (PRM) assigns weights for expanded terms consid-
ering the distance between current query and expanded terms in the feedback documents.
In historical clicked documents, the occurrence frequency of current query terms is small,
which leads to that the weights of expanded terms in clicked documents are very small.

From Table 3, we find that the dependence models (PDM and FDM) are often superior
to the independence model (FIM), which shows that modeling dependencies among mixed
interactions is effective for improving the retrieval performance. However, FDM fails to
outperform the PDM. The possible reason is that FDM rewards or penalizes some wrong
documents when selecting feedback documents compared with PDM.
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(a) Overall Performance for TREC 2013
Models NDCG@10 NDCG@100 MAP@10 MAP@100

LM 0.0570 0.0600 0.0071 0.0147
RM-PF 0.0951 0.0982 0.0178 0.0354
RM-MF 0.1042‡ 0.113‡ 0.0201† 0.0426‡
PRM-PF 0.1103‡ 0.1137‡ 0.0214† 0.046‡
PRM-MF 0.1114‡ 0.1141‡ 0.0211† 0.0457‡

QCM 0.1425‡ 0.1299‡ 0.0247† 0.0495‡
FIM 0.1418‡ 0.1264‡ 0.0268‡ 0.0518‡
PDM 0.1396‡ 0.1306‡ 0.0268‡ 0.0521‡
FDM 0.1348‡ 0.1302‡ 0.0265‡ 0.051‡

(b) Overall Performance for TREC 2014
Models NDCG@10 NDCG@100 MAP@10 MAP@100

LM 0.1084 0.114 0.0202 0.0404
RM-PF 0.1247 0.1305 0.0230 0.0522
RM-MF 0.1246 0.1356‡ 0.0231 0.0539†
PRM-PF 0.1407† 0.1517‡ 0.0247 0.0629‡
PRM-MF 0.1392† 0.1541‡ 0.0244 0.0637‡

QCM 0.1321 0.1450 0.0200 0.0553†
FIM 0.1658† 0.1590‡ 0.0281† 0.0674‡
PDM 0.1661‡ 0.1614‡ 0.0286‡ 0.0679‡
FDM 0.1638† 0.1605‡ 0.0284‡ 0.0676‡

TABLE 3. Overall performances for TREC 2013 and 2014 with respect to NDCG and MAP. Significance
Test has been done for different retrieval models compared with RM3-PF model, where the symbol ‡ means
p < 0.01 with paired t-test, † means p < 0.05.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a unified framework based on Markov Random Fields

(MRF), for modelling and incorporating complex dependencies between mixed interaction
feedbacks, e.g., skip, click and query reformulations in search sessions, to estimate a session
language model and then use it to expand the current query in session search. Based on
MRF, we presented three dependency assumptions and correspondingly three MRF variants
are derived. Rich interaction information is captured by computing the feature functions
of MRF variants. Extensive experiments have been carried out on two large scale standard
data sets. The results demonstrate that our models outperform two strong baselines (RM and
PRM) significantly on the most sessions. Moreover, the dependency models outperform the
independence model significantly.

The experimental results have validated the importance of modeling the mixed interac-
tions and their complex dependencies in information retrieval. In the future, more depen-
dency cases could be considered in the MRF. The proposed models may be further improved
by reducing free parameters and exploiting automatic parameters tuning methods, e.g., ma-
chine learning. Additionally, we consider that efficiency is another important performance
issue for our model, especially when the method is applied to real Web search settings.
Basically, before the proposed models can be applied to Web search settings, we should
improve the efficiency of the computation of required probabilities. For example, we can
perform some complex probability computation offline. This is left as a key direction of our
future work.

6. ACKNOWLEDGEMENTS
This work is supported in part by the Chinese National Program on Key Basic Research

Project (973 Program, grant No. 2014CB744604, 2013CB329304), the Chinese 863 Program
(grant No. 2015AA015403), the Natural Science Foundation of China (grant No. U1636203,



16 COMPUTATIONAL INTELLIGENCE

61772363, 61272265, 61402324), the Tianjin Research Program of Application Foundation
and Advanced Technology (grant no. 15JCQNJC41700), and the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agree-
ment No 721321.

