
HAL Id: hal-02405598
https://hal.science/hal-02405598

Submitted on 11 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Evolutionary Subspace Clustering Using Variable
Genome Length

Sergio Peignier, Christophe Rigotti, Guillaume Beslon

To cite this version:
Sergio Peignier, Christophe Rigotti, Guillaume Beslon. Evolutionary Subspace Clustering Using Vari-
able Genome Length. Computational Intelligence, 2020, 36 (2), pp.574-612. �10.1111/coin.12254�.
�hal-02405598�

https://hal.science/hal-02405598
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Evolutionary Subspace Clustering
Using Variable Genome Length

Sergio Peignier1, Christophe Rigotti2, and Guillaume Beslon2

1 Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
sergio.peignier@insa-lyon.fr

2 Univ Lyon, INSA-Lyon, CNRS, INRIA, LIRIS, UMR5205, F-69621, Villeurbanne,
France

christophe.rigotti@insa-lyon.fr, guillaume.beslon@inria.fr

Abstract. Subspace clustering is a data mining task that groups sim-
ilar data objects and at the same time searches the subspaces where
similarities appear. For this reason, subspace clustering is recognized
as more general and complicated than standard clustering. In this pa-
per, we present ChameleoClust+, a bio-inspired evolutionary subspace
clustering algorithm that takes advantage of an evolvable genome struc-
ture to detect various numbers of clusters located in different subspaces.
ChameleoClust+ incorporates several bio-like features such as a vari-
able genome length, both functional and non-functional elements and
mutation operators including large rearrangements. It was assessed and
compared to the state-of-the-art methods on a reference benchmark us-
ing both real world and synthetic datasets. While other algorithms may
need complex parameter settings, ChameleoClust+ needs to set only one
subspace clustering ad-hoc and intuitive parameter: the maximal number
of clusters. The remaining parameters of ChameleoClust+ are related to
the evolution strategy (e.g., population size, mutation rate) and a single
setting for all of them turned out to be effective for all the benchmark
datasets. A sensitivity analysis has also been carried out to study the
impact of each parameter on the subspace clustering quality.

Keywords: Evolutionary algorithm, Subspace clustering, Variable genome length.

1 Introduction

Clustering is a data mining task that aims to group objects sharing similar
characteristics into sets (i.e., the clusters) over the whole data space. A related
problem is the subspace clustering one, which purpose is not only to identify
groups of similar objects, but also to detect the subspaces where these similarities
occur. Retrieving such subspaces turns out to be particularly useful while dealing
with high dimensional data (Kriegel et al., 2009). Subspace clustering can be
conceived as ”similarity examined under different representations” (Patrikainen

and Meila, 2006). For this reason it is recognized as a more complicated and
general task than standard clustering.

Several evolutionary clustering approaches have been proposed (Hruschka
et al., 2009), however very few of them address the subspace clustering task. As
described in Section 5, these earlier approaches require non-evolutionary steps
to tackle this problem. In order to address the subspace clustering task, we de-
cided not to rely on non-evolutionary stages, but rather to take advantage of an
evolvable genome structure. According to (Banzhaf et al., 2006) knowledge from
evolutionary and molecular biology should be taken into account in the interest of
conceiving better bio-inspired optimization algorithms. Among important phe-
nomena in evolutionary biology, the dynamic evolution of the genome structure
appears as a promising source of advances for bio-inspired optimization. Impor-
tant phenomena such as the variable genome length or the variable percentages
of coding or functional elements within the genome are related to the evolution of
genome structures phenomenon (Knibbe et al., 2007). Several studies have shown
for instance that an evolvable genome structure allows evolution to shape the
effects of evolution principles themselves (e.g. mutations), phenomenon known
as evolution of evolution (EvoEvo) (Hindré et al., 2012). Among the state-of-
the-art formalisms used for in silico experimental evolution reviewed in (Hindré
et al., 2012), two models enable genome structure evolution: (Knibbe et al., 2007)
and (Crombach and Hogeweg, 2007). Both formalisms have inspired key aspects
of our work.

In this paper, we present ChameleoClust+, an evolutionary algorithm that
takes advantage of a genome having an evolvable structure to tackle the sub-
space clustering problem. ChameleoClust+ genome is a coarse-grained genome,
inspired on (Crombach and Hogeweg, 2007), and is defined as a list of tuples of
numbers. The genome is mapped at the phenotype level by using the genome
tuples to denote core point locations in different dimensions, and to build the sub-
space clusters around these core points. Furthermore, the genome also contains a
variable proportion of non-functional elements as in (Knibbe et al., 2007). Dur-
ing replications the genome undergoes both local mutations and large random
rearrangements similar to those used in (Knibbe et al., 2007) and (Crombach
and Hogeweg, 2007), namely: large deletions and duplications. Local mutations
modify the genome elements, while rearrangements modify the genome length,
and both can change the proportion of non-functional elements. The key intu-
ition in the design of the ChameleoClust+ algorithm is to take advantage of such
an evolvable structure to detect various number of clusters in subspaces of vari-
ous dimensions. In order to assess the algorithm, we used the reference subspace
clustering evaluation framework presented in (Müller et al., 2009), and com-
pared it to state-of-the-art algorithms on both real and synthetic datasets. The
experiments show that ChameleoClust+ obtains competitive results. Moreover,
these results can be achieved with a single parameter related to the domain: the
maximal number of clusters. In addition, for each generation the computational
complexity is linear with respect to the number of objects and to the number of

2

dimensions, and a fast overall evolutionary convergence is observed. This enables
to keep the time consumption low on the datasets of the evaluation framework.

The main contribution of this paper is to show that, using an evolvable
genome structure, a single stage fully evolutionary approach can consistently
deliver subspace clusters of very good quality, requiring only an easy parameter
setting and limited time resources.

The rest of the paper is organized as follows. The next section introduces the
proposed algorithm, and Sections 3 and 4 describe respectively the evaluation
method and results. Section 5 presents the related work and we conclude with a
summary in Section 6.

2 ChameleoClust+

ChameleoClust+ includes several bio-like features such as a variable genome
length and organization, presence of both functional and non-functional tuples,
and variation operators including large chromosomal rearrangements. These fea-
tures, inspired by the in silico experimental evolution formalisms of (Knibbe
et al., 2007) and (Crombach and Hogeweg, 2007), give the algorithm a large
degree of freedom by making the genome structure evolvable. ChameleoClust+

takes advantage of this structural flexibility to build subspace clustering with
various number of clusters using subspaces having different numbers of dimen-
sions.

2.1 Dataset and clusters

A dataset S = {s1, s2 . . . } is a set of objects. Each object has a unique identifier
and is described in RD by D features (the coordinates of the objects). The size
of S is the number of objects in S, and D is the number of dimensions (i.e.,
the dimensionality) of S. Each dimension is represented by a number from 1 to
D and the set of all dimensions of the dataset is denoted D = {1, . . . , D}. The
algorithm takes as input a dataset S and a parameter cmax that is the maximal
number of desired clusters. The algorithm outputs a subspace clustering in the
form of a set of disjoints clusters, where each cluster is defined as a set of objects
and a set of dimensions.

2.2 Overall clustering principle

Each individual encodes in its genome a subspace clustering. More precisely
a genome defines a set of so called core points located in various subspaces
having possibly less than D dimensions. If the objects of the dataset tends to
form groups around these core points, then a high fitness is associated to the
corresponding individual. The reproduction (including selection and mutations)
is performed for a whole generation in a synchronized way. After a given number
of generations the process is stopped and the subspace clustering corresponding
to the individual having the highest fitness is retained.

3

2.3 Preprocessing

As in many typical clustering problems, the first step is to standardize the dataset
to ensure that all features could have similar impact on the distance computa-
tion during the clustering. Thus each feature value x is replaced by its z-score:
z = x−µ

σ , where µ is the dataset mean and σ is dataset standard deviation
for the given feature. After standardization, data values in different dimensions
are independent of the original offset and scale, and all features have the same
unitary standard deviation and a zero mean (i.e., the entire dataset is centered
around the origin O). Finally the maximal value among all absolute values of
the z-score of all features is computed and is noted xmax in the rest of the paper.

2.4 Genome structure

A genome Γ is a list [γ1, . . . , γi, . . . , γn] of tuples of the form γi = 〈g, c, d, x〉,
where g ∈ {0, 1} indicates if γ is a functional tuple of the genome (g = 1) or not
(g = 0), and c, d, x are used to define the phenotype only if g = 1. The previous
elements have the following specific domains: c ∈ {1, . . . , cmax}, d ∈ {1, . . . , D}
and x ∈ V alCoord, with V alCoord = {j×xmax/1000 | j ∈ {−1000, . . . , 1000}},
i.e. all values from −xmax to xmax with step xmax/1000. The genome structure
previously defined is evolvable: The number of functional and non-functional
elements and their respective positions in the genome may change. In Section 4.1
we show the adaptation of the genome size and of the number of functional
elements for different datasets.

2.5 Phenotype

A phenotype Φ is simply a set of core points. Informally a core point is a specific
point around which objects can be grouped to form a subspace cluster. The num-
ber of core points cannot exceed a maximal number of desired clusters specified
as a parameter cmax. Each core point is identified by a number c ∈ [1, cmax] and
is denoted pc. The intuition of the genotype-phenotype mapping is that each
functional element of the genome 〈1, c, d, x〉 is a contribution of value x to the
location of core point pc in dimension d. More precisely, let xd be the coordinate
of pc for dimension d, then xd is the sum of all the values x contained in a tuple
of the form 〈1, c, d, x〉 in the genome Γ . For a given core point index c ∈ [1, cmax],
the subspace associated to core point pc is the set Dpc containing the dimensions
that contribute to the location of pc, i.e., the set of all the dimensions d in D
such that there exists at least one functional element of the form 〈1, c, d, x〉 in
Γ , where x can be any coordinate value.

However, if we have some knowledge about the cluster locations, then other mappings
than the z-score could be more appropriate. For instance, if we know that there are
several clusters located close to the center of the whole dataset, then a sigmoid
function (with range equal to the open interval (−1, 1)) can enforce the separation
of these clusters.

4

For a given dataset S, a phenotype Φ defines a subspace clustering of S, by
associating each object of S to the best matching core point in Φ. A non empty
set of objects associated to a core point pc forms a cluster in subspace Dpc . The
precise definition of the notion of best match is given in the section 2.7 hereafter.

Notice that the length of the genome can be different among individuals,
leading to phenotypes containing different numbers of core points in various
subspaces and thus defining subspace clustering models with different number
of clusters in subspaces having different number of dimensions. Notice also that
the genotype to phenotype mapping is not bijective, and the same phenotype
can be obtained from different genotypes containing different functional or non-
functional elements.

2.6 Mutation operators

Each new genome is copied from a parent and modified by biologically inspired
mutation operators of two kinds: Global rearrangements and point mutations.
These operators are general mutation operators, they are not guided by some
criteria related to the subspace-clustering task, and both functional and non-
functional elements can be impacted by mutations.

