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Abstract

Task-oriented dialogue system (TOD) is one kind of application of artificial intelli-
gence (AI). The response generation module is a key component of TOD for replying
to user’s questions and concerns in sequential natural words. In the past few years, the
works on response generation have attracted increasing research attention and have
seen much progress. However, existing works ignore the fact that not each turn of
dialogue history contributes to the dialogue response generation and give little con-
sideration to the different weights of utterances in a dialogue history. In this paper, we
propose a hierarchical memory networkmechanismwith two steps to filter out unnec-
essary information of dialogue history. First, an utterance-level memory network
distributes various weights to each utterance (coarse-grained). Second, a token-level
memory network assigns higher weights to keywords based on the former’s output
(fine-grained). Furthermore, the output of the token-level memory network will be
employed to query the knowledge base (KB) to capture the dialogue-related infor-
mation. In the decoding stage, we take a gated-mechanism to generate response
word by word from dialogue history, vocabulary, or KB. Experiments show that the
proposed model achieves superior results compared with state-of-the-art models on
several public datasets. Further analysis demonstrates the effectiveness of the pro-
posed method and the robustness of the model in the case of an incomplete training
set.
KEYWORDS:
task-oriented dialogue systems, memory networks, natural language gereration, natural language process-
ing (NLP), deep learning

1 INTRODUCTION

Developing a dialogue system is a big challenge in the area of Artificial Intelligence (AI), and has recently attracted a lot of
attention in both in academia and industry due to the development of deep learning technologies. Task-oriented dialogue system
(TOD) is an important paradigm of dialogue system, and is used to accomplish user-specific goals via natural dialogue with
limited turns, such as in restaurant reservation and tickets booking. Compared with open-domain dialogue systems, a TOD

†This is an example for title footnote.
0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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R_name madrid_expensive_british_6stars madrid_expensive_british_8stars madrid_expensive_british_1stars
R_rating 6 8 1
R_price expensive expensive expensive
R_number six six six
R_address madrid_expensive_6stars_address madrid_expensive_8stars_address madrid_expensive_1stars_address
R_location madrid madrid madrid
R_cuision british british british
R_phone madrid_expensive_6stars_phone madrid_expensive_8stars_phone madrid_expensive_1stars_phone

  $u :  good morning
  $s :  hello what can i help you with today
  $u :  can you book a table in a cheap price range for two
  $s :  i'm on it
  $u :  <SILENCE>
  $s :  any preference on a type of cuisine
  $u :  with british food
  $s :  where should it be
  $u :  madrid please
  $s :  ok let me look into some options for you
  $u :  <SILENCE>
  $s :  api_call british madrid two cheap
  $u :  instead could it be for six people
  $s :  sure is there anything else to update
  $u :  actually i would prefer in a expensive price range
  $s :  sure is there anything else to update
  $u :  no
  $s :  ok let me look into some options for you
  $u :  <SILENCE>
  $s :  api_call british madrid six expensive
  $u :  <SILENCE>
  $s :  what do you think of this option: madrid_expensive_british_8stars
  $u :  that looks great
  $s :  great let me do the reservation
  $u :  can you provide the address
  $s :  here it is madrid_expensive_8stars_address
  $u :  may i have the phone number of the restaurant
  $s :  here it is madrid_expensive_8stars_phone

 

FIGURE 1 Example dialogue session of TOD. The upper table shows several n-tuples sampled from knowledge base. Lower
table shows multi-turn dialogues. In the lower table, the black sentences are spoken by the user, the orange sentences are spoken
by the dialogue system. The special token "<SILENCE>" is used to fill in for the missing user utterance.

has a fixed task domain and a specific dialogue goal which determines a TOD should complete a dialogue quickly through a
knowledge base (KB) within the specific task domain. A TOD usually consists of four functional components, natural language
understanding (NLU), dialogue state tracking (DST), dialogue policy (DP) learning, and natural language generation (NLG).
The DST and DP are also combined as dialogue management (DM) module1. The entire procedurefor a TOD to complete a
dialogue can be described as follows.
The NLU module deals with a user’s inputs to classify a user’s intent and also is responsible for slot filling task, and then

the DST module updates the dialogue state and makes an API call to require the relevant information from KB that mathes the
user’s goal. Furthermore, the DP module decides which dialogue act (including dialogue act and slot type) to choose for the next
turn. Finally, the NLG module maps the system’s act to a natural dialogue response. An example of the entire TOD process is
given in Fig. 1.
There are two strategies to build a task-oriented dialogue system, namely, pipeline solutions and end-to-end solutions. Tra-

ditional pipeline solutions2,3 build a TOD into four independent modules, and each of them is designed and trained separately.
The main drawback of this strategy is that it involves significant manual annotation work, and therefore, is time-consuming and
much more expensive. Even worse, any error in an intermediate module could propagate to the following modules, leading to
error accumulation in the system. To reduce the human workload on feature extraction, end-to-end dialogue systems have been
proposed4,5,6, which directly take a natural dialogue as input and generate a corresponding dialogue response as output. Works
in this area using recurrent neural networks (RNN) have proven promising.
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Recently, with the release of multi-domain task-oriented dialogue datasets, such as MultiWOZ 2.07 , MultiWOZ 2.18,
and SGD9, a new variant of end-to-end framework, called end-to-end pipelined model, has been explored10,11,12. In the new
paradigm, the overall training process is in an end-to-end manner that incorporates intermediate supervision in order to address
new challenges, for instance, cross-domain slot filling and temporal planning. To tackle the error propagation problem, the
training process employs multi-task joint learning with separate subtasks like DST and DP. Meanwhile, large-scale pre-trained
language models, e.g., GPT13, GPT214 and GPT3,15 present a wide use in open-domain dialogue systems. Some works further
leverage pre-trained language models to explore multi-domain TOD in an end-to-end pipelined way16,17,18,19. On the other hand,
KB information is a key part of TOD, which determines the quality of responses. Recent research has exploited the memory
network (MN)20,21 to encode KB information and has achieved promising results22,23,24.
Although the aforementioned studies have proven the power of end-to-end training manners andMN in TOD, they suffer from

ineffectively using dialogue history. The main reason for that is they have ignored the fact that not each turn of dialogue history
is useful for the dialogue response generation. Different from chitchat scenario, TOD’s core task is to complete user’s goal step
by step. With the dialogue session proceeding, some dialogue history may not be valuable for the following turns. For example,
in Fig. 1, when the current turn dialogue updates the request during the restaurant reservation, information of the previous turn’s
dialogue may be obsolete for the following turn. However, existing approaches23,25,26 give little consideration to this issue. They
tend to treat each utterance equally in the whole dialogue history, which suppresses the useful information to some extent.
Therefore, this paper proposes a hierarchical MN mechanism to focus on critical content in dialogue history. The mechanism

is composed of a two-step key point filtering strategy as detailed below.
First, RNN are utilized to encode each utterance in the dialogue history and an utterance-level MN (coarse-grained filter)

with the encoded utterance representations is constructed. In addition, an utterance-level attention distribution between a query
and utterance-level MN is considered. The utterance-level attention distribution can be seen as the coarse-grained distribution
to measure the different weights of each utterance in the dialogue history.
Second, a token-level MN (fine-grained filter) is constructed to represent the dialogue history based on previous studies23,24.

