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Optimal portfolio choice to split orders during supply disruptions: An 

application of sport’s principle for routine sourcing 

 

Abstract 

Sourcing in the face of supply chain disruptions has been one of the most challenging tasks in supply 

chain management, particularly when such disruptions occur due to natural calamities, such as flood, 

fire, and earthquake, affecting both the primary and the backup suppliers. Invariably, such disruptions 

lead to reduced supply from the primary supplier, encouraging the supplier to place fresh orders with 

the backup suppliers.  In order to mitigate the adverse effect of supply disruption, in this paper we use 

the concepts underlying the well-known Duckworth–Lewis–Stern method, used in cricket, to revise the 

supply target of the primary supplier and to decide a target for the backup supplier.  We simulated the 

supply disruption scenarios in an experimental setting by conducting a two-round questionnaire survey 

among 300 purchase managers.  The means and variances of the participants’ estimates of probabilities 

of meeting the revised targets within the scheduled time for various model-generated supply scenarios 

were used to find the participants’ risk preferences.  In the second-round survey, the participants, 

clustered in groups of 10, ranked their own risk preferences.  These ranks were used to find the optimal 

portfolio choices.  Finally, we validated the theoretical predictions for the risk options using two 

approaches—one, at the group level by estimating the within- and the between-group risk preferences 

of buyers, and, two, at the aggregate level, by considering all the participants, fitting quantile regression 

model to the experimental results, and estimating the risk preference structures for different quantiles 

of the relative risk-return trade-off distributions. 

Subject Areas: Supply disruption, Duckworth–Lewis–Stern method, Mean-variance decision-

theoretic model, and Portfolio of risky options, Risk preference structures 

INTRODUCTION  

Supply disruption refers to an extreme event with an adverse operational impact on the supply chains 

(Parker & Ameen, 2018). It lowers a firm's long-term economic and social performance, and the 

recovery process can be slow (Hendricks & Singhal, 2005; Torabi, Baghersad, & Mansouri, 2015).  

When these disruptions occur due to natural calamities, such as flood, fire, and earthquake, they can be 

of long duration and can significantly, and adversely, impact the financial performance of the buying 

firms.  We cite below a few cases of supply disruption on account of flood, fire, and earthquake.   

A major flood devastated the Indian states of Maharastra and Karnataka in the year 2019, caused 

immense loss to the leather firms (Kolhapuri slippers) operating in these states, and led to shutting down 
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of all tanneries in the city of Kolhapuri causing an estimated economic loss of 1.35 billion USD1.  The 

August 2018 flood in Chennai disrupted the supply of motorcycle parts and components and brought 

the Chennai-based Eicher Motor’s production of motorcycles to a standstill, despite the multi sourcing 

strategy followed by the company for different components2. During the 2018 Kerala flood, one of 

India's largest tyre manufacturers suffered a significant supply disruption and incurred a loss of 

approximately 12% on the net income because the supply of natural rubber, the key material for tyre 

production, stopped for a long time due to the flood. As Kerala (a south Indian state) produces about 

85% of domestic natural rubber, the suppliers were very badly impacted during the catastrophe2. The 

backup suppliers located in Thailand also failed to supply, owing to the outbreak of a fungal disease on 

rubber plantation3 during the same time.  Toyota had to temporarily shut down 20 of its 30 Japanese 

assembly lines because the supply of P-valves (used in the car braking system) from Aisin Seiki Co., 

the primary P-valve supplier, was badly hit due to a fire at its plant site (Sheffi, 2007). Motorola was 

sourcing chips from TSMC and UMC in Taiwan. When both the suppliers were hit by a Taiwan 

earthquake, it caused a severe supply disruption for Motorola for weeks together (Sheffi, 2007).  

In a recent review of management science models for supply chain disruption, Snyder et al. (2016) 

identified routine sourcing and contingent rerouting as the two major flexible sourcing strategies to 

counter the effect of such disruptions. Of these two,  routine sourcing is more popular as a strategy to 

ameliorate the effect of catastrophe-caused disruptions and is well studied by several authors (e.g., Dada 

et al., 2007; Gurnani et al., 2014; Li, 2017; Demirel et al., 2018; Zhao & Freeman, 2019). In routine 

sourcing, the buyer splits orders among the pre-selected suppliers to overcome the shortage arising out 

of uncertainty of supply from the catastrophe-affected suppliers. But because these pre-selected 

suppliers have different resource endowments and because they are also badly affected by the 

catastrophe, the natural question is “how to split the orders among these suppliers?”  Snyder et al. (2016, 

p. 95) have recognized the optimal splitting of orders among suppliers as the most challenging task 

during supply disruption. 

Several authors (e.g., Sawik, 2011; Hu, Gurnani, & Wang, 2013; Hu & Kostamis, 2015) have addressed 

the problem of optimal portfolio choice of a buyer during supply disruption. He, Huang, & Yuan (2016) 

have identified three distinct approaches used by these authors to address the problem. The first 

approach models the number of units delivered by the supplier as a random fraction of the total units 

ordered (Güler, 2015). The second approach models the supply disruption risk where the supplier can 

deliver either the total amount ordered or nothing (Gupta, He, & Sethi, 2015). The third approach 

models supply risk with either uncertain capacity (Li et al., 2013) or uncertain lead time (Kouvelis & 

Li, 2012).   
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The optimal portfolio choice problem is addressed in the literature from a variety of perspectives.  These 

perspectives take the form of optimal strategy based on sourcing cost and service level (Dada et al., 

2007; Gurnani et al., 2014), profit-oriented approach for risk management (Zhao & Freeman, 2019), 

optimal strategy to handle demand uncertainties (Tomlin, 2009; Hu & Kostamis, 2015), handling lead-

time uncertainties (Kouvelis & Li, 2012), capacity restoration (Li et al., 2013; Hu et al., 2013; Guo, 

Zhao, & Xu, 2016), and inventory management (Hou et al., 2019). These perspectives consider 

objective, quantitative aspects of supply disruption.  Notably, none of these studies have considered the 

behavioural aspects of a buyer for optimal portfolio choice during supply disruption. 

Gurnani et al. (2014) have recognized the importance of a buyer’s preferences towards the perceived 

risks of splitting the order as they are influenced by the buyer's behavioural aspects.  In a review of 

literature on behavioural operations management, Fahimnia et al. (2019) recognize the buying 

behaviour under supply disruption as an important research area but admit that this area is scarcely 

researched. No study, however, has explicitly considered the problem of optimal portfolio choice of a 

risk-averse buyer with risk preferences, to split the orders among the catastrophe-affected, differently 

endowed suppliers.  

As indicated above, studies addressing behavioural aspects of decision maker in the context of supply 

disruption are limited in number.  A few notable studies are by Schweitzer and Cachon (2000) and 

Castañeda and Gonçalves (2018), who have used experiments to study the effect of behaviour of 

decision makers under uncertainty and have advocated experiments as means for conducting such 

studies. In behavioural sciences, gaming, simulation, and questionnaire surveys are used as 

experimental platforms to explore the influence of behaviour of decision makers on their decisions.  

Such experiments help to verify prevailing hypotheses, validate previous results, and suggest new 

hypotheses and relationships. But studies involving use of experimental inquiry to explore the influence 

of buyer behaviour on optimal portfolio choice are few.   