For a genome Γ , an application of the point mutation operator is defined as
follows.

– Point substitution: Let γi ∈ Γ of the form γi = 〈g, c, d, x〉 be an element
uniformly drawn in the genome, and let k ∈ {1, 2, 3, 4} be a value chosen
uniformly. The point substitution operator modifies the k-th element of the
tuple γi and replace it with a new random number drawn uniformly in its
associated range:

γi ←


〈U({0, 1}), c, d, x〉 if k = 1

〈g,U({1, . . . , cmax}), d, x〉 if k = 2

〈g, c,U({1, . . . , D}), x〉 if k = 3

〈g, c, d,U(V alCoord)〉 if k = 4

where U denotes the uniform random selection of a element in a set.

For the rearrangements, Γ is considered as being circular (as bacterial genomes).
This means that the tuple γn is adjacent to the tuple γ1. In order to define the
possible rearrangements let us define two basic operators.

– Sublist extraction operator:

[γ1, . . . , γn]i,j =


[γi, . . . , γj] if i < j

[γi] if i = j

[] (the empty list) if i > j

– List concatenation operator:

[γ1, . . . , γn] + [γ′1, . . . , γ
′
m] = [γ1, . . . , γn, γ

′
1, . . . , γ

′
m]

5

Rearrangements are responsible for increasing or decreasing the genome length.
The model uses two kinds of rearrangements: Large deletions and large dupli-
cations. For one application of a rearrangement operation on a genome Γ =
[γ1, . . . , γn], a portion of Γ bounded by two tuples γi, γj ∈ Γ is considered,
where i and j are uniformly chosen in {1, . . . , n}. The two rearrangement oper-
ators can then be defined as follows:

– Large deletions: The segment between tuples γi and γj is excised.
If i ≤ j:
Γ ← Γ 1,i−1 + Γ j+1,n

If i > j, because of genome circularity, we have:

Γ ← Γ j+1,i−1

– Large duplications : The segment between tuples γi and γj is copied and
inserted at the location of a third tuple γp (uniformly chosen).

If i ≤ j:
Γ ← Γ 1,p + Γ i,j + Γp+1,n

If i > j, because of genome circularity, we have:
Γ ← Γ 1,p + Γ j,n + Γ 1,i + Γp+1,n

During the reproduction of an individual, the whole mutation stage is defined
as follows. For each of the two kinds of rearrangement operations, the total
number of rearrangements is drawn from a binomial law B(L, um) where L is the
genome size and um is the mutation rate (same rate for all mutation operators).
Then the corresponding number of large deletions and large duplications are
performed in a random order. Once all rearrangements have been applied, the
number of point substitutions is drawn from a binomial law B(L′, um) where L′

is the genome size after applying the rearrangement operations. Then all these
point substitutions are carried out.

2.7 Fitness

The fitness of a individual of phenotype Φ is related to the quality of the sub-
space clustering defined by Φ over a given dataset. This quality measure is a
distance-based measure reflecting how the objects in the dataset tend to form
groups around the core points of Φ. In (Beyer et al., 1999) and (Aggarwal et al.,
2001) it has been shown that distance comparisons are less meaningful when
dimensionality increases, this effect is called the concentration effect of the dis-
tances. It has been shown in (Aggarwal et al., 2001) that the Manhattan distance
is robust to this effect. In the ChameleoClust+ algorithm, the distance used is
the Manhattan segmental distance introduced in (Aggarwal et al., 1999) for the
well known subspace clustering algorithm PROCLUS. It is a normalized version
of the classic Manhattan distance to compare distances in subspaces with differ-
ent number of dimensions. Let y1 and y2 be two points in a space over the set of
dimension D, and y1,i (resp. y2,i) denotes the coordinate of y1 (resp. y2) in the
dimension i of D. Then, the Manhattan segmental distance is:

dD(y1, y2) =
∑
i∈D

|y1,i−y2,i|
|D|

6

This distance is used here to define a function E(x, pc) to assess the mismatch
of the assignment of an object x ∈ S in space D to a core point pc in subspace
Dpc . The highest is E(x, pc), the worst is the association of x to pc. This function
is defined by:

E(x, pc) =
|Dpc |·dDpc (x,pc)+|D\Dpc |·dD\Dpc (x,O)

|D|

where O is the origin of the entire space. The mismatch evaluation E(x, pc)
increases with the distance between the core point pc and the object x (term
dDpc (x, pc)). It also increases if the subspace Dpc has not enough dimensions to
explain the shift of x with respect to O (term dD\Dpc (x,O)). The value E(x, pc)
is then simply the average of dDpc (x, pc) and dD\Dpc (x,O) weighted by their
respective subspace dimensionalities.

To evaluate the fitness of an individual with phenotype Φ, each object x in
the dataset S is assigned to the core point pc ∈ Φ for which E(x, pc) is minimal
(in the rare cases where several core points lead to the same minimal value,
then one of them is chosen nondeterministically). Let Spc be the set of objects
associated to pc, then if Spc is not empty, the core point pc defines the subspace
cluster 〈Spc ,Dpc〉, otherwise pc defines no cluster.

The fitness F is then defined as the opposite of the average of the mismatches
computed for the best possible assignments of the dataset objects:

F(Φ,S) = −
∑
pc∈Φ

∑
x∈Spc

E(x,pc)
|S|

The fitness function F(Φ,S) goes to 0 when the evaluation of the mismatches
between objects and core points tends to 0 (perfect match), and is strongly
negative when objects and core points are poorly related. Notice that a core point
pc with no associated object (Spc = ∅) is not penalized, and its corresponding
functional elements in the genome may then be preserved for further exploration
during evolution.

The computation cost of F(Φ,S) is proportional to the size of the dataset
S, but to guide the search it is not necessary to evaluate the fitness over the
whole input dataset S, and it can be sufficient to evaluate it over a sample. This
strategy is used in ChameleoClust+, with an incrementally changing sample to
avoid the possible misleading consequences of a poor single sample selection
(i.e., sample not very representative of S). This is defined as follows. Let t be
the index of the current generation (starting at t = 0). Let L = [x0, x1 . . .] be a
list containing all the dataset objects in a random order. For generation t, the
fitness value of an individual is then F(Φ,St) where St is a subset of S of size
ω defined by:

St =
t×ω+ω−1⋃
k=t×ω

{x in L at index (k mod |L|)}

St is simply the set of objects in L from index t× ω to index t× ω + ω − 1,
restarting from the beginning of L when the last element is reached.

7

As shown is Section 4, for reasonable sizes of St, this leads to an important
reduction of the execution time, without effective degradation of the clustering
quality.

2.8 Population

Each individual can be perceived as an asexual artificial organism containing
a single chromosome. The population evolves during T generations. At each
generation the population is completely renewed but its size N remains constant
over time. As in the evolution simulation model of (Knibbe et al., 2007) we rely
on an exponential ranking selection (Blickle and Thiele, 1996) in order to use the
same distribution for the selection of the individuals all over the evolution (i.e.,
the selection is not directly related to fitness values but to ranks). In this selection
scheme, the individuals of the current generation are ranked according to their
fitness, in increasing order of performance (the worst has rank 1 and the best rank
N). Then for each of the N individuals of the offspring generation, the parent
of this individual is determined by a trial over a N classes multinomial law,
where each class is associated to an individual of the current generation. For this

multinomial law, an individual α has a success probability pα = (s − 1) s
(N−rα)

sN−1
where rα is the rank of the individual α and s the selection pressure parameter.
This procedure is sketched in Figure 1.

Current population (ranked): I1

p1

''

. . .

��

Iα

pα

��

. . .

��

IN

pN

ww
Offspring population (unranked): I ′1 . . . I ′k . . . I ′N

Fig. 1: Parent of the new individual I ′k drawn from current population according
to this population ranking, and with probabilities p1 < . . . < pα < . . . < pN .

In order to avoid the possible decrease of the best fitness during the evolution,
the algorithm uses an elitist selection method. More precisely, it always adds
in the next generation an unchanged copy of the best current individual, and
performs the random reproduction using only N − 1 trials.

For the initialization of the population, the N individuals of the first gener-
ation have genomes of the same size, denoted |Γ init|, and containing only non-
functional elements. These N genomes are drawn independently, and filled with
random tuples of the form 〈0,U({1, . . . , cmax}),U({1, . . . , D}),U(V alCoord})〉.

8

2.9 Time complexity

Let |Γ | be the maximal genome size among all individuals in the current gen-
eration. In this section we distinguish the time complexity related to the fitness
computation and the complexity related to the reproduction operations.

Fitness computation In order to compute the fitness of an individual, the al-
gorithm first needs to build the phenotype of this individual from its genome.
Considering that only the set of functional tuples, denoted Γf , contribute to the
phenotype, only these tuples should be selected, this search having a complex-
ity of O(|Γ |). Once each functional tuple has been retrieved, ChameleoClust+

proceeds to sort them by cluster and dimension to obtain the phenotype, this
operation has a complexity of O(|Γf | × ln(|Γf |)). Once the phenotype has been
built, the algorithm associates each one of the ω objects in St to the core
point it matches the best. Since, in the worst case, each element in Γf can
define a core point, this operation has a complexity of O(|Γf | ×D × ω). Thus,
for each individual, the time complexity related to the fitness computation is
O(|Γ | + |Γf | × ln(|Γf |) + |Γf | × D × ω). In the worst case all tuples are func-
tional, i.e., |Γ | = |Γf |, and the complexity is O(|Γ | × (D × ω + ln(|Γ |)). Then,
the complexity of the fitness computation over the whole population is given by:

O(N × |Γ | × (D × ω + ln(|Γ |)))

Reproduction operations When the individual fitnesses have been computed,
ChameleoClust+ proceeds to rank the individuals in order to give them a re-
production probability. This operation has a complexity of O(N × ln(N)). The
genomes of the individuals of the new generation are initialized by copying the
genomes of their parents, this operation having a complexity of O(N × |Γ |).
Then, these genomes are modified by rearrangements (large duplications and
large deletions) followed by point mutations. Let Lm be the maximal genome
size reached during the rearrangement steps for all individuals. For one genome,
the numbers of duplications and of deletions are drawn from a binomial law
and cannot be greater than |Γ |, leading for their application to a complexity of
O(|Γ |×Lm). In a similar way, the number of point mutations is bounded by Lm,
and the complexity of the application of this operator is O(Lm). The expression
of the complexity of the reproduction operations for the whole population is then
O(N × ln(N) +N × |Γ |+N × (|Γ | × Lm + Lm)), rewritten simply as:

O(N × (ln(N) + |Γ |+ |Γ | × Lm + Lm))

It should be noticed that this worst case is not reached in the experiments.
Indeed, for a genome of size |Γ |, the number of rearrangements (for both kinds)
is not |Γ |, but is only |Γ | × um on average, where effective parameter settings
correspond to low values of um (um � 1), as shown in the next section.