Then a fine-grained output of the token-level MN can be achieved with the utterance-level attention. The output is used as an
updated query to filter the KB memory network. In the decoding stage, a shared MN is used, combining token-level memory
network and KB memory network, to generate the response word by word.
The contributions of this presented research are mainly four-fold:

• A novel hierarchical mechanism is proposed, including an utterance-level and a token-level MN, to focus on key content
in a dialogue history. The utterance-level memory network is employed to select important utterances, and then the token-
level memory network is used to grasp the keywords based on the result of the utterance-level memory network.

• Three separate memories are designed to model the utterance-level and token-level dialogue history and KB entries,
respectively. The iterative interactions are performed by employing different granularity semantic representations
(utterance-level and token-level dialogue history) and different representations for distinctive format data (dialogue history
and KB) to produce coherent and human-like dialogue responses.

• To strengthen the model’s ability of dealing with out-of-vocabulary (OOV) problem, an auxiliary task is introduced to
provide an additional loss to spotlight the words both in dialogue history and responses.

• An experimental demonstration is given showing the proposed approach can achieve superior performance compared with
other existing methods, and ablation study shows the importance of the auxiliary task.

The remainder of this paper is organized as follows: in Section 2, the previous works performed on TOD response generation,
including pipeline manner and end-to-end manner, are examined and discussed. In Section 3, the MN architecture that we have
utilized is briefly presented, and then the proposed hierarchical memory network end-to-end model including Encoder and
Decoder is explained. Then, in Section 4, the datasets, experiments settings, results analysis and baseline comparison of our
work are described. Finally, conclusions and potential research directions are presented in Section 5.
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2 RELATEDWORK

With the development of deep learning in natural language processing (NLP) research, especially inmachine translation, the end-
to-end modeling framework has achieved promising performance. Inspired by this methodology, many studies have introduced
this data-driven method to build a task-oriented dialogue system. Rojas-Barahona et al. proposed a framework combining the
pipeline manner and end-to-end trainable manner3. The model was end-to-end trainable using two supervision tasks and a
modest corpus of training data. This was the first neural network-based end-to-end model that can conduct meaningful dialogues
in a task-oriented application, however, it needs to create and execute well-formatted API calls to KB. Following this work, more
robust end-to-end trainable task-oriented dialogue systems were developed, which directly input dialogue history and output
dialogue responses without intermediate supervisions4,6,20. With this training strategy, human effort on state tracking and dialog
policy learning can be reduced.
In this section, the related works are introduced from two aspects. One is MN-based methods that mainly use a memory

network to model the dialogue history and KB. The memory network is also the backbone of our model. The other is other
methods, which are end-to-end trainable but do not use memory networks.

2.1 Works based on memory network
In addition to training strategies, a significant and commom problem that must be considered in TOD is how to deal with
KB information, since it wouldn’t be possible for a TOD to achieve a user’s goal without accurate results from KB. To tackle
unstructured dialogue history and manipulate structured KB information, Bordes et al. introducedMN to replace RNN to encode
the dialogue history and KB, and achieved a promising result.20 In their work, each dialogue utterance was represented as a
bag-of-words. And in memory network, it was represented as a vector using a trainable embedding matrix. To store KB entries,
the KB information was represented as a triplet, and every triplet was mapped to a vector27. However, due to the complexity of
generating responses using data in different formats (text and KB), conventional sequence-to-sequence (Seq2Seq) model with
MN failed to effectively produce correct words for a response. Eric et al. proposed a copy-augmented mechanism to alleviate
this problem6. Further, Madotto et al. proposed a Mem2Seq model utilizing the copy-augmented mechanism to strengthen the
ability to copy words from dialogue history or KB23.
Different fromMem2Seqwhich combined dialogue historymemory network andKBmemory network, Lin et al. constructed a

heterogeneous memory network to query history and KB in turn during the encoding and decoding stage24. Notably, a triple soft-
gate, including vocabulary, dialogue history, and KB, was built in this work to better generate a response step by step.Meanwhile,
some works believed that encoder module doesn’t need to consider KB information. Thus, Chen et al. only considered the
dialogue history memory network in the encoder and then incorporated the KB memory network in the decoder25. Following
Chen’s work, Reddy et al. proposed a multi-level KB memory network to improve the model’s ability to select the right KB
entries28. In their model, the first level of KB memory network focused on the KB’s query attention, the second level of KB
memory network paid attention to the KB results, and the last level of KB memory network captured the KB attribute attention
of corresponding results. Recently, Wang et al.29 introduced the idea of dual learning and leveraged MN to encourage the model
to generate response effectively.
Although the above works have achieved promising results, they mostly treated the dialogue history and KB information as

token-level aggregating that ignores the the sentence structure information, which results in poor performance when the amount
of new unseen information in a KB increases. Therefore, Raghu et al. explored the cascade memory network model to represent
the context and KB to improve the ability to generate a proper response30. Further, Wu et al. wrote the hidden states of dialogue
history into an external KB memory network providing contextualized information and used a global-to-local policy to further
improve the ability to copy words26.

2.2 Works based on other methods
In addition to MN-based methods, some studies are working with other methods. Banerjee et al.31 firstly introduced graph
convolutional networks (GCN) into TOD-related research. They proposed a memory-augmented GCN that leveraged entity
relation graphs in a knowledge base and the dependency graph associated with an utterance to compute richer representations for
response generation. Unlike the previous literature, He et al.32 presented a "Flow-to-Graph" framework, which utilized RGCN33
to represent the relationship between KB entities and dialogue tokens. Balakrishnan34 proposed using tree-structured semantic
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representations for the model’s input and output. This approach is similar to traditional rule-based NLG systems but uses the
Seq2Seq framework. Also, this method requires a lot of data pre-processing work but is more efficient for response generation.
To improve the capability of TOD transferring to a new domain, Henderson et al.35 introduced a two-stage framework called

pretain then finetune to enable response selection. Shalyminov et al.36 also followed this two-stage framework. However, their
method generated responses word by word rather than extractive response generation. Besides, Qin et al.37 introduced a shared-
private network to enhance the model transferring to a new domain. The framework learned shared information from all domains
and specific knowledge from every domain. In order to effectively utilize the dialogue history and KB, He et al.38 proposed a
"Two-Teacher One-Student" learning framework for TOD. Moreover, they adopted a generative adversarial network (GAN) to
transfer knowledge from two teachers (dialogue history and KB) to the student (generator), which relaxed the rigid coupling
between the student and teachers.
The weakness of the works mentioned above is the lack of consideration for online interactions. Liu et al.39 and Wang et al.40

addressed the problem of data ever-changing (including the user demands and KB, etc.) with the help of reinforcement learning
and incremental learning methods, respectively.
With no surprise, all these mentioned methods perform well compared with the traditional models. Nevertheless, existing

approaches still ignore the fact that not each turn of dialogue history is helpful for the dialogue response generation, which makes
it struggle to perform well in long-turn interactions. Different from the aforementioned methods, we propose a hierarchical MN
with an utterance-level MN and a token-level MN to capture the critical information.