To sum up, we can say that catastrophe-induced supply disruption forces a buyer to split order between 

the primary supplier and the backup suppliers (routine sourcing).  When all these suppliers are affected 

by the catastrophe, target setting for these suppliers becomes a challenging task.  Past knowledge about 

the supply uncertainties provides the buyer a guide to decide a portfolio of risky options based on the 

estimated relative trade-offs between risks and returns. An important dimension of research in the field 

of portfolio choice during supply disruption is the effect of buyer behaviour on the target setting process.  

The small number of studies that have been reported in this under-studied area indicate the use of 

experiments to study the buyer behavioural aspects for target setting. 
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Scope, Objective, and Research Questions 

This paper takes the case of a buyer who switches to routine sourcing and who considers both capacity 

and lead time uncertainties (the third approach) for optimal portfolio choice to address the issue of 

shortage during supply disruption.  The paper also assumes that there are only two suppliers (a primary 

supplier and a backup supplier) who are endowed with different resource positions and are situated in 

close geographical proximity so that both are adversely affected when a natural calamity strikes the 

region, these assumptions being the same as those made by Li (2017) and Zhao and Freeman (2019).  

We also assume that price does not play a role in the buyer’s optimal portfolio choice either because 

the price is regulated by the government or because the resource scarcity causes product price rise in 

similar ways for both the suppliers. We further assume that the suppliers cannot make any differentiated 

product to take advantage of the resource scarcity position. The last two assumptions hold for supply 

of a wide range of commodities, such as tea, sugar, and meat. In effect, the model assumes that the 

depleted capacity, the presence of a backup supplier, and their history of lead time uncertainties are the 

only factors that influence the optimal portfolio choice of the buyer. 

The broad objective of this paper is to optimally split orders between a primary supplier and a backup 

supplier when natural disasters disrupt their supply potentials so that the buyer’s orders are fulfilled 

within the specified period to the highest extent possible. 

The specific research questions that the paper seeks to answer are the following: 

Q1: How to revise the supply target of a primary supplier and set fresh target for a backup supplier 

when the supply capacities and supply chain are badly affected due to the occurrence of 

natural disasters?  

Q2: How to refine the revised targets by using the past knowledge of the buyer on supply and lead 

time uncertainties of the suppliers? 

Q3: How to generate the optimal supplier portfolio during supply disruption and how to test its 

sensitivity to the risk preference of the buyer? 

Q4: How to demonstrate the application of the model in conditions of supply disruption in an 

experimental setting? 

 

Overview of the Study 

Supply disruption has a striking similarity with the disruption of play in a widely popular sport, namely 

cricket, in case of natural calamities. The Duckworth–Lewis–Stern method (DLS) method is used in 

cricket to set revised target scores for the two playing teams.  The method considers the remaining time 

of the match and the number of wickets (resource capacity) left with the playing teams as the only 
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factors to set the revised targets.  It does not consider match rewards promised to the teams by the 

International Cricket Council as an influencing factor, an assumption which is similar to our assumption 

that no supplier can have any price premium on account of resource scarcity.  Furthermore, the DLS 

method considers both the teams to be almost equally competitive, which is similar to our assumption 

that the supplier cannot make any differentiated product at times of depleted resource positions.  

Naturally, the DLS method provides a high potential to be adopted to solve the problem of optimal 

portfolio choice during supply disruption.  The paper answers the first research question by adjusting 

supply lead times and setting supply targets for the two suppliers according to their resource positions 

in ways similar to the DLS method. 

The second and third questions are answered by developing a two-moment decision-theoretic model 

following the approaches used by Epstein (2005), Eichner (2008), and Eichner & Wagener (2003, 2009, 

2011, 2012). The model considers the risks perceived by a risk-averse buyer due to the uncertainty 

associated with supply disruptions, for making an optimal portfolio choice to split orders between the 

primary supplier and the backup supplier.  With depleted and uncertain resource endowments, the 

realised supply quantities from both the suppliers are likely to differ from the revised targets set by the 

DLS principle. The likely shortfalls require a rationalization of the revised targets.  Such a 

rationalization is done by considering the preferences of the buyer towards the perceived risks of 

obtaining the supplies under supply uncertainty that helps in finding the buyer’s optimal portfolio 

choice. Thus, our approach not only revises the original target for the primary supplier and sets new 

target for the backup supplier using the DLS method, but subsequently refines these targets based on 

the preferences of the risk-averse buyer towards the supply uncertainties experienced by the buyer in 

the past. 

To answer the fourth question, we conducted a two-round questionnaire survey on 300 purchase 

managers.  In the first-round survey, we provided the DLS method-generated revised supply targets to 

the participants in the survey and presented them with 10 scenarios, each scenario representing the 

amount of order outstanding with the primary supplier at a particular time point in the scheduled supply 

period and the fractions of capacity of the primary supplier and the backup supplier which are unaffected 

by the natural calamity. The participants were asked to estimate the probabilities of fulfilling the orders 

by the two suppliers in the remaining supply lead time. In the second-round survey, groups of ten 

participants were provided with mean and standard deviation of probability estimates for the ten 

scenarios made by each participant in the group and each participant was asked to rank the scenarios of 

means and standard deviations.  Ranking so done, helped to estimate the risk preferences of the 

respondents. 
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Contribution of the Paper 

The paper contributes to the supply chain research arena in many ways.  It demonstrates the use of the 

DLS method used in cricket to set revised supply targets. When a one-day (50-over) cricket match gets 

interrupted by bad weather, floodlight failure, or undesired crowd behaviour, the well-accepted DLS 

method (Duckworth & Lewis, 2004) is applied to revise the target scores for the two playing teams. 

The cue provided by this method is used in the present study to set a revised supply target for the 

primary supplier and new target for the backup supplier.  The second contribution the paper makes is 

the consideration of the behavioural aspects of a risk-averse buyer modelled as her risk preferences in 

order to refine the revised supply targets.  The third contribution is the use of design of experiments 

using human subjects to demonstrate the application of the model to supply disruption problem in an 

experimental setting.  Two other noteworthy contributions of the paper are the way the risk preference 

structure of a buyer can be measured in terms of elasticities (i.e., relative willingness to pay for an 

incremental perturbation in risk) and confirmation of the fact that the risk preference structure would 

generally follow both decreasing absolute risk aversion and variance vulnerability of preferences, both 

of which are supportive of the existence of “properness” in the risk aversion behaviour. 

Organization of the Paper 

This paper is organized as follows: The next section makes a literature review pertaining to optimal 

portfolio choice to split the order and behavioural investigations using experimental approaches. 

Followed by the modelling framework comprising the DLS method for target fixing and the two-

moment decision model of the buyer. Then we discuss the comparative statics for changes in the 

distribution of primary and backup requisitions and the buyer’s optimum portfolio choice owing to 

changes in the dependence structure between these two random variables.  Subsequently, we present 

the experimental procedure, within- and between-group analysis of experimental results, and an 

econometric analysis of these results. Finally, we interpret the results, state the conclusions reached, 

and discuss the various connotations of the modelling approach and the conclusions reached.  