9

3 Experimental setup

3.1 Experimental protocol

In order to evaluate and compare ChameleoClust+ to state-of-the-art algorithms,
we used the evaluation framework of reference designed for subspace cluster-
ing and described in (Müller et al., 2009). This evaluation framework relies
on a systematic approach to compare the results of representative algorithms
that address the major subspace clustering paradigms. The comparison detailed
in (Müller et al., 2009) was made using different evaluation measures on both real
and synthetic datasets. We clustered with ChameleoClust+ the same datasets
and computed the same quality measures.

In the framework of (Müller et al., 2009), as each algorithm requires several
parameters (from 2 to 9), they are executed with many different parameter
settings to explore the parameter space. Then, using an external labeling of the
objects, only the subspace clusterings that are among the best (with respect to
the external labeling) are retained. So, the results reported for these algorithms
are in some sense the best possible subspace clusterings that could be achieved
if we were able to find the most appropriated parameter values. Since generally
no external labeling is available when we search for clusters, parameter tuning
is most of the time a difficult task and these high quality subspace clusterings
are likely to be hard to obtain.

An important point to notice, is that for ChameleoClust+ we did not per-
form any parameter optimization using external information, but we simply
followed the parameter setting guideline presented in Section 3.3. Then, we
ran ChameleoClust+ and took the subspace clustering defined by the individ-
ual of the last generation having the best fitness. Since the algorithm is non-
deterministic, we ran it 10 times in the same conditions and report the minimal,
maximal and mean values of the measures over these 10 runs. So, we compare
clusterings effectively found by ChameleoClust+ to the best clusterings that
could potentially be found by the other algorithms. All experiments were run
on a quad-core Intel 2.67GHz CPU running Linux Ubuntu 14.04, using a single
core and less than 250 MB of RAM.

3.2 Datasets

We studied ChameleoClust+ performances on real world data using the six
benchmark datasets selected in (Müller et al., 2009) for their representativity:
breast, diabetes, liver, glass, shape, pendigits and vowel (most of them coming
from the UCI archive (Bache and Lichman, 2013)). These datasets have dif-
ferent dimensionalities and contain different numbers of objects. These objects
are already structured in classes, and the class membership is used by quality
measures to assess the cluster purity. However the number of classes does not
necessarily reflect the number of subspace clusters, since even within a class the
objects can form several clusters in different subspaces.

10

We also ran ChameleoClust+ on the 16 synthetic benchmark datasets pro-
vided by (Müller et al., 2009). These datasets are particularly useful to study
the algorithm performances, as the true clusters and their subspaces are known.
Each dataset contains 10 hidden subspace clusters laying in subspaces having
50%, 60% and 80% of the total dimensions of the dataset. Seven synthetic
datasets were generated in (Müller et al., 2009) to study scalability with re-
spect to the dataset dimensionality: D05, D10, D15, D20, D25, D50 and D75
with 5, 10, 15, 20, 25, 50 and 75 dimensions respectively. These datasets have
about 1500 objects each and about 10% of noise objects. In addition to the
previous datasets, five synthetic datasets were built to analyze scalability with
respect to the dataset size: S1500, S2500, S3500, S4500 and S5500 with 1500,
2500, 3500, 4500 and 5500 objects respectively. For these datasets, the number
of dimensions was set equal to 20 and the percentage of noise objects close to
10%. Finally four datasets were generated to study the capacity to cope with
noise: N10, N30, N50 and N70 with 10%, 30%, 50% and 70% of noise objects
in the dataset respectively. These datasets were built by adding noise points to
the dataset D20.

All datasets and additional description are made available by the authors
of (Müller et al., 2009) at http://dme.rwth-aachen.de/openSubspace/evaluation.

3.3 Parameter setting

Sliding sample size The dataset sample used to compute the fitness at each
generation should contain enough objects in order to be representative of the
entire dataset, but needs to be small enough in order to reduce the runtime.
The sliding sample size ω was set to 10% of the dataset size and this setting
turned out to be an interesting trade-off, as shown in Section 4.3 Figure 8. Of
course, while the fitness is computed only on this sample, the final association
of objects to clusters (using the core points defined by the best individual) and
the evaluation of this clustering are still performed on the whole dataset.

Selection pressure Let α be an individual of the current generation and β be an
individual of the next generation, according to Section 2.8, α has the probability

pα = (s − 1) s
(N−rα)

sN−1 to be the parent of β. For the best individual (rα = N),

the previous expression simplifies to pα = s−1
sN−1 . The selection pressure was set

to s = 0.5 so that with a large population (N � 1) the best individual has
a success probability close to pα ' 0.5. Therefore each individual of the next
generation has one chance out of two to explore the neighborhood of the best
current individual, and the same chance to descend from another one, exploring
then potentially different solutions.

Initial genome size The genomes are initialized with random tuples denoting
non-functional elements (see Section 2.8) and the size of these initial genomes
was chosen to be equal to |Γ init| = 200. This genome size matches with the
amount of tuples required to build a typical subspace clustering model, e.g., 10

11

clusters in 20 dimensions or 20 clusters in 10 dimensions. As the genome size and
the genome structure are not constrained and are able to evolve (as illustrated
in figures 4b and 4c), the initial genome size is not a determining choice for the
algorithm.

A sensitivity analysis performed in Section 4.3 shows that the result quality
is not substantially modified for a large range of the three previous parameters.

Mutation rate The mutation rate was set according to its impact on the number
of replications that actually produce genomes that are different from or identi-
cal to the parental genome. Let ϕ be the probability that no mutation of any
types (substitution, deletion, duplication) occurs during one replication of an
individual. As defined in Section 2.6, the number of mutations of a given type
that take place during one replication follows a binomial distribution B(|Γ |, um).
Thus the probability that no mutation of one type occurs is equal to (1−um)|Γ |

and ϕ = (1− um)3|Γ |.

ϕ depends strongly on the mutation rate and the genome length as illustrated
in the figure 2. Indeed, when the mutation rate is too low genomes are extremely
invariable regardless of their respective lengths, i.e., ϕ ' 1. Consequently, when
the mutation rate is too low, genomes are likely to evolve too slowly. On the
contrary when the mutation rate is too large genomes are extremely variable
regardless of their respective lengths, i.e., ϕ ' 0 . Consequently, when the mu-
tation rate is too high, genomes are susceptible to evolve improperly because
of drastic changes. Besides the previous effect, for intermediate mutation rates
Figure 2 illustrates that the genome variability estimated by the mutation prob-
ability increases together with the genome length, longer genomes being more
variable than shorter ones.

In order to tune properly the mutation rate, we consider a range of plausi-
ble genome sizes that individuals could grow in order to tackle the subspace-
clustering problem. Let us take |Γmin| = 50 as a minimal reasonable genome
length (e.g., Γmin can encode 10 clusters in subspaces having 5 dimensions or 5
clusters in subspaces having 10 dimensions and is a quite small clustering model).
Let us take |Γmax| = 400 as a maximal reasonable genome length (e.g., Γmax
can encode 20 clusters in subspaces having 20 dimensions in average). Γmax is
also the more variable genome we consider.

A sensitivity analysis performed in Section 4.3 show that the results quality
are not substantially modified close to the mutation rates range defined previ-
ously. However mutation rates chosen far outside the given range lead to poorer
results.

A suitable range of mutation rates should allow the less variable genomes to
evolve fast enough and should not lead the more variable genomes to jump too far
in the genomes space. We decided to work with mutation rates that allow Γmin to
have at most 95% of chances to avoid mutations and Γmax to have at least 5% of

chances to avoid mutations. From the expression of ϕ, we have um = 1−ϕ
1

3×|Γ | ,

and thus umax = 1 − 0.05
1

3×|Γmax| ≈ 0.00249 and umin = 1 − 0.95
1

3×|Γmin| ≈
0.00034. Let us set the mutation rate to um = umin+umax

2 ≈ 0.00142

12

0 1 2 3 4
um(1 · 10−3)

0

0. 2

0. 4

0. 6

0. 8

1. 0

ϕ

|Γ|= 50

|Γ|= 100

|Γ|= 200|Γ|= 300|Γ|= 400

Fig. 2: ϕ value computed as a function of the mutation rate um for different
genome sizes. The suitable chosen range of genomic variability and its related
mutation rate range are delimited by dashed lines. The retained mutation rate
is marked by a vertical plain line.

Population size and number of generations In order to adjust these parame-
ters, we analyzed the fitness value and its convergence curves on three datasets:
shape and pendigits, that are respectively the smallest and the largest of the
real datasets, and dataset D20 a typical synthetic dataset of the framework (20
dimensions and 10% of noise points).

For the population size, Figure 3 illustrates that the larger the population
is, the higher the fitness values are. Indeed a larger population has a higher
exploration power, and is more likely to reach optimal solutions. However these
improvements reach a plateau and then tend to be less significant. Figure 3
illustrates that an appropriate fitness convergence is reached with a population
size set to N = 300 or greater.

For the number of generations, at 5000 the algorithm achieved a good con-
vergence for fitness. This is illustrated in Figure 4a, where this convergence
seems complete for shape and D20 datasets, and nearly complete for the pendig-
its dataset. A careful setting of the number of generations is not required before
performing the subspace clustering, because the user can monitor the fitness
curve during the process in order to stop it when the fitness convergence reaches
a plateau. However, as detecting such plateaux is somewhat subjective, here we
decided to evaluate ChameleoClust+ with an early stopping at 5000 generations
for all the experiments. Notice that, as could be expected and as shown by the
sensitivity analysis carried out in Section 4.3, allowing the algorithm to evolve
during more generations does not have a negative impact on the clustering qual-
ity and can still slightly improve it.

13

10 100 300 500 1000
N

−800

−700

−600

−500

−400

−300

F

Fig. 3: Mean fitness values ± standard deviation for the best individual of the
last generation for each one of the 10 runs on shape (red), pendigits (blue) and
D20 (green) as a function of the population size.

Figures 4b and 4c illustrate that the early generations are characterized by
a fast evolution of the genome structure, and particularly of the number of
functional tuples and of the fraction of functional tuples. At 5000 generations,
the algorithm has already been able to take advantage of the genome structure
evolution to encode a subspace clustering model having a fitness value close to
the maximum reached Figure 4a. Readers may notice that the convergence of the
genome structure may be slower than the fitness convergence. However the main
point with regard to the subspace clustering problem is to obtain well positioned
core points (i.e., to have an optimized phenotype), and consequently it is not
necessary to run the algorithm until a stable genome structure is reached, but
the algorithm can be stopped earlier, as soon as a stable fitness is obtained.