3 PROPOSED FRAMEWORK

To focus on critical contexts of dialogue history, an encoder-decoder neural conversation model augmented with a hierarchical
MN mechanism is introduced in this paper, as shown in Fig. 2 and Fig. 3. The encoder module includes three steps, which are
described below.
Step 1, each utterance of dialogue history is encoded using RNN to build utterance-level MN (coarse-grained filter). The

utterance of the user’s current turn is also embedded using RNN to get query vector q. Note that all the RNNs in the encoder
module share parameters. The vector q is then used to execute multiple hops on the utterance-level memory network to output
attention distribution pk, which are coarse-grained weights of each utterance.
Step 2, using the tokenized dialogue history constructs the token-level MN (fine-grained filter), which is then multiplied by pk

for weighting. Further, token-level attention distribution, i.e., fine-grained weights, is computed by q interacting with weighted
token-level MN. Through the above steps, irrelevant information can be filtered out.
Step 3, using the output qk of weighted token-level MN query the KB memory network (dialogue-related KB information

filter) and get output qt. Note that, qt is the initialized hidden state in the decoding stage.
In the decoder module, a gated-mechanism and RNN are used to generate natural response word by word from the vocabulary,

token-level dialogue history, or KB, respectively.

3.1 Task Definition
Given a multi-turn dialogue history between a user and a system, a n-turned dialogue utterances is represented as X =
{(u1, s1), (u2, s2),… , (un, )}, where u denotes the utterance from USER and s denotes the utterance from SYSTEM. Each utter-
ance of X can be denoted word by word as x̃ = (x1, x2,… , xm), x̃ ∈ {u, s}, where m is the length of tokens in each utterance.
The dialogue-related KB information is represented as B = (b1, b2,… , bl), where l is the length of KB.
The goal of the task-oriented dialogue response generation is defined as to generate response sn (i.e., y), formulated as y =

(y1, y2,… , yj), word by word given the dialogue historyX and related KB B. Formally, the probability of a response is defined
as

p(y|X,B) =
j
∏

t=1
p(yt|y1,… , yt−1, X, B)

where yt represents an output token, j denotes the length of response.
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U: good morning

S: hello what can i help

you with today
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S: where should it be
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FIGURE 2 The left figure (i.e. (a)) is the encoder module of the proposed end-to-end framework, and the right figure (i.e. (b))
is a brief sketch of multi-hop operations of a memory network. Each utterance of dialogue history is encoded into hidden states,
and then the representations are used to construct an utterance-level MN (i.e.,Mu, the coarse-grained filter). A token-level MN
(i.e.,Ma, the fine-grained filter) is built using bag-of-words on dialogue history. Red numbers in Fig. (a) denote the procedure
orders in the encoder module. In step (1), a query vector q interacts withMu to output the coarse-grained weights (pk) of each
utterance. Then in step (2), using pk times Ma to acquire a weighted Ma

′, followed by step (3), using the query vector q to
interact with Ma

′ and output qk. In step (4), the output qk of the weighted token-level memory network is employed as the
updated query vector to read KB memory network. Note that all memory networks (i.e.,Mu,Ma

′,Mb) execute L hops.

3.2 Memory network
In this Section, the MN structure and its basic operations are introduced, including read and write MN, and multi-hop MN
update, for the convenience of understanding the following sections. A brief diagram is depicted in Fig. 2 (b).
Given any sequence of n-length tokens S = {t1, t2,… , tn} to be embedded into memory network Mk, where Mk =

(m1, m2,… , mn) donates the k-th MN representation, and mi is the i-th memory item of MN. mi can be represented as a vector
using training embedding matrix A, i.e., mi = A'(tj), where '(⋅) is a embedding function which can use GloVe41 or bag-of-
words, etc. To read the MN, a query vector is needed to interact with every memory item. The match between the query vector
and memory item is computed by inner product. Moreover, it can loop over L hops and compute the attention weights at each
hop k using

pk = Sof tmax(mki ⋅ (q
k)T) (1)

where qk is the query vector, T denotes transpose operation, and mik is memory item. Here, pk is a soft memory selector that
decides the memory relevance with respect to the query vector. Note that during the encoding phases, the softmax function is
replaced by Sigmoid nonlinear function. Then, the readout vector ok is the sum of memory matrix mk+1 with the corresponding
attention weights pk

ok =
∑

i
pki ⋅ m

k+1
i (2)

To update the next hop, the readout vector and query vector of the k-th hop are summed to get query vector for the (k+ 1)-th
hop. Therefore, the memory can be iteratively reread to look for additional pertinent information using the updated query vector
qk+1 as

qk+1 = qk + ok (3)
Note that the memory layers can be extended and stacked for L hop operations.
To drop the parameters of the multi-layer MN, the two training strategies42 have been adopted. The first one is adjacent weight

tying scheme, i.e., the output embedding for one layer is the input embedding for one above. The second one is layer-wise weight
tying scheme, i.e., the input and output embeddings are the same across different layers.
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3.3 Encoder
The encoder encodes the dialogue history and KB information into fixed dimension vectors. Dialogue semantic representa-
tions at different granularities are needed to acquire (utterance-level and token-level). RNN is used to encode each utterance in
the dialogue history into hidden states to obtain utterance-level semantic representations, which are then used to construct the
utterance-level MN. On the other hand, as the existing research shows23,24,25,26, MN is a proper encoder to map the dialogue his-
tory and KB into continuous low-dimensional representations. Here MN is adopted as our encoder to gain token-level semantic
representations and KB representations.
Coarse-grained Filter:Given n-turned dialogue historyX = {(u1, s1), (u2, s2),… , (un, )}, each single utterance x̃ is encoded

into the hidden states ℎe repeatedly applying BiGRU43. For the i-th word in utterance x̃,
ℎ̂ei = BiGRU('emb(xi), ℎ̂ei−1) (4)

where'emb(⋅) is a embedding functionwhichmaps token xi to a vector. The last hidden states ℎ̂e of each utterance x̃ is represented
as ℎe. Therefore, the hidden states of the whole dialogue history are represented asH = (ℎe1, ℎ

e
2,… , ℎe2n−1).The utterance-level memory networkMu is constructed using the encoded representationH . The last hidden state of the latest

utterance by a user is used as our query vector q (i.e. ℎe2n−1) to interact with the utterance-level MN and the token-level MN. The
query vector q is used to compute the utterance-level attention distribution pk with Eqs. (1)-(3). In particular, pk measures the
different level of importance of each utterance, which is the coarse-grained filtering operation. Note that a 3-hop is adopted in
our model.
As discussed in Section 2.1, a fatal shortcoming of MN is the lack of sequential information, so the utterance-level MN dis-

cussed here has two benefits. One is to focus on an important utterance, and the other is to incorporate the sequential information
into the dialogue history representation.
Fine-grained Filter: As the existing works have shown25,26, the words in the dialogue history are treated in a triplet format,

i.e., (Subject, Relation, Object). Subject represents the role of a speaker, Relation denotes the number of which dialogue turn
belongs to, and Object stores the dialogue context. For example, “can i help you” can be denoted as {($bot, turn1, can), ($bot,
turn1, i), ($bot, turn1, help), ($bot, turn1, you)}. A bag-of-words representation is utilized to embed them and get the token-level
memory network Ma. During the decoding, when a position of token-level memory network is pointed to, Object is directly
copied as the output.
Since not every utterance of dialogue history contributes to the generation of the current response, the computed utterance-

level attention distribution pk is used to product the token-level MN, and a weighted token distributionMa
′ is obtained,

Ma
′ = pk ⋅Ma (5)

Note that utterance-level attention distribution pk has a different number of dimension from Ma. To perform the product
operation between pk andMa, every attention in pk is scaled up by the number of tokens in the corresponding utterances. Then
the query vector q (i.e., ℎe2n−1) is used to compute the token-level attention distribution, and obtain the output vector qk with Eqs.
(1)-(3) after L hops. The token-level attention distribution gauge the various weights of each token, which is the fine-grained
filtering opreation.
Dialogue-related KB Information Filter: KB memory networkMb is established and unrelated KB information is filtered

out in this subsection. To represent KB entries, a triplet format is adopted. For example, “willows_market distance 4_miles”,
it means the distance between the user’s location and “willows_market” is four miles, and this KB entry can be represented as
{(willows_market, distance, 4_miles )}. A bag-of-words representation is also used to embed them into fixed dimension vectors.
Subsequently, using Eqs. (1)-(3) and query vector qk, the output vector qt of KB memory networkMb can be obtained after L
hops.
Through the two-stage filtering operation and interaction with the KB memory network, the output qt carries the contextual

and KB information required for current response generation. Note that qt will be the initialized input of succeeding decoder
module.

