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Summary

Secure multiparty computation (SMC) is an important scheme in cryptography and
can be applied in various real-life problems. The first SMC problem is the million-
aires’ problem, and its protocol is an important building block. Because of the less
efficiency of public key encryption scheme, most existing solutions based on pub-
lic key cryptography to this problem is inefficient. Thus, a solution based on the
symmetric encryption scheme has been proposed. In this paper, we formally analyse
the vulnerability of this solution, and propose a new scheme based on the Deci-
sional Diffie-Hellman (DDH) assumption. Our solution also uses 0-encoding and
1-encoding generated by our modified encoding method to reduce the computation
cost. We implement the solution based on symmetric encryption scheme and our pro-
tocol. Extensive experiments are conducted to evaluate the efficiency of our solution,
and the experimental results show that our solution can be much more efficient and
be approximately 8000 times faster than the solution based on symmetric encryp-
tion scheme for a 32-bit input and short-term security. Moreover, our solution is also
more efficient than the state-of-the-art solution without pre-computation and can also
compare well with the state-of-the-art protocol while the bit length of private inputs
is large enough.
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1 INTRODUCTION

Secure multiparty computation (SMC) was first proposed by Yao in 19821. The goal of SMC is to enable parties to jointly
compute a function over their inputs without revealing these private inputs. For example, a given number of parities p1, p2,
..., pn, all participants have a private input data, respectively d1, d2, ..., dn. They want to compute the value of a public func-
tion f on n variables (d1, d2, ..., dn). An SMC protocol is secure if no participant can learn more than what he/she can learn
from his/her own input from the public function and the result. SMC appears as an essential problem in cryptography and its
solutions have been utilized in cooperative scientific computation2,3, data mining 4,5, privacy-preserving clustering6, bidding
and auction in e-commerce7,8,9, secure computational geometry10,11,12,13,14, set intersection15,16,17, secure statistical analysis18,
privacy-preserving image retrieval19,20,21,22 and secure data aggregation in Smart Metering systems23.
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The first SMC problem is Yao’s Millionaires’ problem. It is a secure two-party computations problem and it has served as an
important building blocks in some solutions10,19,20,24,25,26,27. The problem discusses two millionaires, Alice and Bob, who want
to know which of them is richer without disclosing their actual wealth. This problem is analogous to a more general problem
where Alice and Bob have their private inputs, x and y, and they want to determine the predicate x > y without revealing the
actual values of x and y. The first solution to millionaires’ problem is presented by Yao himself. For the n-bit numbers x and
y, it needs 1 time public key encryption, 2n times public key decryptions, 2n times modular operation, and at least 22n∕2 times
verifications. So it is exponential in time and space and too expensive to be practical.
Many other solutions have been proposed to solve Millionaires’ problem. Ioannidis et al.28 use 1-out-of-2 oblivious transfer

scheme to construct a protocol that runs n times of the OT scheme, where n is the length of the private inputs. The implementation
of the 1-out-of-2 oblivious transfer based on public key cryptography needs 4 times public key encryptions and 2 decryptions.
Let N = 2n be the maximal value of the input, it needs 4 logN public key encryptions and 2 logN public key decryptions.
Lin et al.29 propose a two-round protocol to solve the Millionaires’ Problem. Their protocol uses multiplicative homomorphic
encryption scheme and is more efficient than an additive one practically. It can save computation time and communication
bandwidth in practicality. Let p be the modulo prime, the solution in 29 takes 5n log p modular multiplications. And the size
of exchanged messages is 6n log p bits in 29. Fully homomorphic encryption schemes can support more operations over the
chiptexts30, but they are still inefficient and unpractical.
Shundong et al.31 propose a symmetric cryptographic solution to the millionaires’ problem based on set-inclusion problems

using a commutative encryption scheme and claims that it is more efficient for practical applications than known solutions and
is capable of greatly reducing the computational cost. Unfortunately, we have discovered that the solution has some security
flaws and is not more efficient than our protocol based on public key cryptography when the size of the input is large.
Veugen et al.32 have analyzed the state-of-the-art comparison protocols. In terms of execution time, they point that Damgard’s

solution33 developed on the basis of the dedicated DGK homomorphic encryption scheme outperforms the other protocols.
Nevertheless, this solution has an initialization time of approximately 154 seconds for medium term security.
Our contributions can be summarized as follows:
1) We find and analyze some security flaws of Shundong’s symmetric cryptographic solution to millionaires’ problem and

this solution is not more efficient and practical than some previous solutions. And the existing problems are formulated and
demonstrated, and then their work are also discussed in this paper.
2) We introduce a new solution based on the Decisional Diffie-Hellman assumption as well as the set intersection problem to

the millionaires’ problem and . Experimental results show that our solution is more efficient and practical.
3)We find that the performance of our solution to the millionaires’ problem can be further improved by the random secret keys

size setting to be more less bits without having degenerated the underlying intractable discrete logarithm problem. Consequently,
our solution is also more efficient than the state-of-the-art solution without pre-computations.
This paper is an improved version of our conference paper34. Based on the conference paper34, we have made significant

improvements on our work.
The rest of the paper is organized as follows. Section 2 provides some discussions on Shundong’s symmetric cryptographic

solution to millionaires’ problem. In Section 3 we propose our solution to Yao’s millionaires’ problem. In Section 4, we demon-
strate security analysis and proof to our solution. Section 5 possesses experiment results as well as analyses. Ultimately, the
paper will be concluded in Section 6.