LITERATURE REVIEW  

Several authors (e.g., Tang, 2006; Tomlin, 2009; Sawik, 2011; Li, 2017; Torabi et al., 2015; Namdar et 

al., 2018, Dada et al., 2007; Gurnani et al., 2014; Li, 2017; Demirel et al., 2018; Zhao & Freeman, 2019) 

have extensively addressed the issues concerning supply portfolio under supply disruptions. The most 

common setting considered by them is that of routine sourcing, where a single buyer faces uncertainty 

of supply due to catastrophe-affected suppliers. In such a situation the difference in resource 

endowments of these suppliers leads to differing supply uncertainties (Snyder et al., 2016). The buyer’s 

preference towards perceived risks of splitting the order among these suppliers is influenced by 

behavioural aspects of the buyer, particularly when the buyer is risk-averse (Gurnani et al., 2014). 
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However, the problem of optimal portfolio choice of a risk-averse buyer whose preferences towards 

perceived risks of splitting the orders among catastrophe-affected suppliers having different resource 

endowments has not been addressed in the literature.  

The seminal work of Schweitzer and Cachon (2000) in the field of behavioural operations management 

(BOM) addresses the problem of routine sourcing and suggests that an optimal solution to a routine 

sourcing problem based on analytical findings deviates under behavioural influence of individuals in 

practice, due to varied decision-making capacities of individuals. Furthermore, the study identifies that 

individual decisions to solve the problem is occasionally correct. However, their deviation from the 

optimal decisions are systematic and predictable. Research on BOM include both analytical and 

behavioural disciplines. The central idea is to build decision-making models that explain, predict and 

improve the analytical models in operations management domain (Becker-Peth & Thonemann, 2019). 

Even though literature identifies an exhaustive review paper on BOM, discussing the buying behaviour 

under supply risk (Fahimnia et al., 2019). Gurnani et al. (2014) have also emphasized studying 

behavioural aspects of buying decisions through integrating analytical and experimental approaches.  

Many studies have used an expected utility – based approach to derive optimal portfolio choice of a 

buyer. For instance, Li (2017) developed, for a deterministic demand scenario, an optimal portfolio 

choice of a buyer who procures from two uncertain sources associated with random disruption risk and 

random yield risk. Gurnani et al. (2014) and He et al. (2017) derived optimal conditions based on cost 

and risk parameters of a buyer while sourcing either from a single source (more certain but costly) or 

from a backup supplier (more risky but cheaper). Zhao and Freeman (2019) used a profit-oriented 

correlation structure to optimally split order between uncertain sources.  A few authors have also 

considered a risk-averse buyer facing uncertainty of supply, while making an optimal portfolio choice.  

For instance, Shu et al. (2015) developed a single-period model and obtained a unique optimal order 

quantity for the effective control of supply risk under stochastic demand scenario. Later, considering 

different cases of capacity and probability of disruption, Dupont et al. (2018) studied a similar type of 

scenario for a risk-averse buyer.   

The above-mentioned studies have modelled the buyer’s risk preference using the expected utility 

approach, whereas we have used a two-moment decision-theoretic model to determine the optimal 

portfolio choice of a risk-averse buyer seeking supply required quantity from a primary supplier (RQ) 

within a certain period. But a catastrophe-affected supplier may fail to supply the required quantity 

during the supply period. Hence, the buyer will place order for the remaining quantity (BQ) with another 

supplier—defined as the ‘backup supplier’—to ensure smooth operations by receiving the supply within 

the remaining supply time. However, the catastrophe has adversely affected the representative backup 

supplier as well. Here, the perceived risk of getting the required quantity from each supplier is measured 

in terms of the mean (μ) and standard deviation (σ) of the uncertain total quantity demanded by the 
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buyer from each supplier; and the preference of a representative buyer dependent on suppliers is based 

on a “well-behaved” utility function, defined over these two moments.  

The two-moment model applied in this study is understood to be an intuitive instrument in the analysis 

of decision-making under uncertainty. The preference framework for the model is a perfect substitute 

for the classical expected utility (EU) approach, given that all feasible distributions belong to a location–

scale family (Meyer, 1987). In such contexts, risk attitudes (such as risk aversion, prudence) of a 

resource-dependent buyer, originally formulated in the EU approach as reported earlier, have 

convenient analogues in terms of two-moment decision models (or, in other words, (μ, σ)-preferences). 

Meyer (1987) has converted the measures of absolute and relative risk aversion and their monotonicity 

properties from the EU approach into the (μ, σ) decision-theoretic framework. Lajeri & Nielsen (2000) 

and Eichner & Wagener (2003; 2005) have developed a (μ, σ)-equivalent for Kimball’s (1990) notion 

of decreasing absolute prudence. Contributions towards modelling risk preferences, (e.g., Epstein, 

1985; Ormiston & Schlee, 2001; Eichner, 2008; Eichner & Wagener, 2009; 2011; 2012; Guo et al., 

2018) have demonstrated analogues of the EU properties like ‘risk vulnerability’, ‘temperance’, 

‘properness’, ‘standardness’ etc. in terms of the relative willingness-to-pay for a change in risk, which 

falls under the ambit of mean-variance preference-theoretic analysis. 

In response to the above stated need we have used the DLS method to set targets for the suppliers after 

disruption i.e., based on differing both lead time and resource constraint uncertainties of suppliers. 

Further, we have integrated it with a two-moment model to study the risk preferences of the buyer. 

Subsequently, we used the DLS method as a proxy in an experimental setup to collect responses and 

analyse the risk preference of buyers. Based on what we observe in our experimental evidence, the 

preferences defined over the optimal portfolio of the representative buyer’s choices follow upward 

sloped and strictly convex indifference curves in the risk-return plane, supporting our analytical 

modelling framework of the a priori assumption of the buyer being risk-averse in nature. Thus, we 

model the risk preferences of a risk-averse buyer to split orders between risky suppliers under time and 

resource constraints in a market, where the suppliers producing generic inputs can neither sell at any 

price different from the market-determined price nor can they sell any differentiated product at that 

price i.e., the “marginal cost pricing equilibrium scenario” (Wu & Zhou, 2016).  

 

MODELING FRAMEWORK 

In this section we have addressed the optimal portfolio choice of the risk averse buyer under routine 

sourcing using a two-step approach i.e., splitting the order between two suppliers (primary and backup 

suppliers) affected by catastrophe using the DLS method, followed by a two-moment decision theoretic 

approach to analytically derive the risk preference behaviour of the buyer.  
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Fig 1: Sequential decision making in a single period 

The framework used in this model is depicted in Fig. 1, where we consider a single period model 

encompassing four dates: 𝑇𝑖𝑚𝑒 (𝑇) = 0; 𝑇 = 𝑡; 𝑇 = (1 − 𝑡2); and 𝑇 = 1. Here, 𝑇 = 0  is the date of 

ordering and 𝑇 = 1 is final date of receiving the quantity 𝑄 from the supplier(s). At 𝑇 = 𝑡, the 

unprecedented disruption takes place. It is assumed that during 𝑇 = 0 and 𝑇 = 𝑡, the buyer received 𝑞 

units against the order placed with the primary supplier.  It is assumed that, due to the natural calamity, 

the supplier is unable to deliver any item for a period (1 − 𝑡 − 𝑡2 = 𝑡1 − 𝑡2), where 𝑡2 is the time left 

in the supply lead time to make the delivery.  Realizing the lost time and the depleted resource position 

of the primary supplier, the buyer decides at time T = 1 – 𝑡2  to opt for routine sourcing and places a 

fresh order with a back-up supplier and revises the quantity for the primary supplier in order to get the 

supply of (Q – q) during a period 𝑡2. 