Maximal number of subspace clusters cmax is the maximal number of subspace
clusters that can be built, and it was the only parameter that required to be
tuned. The other parameters are related to the evolution strategy (population
size, mutation rate, ...) and for all of them the single setting established previ-
ously in this section turned out to be effective for all the benchmark datasets.
However, cmax does not require a fine tuning since ChameleoClust+ can adapt
the number of subspace clusters between 1 and cmax. In order to set this param-
eter, we first executed ChameleoClust+ with cmax = 10. When the algorithm
outputs exactly cmax clusters, this means that the algorithm is likely to have been
limited by a too low value set for cmax. In this case, the clustering was repeated
with increasing values of cmax, with an increment of 10, until ChameleoClust+

output less than cmax clusters. Only the last value of cmax is retained, allowing
then ChameleoClust+ to regulate the number of clusters built. Using this pro-

14

cedure, for the real world datasets the cmax parameter was set to 10 for breast
and glass, to 20 for shape and pendigits, to 30 for liver and diabetes and finally to
40 for vowel. For the synthetic datasets, the same procedure, leads to set cmax
to 30 for D05, the dataset having 5 dimensions, and to 20 for the fifteen other
datasets.

3.4 Evaluation measures

In order to compare our algorithm to the others, we used the same standard
evaluation measures for clusters and subspace clusters as (Müller et al., 2009):
entropy, accuracy, F1, RNIA and CE (extension of Clustering Error to subspace
clustering). We performed also the same simple transformation of entropy and
RNIA, by computing RNIA = 1−RNIA and entropy = 1−entropy to have all
evaluation measures ranging from 0 (low quality) to 1 (high quality). The three
first measures (entropy, accuracy and F1) reflect how well objects that should
have been grouped together were effectively grouped. The two last measures,
RNIA and CE introduced in (Patrikainen and Meila, 2006), take into account
the way the objects are grouped and also relevancy of the subspaces found by
the algorithm. For these measures, when the true dimensions of the subspace
clusters are not known (for real datasets), then as in (Müller et al., 2009) all
dimensions have been considered as relevant, but then the interpretation of these
measures should remain cautious since the true sets of dimensions are likely to
be smaller. Of course this does not apply to the synthetic datasets, since for
them the reference clusters and their dimensions are known. We refer the reader
to (Müller et al., 2009) for a detailed presentation of the evaluation measures.

4 Experimental results

4.1 Real datasets

We computed the minimum, the maximum and the mean of the evaluation mea-
sures over 10 standard runs of ChameleoClust+ using the same parameter set-
ting for all datasets as justified and given in Section 3.3, except of course for the
parameter specifying the maximum number of clusters (cmax) that was tuned
according to the simple procedure also given in Section 3.3. As explained in
Section 3.1, these results are compared to the ones provided by (Müller et al.,
2009), that represent the best possible outputs that could be produced by the
main subspace clustering approaches over their respective parameter space. More
precisely, for these other algorithms, on each real dataset only two outputs were
retained: 1) the one computed for the parameter setting that maximizes the F1

measure, and 2) the one obtained when maximizing the accuracy. These two
outputs led in the result tables to two values for each measure, the smallest of
the two being called best min and the other best max. For all datasets we also
give the number of subspace clusters found, the average dimensionality of these
clusters, and their coverage. The coverage is here the percentage of objects of

15

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

−800

−700

−600

−500

−400

−300

F

(a) Evolution of the fitness values.

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0

200

400

600

800

1000

1200

|Γ
f
|

(b) Evolution of the number of functional
tuples.

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

|Γ
f
|/
|Γ
|

(c) Evolution of the percentage of func-
tional tuples.

Fig. 4: Evolution of the mean ± standard deviation (dashed lines) of different
measures for the best individuals of each generation for 10 runs over the real
world datasets shape (red) and pendigits (blue) and the synthetic dataset D20
(green).

16

the dataset that were associated to clusters, and could be less than 100%. This
is the case for algorithms that identified some objects as outliers or as reflecting
noise, and also for algorithms that were not able to identify a cluster for these
objects. Finally even though ChameleoClust+ has been executed on a computer
(2.67GHz CPU) different from the one used by (Müller et al., 2009) (2.3GHz
CPU), we report the runtimes, since at least their orders of magnitude can still
be compared.

In order to illustrate the performances of ChameleoClust+ we focus on dataset
shape in Table 1 that reproduces the results obtained in (Müller et al., 2009)
completed by the results of ChameleoClust+. For the sake of completeness, the
detailed evaluation on the other datasets is given in the Appendix 7.3. In Ta-
ble 1, when an algorithm has a best possible run with a higher evaluation than
ChameleoClust+ the result is highlighted in gray, and if the evaluation is similar
to ChameleoClust+ then the result is simply emphasized in bold.

For Accuracy and CE ChameleoClust+ (together with DOC and MINECLUS)
has among the best results, while its parameters were not optimized using the
class labels to maximize the Accuracy.

For F1 and RNIA the best possible runs of DOC and MINECLUS are ob-
served with better results than standard runs of ChameleoClust+, but they
tend to split the dataset in more clusters (same behavior also on the synthetic
datasets) and have runtimes considerably higher than ChameleoClust+. The best
possible runs of PROCLUS achieve better results than ChameleoClust+ for F1,
but their coverage falls to about 80% to 90% leaving an important part of the
dataset outside of the clusters.

Looking at entropy many algorithms have best possible runs leading to a
better entropy than ChameleoClust+. However, in clustering tasks, the entropy
cannot be interpreted regardless of the number of clusters, because usually the
entropy quality measure tends to improve when the number of clusters increases.
Indeed, by definition of the entropy measure, the best entropy is obtained for the
extreme case where we have one cluster per object. ChameleoClust+ and three
other algorithms (FIRES, P3C, STATPC) are able to avoid the spreading of the
data over too many clusters, but at the cost of a degradation of the entropy
measure. Notice that among them, ChameleoClust+ is the only one to obtain
such a reasonable number of clusters with a 100% coverage.

Regulation of the subspace clustering The mutational operators defined on Sec-
tion 2.4 and 2.6 allow the ChameleoClust+ genome structure to evolve, reaching
potentially different genome sizes and different percentages of functional tu-
ples according to each dataset. This allows ChameleoClust+ to adapt, for each
dataset, the amount of information encoded within its genome. In addition, the
genotype-phenotype mapping, detailed in Section 2.5, permits ChameleoClust+

to encode different number of clusters described in subspaces with different di-
mensionalities. Let us analyze more precisely to which extent ChameleoClust+

takes advantage of these degrees of freedom.
Before describing the results obtained by ChameleoClust+, it should be no-

ticed that most of the time the number of classes within a dataset does not

17

Table 1: Results on shape dataset: 17 dimensions, 9 classes, 160 objects, from
(Müller et al., 2009) completed by results of ChameleoClust+

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime

max min max min max min max min max min max min max min max min max min

CLIQUE 0.31 0.31 0.76 0.76 0.01 0.01 0.07 0.07 0.66 0.66 1.00 1.00 486 486 3.3 3.3 235 235

DOC 0.90 0.83 0.79 0.54 0.56 0.38 0.90 0.82 0.93 0.86 1.00 1.00 53 29 13.8 12.8 2E+06 86500

MINECLUS 0.94 0.86 0.79 0.60 0.58 0.46 1.00 1.00 0.93 0.82 1.00 1.00 64 32 17.0 17.0 46703 3266

SCHISM 0.51 0.30 0.74 0.49 0.10 0.00 0.26 0.01 0.85 0.55 1.00 0.92 8835 90 6.0 3.9 712964 9031

SUBCLU 0.36 0.29 0.70 0.64 0.00 0.00 0.05 0.04 0.89 0.88 1.00 1.00 3468 3337 4.5 4.1 4063 1891

FIRES 0.36 0.36 0.51 0.44 0.20 0.13 0.25 0.20 0.88 0.82 0.45 0.39 10 5 7.6 5.3 63 47

INSCY 0.84 0.59 0.76 0.48 0.18 0.16 0.37 0.24 0.94 0.87 0.88 0.82 185 48 9.8 9.5 22578 11531

PROCLUS 0.84 0.81 0.72 0.71 0.25 0.18 0.61 0.37 0.93 0.91 0.89 0.79 34 34 13.0 7.0 593 469

P3C 0.51 0.51 0.61 0.61 0.14 0.14 0.17 0.17 0.80 0.80 0.66 0.66 9 9 4.1 4.1 140 140

STATPC 0.43 0.43 0.74 0.74 0.45 0.45 0.55 0.55 0.56 0.56 0.92 0.92 9 9 17.0 17.0 250 171

CHAMELEOCLUST+ 0.75 0.63 0.80 0.71 0.54 0.49 0.78 0.71 0.77 0.67 1 1 14 10 12.40 10.79 462 252
mean (10 runs) −→ 0.68 0.75 0.52 0.76 0.72 1 12.0 11.72 339

correspond to the number of clusters found by the algorithms. Indeed, there is
no constraint requiring that the objects of a class form a single group in their
feature space, and consequently it is not surprising to obtain more clusters than
classes. Moreover, in some cases, a few algorithms found a very large number of
clusters (sometimes even more clusters than objects), this behavior being due to
their ability to output overlapping clusters.

Table 2 summarizes (over 10 runs) the average number of clusters, their
average dimensionalities, the average genome length and the average number of
functional tuples in the genome, for each one of the seven real world datasets.
The subspace clustering models produced by ChameleoClust+ are very different
for each dataset: the average number of clusters produced varies between 5.1 for
the breast dataset to 28.0 for the vowel dataset and the average dimensionality of
the subspaces found varies between 2.06 for liver to 12.15 for breast. Similarly the
average genome length varies from 172.6 for liver to 1093.9 for pendigits and the
average number of functional tuples goes from 98.8 for liver up to 409.7 for shape.
For all datasets, the number of clusters and the average dimensionalities of the
subspaces found by ChameleoClust+ are coherent with the number of clusters
found by the other algorithms (see Table 1 for dataset shape and Appendix 7.3
for the others).

Broader comparison For almost every dataset, the performances of ChameleoClust+

are competitive with respect to the best possible runs of the other algorithms.
To compare these approaches in a broader way, we ranked them according to the
eight following evaluation criteria: the coverage, the number of clusters found,
the quality measures (F1, Accuracy, CE, RNIA and Entropy), and the runtime.
For each real world dataset and each criterion we ranked the eleven algorithms
with respect to the column best max, from rank 1 for the lowest performance to
rank 11 for the highest one. The ranking for the coverage and for the number of
clusters needs further precisions. For the coverage, a method that built less rep-
resentative models (excluding too many points) had a lower rank with respect to
a method that covered a larger part of the dataset. For the number of clusters,

18

Table 2: Average number of clusters and average dimensionality per cluster found
for each dataset

Dataset NumClusters AvgDim |Γ | |Γf |
breast 5.1 12.15 733.2 276.8

diabetes 25.1 3.85 453.9 181.2

glass 6.9 6.18 504.3 184.7

liver 24.3 2.06 172.6 98.8

pendigits 11.6 10.01 1093.9 379.6

shape 12.0 11.72 926.1 409.7

vowel 28.0 5.41 749.6 331.3

the fewer the clusters in the clustering model, the easier their interpretation, so
methods that built a reduced number of clusters had a higher rank.