2 SOME DISCUSSIONS ON SHUNDONG’S SYMMETRIC CRYPTOGRAPHIC SOLUTION
TOMILLIONAIRES’ PROBLEM

Shundong’s symmetric cryptographic solution to millionaires’ problem is proposed based on a private set-inclusion problem.
This problem can be formally defined as follows: Alice has a private number x, and Bob has a private setX = {x1, x2, x3, ..., xn}.
Alice and Bob need to know whether x ∈ X without disclosing their private data either x or X to the counterpart. It can be
solved with a commutative encryption scheme that has been made for the purpose of determining whether the two numbers
are equal35. The commutative encryption scheme can be either an asymmetric encryption scheme or a symmetric encryption
scheme. In fact, the set-inclusion problem is a special case of the private intersection problem. Agrawal et al.36 propose a solution
with a commutative encryption based on the Decisional Diffie-Hellman assumption to solve the private intersection problem.
Neither of the two parties could learn the other party’s information outside of the intersection because of lacking necessary key



LIU ET AL 3

Protocol 1: Set-inclusion problem31

Inputs:
Alice: x
Bob: X

Output:Whether x ∈ X.

The protocol:

1. Preparation:

Bob chooses a subset A from {X, X̄}, whose cardinality is smaller than m∕2. Assume that A = {a1, a2, ..., ak}. Based on
A, Bob defines a new set B = {b1, b2, ..., bk, bk+1, ..., bt}, where t = ⌊m∕2⌋, bi = ai for 1 ≤ i ≤ k, whereas bi ∉ U for
k + 1 ≤ i ≤ t. Obviously, A ⊂ B and A ∩ B=A. If x ∈ B, then x ∈ A, and B hide |A|, and hides |X|.

2. Bob encrypts B using a commutative encryption scheme and obtains EKb
(B) = {EKb

(b1), EKb
(b2), ...., EKb

(bt)}; Bob
sends EKb

(B) to Alice.

3. Alice encrypts EKb
(B) and x with the same commutative encryption scheme and gets EKa

(EKb
(B)) and EKa

(x); And she
sends EKa

(EKb
(B)) and EKa

(x) to Bob.

4. Bob encrypts EKa
(x) and gets EKb

(EKa
(x)), determines whether EKb

(EKa
(x)) ∈ EKa

(EKb
(B)). An then determines

whether x ∈ X as follows:

If (EKb
(EKa

(x)) ∈ EKa
(EKb

(B)) ∧ (A = X), then x ∈ X, else x ∉ X.

If (EKb
(EKa

(x)) ∉ EKa
(EKb

(B)) ∧ (A = X̄), then x ∈ X, else x ∉ X.

information. A similar protocol is also proposed by Li et al. based on public key cryptography37. However, the two solutions
suffer the same questions of more computational complexity and can also reveal |X|. Consequently, Shundong et al. introduce
a new solution based on symmetric encryption scheme, which is a commutative encryption scheme. And the new solution can
be efficient and maintains the privacy of |X|

31.
In simple terms, a commutative encryption scheme must satisfy that Ea(Eb(x)) = Eb(Ea(x)), where E is an encryption

function and a and b are two specified keys. First, the formal protocol with a commutative encryption to the set-inclusion problem
is defined as Protocol 1. Let’s suppose that U is a complete set, m = |U |, X ⊆ U and x ∈ X. The complementary set of X is
denoted by X̄, and thus U = X ∪ X̄, |U | = |X| + |X̄|.
Through the applications of a commutative scheme, a symmetric encryption solution based on Protocol 1 to the set-inclusion

problem proposed in reference 31 is defined as Protocol 2.
Shundong et al. have analyzed the security of Protocol 2 and proved that it is secure in reference31. But in fact, Protocol 2

exhibits some important security drawbacks.
First, we discover a definition flaw in Protocol 1. If the cardinality |U | of the set U is even, Bob could not determine the

subset A from {X, X̄} because the cardinality of the set X could equal to the cardinality of the set X̄ according to Protocol 1.
A simply solution is that an element y ∉ U can be added into the set X. So the cardinality of the new set X′ is odd and it will
not influence the result. For simplicity, this flaw will not be considered for later discussion.
There exist two important security drawbacks in Protocol 2. The first one is found by Xie et al.16. They find that Alice could

easily explore Bob’s whole set X if Alice has known the set U . For each element e ∈ U , Alice can easily find r′i such that
e⊕r′i = x⊕ri. When Alice receives the two sets ofD and �(E) = {e�(1), e�(2), ..., e�(t)} from Bob in step 5, instead of computing
{b1 ⊕ s1 ⊕ r1, b1 ⊕ s2 ⊕ r2, ..., bt ⊕ st ⊕ rt}, she could compute G′ = D⊕R′ = {b1 ⊕ s1 ⊕ r′1, b1 ⊕ s2 ⊕ r′2, ..., bt ⊕ st ⊕ r′t}.
If |�(E) ∩ G′| = 1, then e ∈ B. So Alice can determine the set X according to the result of protocol 2.
We find the second security drawback. Suppose that A = X and x ∉ X. If ∃ri ∈ R, sj ∈ S, rm ∈ R, sn ∈ S, bq ∈ B and

x ≠ bq such that x ⊕ ri ⊕ sj = bq ⊕ rm ⊕ sn, then |�(E) ∩ G| = 1. According to protocol 2, if A = X then x ∈ X. But in fact,
if x ≠ bq and x ∉ X, the result can still show x ∈ X. A simple example is shown as follows:
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Protocol 2: A symmetric encryption solution to the set-inclusion problem

Inputs:
Alice: x
Bob: X

Output:Whether x ∈ X.

The protocol:

1. Preparation:

Bob prepares X, X̄, A, B according to Protocol 1.

2. Alice generates a random sequence R = {r1, r2, ..., rt}, and Bob generates another random sequence S = {s1, s2, ..., st}.