TARGET SETTING USING SPORT’S PRINCIPLES 

Originating in England in the 18th century, limited over Cricket has now become one of the most 

popular and widely followed sports globally (Shah, Sampat, Savla, & Bhowmick, 2015; Duckworth & 

Lewis, 2004). This sport is played between two teams each consisting of eleven players on a cricket 

field. Each phase of play is called an inning, during which one team bats, attempting to score as 

many runs as possible within a limited over (e.g., 50 overs) at the expense of 10 wickets, followed by 

the other team that chases the runs in their given inning. However, due to unwanted disruptions (as 

mentioned earlier) a definite result is not obtained. In such cases, the DLS method has been used to 

revise the target scores and/or declare a winner.   
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The DL (Duckworth–Lewis) principle and the subsequently revised DLS method are nothing but a 

statistical method used to predict the target score of the team batting in the second innings of a limited 

over (50-over long) cricket match, interrupted due to unavoidable circumstances (Duckworth & Lewis, 

2004; Shah et al., 2015). When a few overs are lost, setting an adjusted target is not as simple as 

proportionally reducing the batting team’s target, because a team batting second with a few wickets in 

hand is expected to play more aggressively (than when it has the full 50 overs to play) and achieve a 

higher run rate. In order to eliminate this anomaly, the DLS method considers the most common 

situation where two teams play a full-length cricket match with each side having 100% of its resources 

(Duckworth & Lewis, 2004; Stern, 2009; Shah et al., 2015). The central focus of the DLS method is to 

adjust “remaining time left in the sport” based on the remaining resources available (i.e., the remaining 

number of overs a team must face and the remaining number of wickets in hand).  As one can observe 

in Fig. 2, there is an exponential increase in the target to be scored by the team batting second, with less 

number of wickets and overs in hand (http://www.-boltoncricket.co.uk/DLcalc.html accessed on 24 

June, 2018). The model underlying the graph is derived in Appendix A. We identify an analogy between 

cricket and suppliers in supply chain with respect to the process of target fixing during catastrophe-

caused disruptions.  

 

Fig 2: Target setting of teams/suppliers using DLS method   

(Source: https://www.wikiwand.com/en/Duckworth-Lewis-Stern_method) 

Application and Interpretation of the DLS method 

Suppose a buyer asks a supplier to supply 𝑄 units within a time-length from date 𝑇 = 0 to the date 𝑇 =

𝑡 (before a catastrophe strikes).  However, this supplier had been able to supply only 𝑞 units (𝑞 < 𝑄) 

within the time-length 𝑡 (𝑡 < 𝑇), since at date 𝑇 = 𝑡, a catastrophe erodes the supplier’s resource 

position (capacity) to bring it down to (100 –  𝑐) per cent of its full capacity (0 <  𝑐 <  100), resulting 

in disruption of the supply to the buyer. We further assume that the supplier cannot supply a single unit 

within a time length  𝑡1 − 𝑡2 after the catastrophe strikes.  With the depleted capacity, the supplier can 

at best supply 𝐷 (𝐷 < 𝑄–𝑞) number of items in the remaining time 𝑡2.  Apprehending the reduced 
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supply from the primary supplier, the buyer looks for, and places fresh order of BQ (= 𝑄–𝑞–𝐷) units, 

with a back-up supplier with 𝑡2  (0 < 𝑡2 < 𝑡1) of the supply lead time remaining. 

Since no supply took place for a time period (𝑡1 − 𝑡2),  the supply target for the primary supplier (RQ) 

needs to be adjusted to compensate for the loss of time. The proportion of resources (capacity and lead-

time) lost due to the catastrophe in the period 𝑡1 is {𝑃𝑟𝑜𝑏(𝑡1, 𝑐) − 𝑃𝑟𝑜𝑏(𝑡2, 𝑐)}.  

So the proportion of supply resources available with the primary supplier is 𝑅𝑅𝑄 = [1 −  𝑃𝑟𝑜𝑏(𝑡1, 𝑐) +

𝑃𝑟𝑜𝑏(𝑡2, 𝑐)]. Thus, the primary supplier’s supply target is reduced to become 𝑇𝑄 = 𝑄𝑅𝑅𝑄 and the 

remaining quantity needed to be supplied by the primary supplier is 𝑇𝑅𝑅𝑄 = (𝑇𝑄 − 𝑞). 

The target can be revised and set by considering the values of 𝑃𝑟𝑜𝑏(𝑡1, 𝑐) and 𝑃𝑟𝑜𝑏(𝑡2, 𝑐) from the 

DLS based tabulated values (see Appendix A, Table A). The target score is the next higher integer. 

Hypothetical examples of three cases for the same are reported in Table 1, where buyer’s required 

quantity to supply Q = 300 units. 

Table 1: Target setting for both Primary and backup suppliers 
Parameter  Case 1 Case 2 Case 3 

Already supplied (out of Q = 300) is 𝑞 150 100 80 

Capacity loss, 𝑐 60% 40% 20% 

Remaining time to supply,  𝑡1 40% 60% 80% 

Effective time to supply,  𝑡2 20% 20% 20% 

𝑃𝑟𝑜𝑏(𝑡1, 𝑐) 0.308 0.541 0.778 

𝑃𝑟𝑜𝑏(𝑡2, 𝑐) 0.228 0.283 0.308 

𝑃𝑟𝑜𝑏(𝑡1, 𝑐) − 𝑃𝑟𝑜𝑏(𝑡2, 𝑐) 0.080 0.258 0.470 

𝑅𝑅𝑄 = [1 −  𝑃𝑟𝑜𝑏(𝑡1, 𝑐) + 𝑃𝑟𝑜𝑏(𝑡2 , 𝑐)] 0.920 0.742 0.530 

𝑇𝑄(Revised Target) = 𝑄𝑅𝑅𝑄 276 223 159 

Based on the revised target, remaining 

quantity to be supplied (𝑇𝑅𝑅𝑄 = 𝑇𝑄 − 𝑞) 

by the primary supplier within 𝑡2 time and 

remaining (100 − 𝑐)% capacity 

126 

(= 276-150) 

123 

(= 223-100) 

79 

(= 159-80) 

Quantity to be supplied by the backup 

supplier(s) within 𝑡2 time is 𝑇𝑅𝐵𝑄 = 𝑄 −

𝑇𝑄 

24 

(= 300-276) 

77 

(= 300 -223) 

141 

(= 300 -159) 

Using the DLS method, the buyer revises the target for the primary supplier so that it can supply the 

amount within the remaining time-frame 𝑡2. However, whether the supplier, with its limited capacity, 

would be able to supply the revised quantity depends on its own input choices. Ordinarily, the optimum 

input choice should be such that the actual quantity being supplied by the supplier converges to the 

DLS-specified target. But the supplier also faces the so-called “lead time uncertainties”, which affects 

its optimum input choice. Hence, the primary supplier may fail to supply even the DLS-specified revised 

quantity. 
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Because both the primary supplier and the backup supplier are affected by the natural calamity, the 

supply from the backup supplier is also equally risky. In other words, the input choice of the backup 

supplier is a random variable. We have applied the mean-variance decision-theoretic modelling 

approach to consider the risk preference of the buyer while addressing her optimal portfolio choice 

decision. 

TWO-MOMENT DECISION-THEORETIC MODEL 

In this section, we are proposing a two-moment decision-theoretic model to analyse the buyer’s 

sourcing decision under uncertainty, based on the sequence of events as shown in Fig. 1.  