REFERENCES
ARGUELLO, JAIME, JONATHAN L ELSAS, JAMIE CALLAN, and JAIME G CARBONELL. 2008. Document

representation and query expansion models for blog recommendation. ICWSM, 2008(0):1.
BAI, JING, DAWEI SONG, PETER BRUZA, JIAN-YUN NIE, and GUIHONG CAO. 2005. Query expansion using

term relationships in language models for information retrieval. In CIKM, ACM, pp. 688–695.
BODNER, RICHARD C, and FEI SONG. 1996. Knowledge-based approaches to query expansion in information

retrieval. Springer.
BUSCHER, GEORG, ANDREAS DENGEL, and LUDGER VAN ELST. 2008. Query expansion using gaze-based

feedback on the subdocument level. In SIGIR, ACM, pp. 387–394.
CARPINETO, CLAUDIO, and GIOVANNI ROMANO. 2012. A Survey of Automatic Query Expansion in

Information Retrieval. ACM.
CHEN, YONGQIANG, PENG ZHANG, DAWEI SONG, and BENYOU WANG. 2015. A real-time eye tracking based

query expansion approach via latent topic modeling. In CIKM, pp. 1719–1722.
CHIRITA, PAUL-ALEXANDRU, CLAUDIU S FIRAN, and WOLFGANG NEJDL. 2007. Personalized query

expansion for the web. In SIGIR, ACM, pp. 7–14.
CORMACK, GORDON V, MARK D SMUCKER, and CHARLES LA CLARKE. 2011. Efficient and effective spam

filtering and re-ranking for large web datasets. Information retrieval, 14(5):441–465.
CUI, HANG, JI-RONG WEN, JIAN-YUN NIE, and WEI-YING MA. 2002. Probabilistic query expansion using

query logs. In WWW, ACM, pp. 325–332.
CUI, HANG, J-R WEN, JIAN-YUN NIE, and WEI-YING MA. 2003. Query expansion by mining user logs.

Knowledge and Data Engineering, IEEE Transactions on, 15(4):829–839.
GAO, JIANFENG, GU XU, and JINXI XU. 2013. Query expansion using path-constrained random walks.

In SIGIR, ACM, pp. 563–572.
GAO, YASI, and C. ZHANG. 2012. A session-oriented retrieval model based on markov random field.

In Proceedings of the 3rd IEEE International Conference on Network Infrastructure and Digital Content,
pp. 641–645.

GOTTIPATI, SWAPNA, and JING JIANG. 2011. Linking entities to a knowledge base with query expansion.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, pp. 804–813.

GUAN, DONGYI, SICONG ZHANG, and HUI YANG. 2013. Utilizing query change for session search. In SIGIR,
ACM, pp. 453–462.

HUANG, XIANGJI, FUCHUN PENG, AIJUN AN, and DALE SCHUURMANS. 2004. Dynamic web log session
identification with statistical language models. Journal of the Association for Information Science and
Technology, 55(14):12901303.

JOACHIMS, THORSTEN, LAURA GRANKA, BING PAN, HELENE HEMBROOKE, FILIP RADLINSKI, and GERI

GAY. 2007. Evaluating the accuracy of implicit feedback from clicks and query reformulations in web
search. ACM TOIS, 25(2):7.

LAVRENKO, VICTOR, and W BRUCE CROFT. 2001. Relevance based language models. In SIGIR, ACM, pp.
120–127.

LEE, KYUNG SOON, W BRUCE CROFT, and JAMES ALLAN. 2008. A cluster-based resampling method for
pseudo-relevance feedback. In SIGIR, ACM, pp. 235–242.

LI, JINGFEI, DAWEI SONG, PENG ZHANG, JI-RONG WEN, and ZHICHENG DOU. 2014. Personalizing web
search results based on subspace projection. In Information Retrieval Technology. Springer, pp. 160–171.