3. Alice computes C = x ⊕ R = {x ⊕ r1, x ⊕ r2, ..., x ⊕ rt} = {c1, c2, ..., ct}, and sends C to Bob.

4. Bob computes

D = B ⊕ S = {b1 ⊕ s1, b2 ⊕ s2, ..., bt ⊕ st} = {d1, d2, ..., dt},

E = C ⊕ S = {c1 ⊕ s1, c2 ⊕ s2, ..., ct ⊕ st}={x ⊕ r1 ⊕ s1, x ⊕ r2 ⊕ s2, ..., x ⊕ rt ⊕ st} = {e1, e2, ..., et}.

5. Bob generates a random permutation of E, expressed by �(E), and sends D and �(E) = {e�(1), e�(2), ..., e�(t)} to Alice.

6. Alice computes G = D ⊕ R = {b1 ⊕ s1 ⊕ r1, b2 ⊕ s2 ⊕ r2, ..., bt ⊕ st ⊕ rt} and |�(E) ∩ G|. Alice sends the result of
|�(E) ∩ G| to Bob.

7. If |�(E) ∩ G| = 1, then x ∈ B, else x ∉ B. Bob determines whether x ∈ X as follows:

If (x ∈ B) ∧ (A = X), then x ∈ X, else x ∉ X.

If (x ∉ B) ∧ (A = X̄), then x ∈ X, else x ∉ X.

8. Bob tells Alice the result.

Suppose that U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, x = 3 and X = {2, 4} and Alice generates a random sequence R = {1, 2} and Bob
generates a random sequence S = {3, 1}. Alice can get D = {2⊕ 1⊕ 3, 4⊕ 2⊕ 1} and �(E) = {3⊕ 1⊕ 3, 3⊕ 2⊕ 1}. We
can find that |�(E) ∩ G| = |{1⊕ 2⊕ 3}| = 1. The result show that x ∈ X, but x ∉ X. The second security drawback is that
the result of protocol 2 could be wrong.
Since Shundong’s symmetric encryption solution to the set-inclusion problem has some drawbacks, their symmetric solution

to millionaires’ problem is also broken. However, even if we postulate that symmetric encryption solution to the set-inclusion
problem is perfect (For example, we can construct an asymmetric encryption solution to the set-inclusion problem to instead of
protocol 2 to eliminate the drawbacks of Shundong’s symmetric cryptographic solution to Yao’s millionaires’ problem), their
symmetric solution to millionaires’ problem also exhibits some important security drawbacks.
Let’s suppose that a symmetric encryption solution to the set-inclusion problem is secure. In some cases, Alice could easily

explore Bob’s y in this scheme.

Proposition 1. Suppose that G = EKa
(EKb

(B)) = {g1, g2, ..., gt}, x = ⌊m∕2⌋,if and only if Alice knows EKb
(EKa

(x)) = gt and
x < y, then y = x + 1.

Proof. For the “if” part:
According protocol 1, if EKb

(EKa
(x)) = gt then EKb

(EKa
(x)) ∈ EKa

(EKb
(B)). According to protocol 3, if x < y then x ∈ X.

According to protocol 1, if (EKb
(EKa

(x)) ∈ EKa
(EKb

(B)) ∧ x ∈ X, then A = X. EKb
(EKa

(x)) = gt , so bt = x. According to
protocol 3, B = A = X = {1, 2, ..., y − 1}, so bt = y − 1 = x, i.e. y = x + 1.
For the “only if” part:
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Protocol 3: Shundong’s Symmetric cryptographic solution to Yao’s millionaires’ problem

Inputs:
Alice: x
Bob: y

Output:whether x < y.
For simplicity, suppose that 0 < x, y < 100. Let U = {1, 2, ..., 99}; then x, y ∈ U . Bob constructs a set X as follows:
X = {1, 2, ..., y − 1}. Clearly, X ∈ U . If x ∈ X, then x < y, and otherwise x ≥ y.
The protocol:

1. Preparation:

Provided x and X, the preparation of X, X̄, A, B according to Protocol 1. The protocol proceeds as follows:

2. Alice and Bob use Protocol 2 to determine whether x ∈ X, and Bob obtains the result. Bob concludes that x < y if x ∈ X,
and x ≥ y otherwise.

3. Bob tells Alice the result.

According to protocol 1 and protocol 3, if x = ⌊m∕2⌋ and y = x+1, thenX = {1, 2, ..., y−1} = {1, 2, ..., x}. And if x = ⌊m∕2⌋,
then B = A = X = {1, 2, ..., x} and gt = EKb

(EKa
(bt)) = EKb

(EKa
(x)), where (EKb

(EKa
(x)) ∈ EKa

(EKb
(B)) ∧ A = X, so

x ∈ X and according to protocol 3 , x < y. So Alice can know that EKb
(EKa

(x)) = gt and x < y.

Proposition 2. Suppose that G = EKa
(EKb

(B)) = {g1, g2, ..., gt} and x > ⌊m∕2⌋+2, if and only if Alice knows EKb
(EKa

(x)) =
gi and x ≥ y, then y = x − i + 1 and y > ⌊m∕2⌋ + 1.

Proof. For the “if” part:
According protocol 1, if EKb

(EKa
(x)) = gi then EKb

(EKa
(x)) ∈ EKa

(EKb
(B)). According to protocol 3, if x ≥ y then x ∉ X.

According to protocol 1, If (EKb
(EKa

(x)) ∈ EKa
(EKb

(B)) ∧ x ∉ X, then A = X̄. According to protocol 3, X = {1, 2, ..., y− 1},
so y > ⌊m∕2⌋ + 1 and B = {b1, b2, ..., bt} = {y, y + 1, ..., bt}. If EKb

(EKa
(x)) = gi, then x = bi = y + i − 1, i.e. y = x − i + 1.