Then, for each of the eight criteria we computed the average rank over the
seven datasets, obtaining for each algorithm eight average ranks. The same was
also performed with the column best min. The average ranks of the different
algorithms are given in Figure 5 (colored dots). The figure also reports the mean
of the average rank of each method (red stars), showing that ChameleoClust+

has the second best mean. However, it should be noticed that there is no ever
winning algorithm.

For the four algorithms having the best means (i.e., MINECLUS, ChameleoClust+,
DOC and PROCLUS) we compared more precisely the number of clusters they
produced, their coverage and their runtimes. The table 3 summarizes for each
algorithm: (1) The number of datasets where the highest and lowest number
of clusters found remain interpretable (100 clusters or less). (2) The number of
datasets where the highest and lowest coverage are acceptable, i.e., the amount
of excluded data points are not too high (coverage of at least 95%). And (3) the
number of datasets where the shortest and longest execution last for a reason-
able time (one hour or less). The results obtained by the other algorithms are
also presented for the sake of completeness. MINECLUS, ChameleoClust+, DOC
and PROCLUS produced for each dataset an interpretable number of clusters,
but PROCLUS and DOC usually produced lower coverage. MINECLUS and
DOC had higher run times and last for more than one hour for several datasets.
ChameleoClust+ produced good quality results together with low runtimes and
high coverage.

However, the different approaches have different characteristics (e.g., global
cluster shapes, distance-based/density-based, 100% coverage or not) and, as ob-
served previously, no method leads to the best results on all datasets. For ex-
ploratory analysis of the data, a good strategy is to apply several methods from
different families. In particular using at least one of the approaches that tend
to build hyper-spherical shaped clusters. In the comparison, this corresponds
to the algorithms PROCLUS, P3C, STATPC and ChameleoClust+. Among

19

these four methods, ChameleoClust+ always reaches a 100% coverage, while
the others, on most datasets, do not cluster more than 95% of the objects, as
shown Table 3. Thus, beyond an easy parameter setting and good performances,
ChameleoClust+ is an interesting choice to find hyper-spherical shaped clusters
in subspaces with a 100% coverage of the data.

1 2 3 4 5 6 7 8 9 10 11
Rankings

MINECLUS
CHAMELEOCLUST

DOC
PROCLUS

P3C
INSCY

STATPC
SCHISM
CLIQUE

FIRES
SUBCLU

Fig. 5: Mean over the different datasets of the ranking of each algorithm for the
maximum and the minimum value obtained for each evaluation measure: Accu-
racy, Entropy, F1, CE, RNIA, Number of cluster, Coverage, Runtime (colored
dots) and average ranking for each method (red stars).

Table 3: Number of datasets where the conditions on runtime (less than one
hour), coverage (more than 0.95%) and number of clusters (less than 100) were
fulfilled

Evaluation MINECLUS CHAMELEOCLUST+ DOC PROCLUS P3C INSCY STATPC SCHISM CLIQUE FIRES SUBCLU

max(NumClusters) ≤ 100 7 7 7 7 7 1 3 1 0 7 0

min(NumClusters) ≤ 100 7 7 7 7 7 4 7 4 2 7 2

max(Coverage) ≥ 95% 7 7 4 0 3 1 3 7 7 0 6

min(Coverage) ≥ 95% 4 7 1 0 0 0 1 2 7 0 5

max(Runtime) ≤ 1h 2 6 0 6 5 1 3 2 2 5 1

min(Runtime) ≤ 1h 4 6 2 6 5 2 3 4 7 6 4

4.2 Synthetic data

ChameleoClust+ was executed 10 times on each of the 16 synthetic datasets.
For each dataset we retained the run reaching the highest fitness (for the best

20

individual) among the 10 runs (notice that this selection is made without using
any external labeling, but only the fitness values). Then for each evaluation
measure, we plotted the measure value obtained with respect to the number of
clusters found by each of the 16 selected runs. The results are shown in Figure 6
as red dots. For each evaluation measure we also plotted in blue the shape of the
area where the other algorithm results lay (as reported in (Müller et al., 2009)).
Again for these other algorithms, their results correspond to there best runs
over the parameter space. More precisely, for each quality measure, the results
were collected as follows. For an algorithm and a given dataset, the parameter
space of the algorithm were explored, and using the external true labels, only
the execution leading to the highest value of the measure has been retained.
In the plots of the figure 6, good performances correspond to regions where
the outputs contain about 10 clusters (the real number of clusters) and reach
a high value for the quality measures. For almost every synthetic dataset the
number of clusters found by ChameleoClust+ is very close to the real number.
ChameleoClust+ always found between 6 and 25 clusters. As reported in (Müller
et al., 2009) the other algorithms found between 5 and 50 clusters, excepted
a few cases where much more clusters were found (up to more than several
thousands). Using the default parameter setting method of Section 3.3, most
of the evaluation measures for ChameleoClust+ are comparable to the highest
evaluations obtained by (Müller et al., 2009) when exploring the parameter space
of the other algorithms using the true clusters to guide the search.

We give, Figure 7a and Figure 7b, the runtime of ChameleoClust+ with re-
spect to the number of dimensions, and to the number of objects of the synthetic
datasets. These curves show that the algorithm scales rather linearly in both
cases and are consistent with the time complexity obtained in Section 2.9. These
confirmations are important in order to infer the sizes of real datasets that could
be processed. For example, on the largest real dataset, pendigits, having about
7500 objects and 16 dimensions, the runtime of algorithm ChameleoClust+ is
less than 4500 seconds (Table 5). This runtime corresponds to a single threaded
version of ChameleoClust+, and it could be reduced by handling individuals in
parallel since each member of the new generation can be obtained independently.
For instance, the computation of the offspring population can be distributed over
the 32 cores of a typical workstation, in order to decrease the execution time
by a factor of about 1/32. Thus, according to the time complexity given in Sec-
tion 2.9, showing that the runtime increases linearly with respect to the number
of objects (as confirmed by the experiments reported Figure 7b), it is possible
to process on a 32 cores hardware a 32 times larger dataset with similar exe-
cution times. This means that in a reasonable amount of time of about 4500
seconds, ChameleoClust+ could obtain a subspace clustering for a dataset of
7500× 32 = 240000 objects.

4.3 Sensitivity analysis

In order to study the impact of the different parameters on the quality of the
subspace clustering models obtained, a sensitivity analysis of the parameters has

21

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc
u
ra
cy

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F
1

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
n
tr
op
y

1 10 100 1000 10000
Number of clusters

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

Fig. 6: Accuracy, F1, RNIA, Entropy and CE as a function of the number of
clusters for the subspace clustering having the best fitness among 10 runs for
the synthetic datasets (red dots) and region where the state-of-the-art algorithm
results lay.

22

0 10 20 30 40 50 60 70 80

D

0

500

1000

1500

2000

2500

3000

3500
T
im
e(
se
co
n
d
s)

(a) Runtime vs. dimensionality of the dataset.

1500 2500 3500 4500 5500

|S|
1000

1500

2000

2500

3000

3500

4000

4500

5000

T
im
e(
se
co
n
d
s)

(b) Runtime vs. number of objects in the dataset.

Fig. 7: Mean ± standard deviation of the runtime of ChameleoClust+ (10 runs)
on synthetic dataset series Dxx and Sxxxx.

23

been carried out by varying the parameter values one-at-a-time. For each param-
eter setting, the execution was repeated 10 times and the average and standard
deviations of the two measures that reflect the relevance of the subspace (RNIA
and CE) were computed. As in Section 3.3, we consider the three representative
datasets shape, pendigits and D20 to carry out this sensitivity analysis.

A parameter setting was used as a reference: size ω of the sliding sample
St set to 10% of the dataset size, selection pressure s = 0.5, initial genome
size |Γ init| = 200 elements, mutation rate um = 0.00142, population size N =
300 individuals, number of generations set to 5000, and maximal number of
subspace clusters cmax = 20. This corresponds to the default values specified in
Section 3.3. For each parameter, the effects of changing its value were observed
and are discussed in the following.

Sliding sample The results obtained on the three datasets for sample sizes of 5%,
10%, 30%, 50%, 70%, 90% and 100% of the dataset size, are given in Figure 8a
and Figure 8b. These curves show that the impact of the dataset sample size
on the subspace cluster quality is low when the sliding sample used to compute
the fitness is about 10% of the dataset size or more. As could be expected,
using a small ratio on a small dataset leads to the most important degradations.
This is the case for the smallest one, shape, that contains only 160 objects,
and for which a 5% sample contains only 8 objects. However, for reasonable
sample sizes, the samples are representative enough of the whole dataset and
good quality clusterings are obtained, as shown Figure 8. Disjoint, but more
representative, samples still create a small instability in the fitness landscape,
and even if an elitist selection strategy is used, as described Section 2.8, this can
lead to local decreases of the fitness of the best individuals as can be observed
on Figure 4a. Despite of this instability, this figure also shows that there is still
a global improvement and convergence of the fitness (over the samples), and
the same holds for the clustering quality (over the whole dataset) as depicted
Figure 13.

Selection pressure Figure 9a and Figure 9b present the results obtained when
varying the selection pressure (values 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.999). This
change has a weak impact on the subspace cluster quality for s in [0.1, . . . , 0.9].
This is not the case when the selection pressure is very low (s > 0.9), since ac-
cording to Section 2.8 almost the same reproduction probabilities are assigned to
each individual, and thus promising individuals have almost the same number of
children as unadapted ones. This is consistent with the degradation of the clus-
tering quality observed in the figures 9a and 9b. When the selection pressure is
very high (s < 0.1), almost the complete future generation comes from the best
individual of the current generation (individual having a very high reproduction
probability). In this case, the genetic variability within the new generation is
likely to be reduced, and Figure 9 shows a decrease of the cluster quality mea-
sures. For the smallest dataset, shape, the current default sample is also small,
and thus is likely to be not very representative. Then, generating offspring using

24

0 10 30 50 70 90 100

|St|/|S|(%)

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

C
E

(a) CE vs. dataset sample size.

0 10 30 50 70 90 100

|St|/|S|(%)

0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1. 0

R
N
IA

(b) RNIA vs. dataset sample size.

Fig. 8: Mean ± standard deviation of quality measures for the best individual of
the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the dataset sample size relative to the dataset

size |St||S| (percentage of the dataset size).

25

only the individual that has the best fitness on this sample could be the cause
of the important quality degradation observed for shape when s is below 0.1.

Initial genome length Set of parameter values: 10, 50, 100, 200, 300, 400, 500. As
illustrated in Figure 10a and Figure 10b, the impact of the initial genome size
is minor when the initial size is at least equal to 50. Indeed, ChameleoClust+

genome size is evolvable and can be modified by large deletions and large dupli-
cations, consequently the initial size does not have a considerable impact on the
algorithm quality. However, very small initial genomes have a high probability
to stay unchanged (no mutation) as shown Figure 2, and consequently evolution
tends to be slower and results tend to be poorer (for the same total number of
generations).