3.4 Decoder
The decoder adopts GRU and memory network to generate a response word by word. As shown in Fig. 3, the memory network
Mc is a combination of token-level memory networkMa and KB memory networkMb. The reason for not using utterance-level
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FIGURE 3 Decoder module of the proposed end-to-end framework. The vocabulary distribution and copy distribution are
computed at the end of the first hop and last hop based on the combination (i.e.,Mc) of the token-level memory network and
KB memory network. To illustrate the decoding process more clearly and to save space, we represent the memory network as a
rounded box.

memory network is that generator should copy words from history and KB, however, the utterance-level MN doesn’t contain
token information.
To generate dialogue response sequentially, the generator either uses a GRU to produce a response token from vocabulary

or copies a specified entity from combined memory networkMc . Specifically, at decoding step t, the GRU uses the previously
generated word yt−1 and hidden state ℎt−1 to generate the current hidden state ℎt, as described as

ℎt = GRU
(

M
(

yt−1
)

, ℎt−1
) (6)

In particular, ℎ0 is qt, which is the output vector of KB memory network.
At each decoding step, ℎt queries the shared memory network Mc to generate the vocab distribution at the first hop using

Eqs. (1)-(3), and the vocab distribution is computed by concatenating the query vector and readout vector of the first hop as
Pvocab = Sof tmax(W [ℎt, o1]) (7)

where W is a trainable weight matrix. The readout o1 of the first hop pluses the current hidden state ℎt as the query vector
to perform the next hop. The copy distribution Pcopy is the attention output of last hop. The t-th generated token yt is chosen
using the gated-mechanism. Following the work on Mem2Seq23 does, a special token is set at the last position of the memory
networkMc as a sentinel. If the max pointer in the copy distribution points to the last position, i.e., the sentinel, yt is from vocab
distribution; Otherwise, yt is from the copy distribution as expressed as

yt =
{

argmax(Pvocab) if pointing to sentinel,
argmax(Pcopy) others . (8)

To learn the distribution of vocabularyPvocab andPcopy in each time step, the loss in the t-th time step is the standard cross-entropy
loss.

Loss1 = − 1
T

t=T
∑

t=0

∑

i

(

log pti
) (9)

where pti represents the probability of the t-th word in i ∈ {Pvocab, Pcopy}.
To strengthen the important words in the dialogue history and improve the ability of dealing with OOV problem, an auxiliary

task is added in the decoding stage. In the auxiliary task, the label li is defined by checking whether the pointed words in the
memory exists in the golden response. If so, lik = 1 , otherwise, lik = 0 . The auxiliary task is trained using a binary cross-entropy
loss which is defined as

Loss2 = −
n
∑

k=1

[

lik × log lk +
(

1 − lik
)

× log
(

1 − lk
)] (10)



AUTHOR ONE ET AL 9

Algorithm 1 Training Algorithm of the Proposed Model
Input: corpus C , model parameters �, initialize epochs T ,batch numberN , learning rate lr, hop number L, and �.
Output: parameters of the proposed model
1: for each epoch in [0, 1, 2,… , T ] do
2: shuffle training data C;
3: for each mini-batch in [0, 1, 2,… , N] do
4: get mini-batch Ĉ from C;
5: compute each dialog hidden stateH and corresponding query vector q by Eq. 4;
6: construct utterance-level MNMu, token-level MNMa, and KB MNMb;
7: for each hop in [0, 1, 2,… , L] do
8: use query vector and Eq. 1-3 to interact withMu; // for first hop, the query vector is q
9: end for
10: return pk
11: M ′

a = pk ⋅Ma; // Eq. 5
12: for each hop in [0, 1, 2,… , L] do
13: use query vector and Eq. 1-3 to interact withM ′

a; // for first hop, the query vector is q
14: end for
15: return qk
16: for each hop in [0, 1, 2,… , L] do
17: use query vector and Eq. 1-3 to interact withMb; // for first hop, the query vector is qk
18: end for
19: return pt
20: use qt to initialize the decoding stage hidden state ℎ0;
21: use Eq. 6, 7, 8 to generate every yt;
22: compute Loss1 using Eq. 9, and Loss2 using Eq. 10;
23: use � to compute the Loss as Eq. 11;
24: compute the gradient of ∇Loss, update � with Adam optimizer;
25: end for
26: end for
27: return �

The parameters are jointly learned during the training stage by minimizing the weighted sum of two losses (� is a hyper-
parameter). The entire training procedure of the proposed model is presented in Algorithm 1.

Loss = Loss1 + �Loss2 (11)

4 EXPERIMENTS

4.1 Datasets
To better evaluate the performance of the proposed model, several popular benchmark datasets have been used to conduct
the experiments. They are : bAbI dialog dataset20, standard multi-domain dialogue (SMD)27, the second dialog state tracking
challenge (DSTC2)44, CamRest45, and MultiWOZ 2.18. A brief introduction to the datasets is given below.
The bAbI dataset consists of five tasks about restaurant reservations. Tasks 1 to 4 are API calls, refining API calls, recom-

mending operations, and providing additional information (e.g., phone number or address, etc.), respectively. Task 5 is the union
of Tasks 1-4. There are two test sets for each task, one follows the same distribution as the training set, and the other has OOV
words.
The SMD dataset is a multi-domain dialogue dataset with three domains: calendar scheduling, weather information retrieval,

and point-of-interest navigation. Compared with the bAbI dataset, this dataset has shorter conversation turns, but the user and
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TABLE 1 Dataset statistics for bAbI, DSTC2, SMD, CamRest, and MultiWOZ 2.1
Task 1 2 3 4 5 DSTC2 SMD CamRest MultiWOZ 2.1

Avg. turns per dialog 6 9.5 9.9 3.5 18.4 9.3 2.6 5.1 5.6
Avg. KB triples 0 0 24 7 23.7 39.5 66.1 22.5 54.4
Avg. Sys words 6.3 6.2 7.2 5.7 6.5 10.2 8.6 10.8 15
Max. Sys words 9 9 9 8 9 29 87 39 48

Vocabulary 3747 1229 1601 902 3449
Train dialogues 1000 1618 2425 406 1839
Dev. dialogues 1000 500 302 305 117
Test dialogues 1000+1000 OOV 1117 304 135 141

TABLE 2 Hyper-parameters we use in the experiments.
bAbI SMD DSTC2 CamRest MultiWOZ 2.1T1 T2 T3 T4 T5