At date 𝑇 = (1 − 𝑡2), the perceived probabilities 𝛼𝑘
𝑅𝑄 > 0 are associated with supplying the remaining 

quantity 𝑇𝑅𝑅𝑄 (after the DLS-specified revision of target) by the primary supplier for 𝑘 different 

possible effective capacities, having probabilities (𝑐1,… , 𝑐𝑘), with 0 < 𝑐𝑖 < 1, will lead to the realised 

probability 𝑝 = (𝑝1, 𝑝2,… , 𝑝𝑘), (wherein 𝑝𝑖 = 𝛼𝑖
𝑅𝑄. 𝑐𝑖, for any 𝑖 = 1,… , 𝑘) of obtaining the DLS-

specified revised quantity from the primary supplier at date 𝑇 = 1. 

Similarly, at date 𝑇 = (1 − 𝑡2), the perceived probabilities 𝛼𝑘
𝐵𝑄 > 0 are associated with supplying the 

freshly targeted quantity 𝑇𝑅𝐵𝑄 by the backup supplier for 𝑘 different possible effective capacities, 

having probabilities (𝑐1, … , 𝑐𝑘), with 0 < 𝑐𝑖 < 1, will lead to the realised probability 𝑞 =

(𝑞1, 𝑞2,… , 𝑞𝑘), (wherein 𝑞𝑖 = 𝛼𝑖
𝐵𝑄. 𝑐𝑖 , for any 𝑖 = 1,… , 𝑘) of obtaining the remaining quantity from 

the backup supplier at date 𝑇 = 1. By construction, 𝑝𝑖 + 𝑞𝑖 = 1 for any 𝑖. 

We are going to examine the risk preferences of a risk-averse buyer in a perfectly competitive scenario, 

for which it is sufficient to consider that the primary and the backup suppliers are facing any one of the 

𝑘 different possible effective capacities. This simplification has been made for analytical simplicity and 

hence the subscript 𝑖 has been dropped. Consequently, we consider 𝑝 and (1 − 𝑝) as the reduced 

probabilities of supplying the DLS-specified quantity and the remaining quantity by the primary and 

the backup supplier, respectively. In other words, 𝑝 is the endogenous variable of the model denoting 

the buyer’s realised probability of obtaining the DLS-specified required quantity from the primary 

supplier at date 𝑇 = 1; and (1 − 𝑝) is the realised probability of obtaining the remaining quantity from 

the backup supplier at date 𝑇 = 1.   

First, we denote the buyer’s preferences by a two-parameter utility function: 

𝑈 = 𝑈(𝜎𝑌 , 𝜇𝑌)        (1) 

where  
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𝑌̃ = 𝑝(𝑇𝑅𝑅𝑄 − 𝐷̃𝑅𝑄) + (1 − 𝑝)(𝑇𝑅𝐵𝑄 − 𝐷̃𝐵𝑄) = 𝑝𝑅𝑄̃ + (1 − 𝑝)𝐵𝑄̃      (1.1) 

and 𝐷̃𝑅𝑄  and 𝐷̃𝐵𝑄 are the random deviations from 𝑇𝑅𝑅𝑄 and 𝑇𝑅𝐵𝑄 (where the two latter order quantities 

are obtained from the DLS method, as explained in Table 1) respectively, with 𝐷̃𝑅𝑄 ∈ (−𝐷𝑅𝑄, 𝐷𝑅𝑄) and 

𝐷̃𝐵𝑄 ∈ (−𝐷𝐵𝑄, 𝐷𝐵𝑄). For the sake of notational simplicity, we are dealing with the random ‘net’ 

quantities perceived by the buyer to be received from the primary and backup suppliers respectively as 

𝑅𝑄̃ and 𝐵𝑄̃. 

𝜇𝑌 = 𝐸(𝑌̃) = 𝑝𝜇𝑅𝑄 + (1 − 𝑝)𝜇𝐵𝑄     (2) 

𝜎𝑌 = √𝑝2𝜎𝑅𝑄
2 + (1 − 𝑝)2𝜎𝐵𝑄

2 + 2𝑝(1 − 𝑝)cov(𝑅𝑄̃, 𝐵𝑄̃)  (3) 

For any random variable 𝑊̃, (𝜎𝑤 , 𝜇𝑤) are the standard deviation and mean parameters. Subsequently, 

the covariance between any pair of random variables 𝑊̃, 𝑍 is denoted as cov(𝑊̃, 𝑍). Since, the 𝑌̃(𝑝) is 

a linear function of the two random variables (𝑅𝑄̃, 𝐵𝑄̃), correlations (or covariances) serve as the most 

appropriate parameter to characterize the dependence structures between them (Eichner & Wagener, 

2011). We can rewrite cov(𝑅𝑄̃, 𝐵𝑄̃) as 𝜌𝜎𝑅𝑄𝜎𝐵𝑄, where 𝜌 ∈ (−1,+1) is the Pearson correlation 

coefficient between 𝑅𝑄̃ and 𝐵𝑄̃. 

For this case the random variables are: (1) ‘net’ quantities perceived by the buyer to be received from 

the primary supplier at date 𝑇 = 1; and (2) ‘net’ quantities perceived by the buyer to be received from 

the backup supplier at date 𝑇 = 1, both of which would affect 𝑌̃(𝑝) through their distributions and 

dependence structure (Cf. Embrechts et al., 2002). 

We are making the following assumption regarding the buyer’s preference function defined over risk 

and return, where the preference function means the buyer’s utility function that maps the buyer’s 

choice over risk of the portfolio (𝜎𝑌) versus return (𝜇𝑌) in ℝ+. Here our preference function is 𝑈(𝜎𝑌 , 𝜇𝑌), 

which follows the assumptions (1)-(4) mentioned below. 

(1) For any random objective function 𝑊̃ (where 𝑊̃ ∈ {𝑅𝑄̃, 𝐵𝑄̃, 𝑌̃}), the utility function 𝑈(𝜎𝑊, 𝜇𝑊) 

is, at least four times continuously differentiable. 

(2) We have, the marginal utility with respect to (w.r.t. hereafter) 𝜇𝑊 as positive while the marginal 

utility w.r.t. 𝜎𝑊 as negative i.e., 𝑈𝜇(𝜎𝑊, 𝜇𝑊) > 0, 𝑈𝜎(𝜎𝑊, 𝜇𝑊) <  0. In other words, we are 

assuming that the buyer’s preferences towards risk satisfy non-satiation (increasing in 𝜇𝑊) and 

the buyer is risk-averse (decreasing in 𝜎𝑊). 

(3) The indifference curves (ICs hereafter) in (𝜎𝑊, 𝜇𝑊)-plane are positively sloped and strictly 

convex.  



15 
 

(4) The ICs enter the 𝜇𝑊-axis with zero slope i.e., exhibiting risk-neutrality for very small risks. 

The above-mentioned assumptions restrict this study to a risk-averse buyer only, with monotonic and 

strictly quasi-concave preferences. This implies that the buyer is worse off receiving an additional 

source of risk because of the backup supplier’s uncertain supply prospect, starting from an already risky 

situation. In other words, the compensation that is required for facing uncertainties in backup supplier’s 

supply prospect, in addition to the risk emanating from the uncertain supply prospect of the primary 

supplier, is higher than the compensation required for facing only the risk owing to the uncertain supply 

prospect of the primary supplier alone.  