For the “only if” part:
If y > ⌊m∕2⌋ + 1 then X = {1, 2, ..., y − 1} and A = X̄. So B = {b1, b2, ..., bt} = {y, y + 1, ..., bt}. If y = x − i + 1, then

B = {x−i+1, x−i+2, ..., x, ..., bt}.EKb
(EKa

(B)) = {EKb
(EKa

(x−i+1)), EKb
(EKa

(x−i+2)), ..., EKb
(EKa

(x)), ..., EKb
(EKa

(bt))},
so EKb

(EKa
(x)) = gi, where (EKb

(EKa
(x)) ∈ EKa

(EKb
(B)) ∧ A = X̄, so x ∉ X and according to protocol 3, x ≥ y. So Alice

can know that EKb
(EKa

(x)) = gi and x ≥ y.

In fact, we only need the sufficient condition of the two propositions. Alice can conclude Bob’s y if the sufficient condition
of the two propositions is satisfied. So two corollaries can be presented as follows.

Corollary 1. Suppose that G = EKa
(EKb

(B)) = {g1, g2, ..., gt}, x = ⌊m∕2⌋,if Alice knows EKb
(EKa

(x)) = gt and x < y, then
Alice can conclude that y = x + 1.

Corollary 2. Suppose thatG = EKa
(EKb

(B)) = {g1, g2, ..., gt} and x > ⌊m∕2⌋+2, if Alice knowsEKb
(EKa

(x)) = gi and x ≥ y,
then Alice can conclude that y = x − i + 1.

A simple solution to the problem on Shundong’s symmetric cryptographic solution to Yao’s millionaires’ problem is that Bob
generates a random permutation of X = {1, 2, ..., y − 1} as the new X. However, as previously mentioned, it is still not secure
because of some security drawbacks.
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3 OUR SOLUTION TO YAO’S MILLIONAIRES’ PROBLEM

Some previous work based on homomorphic encryption have studied and proposed some efficient protocols to Yao’s million-
aires’ problem. Blake et al.38 use the additive homomorphic Paillier cryptosystem to construct a two-round protocol to Yao’s
millionaires’ problem. The computation cost is O(n logN) and the communication cost is O(n logN). Lin et al.29 also propose
a two-round protocol for solving the Millionaires’ Problem using the multiplicative homomorphic encryptions and a special
coding for the private inputs. Since multiplicative homomorphic encryption scheme is more efficient than an additive one prac-
tically, their solution saves computation time and communication bandwidth in practicality. The ElGamal encryption scheme is
a multiplicative homomorphic encryption scheme with the scalaring property. And the Paillier encryption scheme is an addi-
tive homomorphic encryption scheme. For efficiency of computation, they modify the scheme so that each decryption takes 1
modular exponentiation without affecting the security of the scheme. Shundong et al. propose to use the XOR operation as the
symmetric commutative function and the solution can sharply reduce the computational overhead. Unfortunately, it does have
some security flaws. Generally, we have two policies to reduce the computational overhead. The first one is to employ a sym-
metric encryption scheme, and the second one is to employ an asymmetric encryption scheme but we can greatly reduce the
computational number of modular multiplications.

3.1 0-encoding and 1-encoding
The main idea reducing the computational number of modular multiplications is to reduce the scale of the set intersection
problem. Lin et al.29 use two special encodings, 0-encoding and 1-encoding.
Let x = xnxn−1...x1 ∈ {0, 1}n be a binary string of length n. The 0-encoding of x is the set S0x of binary string x such that

S0x = {xnxn−1...xi+11|xi = 0, 1 ≤ i ≤ n}

The 1-encoding of x is the set S1x of binary string such that

S1x = {xnxn−1...xi|xi = 1, 1 ≤ i ≤ n}

Both S1x and S
0
x have at most n elements.

We can encode x into its 1-encoding S1x and y into its 0-encoding S
0
y .

Theorem 1. x is greater than y if and only if S1x and S
0
y have a common element.

The proof of theorem 1 and more information about 0-encoding and 1-encoding can be found in 29.
We give an example. Let x = 10 = 10102 and y = 6 = 01102 of length 4 (we fill in the leading zeros). We have S1x = {1, 101}

and S0y = {1, 0111}. Since S
1
x ∩ S

0
y ≠ ∅, we have x > y. And if x = 6 = 01102 and y = 10 = 10102,we have S1x = {01, 011}

and S0y = {11, 1011}.Since S
1
x ∩ S

0
y = ∅, we have x ≤ y.

In order to construct our solution, we redefine a new 0-encoding and 1-encoding.

Definition 1. Let x = xnxn−1...x1 ∈ {0, 1}n be a binary string of length n. The 0-encoding of x is the set S0x of binary numbers
x such that

S0x = {xnxn−1...xi+11 0i−1, ..., 02, 01⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
i−1

|xi = 0, 1 ≤ i ≤ n}

The 1-encoding of x is the set S1x of binary numbers such that

S1x = {xnxn−1...xi 0i−1, ..., 02, 01⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
i−1

|xi = 1, 1 ≤ i ≤ n}

Both S1x and S
0
x have at most n elements.

We also give an example. Let x = 10 = 10102 and y = 6 = 01102 of length 4. We have S1x = {10002, 10102} = {8, 10}
and S0y = {10002, 01112} = {8, 7}. Since S

1
x ∩ S

0
y ≠ ∅, we have x > y. And if x = 6 = 01102 and y = 10 = 10102,we have

S1x = {01002, 01102} = {4, 6} and S
0
y = {11002, 10112} = {11002, 10112} = {12, 11}. Since S

1
x ∩ S

0
y = ∅, we have x ≤ y.
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3.2 Our commutative encryption scheme
We propose a commutative encryption scheme solution to Yao’s millionaires’ problem. The commutative encryption scheme
is constructed based on the Decisional Diffie-Hellman assumption. Our commutative encryption scheme requires 1 modular
exponentiation for each party, so it is more efficient than multiplicative homomorphic encryption scheme.