Population size Set of parameter values: 10, 50, 100, 300, 500, 1000. As illus-
trated in Figure 11a and Figure 11b the larger the population the better the
results. Indeed smaller populations may only explore a small portion of the solu-
tion space at each generation and tend also to have a smaller genetic variability.
This leads to a slower evolution and poorer results. At the other end of the
parameter range, the gain induced by having more individuals tends to become
smaller as the population size increases.

Mutation rate Set of parameter values: 0.0001, 0.00034, 0.00142, 0.00249, 0.01.
We decided to test the mutation rates delimiting the suitable mutation rate range
defined in Section 3.3 (um = 0.00034 and um = 0.00249), the default mutation
rate (um = 0.00142) and two values outside the suitable mutation rate range
(um = 0.01 and um = 0.0001). If the mutation rate is chosen inside the boundary
defined in Section 3.3, it does not have a major impact on the subspace cluster
quality, as showed in Figure 12. If we choose a mutation rate far outside the
boundary, the subspace cluster quality decreases. This is coherent with Figure 2,
the mutation rate is too low, and then the evolution process becomes very slow
as most of the individuals do not mutate. While, when the mutation rate is
too high, it becomes harder for the organisms to converge towards a suitable
subspace clustering.

Number of generations We ran ChameleoClust+ 10 times for each chosen dataset
over 120000 generations. The different evaluation measures were computed each
100 generations. As illustrated in Figures 13a and 13b, the more generations we
let the algorithm evolve the better are the results. However the improvements
tend to be less significant and results reach finally a plateau. As discussed in
the paragraph related to the number of generations in Section 3.3, the early
generations are characterized by a fast evolution of the genome structure and of
the subspace clusters quality. Well positioned core points are rapidly found, and
it is not necessary to wait for too many generations to get good results.

In this section, the impact of the choice of the parameter values, on the
cluster quality, has been discussed. It should be noticed that similar effects can
be observed on the fitness itself, as shown for the population size in Figure 3

26

0 0.1 0.3 0.5 0.7 0.9 1

s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. selection pressure.

0 0.1 0.3 0.5 0.7 0.9 1

s

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. selection pressure

Fig. 9: Mean ± standard deviation of quality measures for the best individual of
the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the selection pressure parameter s.

27

10 100 200 300 400 500

|Γinit|
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. initial genome size.

10 100 200 300 400 500

|Γinit|
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. initial genome size.

Fig. 10: Mean ± standard deviation of quality measures for the best individual
of the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the initial genome size.

28

10 100 300 500 1000

N

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. population size.

10 100 300 500 1000

N

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. population size.

Fig. 11: Mean ± standard deviation of quality measures for the best individual
of the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the population size N .

29

10002491423410

um (·10−5)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) CE vs. mutation rate.

10002491423410

um (·10−5)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) RNIA vs. mutation rate.

Fig. 12: Mean ± standard deviation of quality measures for the best individual
of the last generation for each one of the 10 runs on shape (red), pendigits (blue)
and D20 (green) as a function of the mutation rate um.

30

and for the number of generations in Figure 4a. For the sake of completeness,
the fitness curves obtained when modifying the other parameters are given in
Appendix 7.2 (Figures 17a, 17b, 17c and 17d).

4.4 Possible alternative models

Aside from its evolvable genome size driven by large duplications and deletions,
the ChameleoClust+ approach relies on two other choices: an elitist reproduc-
tion method and the presence of non-functional elements. In this section, their
effects on the quality measures RNIA and CE are reported using the datasets
pendigits, shape and D20 (similar trends were observed on the fitness values, and
the corresponding figures are given in Appendix 7.1).

For the synthetic dataset D20 the parameter cmax was set to the true number
of groups (i.e., cmax = 10). For the real datasets this parameter was set to the
number of classes (cmax = 9 for shape and cmax = 10 for pendigits) and other
runs were performed using twice the number of classes (cmax = 18 for shape and
cmax = 20 for pendigits), since the real number of groups is not necessarily equal
to the number of classes.

ChameleoClust+ was executed 10 times for each dataset and each value of
cmax, using the setting described Section 3.3 for the other parameters. Fig-
ures 14a and 14b show the impact of elitism on CE and RNIA. In these ex-
periments, elitism does not seem to have a significant positive or negative effect.
However, it is still a way to avoid the possible lost of a good current solution dur-
ing the search. Since, according to the complexity given Section 2.9, it does not
increase the cost of the generation of a new population, then there is no advan-
tage to remove it from ChameleoClust+. To test an alternative model without
non-functional elements, all elements in the initial genomes were set to be func-
tional, and the point mutations that could transform them, during evolution,
into non-functional elements were simply discarded. Figures 15a and 15b report
the impact of these non-functional elements on the quality measures, showing a
positive effect that turns out to be significant for pendigits and D20.

5 Related work

Many approaches have been investigated for subspace clustering in the literature
using various clustering paradigms. The reader is referred for instance to (Kriegel
et al., 2009), (Müller et al., 2009), and (Parsons et al., 2004) for detailed reviews
and comparisons of the best methods and main categories:

– The cell-based approach, that defines clusters as hyper-rectangles laying in
specific subspaces and containing more than a given number of objects. Clus-
ters are usually constructed by discretizing the data space into axis-parallel
cells and then aggregating promising cells. These selected cells are commonly
the ones containing more objects than a threshold given as parameter. Other
typical parameters are the number or the size of the cells.

31

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
E

(a) Evolution of CE quality measure.

0 1 2 3 4 5 6 7 8 9 10 11 12

Generations(·104)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
N
IA

(b) Evolution of RNIA quality measure.

Fig. 13: Evolution of the mean ± standard deviation (dashed lines) of qual-
ity measures for the best individual of each generation over 10 runs of
ChameleoClust+ for shape (red), pendigits (blue) and D20 (green).

32

shape
 cmax = 9

shape
 cmax = 18

pendigits
 cmax = 10

pendigits
 cmax = 20

D20
 cmax = 10

0.0

0.2

0.4

0.6

0.8

1.0
CE

(a) Impact of elitism on CE.

shape
 cmax = 9

shape
 cmax = 18

pendigits
 cmax = 10

pendigits
 cmax = 20

D20
 cmax = 10

0.0

0.2

0.4

0.6

0.8

1.0

RN
IA

(b) Impact of elitism on RNIA.

Fig. 14: Mean ± standard deviation of quality measures for 10 runs on shape,
pendigits and D20, with (red) and without (blue) elitism.

33

shape
 cmax = 9

shape
 cmax = 18

pendigits
 cmax = 10

pendigits
 cmax = 20

D20
 cmax = 10

0.0

0.2

0.4

0.6

0.8

1.0
CE

(a) Impact of non-functional tuples on CE.

shape
 cmax = 9

shape
 cmax = 18

pendigits
 cmax = 10

pendigits
 cmax = 20

D20
 cmax = 10

0.0

0.2

0.4

0.6

0.8

1.0

RN
IA

(b) Impact of non-functional tuples on RNIA.

Fig. 15: Mean ± standard deviation of quality measures for 10 runs on shape,
pendigits and D20, with (red) and without (blue) non-functional tuples.

34

– The density-based approach, in which clusters are dense groups of objects
in space. A cluster can have an arbitrary shape, but must be separated
from the other clusters by low density regions. This approach defines dense
regions as regions where within a given radius a number of objects exceeding
a minimum threshold can be found. Clusters are built by joining together
the objects from adjacent dense regions.

– The clustering-oriented approach, that usually defines properties of the tar-
geted clustering such as the expected number of clusters or the cluster aver-
age dimensionality. According to these constraints, the objects are grouped
together mainly using distance-based similarity. Most of these methods tend
to build hyper-spherical shaped clusters in particular subspaces.

It should be noticed that subspace clustering is also related to paradigms
known as co-clustering, bi-clustering and pattern-based clustering. According
to Sim et al. (2013), the main difference with subspace clustering is that these
approaches consider the objects and the features of the dataset interchangeably,
and cluster simultaneously objects and features exhibiting common patterns.
Different survey articles have been dedicated to these paradigms, we refer the
reader to Charrad and Ahmed (2011), Sim et al. (2013) and Mounir and Hamdy
(2015) for a detailed presentation.

Even if many evolutionary clustering approaches exist (Hruschka et al., 2009)
very few of them address the subspace clustering problem. An early approach
was presented in (Sarafis et al., 2003), introducing a subspace clustering evolu-
tionary algorithm that uses a rule-based representation to encode axis-parallel
hyper-rectangular disjoint clusters. This algorithm is a member of the cell-based
subspace clustering family. It uses task-specific mutation and recombination op-
erators, and requires a non-evolutionary first stage to find promising clusters
in 2D subspaces. More recently, in (Vahdat et al., 2010), a different evolution-
ary approach has been presented. It is also based on a first non-evolutionary
clustering stage, used here to find a set of cluster candidate positions in each
dimension. Next, it uses a genetic algorithm to produce subspace clusters by
combining the candidate positions found at the previous step. The final stage
is then to run a second genetic algorithm to find the best combination of sub-
space clusters to form the whole clustering of the data. This approach is related
to the clustering-oriented family. The ChameleoClust+ algorithm presented in
this paper also falls into the clustering-oriented category, but it is a single stage
and fully evolutionary approach, without any preliminary stage to identified
clusters in lower dimensional spaces. In addition it relies on generic bio-like mu-
tation operations that are not specific to the subspace clustering task. Moreover,
ChameleoClust+ has shown to performed well when compared to state-of-the-art
subspace clustering algorithms using a reference evaluation framework.

More recently different extensions/variants of the subspace clustering prob-
lem have been investigated. For instance, in (Aksehirli et al., 2013) and (Akse-
hirli et al., 2015), the authors have introduced a grouping of objects based on
the sharing of similar neighborhoods, instead of relying on traditional distance
measures. The handling of noise has also received an increasing attention, as

35

in (Wang and Xu, 2016), (Vidal and Favaro, 2014) and (Soltanolkotabi et al.,
2014), that tackled subspace clustering in the context of very noisy datasets. An-
other useful aspect, in a clustering process, is the integration of user knowledge
by means of constraints. In (Hu et al., 2015), the authors have proposed such a
constraint-based subspace clustering method, to guide the search for the cluster
content and their subspaces.

6 Conclusion

In this paper, we presented ChameleoClust+, an evolutionary algorithm for sub-
space clustering. Its key underlying principle is to use an evolvable genome struc-
ture to find various numbers of clusters in subspaces of different dimensionality.
The genome undergoes local point mutations and is shaped by two kinds of global
rearrangements: large deletions and large duplications. Beyond cluster locations,
this enable to evolve the number of clusters and the number of dimensions used
by each cluster.

ChameleoClust+ was shown to be very competitive with respect to state-of-
the-art algorithms using an evaluation framework of reference, that includes both
real and synthetic datasets (varying size, number of dimensions and proportion
of noise). A parameter setting method has been described, and was effective for
all the datasets of the framework. In addition, a sensitivity analysis showed that
the impact of the parameters related to the evolution strategy (population size,
mutation rate, ...) is low for a large portion of the parameter space. The only
parameter not related to evolution is the maximum number of desired clusters.
To set its value, a simple procedure was given and adopted for all the datasets
used in the evaluation.