Hidden Size 64 64 64 64 128 128 128 128 128
Dropout Ratio 0.3 0.3 0.3 0.7 0.1 0.2 0.2 0.2 0.1
Batch Size 8 8 8 8 8 8 8 8 16
Teacher Forcing Ratio 0.9

system behaviors are more diverse. In addition, the system responses are variant, and the KB information is much complicated.
Hence, this dataset requires stronger ability to interact with KBs, rather than dialog state tracking.
The DSTC2 dataset consists of real human-bot dialogues extracted from the Second Dialog State Tracking Challenge. A

refined version of the data is used here which doesn’t consider the dialogue state labels. Each dialogue is composed of user’s
and system’s utterances, and API calls to the domain-specific KB for the user’s queries.
The CamRest dataset contains human-to-human dialogues of the restaurant reservation.
MultiWOZ 2.1 is one of the most challenging datasets given its multi-domain setting, complex ontology, and diverse language

styles. It is the corrected version of MultiWOZ 2.07, which contains 7 task domains, i.e., Attraction, Hospital, Police, Hotel,
Restaurant, Taxi, Train. Follow Qin’s37 setting on MultiWOZ 2.1 dataset1, we only use the single-domain dialogues belonging
to Attraction, Hotel, or Restaurant.
Statistics of these five datasets are shown in Table 1.

4.2 Training Details
All the training of the models has been implemented using PyTorch2, and Adam optimizer46 was used. The learning rate anneal-
ing started from 1e-3 to 1e-4 with a decay rate of 0.5. The embedding dimension was equivalent to the GRU hidden size that
has been selected using grid-search over the development set between [64, 128]. The dropout ratio was set between [0.1, 0.7].
The multi-hopLwas 3with the adjacent weight sharing scheme20, as the existing works23,26,30 has proven that the model would
perform poorly with too many hops(e.g., 6) or too small hops (e.g., 1). � was set equal to 1, selected from [0.4, 0.6, 0.8, 1.0,
1.1, 1.2] over the development set. A simple greedy strategy has been used as our decoding strategy. During the training stage,
teacher-forcing scheme was used. Note that a small number of input source tokens have been randomly masked into UNK to
simulate the OOV issue. For the bAbI dataset, the model with the best per-response accuracy over the development set in 200
epochs’ training has been selected for testing. For the other datasets, the model selected for test was the one with the best BLEU
score over the development set using an early stop training strategy. The average performance of each metric (see Section 4.3)
over five runs are presented as final results. Details about hyper-parameters can be found in Table 2.

1The extended version of MultiWOZ 2.1 dataset can be found here: https://github.com/LooperXX/DF-Net
2https://pytorch.org/

https://github.com/LooperXX/DF-Net
https://pytorch.org/
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4.3 Evaluation Metrics
For a fair comparison, a set of commonly used metrics is employed for assessing specific aspects of the proposed model:

• Per-Response Accuracy and Per-Dialogue Accuracy: The per-response accuracy is the percentage of generated
responses that exactly match their respective gold response. A prediction is correct only if each token output by the model
matches the corresponding token in the gold response. Per-dialogue accuracy is the percentage of dialogs with all cor-
rectly generated responses. These two accuracy metrics show if a model is able to learn the distribution of reproducing
factual details.

• Bilingual Evaluation Understudy (BLEU): BLEU calculates the n-gram precision, which is a fraction of n-grams in
a candidate text presented in any reference texts. BLEU metric is commonly employed in evaluating machine transla-
tion systems47, and has also been used in the literature for evaluating dialogue systems of chat-bot and task-oriented
variety20,48. The study by Sharma et al. shows that this metric has a strong correlation with human assessments on task-
oriented datasets49. Therefore, average BLEU score is calculated over all the responses generated by the system. Note
that the Moses multi-bleu.perl script was adopted to calculate the BLEU score in evaluation.

• Entity F1: Each system response in the test data defines a gold set of entities. To compute entity F1, the entire set of
system dialogue responses is micro-average and the entities in plain text are compared. The entities in each gold system
response are selected by a predefined entity list. This metric evaluates a model’s ability to generate relevant entities from a
underlying knowledge base and to capture the semantics of a user-initiated dialogue flow. Note that in SMD andMultiWOZ
2.1 datasets, the test set contains dialogues from all three domains, thus a per-domain entity F1 as well as an aggregated
dataset entity F1 is computed.

4.4 Baseline Models
To better show our model’s ability, some models from existing works have been selected as baseline models. These models
are Seq2Seq+Atten50, Mem2Seq23, Heterogeneous Memory Network (HMNs)24, Global-to-Local Memory Pointer networks
(GLMP)26, BoSsNet30, Dual Dynamic Memory Network (DDMN)29, FG2Seq32, Dynamic Fusion Network (DF-Net)37,
Template-guided Hybrid Pointer Network (THPN)51, and GPT214 . Below is a brief description of the models.

• Seq2Seq +Atten: A model with simple attention over the input context at each time step during decoding.
• Mem2Seq: The model uses a memory network based approach for attending over dialog history and KB triples. During

decoding, at each time step, the hidden state of the decoder is used to perform multiple hops over a single memory which
contains both dialog history and the KB triples, to obtain the pointer distribution used for generating the response.

• HMNs: The model encodes the dialog history and KB entries into different memory networks and adopts the query
vector to interact with dialogue memory network and KB memory network in turn. The generated words are chosen by
vocabulary, history, or KB during the decoding phase.

• BoSsNet: The model adopts an encoder-decoder architecture with a novel bag-of-sequence memory, including one higher-
level flat memory and one lower-level discrete memory. The architecture facilitates the disentangled learning of the
response’s language model and its knowledge incorporation.

• GLMP: The model adopts a global-to-local pointer mechanism to query dialogue history and knowledge base. This model
uses the global pointer to acquire the related information in the encoding stage and computes the local pointer for coping
entities based on the global pointer during the decoding stage.

• DDMN: The model constructs a dual dynamic memory network. It contains a dialogue memory manager and a KB
memory manager to dynamically model long dialogue context and effectively incorporate KB information into dialogue
generation.
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TABLE 3 Results of per-response and per-dialogue accuracy (in the parentheses) on bAbI dataset with 3 hops. Per-dialog
accuracy represents the rate of complete dialogues. The bold numbers in the table represent the best results in the corresponding
task, and the underlined numbers represent the second-best results.

task Seq2Seq+Atten Mem2Seq HMNs BoSsNet GLMP THPN GPT2 Ours
T1 100(100) 100(100) - 100(100) 100(100) 100(-) - 100(100)
T2 100(100) 100(100) - 100(100) 100(100) 100(-) - 100(100)
T3 74.8(0) 94.7(62.1) 93.6(56.1) 95.2(63.8) 96.3(75.6) 95.8(-) - 97.8(77.0)
T4 57.2(0) 100(100) 100(100) 100(100) 100(100) 100(-) - 100(100)
T5 98.4(87.3) 97.9(69.6) 98.0(69.0) 97.3(65.6) 99.2(88.5) 99.6(-) 91.5(32.9) 99.4(89.2)
T1-OOV 81.7(0) 94.0(62.2) - 100(100) 100(100) - - 100(100)
T2-OOV 78.9(0) 86.5(12.4) - 100(100) 100(100) - - 100(100)
T3-OOV 75.3(0) 90.3(38.7) 92.5(48.2) 95.7(66.6) 95.5(65.7) - - 96.2(68.3)
T4-OOV 57.0(0) 100(100) 100(100) 100(100) 100(100) - - 100(100)
T5-OOV 65.7(0) 84.5(2.3) 84.1(2.6) 91.7(18.5) 92.0(21.7) - 73.5(3.0) 92.8(21.4)

• FG2Seq: This work proposes a Flow-to-Graph framework that utilizes RGCN to represent the relationship between KB
entity and dialogue tokens. The framework encodes knowledge by considering inherent structural information of the
knowledge graph and latent semantic information from dialog history.