Definition 2. LetM denote a message space andK denote a key space. A commutative encryption function is a computable (in
polynomial time) and bijection function f ∶M ×K →M that satisfies that we have fb◦fa(m)=fa◦fb(m), for a given m ∈M ,
any a, b ∈ K .

Fact 1. Let M be the group of quadratic residues modulo a prime p, where p is a large ‘safe’ prime number, i.e., both p and
q = (p−1)∕2 are large primes. LetK be {1, 2, ..., q−1}. According to Decisional Diffie-Hellman assumption, the power function

fe(m) ≡ me mod p

is commutative encryption function.
(1) fb◦fa(m) = (ma mod p)b mod p=mab mod p = (mb mod p)a mod p = fa◦fb(m)
(2) Each of the powers fe is a bijection.

The DDH is a computational hardness assumption about a certain problem of discrete logarithms in cyclic groups. So the
security of fe depends on the computational difficulty of discrete logarithm problem. Let ℎ denote a public collision-free hash
function.
Our solution (Protocol 4) is constructed based on the Decisional Diffie-Hellman assumption. Let p be the quadratic residues

modulo prime. Let n be the length of the private inputs of x and y. The most time-consuming computation is modular multiplica-
tions, so wewill only count the cost of modular multiplications. Our solution takes nomore than 4n log p

2
modular multiplications

and the solution in29 takes 5n log p modular multiplications. The size of exchanged messages in our solution is no more than
3n log p bits and it is 6n log p bits in29.

4 SECURITY ANALYSIS

Goldreich39 presents a security evaluation benchmark based on the simulation paradigm, which has been widely used to prove
the secure of a multiparty computation solution.

4.1 The Semi-Honest Model
We suppose that both of the parties in our solution to Yao’s millionaires’ problem are semi-honest. Loosely speaking, a semi-
honest party is one who follows each step of the protocol properly, except that it collects all its intermediate computation results
andmight attempt to infer the other parties’ private inputs from the final and intermediate computation results. Roughly speaking,
a protocol is private in the semi-honest model if each party is unable to conclude the private input data of another party from
the final and his/her collected intermediate computation results. And our solution is privacy preserving in a semi-honest setting.

4.2 Formulation of Privacy
Goldreich39 proposes the privacy definition of secure multiparty computation to study the security of multiparty computation
schemes. Let f = (f1, f2) be a probabilistic polynomial-time functionality and Π be a two-party protocol for computing f .
The view of the first party during an execution of Π on the input (x, y), denoted by viewΠ1 (x, y), is (x, r

1, m11, ..., m
1
t ), where r

1

represents the outcome of the first party’s internal coin tosses, and m1i represents the i-th message it has received. The output
of the first party during an execution of Π on the input (x, y), denoted by outputΠ1 (x, y), is implicit in the party’s view of the
execution. The view and output of the second party can be defined analogously.

Definition 3. For a functionality f , Π privately computes f if there exist probabilistic polynomial-time algorithms, denoted by
S1 and S2 such that

{(S1(x, f1(x, y)), f2(x, y))}x,y
c
≡

{(viewΠ1 (x, y), output
Π
2 (x, y))}x,y,

(1)
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Protocol 4: Our solution to Yao’s millionaires’ problem

Inputs:
Alice: x and a large safe prime p, where 0 < x < 2n, n = ⌊log(p − 1)∕2⌋
Bob: y and a large safe prime p, where 0 < y < 2n, n = ⌊log(p − 1)∕2⌋

Output: whether x > y.

The protocol:

1. Alice:

(a) Alice generates a random secret key a, where a is a large number and a < (p − 1)∕2.

(b) Alice computes S1x .

(c) for each s ∈ S1x computes S = S ∪ {fa(ℎ(s)2)}.

(d) Alice prepares l1 = n − |S1x| random numbers zj and combines them to the set S, where zj ∈ M , 1 ≤ j ≤ l1 and
each zj is unique.

(e) Alice generates a random permutation of S, expressed by �1(S) and sends �1(S) to Bob.

2. Bob:

(a) Bob generates a random secret key b, where b is a large number and b < (p−1)∕2, then Bob gets �1(S) and computes
G = fb(�1(S)).

(b) Bob computes S0y .

(c) for each r ∈ S0y computes R = R ∪ fb(ℎ(r)2).

(d) Bob prepares l2 = n − |S0y | random numbers zj and combines them to the set R, where zj ∈ M , 1 ≤ j ≤ l1 and
each zj is unique.

(e) Bob generates a random permutation of R, expressed by �2(R) and sends �2(R) to Alice.

(f) Bob generates a random permutation of G, expressed by �3(G) and sends �3(G) to Alice.

3. Alice gets �2(R) and computesH = fa(�2(R)).

If |H ∩ �3(G)| = 1, Alice concludes that x > y and x ≤ y otherwise. Alice tells Bob the result.

and
{(S2(y, f2(x, y)), f1(x, y))}x,y

c
≡

{(viewΠ2 (x, y), output
Π
1 (x, y))}x,y,

(2)

where
c
≡ denotes computational indistinguishability, viewΠ1 (x, y) and view

Π
2 (x, y), output

Π
1 (x, y) and output

Π
2 (x, y), are related

random variables, defined as a function of the same random execution.