The marginal rate of substitution (MRS) between risk and return for 𝑌̃(𝑝) is defined by 

𝑆(𝜎𝑌 , 𝜇𝑌) = −(
𝑈𝜎(𝜎𝑌 , 𝜇𝑌)

𝑈𝜇(𝜎𝑌 , 𝜇𝑌)
).                                                                   (D1) 

𝑆 > 0 is the two-parameter equivalent to Arrow–Pratt measure (Arrow, 1970; Pratt, 1964) of absolute 

risk aversion (or, equivalently, risk attitude). 

The decision dilemma 

The risk-averse buyer chooses to maximise  

max
(0≤𝑝≤1)

𝑈(𝜎𝑌 , 𝜇𝑌) s.t., (2) and (3) 

Scenario 1: 𝝁𝑹𝑸 = 𝝁𝑩𝑸 

First, let us consider the scenario with 𝜇𝑅𝑄 = 𝜇𝐵𝑄. In that case, the buyer would optimally select the 

portfolio that minimizes the variance of suppliers. Considering 𝑝 = 𝑝̅ as the optimum choice of 

portfolio when 𝜇𝑅𝑄 = 𝜇𝐵𝑄, the optimization problem boils down to  

0.𝑈𝜇 (𝜎𝑌(𝑝̅, 𝜎𝑅𝑄, 𝜎𝐵𝑄, 𝜌), 𝜇𝑌(𝑝̅, 𝜇𝑅𝑄, 𝜇𝐵𝑄))

+ (𝜕𝜎𝑌(𝑝̅, 𝜎𝑅𝑄, 𝜎𝐵𝑄, 𝜌) 𝜕𝑝⁄ ). 𝑈𝜎 (𝜎𝑌(𝑝̅, 𝜎𝑅𝑄, 𝜎𝐵𝑄, 𝜌), 𝜇𝑌(𝑝̅, 𝜇𝑅𝑄 , 𝜇𝐵𝑄)) = 0 

Or,  

(𝜕𝜎𝑌(𝑝̅, 𝜎𝑅𝑄, 𝜎𝐵𝑄, 𝜌) 𝜕𝑝⁄ ). 𝑆(𝜎𝑌 , 𝜇𝑌) = 0, 

As from equation D1, 𝑆(𝜎𝑌 , 𝜇𝑌) = −
𝑈𝜎(𝜎𝑌,𝜇𝑌)

𝑈𝜇(𝜎𝑌,𝜇𝑌)
 is the marginal rate of substitution between risk and 

return (equivalently, the relative willingness-to-pay for change in risk). Since, choosing optimal 
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portfolio of supply sources is a risky venture under disruptions, and the buyer is risk-averse, 

𝑆(𝜎𝑌(. ), 𝜇𝑌(. )) is positive. 

Hence, the problem boils down to choosing 𝑝̅ such that (𝜕𝜎𝑌(𝑝,̅ 𝜎𝑅𝑄 , 𝜎𝐵𝑄, 𝜌) 𝜕𝑝⁄ ) = 0, which is 

effectively the variance (𝜎𝑌
2) minimization problem: choosing 𝑝̅ as the minimum variance portfolio, 

such that 𝑝̅ ≔ argmin
𝑝
𝜎𝑌(𝑝, 𝜎𝑅𝑄, 𝜎𝐵𝑄, 𝜌). Moreover, we assume that the moments 𝜎𝑅𝑄, 𝜎𝐵𝑄, and 𝜌 are 

such that the buyer is receiving supply from both primary and backup suppliers simultaneously to meet 

the required input supply even under this minimum-variance portfolio. In other words, (𝜕𝜎𝑌 𝜕𝑝⁄ )𝑝=0 <

0 < (𝜕𝜎𝑌 𝜕𝑝⁄ )𝑝=1. Wright (1987) and Eichner & Wagener (2011) argued that this condition is satisfied 

provided,  

cov(𝑅𝑄̃, 𝐵𝑄̃) < min{𝜎𝑅𝑄
2 , 𝜎𝐵𝑄

2 } holds true.   (4) 

See Appendix B for a formal proof of eq. (4).  

The inequality in (4) implies cov(𝑅𝑄̃, 𝐵𝑄̃) < (𝜎𝑅𝑄
2 + 𝜎𝐵𝑄

2 ) 2⁄ . Hence, 𝜎𝑌(𝑝) is strictly convex. 

Therefore, the minimization of buyer’s preferences function following equation (3) w.r.t. 𝑝 yields, 

(𝜕𝜎𝑌(𝑝, 𝜎𝑅𝑄, 𝜎𝐵𝑄 , 𝜌) 𝜕𝑝⁄ ) = (1 𝜎𝑌⁄ ) [𝑝 (𝜎𝑅𝑄
2 + 𝜎𝐵𝑄

2 − 2cov(𝑅𝑄̃, 𝐵𝑄̃)) − 𝜎𝐵𝑄
2 + cov(𝑅𝑄̃, 𝐵𝑄̃)] = 0 

That yields, the minimum variance portfolio, 𝑝̅ (as defined before), such that 

𝑝̅ =
𝜎𝐵𝑄
2 − cov(𝑅𝑄̃, 𝐵𝑄̃)

𝜎𝑅𝑄
2 + 𝜎𝐵𝑄

2 − 2cov(𝑅𝑄̃, 𝐵𝑄̃)
∈ (0,1).                                                        (5) 

From here, it can be shown that more than half of the ordering quantity will be allocated to the primary 

supplier.  

Scenario 2: 𝝁𝑹𝑸 ≠ 𝝁𝑩𝑸 

Now, let us consider more general scenario with 𝜇𝑅𝑄 ≠ 𝜇𝐵𝑄, but obeying condition (4). In other words, 

it is always possible that the primary supplier fails to even supply the DLS-specified quantity and 

therefore, the buyer must not depend entirely only on the primary supplier rather simultaneously ask 

the backup supplier to supply the remaining quantity (although the buyer has not been dependent on the 

backup supplier so far). Condition (4) ensures this precise fact for which 𝑝∗(optimum 𝑝) ∈ (0,1).1 

 
1 The motivation for the risk-averse buyer to go for both primary and backup suppliers under routine sourcing has 

also been discussed by Sawik (2011), where he has demonstrated that for a risk-averse buyer, the impact of 

disruption risks is mitigated by diversification of the supply portfolio. Hence, 𝑝∗(optimum 𝑝) must lie between 0 

and 1. 
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Focusing only on the interior solution of the decision problem, the First Order Condition (F.O.C. 

hereafter) yields, 

𝜇𝑅𝑄 − 𝜇𝐵𝑄
(𝜕𝜎𝑌(. )/𝜕𝑝)𝑝=𝑝∗

= {𝑆(𝜎𝑌(. ), 𝜇𝑌(. ))}𝑝=𝑝∗                                                    (6) 

Wherein 

(𝜎𝑌(𝑝, 𝜎𝑅𝑄 , 𝜎𝐵𝑄, 𝜌))
𝑝=𝑝∗

(
𝜕𝜎𝑌
𝜕𝑝
)
𝑝=𝑝∗

= 𝑝∗𝜎𝑅𝑄
2 − (1 − 𝑝∗)𝜎𝐵𝑄

2 + (1 − 2𝑝∗)cov(𝑅𝑄̃, 𝐵𝑄̃)                                (7) 

It can easily be demonstrated that the Second-Order Condition for maximum always holds true due to 

(i) quasi-concavity of 𝑈(𝜎𝑌 , 𝜇𝑌), (ii) the risk-averse nature of the buyer, and (iii) convexity of 

(𝜕𝜎𝑌(. )/𝜕𝑝) in p (See Appendix-B for the explicit proof of the Second-Order Condition satisfaction). 