• DF-Net: This work presents a shared-private network to enhance the model transferring to a new domain. The framework
learns shared information from all domains and specific knowledge from each domain. In addition, a novel dynamic fusion
network is proposed to automatically exploit the relevance between the target domain and each domain.

• THPN: The model proposes a template-guided hybrid pointer network, which retrieves several potentially relevant
answers from a pre-constructed domain-specific conversational repository as guidance answers, and incorporates the
guidance answers into both the encoding and decoding processes.

• GPT2: The model is a large autoregressive pre-trained language model. The small size GPT2 was used with no more than
1024 knowledge base tokens to fine-tune the model on the datasets.

4.5 Results and Analysis
The experimental results on each of the benchmark datasets are discussed below.
bAbI: The results on bAbI dataset are given in Table 3. Our model with 3 hops achieved the best performance in most of

the tasks. In particular, proposed model achieved 1.5, 0.7, 0.2, and 0.8 points increase compared with the highest per-response
accuracy of baselinemodels, i.e., GLMP, in T3, T3-OOV, T5, and T5-OOV, respectively.More importantly, the proposedmethod
has demonstrated the same trend on the per-dialogue accuracy, as shown in the parentheses in Table 3, expect in the T5-OOV
task. On the other hand, our model achieved a 0.2 drop on T5 in per-response accuracy compared with the THPN model. These
results indicate our hierarchical MN mechanism can assist the model to capture more important information in the dialogue
procedure and promote this information to retain in the following steps. However, it has also been observed that our model
performed slightly better than the baseline models in T3 and T3-OOV. T3 is a recommended task that is closely related to KB.
The slight improvement in T3 may be associated with the lack of fine-grained filtering operations on KB. It was found that
all the models achieved a lower digit in T3 compared with the other tasks. Shown in Fig.1, when a dialog system performs
recommended tasks, it should understand that different numbers of stars represent different levels of restaurants. But all the
baseline systems, even ours, have failed to do this. This remains a challenging problem for further studies.
Furthermore, it has been found that the MN-based models, i.e., baseline models, except for Seq2Seq+Atten50, and GPT214,

demonstrated a better performance in the most tasks than the canonical sequence-to-sequence model Seq2Seq+Atten. This
result may be attributed to the weak ability of the Seq2Seq architecture in processing formatted KB data. A more pronounced
trend can be observed on F1 metric on SMD dataset because the SMD provides more KB entries. In further analysis of T5
performance, it was observed that Seq2Seq+Atten had a better performance than Mem2Seq, HMNs, and BoSsNet, whereas it
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TABLE 4 Comparison of the proposed model with baseline models on SMD dataset.
Seq2Seq+Atten Mem2Seq HMNs BoSsNet GLMP DDMN FG2Seq THPN GPT2 Ours

BLEU 9.3 12.6 14.5 8.3 13.9 15.8 16.8 12.8 16.5 14.9
Entity F1 19.9 33.4 43.1 35.9 60.7 60.7 61.1 37.8 57.6 62.1
Schedule F1 23.4 49.3 61.3 50.2 72.5 69.3 73.3 50.0 70.8 72.2
Weather F1 25.6 32.8 40.3 34.5 56.5 64.7 57.4 37.9 57.2 58.6
Navigation F1 10.8 20.0 32.3 21.6 54.6 53.2 56.1 27.5 48.3 56.9

TABLE 5 Results on DSTC2 and CamRest datasets.
Seq2Seq+Atten Mem2Seq HMNs BoSsNet GLMP DDMN FG2Seq THPN GPT2 Ours

DSTC2 BLEU 56.6 55.3 56.4 - 58.1 - - 59.8 65.8 61.9
Entity F1 67.1 75.3 77.7 - 67.4 - - 76.8 72.8 78.2

CamRest BLEU 5.9 12.6 - 15.2 18.2 18.7 20.2 12.9 15.2 20.7
Entity F1 21.4 33.4 - 43.1 52.7 59.1 62.1 30.9 51.0 63.0

TABLE 6 Results on MultiWOZ 2.1 dataset.
Seq2Seq+Atten Mem2Seq BoSsNet GLMP DDMN DF-Net GPT2 Ours

BLEU 4.5 6.6 5.7 6.9 11.5 9.4 14.7 13.0
Entity F1 11.6 21.6 25.3 32.4 34.2 35.1 30.7 35.5
Restaurant F1 11.9 22.4 26.2 38.4 38.5 40.9 34.3 39.5
Hotel F1 11.1 21.0 23.4 28.1 31.1 30.6 27.9 32.7
Attraction F1 10.8 22.0 24.8 24.4 34.1 28.1 26.3 34.8

appeared an opposite situation in T5-OOV. This may indicate that the attention mechanism is efficient for generative issues, but
it’s also inadequate of improving the OOV problem.
The pre-trained language model GPT2 has also employed in T5 and T5 OOV tasks to explore the GPT2’s power to handle

the TOD issues. The GPT2 model achieved poorer per-response and per-dialogue accuracy in both tasks compared with other
models. This may be because the KB data format during fine-tuning is different from the natural language used for pre-training
the language model.
SMD: The results on SMD dataset is given in Table 4. and as shown, our model outperformed the best baseline model, i.e.,

FG2Seq, on Entity F1 and Navigation F1 metrics by 2.3% and 1.4%, respectively. In addition, the proposed model achieved the
second-best score on Weather F1 and was on par with the FG2Seq model on Schedule F1. On the other hand, three baseline
models produced a better performance than the proposed model on metric BLEU. This may be because the SMD dataset has a
shorter dialogue turn, as shown in Table 1. This characteristic makes our proposed two-stage filtering strategy not work well.
Although the three models showed a better performance on the BLEU metric, our model gave a better F1 score overall. This
owes to the two-stage filtering operation providing fine-grained and precise information to assist the model in capturing the
related KB entries. These observations prove that our model has a more solid ability to deal with complex KB information.
Besides, it can seen that the scores of all the MN-based models were closer on BLEUmetric than on F1 metric. This indicates

that generating dialogue responses with the correct entity information is more challenging than developing natural ones. In par-
ticular, compared with other baselines, the Seq2Seq+Atten framework had comparable results on BLEUmetric but achieved the
worst performance on F1 metric. This also demonstrates that developing a response with correct entities is challenging. Notably,
the GPT2 model achieved a second-best BLEU score, but a shallow F1 score. This demonstrates that the pre-trained language
models have a solid capability to generate natural responses, but have limitations in handling OOV tokens (i.e., knowledge base
tokens).
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TABLE 7 Performance of models on updated bAbI dataset and updated SMD dataset.