4.3 Security Analysis on Our Solution
Notice that in this protocol f1(x, y) = f2(x, y) = x > y or f1(x, y) = f2(x, y) = x ≤ y, and the view of a party is defined by
(x, r, m1, m2, ...), where x is the party’s input, r is the private coin tosses, and mi is the i-th message it received.
Suppose that f1(x, y) = f2(x, y) = x > y. We can construct simulator S1 as follows:
S1 receives (x, f1(x, y)) as its input, and simulates viewΠ1 (x, y) is satisfied by eq. 1.
1. S1 first generates a random secret key b′, where b′ is a large number and b′ < (p− 1)∕2. And then S1 randomly constructs

a number y′ such that |S1x ∩ S
0
y′ | = 1.

2. S1 prepares l′2 = n − |S0y′ | random numbers zj .
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3. According to protocol 4, S1 computes S1x , S
0
y′ , S and R′.

4. S1 computes �1(S), and �2(R′).
5. S1 computes G′,H ′ and �3(G′).
Let S1(x, x > y) = {x, a, b′, S1x , S

0
y′ , S, R

′, �1(S), �2(R′), G′, �3(G′),H ′, |H ′ ∩ �3(G′)| = 1}. Since viewΠ1 (x, y) =
{x, a, S1x ,S, �1(S), �2(R

′),�3(G′),H ′, |H ′ ∩ �3(G′)| = 1}. So it shows that
{(S1(x, f1(x, y)), f2(x, y))}x,y

c
≡ {(viewΠ1 (x, y), output

Π
2 (x, y))}x,y.

Simulator S2 for simulating viewΠ2 (x, y), such that
{(S2(x, f2(x, y)), f1(x, y))}x,y

c
≡ {(viewΠ2 (x, y), output

Π
1 (x, y))}x,y.

Similarly, if f1(x, y) = f2(x, y) = x ≤ y, we can construct two simulators S1 and S2, such that
{(S1(x, f1(x, y)), f2(x, y))}x,y

c
≡ {(viewΠ1 (x, y), output

Π
2 (x, y))}x,y,

and
{(S2(x, f2(x, y)), f1(x, y))}x,y

c
≡ {(viewΠ2 (x, y), output

Π
1 (x, y))}x,y.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Experiment Settings
In order to demonstrate the fact efficiency of our solution, we implemented our protocol using Python 2.7 based on Charm-
Crypto40 which depends on a few open-source C math libraries including OpenSSL, GMP (GNUMultiple Precision Arithmetic
Library) and PBC (Pairing-based Cryptography Library). We builded the Charm-Crypto based on GMP 6.0.041 not using the
side-channel silent mpz_powm_sec function. And all of the experiments have been carried out on a machine running the Ubuntu
subsystem in Windows 10 System with an Intel i5-4690 Processor at 3.50GHz and 8GB RAM. The asymmetric cryptographic
key lengths have been chosen according to the current NIST standard from 1024 to 8192 bits.

5.2 Comparison with the Solution based on Symmetric Commutative Encryption Scheme
Because the efficiency of public key encryption schemes appears less than 0.1% of symmetric encryption schemes, no solution
developed on the bases of the public key cryptography to Yao’s millionaires’ problem can be efficient31. Let N indicate the
maximal value of the input in protocol 2 and its bit size is n = ⌈logN⌉. Protocol 2 takes 4N XOR operation. When N is a
small number, It is inevitable that protocol 2 is more efficient than our protocol. For the demonstration of the fact computation
cost of the solution based on symmetric commutative encryption scheme and asymmetric commutative encryption scheme, we
implemented our protocol 4 and XOR operation in protocol 2 in accordance with the previous experiment settings.
We test the performance of XOR in Protocl 2 and results have been presented in Fig. 1 and Fig. 2. The input size is chosen

from 8 to 32 bits. As evident from the Fig. 1 and Fig. 2, it can be clearly observed that, with the linear increase in the size of an
input, the processing time of Protocol 2 is increased linearly.
The Diffie-Hellman “group" is used for public cryptographic schemes. These groups are approximately as strong as a sym-

metric key. We choose 1024 (Group 2), 1536(Group 5), 2048(Group 14), 3072(Group 15), 4096(Group 16), 6144(Group 17)
and 8192(Group 18) bits Diffie-Hellman groups to test the performance of our Protocol 4. The results of processing time are
summarized in Table 1.
As suggested by Table 1 and Fig. 3, we can observe that as the size of an input increases linearly the cost is almost increased

linearly for the same modulus size. Nevertheless, from Table 1, Fig. 4 and Fig. 5, we can observe that as the modulus size
increases linearly the cost is not increased linearly for the same input size.
The security level of our solution is determined by the modulus size, and it is more secure with the longer modulus size and

the cost also is more expensive. Accordingly, we can determine the modulus size in accordance with security strength. From
Table 1, without considering the intersection operation, we can observe the fact that the computation cost of the XOR operation
in protocol 2 is very small if the size of the private input is also small, otherwise the cost is large, for instance when the input size
bit is 32. When the input size bit is 16, the cost for the computation of XOR operation is 5.419 ms. Thus, we can conclude the
cost to be no less than 355,139.584 (5.419∗216)ms and it is actually 414,472.559 ms. And we can continue to conclude the cost
to be no less than 56,448 years when the input size bit is 64. So protocol 2 is too expensive to be practical when the input size
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FIGURE 2 Processing time(log2(y)) of Protocol 2 vs. input size(bits)