Directions for future work include to investigate the impact of more complex
transfers, like crossover in vertical transfer or bio-inspired horizontal transfer
operations, in this evolutionary subspace clustering approach. Another promising
direction of work is to extend ChameleoClust+ to handle data incrementally
(e.g., streaming data), a context that requires to adapt the standardization of
the data. It could be handled by recomputing periodically the needed statistics
over a recent part of the data, and then modifying the current core point locations
by taking into account the shift and scaling induced by the new standardization
parameters.

Acknowledgements

This research has been supported by EU-FET grant EvoEvo (ICT-610427).
Other support: Christophe Rigotti is a member of LabEx IMU (ANR-10-LABX-
0088).

36

Bibliography

Aggarwal, Charu C., Alexander Hinneburg, and Daniel A. Keim. 2001.
On the surprising behavior of distance metrics in high dimensional space.
In Proc. of the 8th Int. Conf. on Database Theory, Springer, pp. 420–434.

Aggarwal, Charu C., Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc,
and Jong Soo Park. 1999. Fast algorithms for projected clustering. In Proc.
of the 1999 ACM SIGMOD Int. Conf. on Management of Data. ISBN 1-58113-
084-8. pp. 61–72. 10.1145/304182.304188.

Aksehirli, Emin, Bart Goethals, and Emmanuel Müller. 2015. Efficient
cluster detection by ordered neighborhoods. In International Conference on
Big Data Analytics and Knowledge Discovery, Springer, pp. 15–27.

Aksehirli, Emin, Bart Goethals, Emmanuel Muller, and Jilles
Vreeken. 2013. Cartification: A neighborhood preserving transformation
for mining high dimensional data. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on, IEEE, pp. 937–942.

Bache, K., and M. Lichman. 2013. UCI machine learning repository.

Banzhaf, Wolfgang, Guillaume Beslon, Stephen Christensen,
A. James, François Képès, Virginie Lefort, F. Julian, Miroslav
Radman, and Jeremy J. Ramsden. 2006. Guidelines: From artificial evolu-
tion to computational evolution: a research agenda. Nature Reviews Genet-
ics, 7(9):729–735.

Beyer, Kevin, Jonathan Goldstein, Raghu Ramakrishnan, and Uri
Shaft. 1999. When is ”nearest neighbor” meaningful? In Proc. of the 7th
Int. Conf. on Database Theory. ISBN 3-540-65452-6. pp. 217–235.

Blickle, Tobias, and Lothar Thiele. 1996. A comparison of selec-
tion schemes used in evolutionary algorithms. Evolutionary Computa-
tion, 4(4):361–394. ISSN 1063-6560. 10.1162/evco.1996.4.4.361.

Charrad, Malika, and Mohamed Ben Ahmed. 2011. Simultaneous clus-
tering: A survey. In International Conference on Pattern Recognition and
Machine Intelligence, Springer, pp. 370–375.

Crombach, Anton, and Paulien Hogeweg. 2007. Chromosome rearrange-
ments and the evolution of genome structuring and adaptability. Molecular
Biology and Evolution, 24(5):1130–9. ISSN 0737-4038.

Hindré, Thomas, Carole Knibbe, Guillaume Beslon, and Dominique
Schneider. 2012. New insights into bacterial adaptation through in vivo and
in silico experimental evolution. Nature Reviews Microbiology, 10:352–365.

Hruschka, Eduardo R., Ricardo José Gabrielli Barreto Campello,
Alex Alves Freitas, and André Carlos Ponce Leon Ferreira
de Carvalho. 2009. A survey of evolutionary algorithms for cluster-
ing. IEEE Transactions on Systems, Man, and Cybernetics, 39(2):133–155.
10.1109/TSMCC.2008.2007252.

Hu, Han, Jianjiang Feng, and Jie Zhou. 2015. Exploiting unsupervised and
supervised constraints for subspace clustering. IEEE transactions on pattern
analysis and machine intelligence, 37(8):1542–1557.

Knibbe, Carole, Antoine Coulon, Olivier Mazet, Jean-Michel Fa-
yard, and Guillaume Beslon. 2007. A Long-Term Evolutionary Pres-
sure on the Amount of Noncoding DNA. Molecular Biology and Evolu-
tion, 24(10):2344–2353. 10.1093/molbev/msm165.

Kriegel, Hans-Peter, Peer Kröger, and Arthur Zimek. 2009. Clustering
high-dimensional data: A survey on subspace clustering, pattern-based clus-
tering, and correlation clustering. ACM Transactions on Knowledge Discovery
from Data, 3(1):1–58. ISSN 1556-4681. 10.1145/1497577.1497578.

Mounir, Mahmoud, and Mohamed Hamdy. 2015. On biclustering of gene
expression data. In Intelligent Computing and Information Systems (ICICIS),
2015 IEEE Seventh International Conference on, IEEE, pp. 641–648.

Müller, Emmanuel, Stephan Günnemann, Ira Assent, and Thomas
Seidl. 2009. Evaluating clustering in subspace projections of high dimen-
sional data. In Proc. 35th Int. Conf. on Very Large Data Bases (VLDB 2009),
pp. 1270–1281.

Parsons, Lance, Ehtesham Haque, and Huan Liu. 2004. Subspace clus-
tering for high dimensional data: A review. SIGKDD Explorations Newslet-
ter, 6(1):90–105.

Patrikainen, Anne, and Marina Meila. 2006. Comparing subspace cluster-
ings. IEEE Transactions on Knowledge and Data Engineering, 18(16):902–
916.

Sarafis, I. A., P. W. Trinder, and A.M.S Zalzala. 2003. Towards effective
subspace clustering with an evolutionary algorithm. In Proc. of the IEEE
Congress on Evolutionary Computation (CEC 2003), pp. 797–806.

Sim, Kelvin, Vivekanand Gopalkrishnan, Arthur Zimek, and Gao
Cong. 2013. A survey on enhanced subspace clustering. Data Mining and
Knowledge Discovery, 26(2):332–397.

Soltanolkotabi, Mahdi, Ehsan Elhamifar, and Emmanuel J Candes.
2014. Robust subspace clustering. The Annals of Statistics, 42(2):669–699.

Vahdat, Ali, Malcolm I. Heywood, and A. Nur Zincir-Heywood. 2010.
Bottom-up evolutionary subspace clustering. In Proc. of the IEEE Congress
on Evolutionary Computation (CEC 2010), pp. 1–8.

Vidal, René, and Paolo Favaro. 2014. Low rank subspace clustering (lrsc).
Pattern Recognition Letters, 43:47–61.

Wang, Yu-Xiang, and Huan Xu. 2016. Noisy sparse subspace clustering. The
Journal of Machine Learning Research, 17(1):320–360.

38

7 Appendix

7.1 Impact on fitness of the alternative models

The figures 16a and 16b show the effect of the elitist reproduction and of the
presence of non-functional elements on the fitness values.

7.2 Sensitivity analysis complement

The fitness values obtained when modifying the parameters sample size, se-
lection pressure, initial genome size and mutation rate are given Figure 17.

7.3 Results on other real datasets

The detailed subspace clustering results on dataset shape are given in Sec-
tion 4.1. The tables 4 to 9 given in this Appendix 7.3 report the detailed results
obtained on each other real dataset of the evaluation framework. In these tables,
to make the paper more self-contained for the review process, we reproduce the
corresponding results from (Müller et al., 2009) and add the results obtained by
ChameleoClust+.

Table 4: Results on breast dataset: 33 dimensions, 2 classes, 198 objects, from
(Müller et al., 2009) completed by results of ChameleoClust+

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.67 0.67 0.71 0.71 0.02 0.02 0.40 0.40 0.26 0.26 1.00 1.00 107 107 1.7 1.7 453 453

DOC 0.73 0.61 0.81 0.76 0.11 0.04 0.84 0.07 0.46 0.27 1.00 0.80 60 6 27.2 2.8 1E+06 37515

MINECLUS 0.78 0.69 0.78 0.76 0.19 0.18 1.00 1.00 0.56 0.37 1.00 1.00 64 32 33.0 33.0 40359 29437

SCHISM 0.67 0.67 0.75 0.69 0.01 0.01 0.36 0.34 0.35 0.34 1.00 0.99 248 197 2.3 2.2 158749 114609

SUBCLU 0.68 0.51 0.77 0.67 0.02 0.01 0.54 0.04 0.27 0.24 1.00 0.82 357 5 2.0 1.0 5265 16

FIRES 0.49 0.03 0.76 0.76 0.03 0.00 0.05 0.00 1.00 0.01 0.76 0.04 11 1 2.5 1.0 250 31

INSCY 0.74 0.55 0.77 0.76 0.02 0.00 0.24 0.11 0.60 0.39 0.97 0.74 2038 167 11.0 4.4 134373 63484

PROCLUS 0.57 0.52 0.80 0.74 0.51 0.11 0.65 0.43 0.32 0.23 0.89 0.69 9 2 24.0 18.0 703 141

P3C 0.63 0.63 0.77 0.77 0.04 0.04 0.19 0.19 0.36 0.36 0.85 0.85 28 28 6.9 6.9 6281 6281

STATPC 0.41 0.41 0.78 0.78 0.16 0.16 0.33 0.33 0.29 0.29 0.43 0.43 5 5 33.0 33.0 5187 4906

ChameleoClust+ 0.60 0.51 0.76 0.76 0.23 0.11 0.53 0.25 0.25 0.22 1 1 8 4 16.75 5.75 339 131
mean (10 runs) −→ 0.56 0.76 0.17 0.40 0.24 1 5.1 12.15 230

39

shape
 cmax = 9

shape
 cmax = 18

pendigits
 cmax = 10

pendigits
 cmax = 20

D20
 cmax = 10

800

700

600

500

400

300

(a) Fitness with (red) and without (blue) elitism.

shape
 cmax = 9

shape
 cmax = 18

pendigits
 cmax = 10

pendigits
 cmax = 20

D20
 cmax = 10

800

700

600

500

400

300

(b) Fitness with (red) and without (blue) non-functional el-
ements.

Fig. 16: Mean ± standard deviation of the fitness of the best individual of the last
generation for 10 runs on shape, pendigits and D20 under different conditions.

40

0 10 30 50 70 90 100

|St|/|S|(%)

−800

−700

−600

−500

−400

−300

F

(a) Fitness vs. sample size relative to the
dataset size.

0 0. 1 0. 3 0. 5 0. 7 0. 9 1

s

−800

−700

−600

−500

−400

−300

F

(b) Fitness vs. selection pressure.

10 100 200 300 400 500

|Γinit|
−800

−700

−600

−500

−400

−300

F

(c) Fitness vs. initial genome size.

10002491423410

um(· 10−5)

−800

−700

−600

−500

−400

−300

F

(d) Fitness vs. mutation rate.

Fig. 17: Mean ± standard deviation of the fitness of the best individual of the
last generation for each one of the 10 runs on shape (red), pendigits (blue) and
D20 (green) under different conditions.