F.O.C. in (6) then defines the marginal condition where the slope of a (𝜎𝑌 , 𝜇𝑌)-indifference curve 

(denoted by the LHS) or the marginal willingness to pay (in terms of expected quantity foregone) for a 

reduction in the risk associated with the overall supply prospects of the two suppliers, is equal to the 

slope of the so-called “efficiency frontier” as sown in Fig. 3 (i.e., at point 0 of the diagram below). 

 

Fig. 3: Optimum choice under uncertainty   

If (𝜇𝑅𝑄 − 𝜇𝐵𝑄) > 0, (𝜕𝜎𝑌/𝜕𝑝) is always positive at the optimum. In other words, as the buyer is 

becoming more inclined towards the primary supplier for receiving the DLS-specified quantity, the 

overall risk i.e., the randomness associated with the final realised supply quantity increases at an 

increasing rate at 𝑝 = 𝑝∗. In other words, (
𝜕𝜎𝑦

𝜕𝑝
) > 0, at 𝑝 = 𝑝∗. At any solution to (7), the second-order 

derivative is negative, following the monotonicity and quasi-concavity properties of the preference 

function, risk-aversion nature of the buyer and the convexity of 𝜎𝑌(𝑝
∗). Therefore, (6) ensures the 

existence of a unique solution of 𝑝∗. 

Let us specifically take up the case of 𝜇𝑅𝑄 > 𝜇𝐵𝑄, in order to demonstrate under what conditions (in 

terms of relative sensitivity towards risks), a risk-averse buyer maintains the “solidarity network” by 

𝜇𝑌

𝜎𝑌

0
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keeping her trust upon the primary supplier than upon the backup supplier, even when it is highly 

possible for the primary supplier to fail in supplying the DLS-specified quantity. Additionally, we need 

to satisfy the criteria, for which the increases in standard deviations of 𝑅𝑄̃ and 𝐵𝑄̃ (such that their 

correlation is held fixed but covariance varies) would also increase the overall risks, we need the 

following criteria to be satisfied: 

(
𝜕𝜎𝑌(𝑝, 𝜌, 𝜎𝑅𝑄, 𝜎𝐵𝑄)𝑝=𝑝∗

𝜕𝜎𝑅𝑄
) > 0,                                                                       (8𝑎) 

and 

(
𝜕𝜎𝑌(𝑝, 𝜌, 𝜎𝑅𝑄, 𝜎𝐵𝑄)𝑝=𝑝∗

𝜕𝜎𝐵𝑄
) > 0                                                                       (8𝑏) 

Note that,  

(
𝜕𝜎𝑦
𝜕𝜎𝑅𝑄

)
𝑝=𝑝∗

=
2𝑝∗

𝜎𝑌
[𝑝∗𝜎𝑅𝑄 + (1 − 𝑝

∗)𝜌𝜎𝐵𝑄] 

While, 

(
𝜕𝜎𝑦

𝜕(1 − 𝑝)
)
𝑝=𝑝∗

=
2𝜎𝐵𝑄
𝜎𝑌

[𝑝∗𝜎𝑅𝑄 + (1 − 𝑝
∗)𝜌𝜎𝐵𝑄] 

Since, for the risk-averse buyer, approaching the backup supplier alone for any supply request itself is 

a risky venture and should magnify the higher overall riskiness of the total supply prospect, 

(
𝜕𝜎𝑦

𝜕(1−𝑝)
)
𝑝=𝑝∗

> 0, and therefore, condition (8a) i.e., (
𝜕𝜎𝑌(𝑝,𝜌,𝜎𝑅𝑄,𝜎𝐵𝑄)𝑝=𝑝∗

𝜕𝜎𝑅𝑄
) > 0, is automatically 

satisfied. 

Similarly, condition (8b) requires 

[(1 − 𝑝∗)𝜎𝐵𝑄 + 𝜌𝑝
∗𝜎𝑅𝑄] > 0     (8c) 

– to hold at the optimum. 

Thus, none of these conditions pre-imposes any criterion on the sign of the correlation-coefficient, ρ. 

For instance, even with ρ ∈ (−1,0), condition (8c) is automatically satisfied as long as 𝜌 >

−[
(1−𝑝∗)𝜎𝐵𝑄

𝑝∗𝜎𝑅𝑄
] holds. 
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Below we define two concepts used in the study further. This definition will lay foundation before 

proceeding to the comparative static analyses. 

Let us define 𝜀𝜎(𝜇𝑌 , 𝜎𝑌) as the elasticity of the marginal rate of substitution between risk and return 

w.r.t. the standard deviation of the final realised supply quantity obtained by the buyer, ceteris paribus. 

Algebraically,  

𝜀𝜎(𝜇𝑌 , 𝜎𝑌) = [{𝜕𝑆(𝜎𝑌 , 𝜇𝑌) 𝜕𝜎𝑌⁄ }{𝜎𝑌 𝑆(𝜎𝑌 , 𝜇𝑌)⁄ }]     (D2) 

Similarly, we denote 𝜀𝜇(𝜎𝑌 , 𝜇𝑌) as the elasticity of the marginal rate of substitution between risk and 

return w.r.t. the expected value of the final realised supply quantity obtained by the buyer, ceteris 

paribus. Algebraically,  

𝜀𝜇(𝜇𝑌 , 𝜎𝑌) = [{𝜕𝑆(𝜎𝑌 , 𝜇𝑌) 𝜕𝜇𝑌⁄ }{𝜇𝑌 𝑆(𝜎𝑌 , 𝜇𝑌)⁄ }]      (D3) 

COMPARATIVE STATICS  

Changes in the distribution of uncertain net quantity obtainable from the 

primary supplier 

In order to analyse the changes in the distribution of the random net quantity receivable from the primary 

supplier, which is due to the random deviation of the DLS specified revised quantity due to resource 

uncertainty induced random supply prospect of the primary supplier. To be precise, this sub-section 

explores how the buyer’s relative decision of sourcing from the primary supplier (vis-à-vis the backup 

supplier) at the margin is affected respectively  

(a) for a perturbation in the standard deviation of the random net quantity receivable from 

the primary supplier (𝜎𝑅𝑄), ceteris paribus;  

and  

(b) for a perturbation in the mean of the random net quantity receivable from the primary 

supplier (𝜇𝑅𝑄), ceteris paribus. 

In this comparative static analysis, we have derived the propositions using the implicit partial 

differentiation technique following the works of Eichner and Wagener (2009, 2011, 2012), Broll & 

Mukherjee, (2017), Broll et al. (2020), Mukherjee et al. (2020). The implicit partial differentiation 

technique has been used to trace the partial impact of parametric perturbation (ceteris paribus) to 

analyze only the comparative static response of the endogenous decision variable (the risk perception 

of the buyer, 𝑝) around its optimum (maximum) owing to the changes in the distributions of 𝑅𝑄̃ and 
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𝐵𝑄̃ and the dependence structure between them i.e., in cov(𝑅𝑄̃, 𝐵𝑄̃). Consequently, we are using the 

implicit partial differentiation technique because of: (a) the involvement of more than one parameter 

like the endogenous variable (p) and the other parameters (𝜌, 𝜇𝑅𝑄, 𝜇𝐵𝑄, 𝜎𝑅𝑄, 𝜎𝐵𝑄); (b) the F.O.C. 

characterizes the equation as being a function of (𝑝, 𝜌, 𝜇𝑅𝑄 , 𝜇𝐵𝑄, 𝜎𝑅𝑄, 𝜎𝐵𝑄), from where it is impossible 

to isolate 𝑝, and express it neatly in terms of any one of the moments (𝜇𝑅𝑄, 𝜇𝐵𝑄, 𝜎𝑅𝑄 , 𝜎𝐵𝑄). On the top 

of that, all our comparative static effects are expressed in terms of relative trade-offs between risks and 

returns, likewise in Eichner & Wagener (2009; 2011); Mukherjee et al. (2020). 