TABLE 1 Comparison of processing time (ms) between our and Shundong’s Protocol

Input size (bits)
Processing time(ms) of Protocol 4 for 7 kinds

of modulus size(bits) XOR in Protocol 2
1024 1536 2048 3072 4096 6144 8192

8 14 39 85 265 601 1680 3560 0.02
16 26 78 171 529 1199 3360 7106 5.419
32 52 154 341 1056 2403 6724 14,361 414,472.559
64 104 308 681 2112 4805 13,441 28,674 -
128 209 617 1363 4223 9614 26,871 571,77 -
256 432 1270 2734 8462 19,215 53,785 114,074 -
512 891 2520 5512 16,977 38,510 107,623 228,183 -

is large. Thus, our solution to Yao’s millionaires’ problem is more efficient and practical than the solution based on symmetric
commutative encryption scheme.
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FIGURE 4 Processing time of Protocol 4 vs. modulus size(bits)

5.3 Efficiency Improvement
It should be taken into notice that the parameter p is a large safe prime chosen in Protocol 4, i.e., both p and q = (p − 1)∕2 are
large primes. In fact, the parameter p could be such a prime that p− 1 has a sufficiently large prime factor q. “sufficiently large”
means that the size of q is at least 160 bits, i.e., q > 2160. For short-term security, the 2160 setting is imposed by the lower-bound
requirement of the index computation attack algorithm called �-method or kangaroo method for solving the discrete logarithm
problem proposed by Pollard42. Thus, the random secret keys size setting for a and b in Protocol 4 can be 160 bits without having
degenerated the underlying intractable discrete logarithm problem43. The performance of our solution to Yao’s millionaires’
problem can be further improved. The improved results are summarized in Table 2, Fig. 6, Fig. 7 and Fig. 8 while a ≈ 2160 and
b ≈ 2160. It should be taken into notice that the processing time of Protocol 4 for a ≈ 2160 and b ≈ 2160 may have been reduced
by 4 times while the parameter size of p is 1024 bits.

5.4 Comparison with the State-of-the-art Solution
In terms of processing time, Damgard’s solution33 based on the dedicated DGK homomorphic encryption scheme is the state-
of-the-art comparison protocol. But it has to spend around 154 seconds during its initialization phase for a 24-bit input and
medium-term security reported in32. The DGK homomorphic encryption scheme has been found to be not secure, and Damgard
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FIGURE 5 Processing time of Protocol 4 vs. modulus size(bits)

et al. have described a correction to the cryptosystem44. The correction involves much more initialization time. Owed to the
fact that DGK encryption function requires one complex modular exponentiation, it can be computed in advance during idle
times. By this optimization, one encryption of DGK homomorphic encryption scheme requires only one expensive modular
exponentiation and one modular multiplication.
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TABLE 2 Improved experiment results for a ≈ 2160 and b ≈ 2160

Input size (bits)
Processing time(ms) of Protocol 4 for 7 kinds

of modulus size(bits)
1024 1536 2048 3072 4096 6144 8192

8 3 6 9 17 29 53 84
16 6 10 17 34 56 105 168
32 11 21 34 67 113 210 333
64 22 40 66 133 222 421 665
128 46 83 134 268 450 840 1333
256 99 177 275 544 909 1685 2689
512 237 392 594 1136 1871 3446 5466
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FIGURE 6 Comparison of Processing time of Protocol 4 for the key size is 160 bits and 1024 bits
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FIGURE 7 Processing time of Protocol 4 for a ≈ 2160 and b ≈ 2160 vs. modulus size(bits)

We first give some notations to represent the computation cost of basic computational operation in the algorithms of DGK
cryptosystem in Table 3. Accordingly, computation cost will be counted in the number of modular multiplication.
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FIGURE 8 Processing time of Protocol 4 for a ≈ 2160 and b ≈ 2160 vs. modulus size(bits)

By analysis, we can obtain the processing cost of Damgard’s solution33 without pre-computation. Alice’s computation cost
can be expressed as follows:

TA = ntd + nte (3)
And Bob’s computation cost can be expressed as follows:

TB = te + nte + te + 2ta + ti + (n − 1)
(

3ta + ti + 2ta + 3ta + ti + tp=l + tp=2t + ta
)

= (n + 2) te + 2ta + ti + (n − 1)
(

9ta + 2ti + tp=2t+l
)

= (n + 2) te + (9n − 7) ta + (2n + 1) ti + (n − 1) tp=2t+l
(4)
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TABLE 3 The computation cost of basic computational operations for DGK

Symbol computational operation without pre-computation with pre-computation
te Encryption l + 2t + 1 l + 1
td Decryption t∕2 t∕2
ta Addition of two ciphertexts 2 2
tp=x Exponentiation of a ciphertext x x
ti Invert l l

1. l represents the bit length of prime u.
2. t represents the bit length of prime vp and vq .
3. x represents the bit length of the exponential value.

According to the computation cost of basic computational operations for DGK in Table 3, we can obtain the processing cost
of Damgard’s solution according to the number of modular multiplication without pre-computations.

TA = ntd + nte
= nt∕2 + n (l + 2t + 1)

(5)

TB = (n + 2) te + (9n − 7) ta + (2n + 1) ti + (n − 1) tp=2t+l
= (n + 2) (l + 2t + 1) + 2 (9n − 7) + (2n + 1) l + (n − 1) (2t + l)
= 4nt + 4nl + 2l + 2t + 19n − 12

(6)

TT otal = TA + TB
= nt∕2 + n (l + 2t + 1) + 4nt + 4nl + 2l + 2t + 19n − 12
= 6.5nt + 5nl + 2l + 2t + 20n − 12

(7)

we can also obtain the processing cost of Damgard’s solution according to the number of modular multiplication with pre-
computation.