Model bAbI SMD
T5 T5-OOV BLEU Entity F1

BoSsNet 90.4(37.9) 83.7(7.0) 3.7 21.8
GLMP 87.2(12.7) 84.0(5.9) 4.7 21.1
Ours 92.6(42.3) 86.0(12.3) 7.7 32.8

TABLE 8 Results of ablation study on bAbI, SMD, CamRest, and MultiWOZ 2.1 datasets. (w/o) represents the results of the
proposed model without corresponding component.

bAbI SMD CamRest MultiWOZ 2.1
T5 T5-OOV BLEU Entity F1 BLEU Entity F1 BLEU Entity F1

WHOLE 99.4(89.2) 92.8(21.4) 14.9 62.1 20.7 63.0 13.0 35.5
-w/o t 98.7(88.0) 90.6(18.7) 14.2 55.7 19.5 58.2 12.1 34.2
-w/o U 98.4(84.9) 85.2(15.3) 13.9 54.8 18.8 59.2 12.4 33.6
-w/o T 85.2(68.3) 79.5(7.8) 12.3 36.9 17.1 42.8 10.5 22.5

DSTC2 and CamRest: The results on DSTC2 and CamRest datasets are shown in Table 5. Note that our model obtained the
best performance on entity F1 metric on both datasets and the highest score on BLEU on DSTC2 dataset. Moreover, our model
showed the best score on BLEU compared with all baseline models except GPT2. This demonstrates that the proposed model
can produce a more fluent response. Another noteworthy observation is that the GPT2 model on CamRest dataset performed
worse on BLEU metric than on DSTC2 dataset. The reason for this is that CamRest has fewer training instances for fine-tuning
than CamRest.
MultiWOZ 2.1: MultiWOZ 2.1 dataset has the longest system response, and therefore is a more challenging multi-domain

dataset, as seen in Table 1. Both BLEU and F1 metrics give a lower score than another multi-domain dataset (i.e., SMD). This
further proves thatMultiWOZ2.1 dataset ismore challenging. As shown in Table 6, the proposedmodel had the best performance
on Entity F1, Hotel F1, and Attraction F1 and the second-best result on BLEU and Restaurant F1, demonstrating that our model
holds the solid ability to deal with the complex situation. Specifically, our BLEU score was 13.0 points, an increase of 13%
compared to the best baseline model for this metric except GPT2, proving that the proposed two-stage filtering mechanism was
effective.
Note that the GPT2 model achieved the best BLEU score, indicating that the large-scale pre-trained language model can

generate natural responses without much effort. Meanwhile, it was observed that the F1 scores of the GPT2 model were lower
by a big margin compared with the other baseline models on all datasets. This may be because of the structured KB data used
in the fine-tuning phase that corrupts the original pre-training framework. As a revelation, we will also explore the capabilities
of the proposed model using Transformer52 in future work.
Further Results: To verify the validity of the proposed model, further experiments were conducted on the updated bAbI

and SMD datasets53. The user utterances in the original datasets are straight-forward and always stick to the user’s goal without
any diversity and novelty, which is unusual with our reality in natural language. The updated bAbI and SMD datasets introduce
naturalistic variation dialogues through the Natural Conversation Framework (NCF)54 to alleviate this problem. Therefore, the
updated datasets are more challenging than the original datasets. The reported results on the updated datasets of GLMP and
BoSsNet from Ganhotra et al.53 are adopted.
The performance of the proposed model on the updated bAbI and SMD datasets are shown in Table 7. It was found that

there was a significant drop in performance of all models on both datasets on all metrics. Specifically, per-response accuracy
in Task 5 of bAbI had the smallest decline (7%-12%) compared with other metrics. There was a 60%-85% decrease in per-
dialogue accuracy on bAbI, while a 40%-60% reduction on BLEU and Entity F1. Overall, the proposed model achieved the best
performance on both updated datasets, which proves our model is effective.
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FIGURE 4 The performance of the proposed model and baseline models on bAbI-T5 (a, b) and SMD (c, d) datasets with the
decrease in training set size.

4.5.1 Ablation Study
To test our proposed hypothesis, we assess the value of each model element on bAbI, SMD, CamRest, and MultiWOZ 2.1
datasets by removing it from our framework. Table 8 reports the metric scores for various configurations of our model. WHOLE
represents the framework we proposed, w/o t represents our model removing the auxiliary task t, w/o U represents our model
without using the utterance-level memory network, and w/o T means that our model does not use the token-level memory
network.
Take the SMD dataset as an example, by removing the auxiliary task, a 4.7% BLEU drop and a 10.3% entity F1 drop have

been observed. This indicates that the auxiliary task plays an important role in improving the model’s ability to copy KB entities
from the KB results and dialogue history.
From the last two rows in Table 8, it can be observed that, when the utterance-level memory network module was removed,

all metrics had a drop compared with the proposed model. This observation proves the utterance-level memory network filters
out irrelevant utterances in the dialogue history. In addition, all metrics showed a more significant drop when removing the
token-level memory network than the utterance-level memory network. This indicates that the token-level memory network can
capture richer information than the utterance-level memory network. It is our view that the token-level Mn can embed more
fine-grained information because each dialog token is represented as a tuple format , as described in the ENCODER section.
On the other hand, a trend on BLEUmetric can be observed where BLEU does a slighter drop than the F1 metric. This proves

that RNN as a decoder are strong and stable.

4.5.2 Robustness for Incomplete Training Set
It is well known that deep learning methods require a large amount of training data to fit the parameterized functions. However,
generating high-quality labeled data is time-consuming and labor-intensive. To verify the robustness of the proposed model in
a small amount of training dataset, a group of experiments was performed on bAbI and SMD datasets by gradually decreasing
the training set size. Fig. 4 illustrated the performance of baselines and proposed model on bAbI Task 5 and SMD datasets when
the training dataset was reduced from 100% to 5%. The upper two figures (a) and (b) display the trend of per-response accuracy
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FIGURE 5 The performance of the proposed model and baseline models on bAbI-T5 (a) and SMD (b) datasets with the
increasing of dialogue turns.

(a) and per-dialogue accuracy (b) of Task 5 with different proportions of training set on bAbI. The lower two figures (c) and (d)
showed the Entity F1 (c) and BLEU (d) scores with different proportions of training set on SMD.
For Fig. 4 (a), it can be seen that the trend of baselines and the proposed model kept stable when the proportion exceeded

40%. Remarkably, the Mem2Seq model had a sharp drop when the training set size was reduced below 40%. For Fig. 4 (b),
it was observed that all the models had an apparent reduction when declining the proportion of the training set. However, the
proposed model consistently achieved the highest accuracy on the corresponding training set, indicating that our model is more
substantial for dealing with inadequate training. For Fig. 4 (c) and (d), it was found that a more pronounced gap appeared on
Entity F1 between GLMP and the other two baselines than the BLEU. Note that, this also coincides with the observation in
Section 4.5, i.e., the scores of all the MN-based models are closer on BLEU metric than on F1 metric.
In general, the proposed model maintained the best performance on variant proportions of the training set of both datasets,

which demonstrates ourmodel possesses higher robustness. Furthermore, from the overall four figures, it can be observed that the
performance would drop when the training set’s proportion decreased below 40%. This indicates a parameterized model requires
a certain number of training sets to fit the function if starting from scratch. From this perspective, the foundation models55 may
be a promising scenario.