Table 5: Results on pendigits dataset: 16 dimensions, 10 classes, 7494 objects,
from (Müller et al., 2009) completed by results of ChameleoClust+

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.30 0.17 0.96 0.86 0.06 0.01 0.20 0.06 0.41 0.26 1.00 1.00 1890 36 3.1 1.5 67891 219

DOC 0.52 0.52 0.54 0.54 0.18 0.18 0.35 0.35 0.53 0.53 0.91 0.91 15 15 5.5 5.5 178358 178358

MINECLUS 0.87 0.87 0.86 0.86 0.48 0.48 0.89 0.89 0.82 0.82 1.00 1.00 64 64 12.1 12.1 780167 692651

SCHISM 0.45 0.26 0.93 0.71 0.05 0.01 0.30 0.08 0.50 0.45 1.00 0.93 1092 290 10.1 3.4 5E+08 21266

SUBCLU - - - - - - - - - - - - - - - - - -

FIRES 0.45 0.45 0.73 0.73 0.09 0.09 0.33 0.33 0.31 0.31 0.94 0.94 27 27 2.5 2.5 169999 169999

INSCY 0.65 0.48 0.78 0.68 0.07 0.07 0.30 0.28 0.77 0.69 0.91 0.82 262 106 5.3 4.6 2E+06 1E+06

PROCLUS 0.78 0.73 0.74 0.73 0.31 0.27 0.64 0.45 0.90 0.71 0.90 0.74 37 17 14.0 8.0 6045 4250

P3C 0.74 0.74 0.72 0.72 0.28 0.28 0.58 0.58 0.76 0.76 0.90 0.90 31 31 9.0 9.0 2E+06 2E+06

STATPC 0.91 0.32 0.92 0.10 0.09 0.00 0.67 0.11 1.00 0.53 0.99 0.84 4109 56 16.0 16.0 5E+07 3E+06

ChameleoClust+ 0.71 0.51 0.74 0.59 0.51 0.30 0.78 0.49 0.68 0.58 1 1 14 10 12.40 7.21 4476 4226
mean (10 runs) −→ 0.64 0.68 0.43 0.67 0.63 1 11.6 10.01 4347

41

Table 6: Results on diabetes dataset: 8 dimensions, 2 classes, 768 objects,
from (Müller et al., 2009) completed by results of ChameleoClust+

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.70 0.39 0.72 0.69 0.03 0.01 0.14 0.01 0.23 0.13 1.00 1.00 349 202 4.2 2.4 11953 203

DOC 0.71 0.71 0.72 0.69 0.31 0.26 0.92 0.79 0.31 0.24 1.00 0.93 64 17 8.0 5.1 1E+06 51640

MINECLUS 0.72 0.66 0.71 0.69 0.63 0.13 0.89 0.58 0.29 0.17 0.99 0.96 39 3 6.0 5.2 3578 62

SCHISM 0.70 0.62 0.73 0.68 0.08 0.01 0.36 0.09 0.34 0.20 1.00 0.79 270 21 4.2 3.9 35468 250

SUBCLU 0.74 0.45 0.71 0.68 0.01 0.01 0.01 0.01 0.14 0.11 1.00 1.00 1601 325 4.7 4.0 190122 58718

FIRES 0.52 0.03 0.65 0.64 0.12 0.00 0.27 0.00 0.68 0.00 0.81 0.03 17 1 2.5 1.0 4234 360

INSCY 0.65 0.39 0.70 0.65 0.37 0.11 0.45 0.42 0.44 0.15 0.83 0.73 132 3 6.7 5.7 112093 33531

PROCLUS 0.67 0.61 0.72 0.71 0.34 0.21 0.78 0.69 0.23 0.19 0.92 0.78 9 3 8.0 6.0 360 109

P3C 0.39 0.39 0.66 0.65 0.56 0.11 0.85 0.22 0.09 0.07 0.97 0.88 2 1 7.0 2.0 656 141

STATPC 0.73 0.59 0.70 0.65 0.06 0.00 0.63 0.17 0.72 0.28 0.97 0.75 363 27 8.0 8.0 27749 4657

ChameleoClust+ 0.70 0.62 0.73 0.70 0.17 0.09 0.66 0.47 0.28 0.23 1 1 29 19 5.00 2.75 598 438
mean (10 runs) −→ 0.68 0.72 0.13 0.55 0.25 1 25.1 3.85 480

Table 7: Results on glass dataset: 9 dimensions, 6 classes, 214 objects,
from (Müller et al., 2009) completed by results of ChameleoClust+

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.51 0.31 0.67 0.50 0.02 0.00 0.06 0.00 0.39 0.24 1.00 1.00 6169 175 5.4 3.1 411195 1375

DOC 0.74 0.50 0.63 0.50 0.23 0.13 0.93 0.33 0.72 0.50 0.93 0.91 64 11 9.0 3.3 23172 78

MINECLUS 0.76 0.40 0.52 0.50 0.24 0.19 0.78 0.45 0.72 0.46 1.00 0.87 64 6 7.0 4.3 907 15

SCHISM 0.46 0.39 0.63 0.47 0.11 0.04 0.33 0.20 0.44 0.38 1.00 0.79 158 30 3.9 2.1 313 31

SUBCLU 0.50 0.45 0.65 0.46 0.00 0.00 0.01 0.01 0.42 0.39 1.00 1.00 1648 831 4.9 4.3 14410 4250

FIRES 0.30 0.30 0.49 0.49 0.21 0.21 0.45 0.45 0.40 0.40 0.86 0.86 7 7 2.7 2.7 78 78

INSCY 0.57 0.41 0.65 0.47 0.23 0.09 0.54 0.26 0.67 0.47 0.86 0.79 72 30 5.9 2.7 4703 578

PROCLUS 0.60 0.56 0.60 0.57 0.13 0.05 0.51 0.17 0.76 0.68 0.79 0.57 29 26 8.0 2.0 375 250

P3C 0.28 0.23 0.47 0.39 0.14 0.13 0.30 0.27 0.43 0.38 0.89 0.81 3 2 3.0 3.0 32 31

STATPC 0.75 0.40 0.49 0.36 0.19 0.05 0.67 0.37 0.88 0.36 0.93 0.80 106 27 9.0 9.0 1265 390

ChameleoClust+ 0.43 0.28 0.57 0.50 0.43 0.26 0.88 0.55 0.46 0.36 1 1 8 4 7.50 4.75 195 95
mean (10 runs) −→ 0.37 0.54 0.37 0.78 0.42 1 6.9 6.18 154

Table 8: Results on liver dataset: 6 dimensions, 2 classes, 345 objects,
from (Müller et al., 2009) completed by results of ChameleoClust+

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.68 0.65 0.67 0.58 0.08 0.02 0.38 0.03 0.10 0.02 1.00 1.00 1922 19 4.1 1.7 38281 15

DOC 0.67 0.64 0.68 0.58 0.11 0.07 0.51 0.35 0.18 0.11 0.99 0.90 45 13 3.0 1.9 625324 1625

MINECLUS 0.73 0.63 0.65 0.58 0.09 0.09 0.68 0.48 0.33 0.16 0.99 0.92 64 32 4.0 3.7 49563 1954

SCHISM 0.69 0.69 0.68 0.59 0.04 0.03 0.45 0.26 0.10 0.08 0.99 0.99 90 68 2.7 2.1 31 0

SUBCLU 0.68 0.68 0.64 0.58 0.11 0.02 0.68 0.05 0.07 0.02 1.00 1.00 334 64 3.4 1.3 1422 47

FIRES 0.58 0.04 0.58 0.56 0.14 0.00 0.39 0.01 0.37 0.00 0.84 0.03 10 1 3.0 1.0 531 46

INSCY 0.66 0.66 0.62 0.61 0.03 0.03 0.42 0.39 0.21 0.20 0.85 0.81 166 130 2.1 2.1 407 234

PROCLUS 0.53 0.39 0.63 0.63 0.26 0.11 0.66 0.25 0.05 0.05 0.83 0.46 6 2 5.0 3.0 78 31

P3C 0.36 0.35 0.58 0.58 0.55 0.27 0.96 0.47 0.02 0.01 0.98 0.94 2 1 6.0 3.0 172 32

STATPC 0.69 0.57 0.65 0.58 0.23 0.01 0.58 0.37 0.63 0.05 0.77 0.71 159 4 6.0 3.3 1890 781

ChameleoClust+ 0.65 0.59 0.68 0.62 0.20 0.10 0.53 0.41 0.14 0.07 1 1 27 22 2.48 1.85 202 158
mean (10 runs) −→ 0.62 0.64 0.14 0.47 0.11 1 24.3 2.06 179

42

Table 9: Results on vowel dataset: 10 dimensions, 11 classes, 990 objects,
from (Müller et al., 2009) completed by results of ChameleoClust+

F1 Accuracy CE RNIA Entropy Coverage NumClusters AvgDim Runtime
max min max min max min max min max min max min max min max min max min

CLIQUE 0.23 0.17 0.64 0.37 0.05 0.00 0.44 0.01 0.10 0.09 1.00 1.00 3062 267 4.9 1.9 523233 1953

DOC 0.49 0.49 0.44 0.44 0.14 0.14 0.85 0.85 0.58 0.58 0.86 0.86 64 64 10.0 10.0 120015 120015

MINECLUS 0.48 0.43 0.37 0.37 0.09 0.04 0.62 0.34 0.60 0.46 0.98 0.87 64 64 7.2 3.6 7734 5204

SCHISM 0.37 0.23 0.62 0.52 0.05 0.01 0.43 0.11 0.29 0.21 1.00 0.93 494 121 4.3 2.8 23031 391

SUBCLU 0.24 0.18 0.58 0.38 0.04 0.01 0.39 0.04 0.30 0.13 1.00 1.00 10881 709 3.6 2.0 26047 2250

FIRES 0.16 0.14 0.13 0.11 0.02 0.02 0.14 0.13 0.16 0.13 0.50 0.45 32 24 2.1 1.9 563 250

INSCY 0.82 0.33 0.61 0.15 0.09 0.07 0.75 0.26 0.94 0.21 0.90 0.81 163 74 9.5 4.3 75706 39390

PROCLUS 0.49 0.49 0.44 0.44 0.11 0.11 0.53 0.53 0.65 0.65 0.67 0.67 64 64 8.0 8.0 766 766

P3C 0.08 0.05 0.17 0.16 0.12 0.08 0.69 0.43 0.13 0.12 0.98 0.95 3 2 7.0 4.7 1610 625

STATPC 0.22 0.22 0.56 0.56 0.06 0.06 0.12 0.12 0.14 0.14 1.00 1.00 39 39 10.0 10.0 18485 16671

ChameleoClust+ 0.41 0.37 0.42 0.38 0.17 0.13 0.65 0.54 0.45 0.40 1 1 33 24 6.00 4.57 995 787
mean (10 runs) −→ 0.39 0.40 0.15 0.60 0.42 1 28.0 5.41 910

43