LIU, XIAOYONG, and W BRUCE CROFT. 2002. Passage retrieval based on language models. In CIKM, ACM,
pp. 375–382.

LV, YUANHUA, and CHENGXIANG ZHAI. 2009a. A comparative study of methods for estimating query
language models with pseudo feedback. In CIKM, ACM, pp. 1895–1898.

LV, YUANHUA, and CHENGXIANG ZHAI. 2009b. Positional language models for information retrieval.



MODELLING MULTIPLE INTERACTIONS WITH MARKOV RANDOM FIELD IN QUERY EXPANSION FOR SESSION SEARCH 17

In SIGIR, ACM, pp. 299–306.
LV, YUANHUA, and CHENGXIANG ZHAI. 2010. Positional relevance model for pseudo-relevance feedback.

In SIGIR, ACM, pp. 579–586.
METZLER, DONALD, and W BRUCE CROFT. 2005. A markov random field model for term dependencies.

In SIGIR, ACM, pp. 472–479.
METZLER, DONALD, and W BRUCE CROFT. 2007. Latent concept expansion using markov random fields.

In SIGIR, ACM, pp. 311–318.
MIAO, JUN, JIMMY XIANGJI HUANG, and ZHENG YE. 2012. Proximity-based rocchio’s model for pseudo

relevance. In International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 535–544.

MIAO, JUN, JIMMY XIANGJI HUANG, and JIASHU ZHAO. 2016. Topprf: A probabilistic framework for
integrating topic space into pseudo relevance feedback. Acm Transactions on Information Systems, 34(4).

NAVIGLI, ROBERTO, and PAOLA VELARDI. 2003. An analysis of ontology-based query expansion strategies.
In ECML, pp. 42–49.

PAN, DAZHAO, PENG ZHANG, JINGFEI LI, DAWEI SONG, JI-RONG WEN, YUEXIAN HOU, BIN HU, YUAN

JIA, and ANNE DE ROECK. 2013. Using dempster-shafers evidence theory for query expansion based on
freebase knowledge. In Information Retrieval Technology. Springer, pp. 121–132.

PORTER, MARTIN F. 1980. An algorithm for suffix stripping. Program: electronic library and information
systems, 14(3):130–137.

ROCCHIO, JOSEPH JOHN. 1971. Relevance feedback in information retrieval.
SALTON, G., A. WONG, and C. S. YANG. 1975. A vector space model for automatic indexing. Communications

of the Acm, 18(11):273–280.
WHITE, RYEN W., IAN RUTHVEN, and JOEMON M. JOSE. 2002. Finding relevant documents using top ranking

sentences: an evaluation of two alternative schemes. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 57–64.

WHITE, RYEN W., IAN RUTHVEN, JOEMON M. JOSE, and C. J. VAN RIJSBERGEN. 2005. Evaluating implicit
feedback models using searcher simulations. Acm Transactions on Information Systems, 23(3):325–361.

YE, ZHENG, and JIMMY XIANGJI HUANG. 2016. A learning to rank approach for quality-aware pseudo-
relevance feedback. Journal of the Association for Information Science and Technology, 67(4):942959.

ZHAI, CHENGXIANG. 2008. Statistical language models for information retrieval. Synthesis Lectures on Human
Language Technologies, 1(1):1–141.

ZHANG, PENG, YUEXIAN HOU, and DAWEI SONG. 2009. Approximating true relevance distribution from a
mixture model based on irrelevance data. In SIGIR, ACM, pp. 107–114.

ZHANG, PENG, JINGFEI LI, BENYOU WANG, XIAOZHAO ZHAO, DAWEI SONG, YUEXIAN HOU, and MAS-
SIMO MELUCCI. 2016. A quantum query expansion approach for session search. Entropy, 18(4):146.

ZHANG, SICONG, DONGYI GUAN, and HUI YANG. 2013. Query change as relevance feedback in session
search. In SIGIR, ACM, pp. 821–824.