T ′A = ntd + nte
= nt∕2 + n (l + 1)

(8)

T ′B = (n + 2) te + (9n − 7) ta + (2n + 1) ti + (n − 1) tp=l
= (n + 2) (l + 1) + 2 (9n − 7) + (2n + 1) l + (n − 1) l
= 4nl + 2l + 19n − 12

(9)

T ′T otal = T ′A + T ′B
= nt∕2 + n (l + 1) + 4nl + 2l + 19n − 12
= 0.5nt + 5nl + 2l + 20n − 12

(10)

The comparison results of computational with several solutions are summarized in Table 4. S and G in our Protocol 4
can also be computed in advance during idle times. From Table 4, we can see that our solution either with or without pre-
computations outperforms Lin et al.’s solutions according to the number of modular multiplication. In addition, our solution
without pre-computations also outperforms the state-of-the-art comparison protocol based on DGK homomorphic encryption
scheme. However, while t < l, our solution with pre-computations cannot outperform the state-of-the-art comparison protocol.
Thus, our solution requires the lest computation cost if the complex modular exponentiation cannot be computed in advance dur-
ing idle times. If the bit length of private inputs is large enough for Alice and Bob, we solution can also compare well with the
state-of-the-art comparison protocol while the complex modular exponentiation can be computed in advance during idle times.
In our conference paper34, the code for the state-of-the-art comparison protocol based on DGK homomorphic encryp-

tion scheme have been used to compare the fact computation cost of the solution based on DGK and our solution based on
symmetric commutative encryption scheme. It was written in C/C++ by Veugen et al.32, which can be publicly available
(http://cys.ewi.tudelft.nl/content/secure-comparison-protocols-semi-honest-model). But their code includes the Paillier compu-
tations function and implemented based on MPIR (Multiple Precision Integers and Rationals) Library. In this paper, in order to
evaluate more accurately and fairly the fact computation cost of the solution based on DGK and our solution based on symmet-
ric commutative encryption scheme, we implement our Protocol 4 and the state-of-the-art comparison protocol based on DGK
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TABLE 4 Comparison in Computation Cost

Solution Alice’s computation Bob’s computation Total computation

Lin et al.29 3n log (p) 2n log (p) + 4n−6 5n log (p) + 4n−6
Lin et al. with hash29 3n log (p) 2n log (p) + 2n 5n log (p) + 2n

DGK33,19,32 nt∕2+
n (l + 2t + 1)

4nt + 4nl + 2l + 2t+
19n − 12

6.5nt+
5nl + 2l + 2t + 20n − 12

DGK with
pre-computation33,19,32

nt∕2+
n (l + 1)

4nl + 2l − 2t+
19n − 12

0.5nt+
5nl + 2l + 20n − 2t − 12

Ours 2nt+n 2nt+n 4nt+n
Ours with

pre-computation nt+n nt+n 2nt+n

1. n represents the bit length of input.
2. p represents a modulus of Gp.
3. t represents the bit size of discrete log key or a bit length of random integer.

TABLE 5 Security parameter sizes for medium-term security

Security length asymmetric key discrete log key discrete log group hash

112 2048 224 2048 SHA-224

TABLE 6 Comparison results of processing time (ms) for a 24-bit and 200-bit inputs and medium-term security

solutions our solution our solution
with pre-computations Damgard’s solution Damgard’s solution

with pre-computations

24-bit 33.2 16.5 52.5† 8.9‡
220-bit 298.9 148.5 541.1 142.9

†Reported by our own code rather than 132.52s reported in the paper34 with the code including Paillier computations written
by Veugen.
‡Reported by our own code rather than 39.99s reported in the paper34 with the code including Paillier computations written by
Veugen.

homomorphic encryption scheme using Python 2.7 based on Charm and GNU Multiple Precision Arithmetic Library (GMP)
6.0.0. The experiments also are conducted on Windows 10 System with an Intel i5-4690 Processor at 3.50GHz and 8GB RAM.
For a 24-bit input and medium-term security in Table 5, the processing time has also been presented in Table 6 under the

assumption that ℎr of the DGK encryption function can be pre-computed during idle times. As evident from the Table 6, it can
be observed that our solution outperforms Damgard’s solution without pre-computations in terms of processing time, though
our solution with pre-computations cannot outperform the state-of-the-art comparison protocol with pre-computations for a 24-
bit input. However, for a 220-bit input, our solution can not only outperform Damgard’s solution without pre-computations, but
also compare well with the state-of-the-art comparison protocol with pre-computations.
In fact, our approach based on asymmetric commutative encryption scheme is a general solution to millionaires’ problem.

Thus, one of the further work is to employ the other asymmetric commutative encryption scheme, such as the one based on the
elliptic-curve DDH (ECDDH) assumption, to improve the computation and communication cost in our solution.
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6 CONCLUSIONS

Shundong’s symmetric cryptographic solution to millionaires’ problem is proposed based on a private set-inclusion problem.We
find that some drawbacks in the protocol to a private set set-inclusion problem and propose some simply solution to solve them.
Furthermore, even if we postulate that symmetric encryption solution to the set-inclusion problem is perfect, their symmetric
solution to millionaires’ problem also exhibits some important security drawbacks that have been analyzed and proven in this
paper. This paper deals with Shundong’s original work and introduces a new solution based on the Decisional Diffie-Hellman
assumption and the set intersection problem. Our solution based on the Decisional Diffie-Hellman assumption is an asymmetric
commutative encryption scheme. To reduce the computation cost of modular multiplications, we also use two special encodings,
0-encoding and 1-encoding, to reduce the scale of the set intersection problem. To compare the fact computation cost of the
solution based on symmetric commutative encryption scheme and asymmetric commutative encryption scheme, we implement
XOR operation in Shundong’s protocol and our protocol. It is found that Shundong’s protocol is not more efficient than our
protocol when the size of the input is large. And experimental results show that our solution is also more efficient than the state-
of-the-art solution without pre-computation and can also compare well with the state-of-the-art comparison protocol while the
bit length of private inputs is large enough.
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