4.5.3 Ability to Deal with Increasing Dialogue Turns
As the dialogue proceeds, the longer the dialogue history is presented, the more useless information may carry. Therefore, the
capacity of a dialogue system to deal with long and enriched contexts will be essential for developing responses. To verify
our model’s ability to manage different numbers of turns’ dialogue, a series of experiments were conducted to this end. Fig. 5
illustrated the performance of increasing the dialogue’s turn on bAbI Task 5 and SMD datasets. The left figure (a) presented the
per-dialogue accuracy of Task 5 on bAbI dataset. The right figure (b) gave the BLEU scores on SMD dataset.
In Fig. 5 (a), it can be seen that the proposedmodel, GLMP, and BoSsNet had a stable trendwhen the dialogue’s turn increased.

However, after ten dialogue turns, the accuracy of GLMP and BoSsNet started to decrease, while the proposed model continued
to maintain steady. In particular, the Mem2Seq achieved a low accuracy at the 2, 4, 6 turns’ dialogue. After eight turns, it showed
a similar trend to GLMP and BoSsNet. On the other hand, the SMD dataset has a shorter dialogue history than the bAbI dataset,
as shown in Table 1. In Fig. 5 (b), it was observed that all the models demonstrated similar trends, but the proposed model
revealed a relatively smooth accuracy curve compared to the baseline models. These observations demonstrate that the proposed
model can utilize the dialogue history more effectively as the dialogue turns increases than the baseline models.

4.5.4 Visualization of Hierarchical MN
Tomore visually demonstrate the proposed framework’s performance, the attention weights of several components in the encod-
ing and decoding stages are visualized. As shown in Fig. 6, the attention vectors in the last hop are presented for utterance-level
memory network, token-level memory network, KB memory network in the first three columns and the attention vector of each
decoding time step is displayed in the fourth column. Y-axis represents memory items being able to copy by generator, includ-
ing the dialogue history and KB entries. As shown, the conversation was about gas stations, and our model needs to carry out
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FIGURE 6Memory attention visualization on SMD dataset. The first three columns are the attention vectors in the last hop for
utterance-level MN, token-level MN, and knowledge base MN, respectively. The fourth column is the attention vectors of each
decoding time step. The last row in the figure named @sentinel represents whether the generated token is from the vocabulary
or copied from the KB MN. The darker color appears in the figure, the higher score achieves.

a natural and plausible response based on the question “can I have some route details? I would like to avoid any heavy_traffic
there” asked by the driver in the last turn. The ground truth and our generated response are at the top of Fig. 6.
It can be seen that in the first two columns, the upper part is zero, and in the third column, the lower part is zero. This is

because when the query vector interacted with utterance-level memory network and token-level memory network, there was
no interaction between the query vector and KB memory network and vice versa. As observed, in the first column, each token
belonged to the same utterance with the same attention vector. In the second column, the valero entity had a dark color, which
means that valero plays a vital role in the context. Moreover, the latter had a darker color than the former, which holds the same
trend as the utterance-level attention. On the other hand, in the fourth column, the KB entries related to the valero had a higher
attention score than others. Note that the evidence (i.e., the triplet (valero traffic_info heavy_traffic)) to traffic conditions had the
highest score, which proves that our model can look up the correct KB entries and filter out the irrelevant ones. Further, it has
been found that the entity heavy_traffic and valero were successfully copied in Step 3 and Step 7, where the pointer didn’t point
to the @sentinel at the corresponding step. The visualized weights as shown in the last row in Fig. 6. This proves that the copy
mechanism is essential in improving the performance of developing responses.
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FIGURE 7 The performance comparison of the proposed model when � takes different weights.

TABLE 9 Examples were generated by the proposed model and baseline models given the dialogue history and knowledge base.
Affairs party date time agenda room
football_activity tom the_5th 9am - -
dentist_appointment alex sunday 2pm - -
conference management friday 10am discuss_the_merger conference_room_50
doctor_appointment father wednesday 7pm - -
swimming_activity sister the_13th 1pm - -
doctor_appointment alex the_5th 6pm - -
dentist_appointemnt jon thursday 2pm - -
meeting management the_3rd 2pm discuss_the_company_picnic 100_conference_room

usr-1 what time is my doctor apartment and who is it with ?
sys-1 are you talking about the doctor_appointment on wednesday or the one on the_5th ?
usr-2 the one on wednesday
sys-2 your doctor_appointment on wednesday is at 7pm with your father
usr-3 and how about the one on the_5th ?
Gold your doctor_appointemnet on the_5th is at 6pm with alex

Seq2Seq+Atten the doctor_appointment is at the_5th
GLMP your doctor_appointemnet is on the_5th at 2pm
HMN your doctor_appointment on the_5th is at 6pm

BoSsNet your doctor_appointment on the_5th is at 7pm
OURS your doctor_appointment on the_5th is at 6pm with alex

4.5.5 Effect of Different Weights of Alpha
To analyze the effect of � when it picks up different weights, a group of experiments was conducted to display the diverse
performance on SMD and MultiWOZ 2.1 datasets, as shown in Fig. 7.
An apparent observation can be seen that the proposed model achieved the best performance when the � was equal to 1.0.

This demonstrates the auxiliary task is pretty crucial for our model. It also has been found that the BLEU performance showed a
sharper drop than Entity F1 on both datasets when the number chosen for � exceeds one. The reason for this is that an excessive
weight assigned to the auxiliary task could impair the model’s ability to produce fluent responses. These observations prove
that the assignment of different tasks’ weights is a critical operation for multi-task joint training that directly affects the final
performance of the model.
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4.5.6 Error Analysis
We qualitatively compare the performance of the proposed model with other baseline models using examples. A generated
example is given in Table 9. This example is randomly selected from 50 dialogue examples that are randomly sampled from the
test set. Comparing the generated response by the gold sentence, it has been found that most of the models could perfectly copy
the entity tℎe_5tℎ from the context. Nevertheless, the Seq2Seq+Atten model producing a duplicate sentence, even though it was
natural and without grammatical errors. The GLMP model failed to copy the correct KB entry 6pm from the KB results, and so
did the BoSsNet model. Likewise, the HMN model missed the entity alex, only our model carried out the completely accurate
response. This demonstrates that our proposed hierarchical MN could filter out the unnecessary information and further filter
out the unrelated KB entries.
In addition, fromFig.6, it can be observed that our generated response accurately answered the driver’s question. Our generated

response was “there is heavy_traffic on the route to valero”, which was a paraphrase of the gold response. Unfortunately, the
gold response more natural and emotional than ours. There is no doubt that the gold expression is more frequently happened in
our daily life. Also, it sounds more like a human-human conversation. Employing emotional information or personalized feature,
e.g., user profiles, will be challenging and practical work. We will leave it as our future research direction.

5 CONCLUSIONS

This work presents an end-to-end trainable model using hierarchical MN for a task-oriented dialogue system. The hierarchical
memory network maintains an utterance-level memory network, a token-level memory network, and a KB memory network.
Our model adopts the proposed hierarchical MN mechanism to focus on crucial information of dialogue history and KB, and
employs a gated-mechanism to generate response word by word from vocabulary, dialogue history, or KB results during the
decoding stage. The proposed model has achieved comparable performance on several open datasets. Moreover, ablation study
and attention weights visualization have shown that our model can efficiently deal with dialogue history and filter out unneces-
sary information. Further analysis has demonstrated that the proposed model is more robust and efficient in dealing with long
dialogues. This prove that the proposed framework is practical. Through the error analysis of dialogue examples produced by
the proposed model, our future work will focus on filtering KB information to decrease the interference of useless information
and how to enforce the emotional and personalized information into the conversation procedure.
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