Our first comparative static result traces out the impact of a perturbation in the standard deviation of 

𝑅𝑄̃ on the optimum responsibility to be allocated to the primary supplier. As argued above, the risk-

averse buyer in our decision problem always maintains the “solidarity network” with her trust upon the 

primary supplier (i.e., 𝜇𝑅𝑄 > 𝜇𝐵𝑄). Then, 

Proposition 1(a). The buyer will always reduce the optimal dependence upon the primary supplier (i.e., 

lower 𝑝∗) in response to an increase in the standard deviation of the final realizations of the supply 

from the primary supplier, if and only if the elasticity of risk aversion w.r.t the standard deviation of 𝑌̃ 

is greater than −1, ceteris paribus. 

Proof. See Appendix B. 

A small rise in 𝜎𝑅𝑄 results in lower revelation to the risk from primary supplier (and, thus, to a lower 

𝜇𝑌), provided the slope of the indifference curve becomes more sensitive to an increase in 𝜎𝑅𝑄 than the 

slope of the efficiency frontier (which, at the optimum, is locally proportional to the value of risk 

aversion, 𝑆). Algebraically, 

𝑆𝜎
𝜕𝜎𝑌
𝜕𝜎𝑅𝑄

> −

(

 
 𝑆

(
𝜕𝜎𝑌(. )
𝜕𝑝

)
𝑝=𝑝∗)

 
 
×
𝜕2𝜎𝑌(. )𝑝=𝑝∗

𝜕𝑝𝜕𝜎𝑅𝑄
. 

In order to ensure the reliability of results, we consider the “extreme case” where 𝜎𝐵𝑄 = 0 =

Cov(𝑅𝑄̃, 𝐵𝑄̃) i.e., the backup supplier will certainly supply, which directly yields 𝜀𝜎 > −1. In other 

words, the degree of risk aversion must not significantly worsen with increase in riskiness of the supply 

prospect from the primary supplier. 

Under our four assumptions regarding the buyer’s preference function mentioned earlier, risk aversion 

behaviour derived in Proposition 1(a) in terms of the relative trade-off between risk and return (i.e. the 

elasticity condition) can be transformed to the properties of vNM expected utility representation. 
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Eichner & Wagener (2009) showed that for any 𝛽 > 1, the sufficiency condition, 𝜀𝜎 > 1 − 𝛽, is 

equivalent to the fact that the corresponding “index of relative prudence” (= −𝑈𝜇𝜎 𝑈𝜇𝜇⁄ ) is smaller 

than 𝛽 in the EU-framework. Hence, putting 𝛽 = 2, Proposition 1(a) states that the index of relative 

prudence is smaller than 2 for a risk-averse buyer. This result also resembles Hadar & Seo (1990) for 

independent risks and Meyer & Ormiston (1994) for interconnected risk cases. 

Moving on to evaluating the impact of a small increase in 𝜇𝑅𝑄, ceteris paribus, we can state the 

following proposition. 

Proposition 1(b). The buyer will always increase the optimal dependence upon the primary supplier 

(i.e., higher 𝑝∗) in response to the mean of the final realizations of supply from the primary supplier, if 

and only if the elasticity of risk aversion with respect to the mean of 𝑌̃ is less than 1, ceteris paribus. 

Proof. See Appendix B. 

Increasing 𝜇𝑅𝑄 will lead to a higher dependence on the primary supplier, implying a higher overall risk, 

𝜎𝑌, provided the consequential change in the slope of the indifference curve (which is proportional to 

𝑆𝜇) is smaller than the subsequent change in the slope of the efficiency frontier (locally proportional to 

𝑆) i.e., 

𝑆𝜇𝑝
∗ < 𝑆 (𝜇𝑅𝑄 − 𝜇𝐵𝑄)⁄  

This will always hold whenever the degree of risk aversion does not increase intensively in 𝜇𝑌, w.r.t. 

its initial value. 

Eichner & Wagener (2009) shows that 𝜀𝜇 < 1 is equivalent to stating that the “index of relative risk 

aversion” being smaller than one in an EU-framework, provided the four assumptions outlined 

previously are satisfied. 

 

 

Changes in the distribution of uncertain net quantity obtainable from the 

backup supplier 

Let us now consider the fluctuations in the distribution of the random net quantity receivable from the 

backup supplier, which is due to the random deviation of the DLS specified order quantity due to the 

backup supplier's random supply prospect. This sub-section explores how the buyer’s relative decision 
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of sourcing from the primary supplier (vis-à-vis the backup supplier) at the margin is affected 

respectively:  

(a) for a perturbation in the standard deviation of the random net quantity receivable from the 

backup supplier (𝜎𝐵𝑄), ceteris paribus;  

and, 

(b) for a perturbation in the mean of the random net quantity receivable from the backup 

supplier (𝜇𝐵𝑄), ceteris paribus. 

Given the above, let us first explore (a) i.e., the impact of a small increase in 𝜎𝐵𝑄, ceteris paribus. 

Proposition 2a. The buyer will increase the optimal dependence upon the risky primary supplier (i.e., 

higher 𝑝∗) in response to an increase in the standard deviation of the final realizations of the supply 

from the lesser risky backup supplier, if and only if the elasticity of risk aversion with respect to the 

standard deviation of 𝑌̃ is less than −1, ceteris paribus. 

Proof. See Appendix B. 

The condition 𝜀𝜎(𝜎𝑌 , 𝜇𝑌) < −1 necessitates 𝑆𝜎 < 0. Given that we have reasonably assumed the 

buyer’s preference 𝑈(. ) is monotonic and strictly quasi-concave, as Eichner (2008) showed, 𝑆. 𝑆𝜇 +

𝑆𝜎 > 0 holds true. Therefore, 𝑆𝜎 < 0 implies 𝑆𝜇  must be strictly positive. 𝑆𝜇 > 0 indicates that the 

buyer’s willingness to pay for a reduction in risk increases in 𝜇𝑌. This signifies the Arrow-Pratt notion 

of increasing absolute risk aversion (IARA). Hence, IARA is also a necessary condition for the result 

stated in Proposition 2(a). 

Looking back at the above proof of Proposition 2(a), it is easy to infer that the buyer would increase the 

optimal dependence upon the risky primary supplier (i.e., lower 𝑝∗) in response to an increase in 𝜎𝐵𝑄, 

if and only if 𝜀𝜎(𝜎𝑌 , 𝜇𝑌) → −∞.2 

Now let us move to trace out the impact of a small increase in 𝜇𝐵𝑄 on optimum 𝑝. 

Proposition 2(b). The buyer will always decrease the optimal dependence upon the primary supplier 

(i.e., lower 𝑝∗) in response to the mean of the final realizations of supply from the primary supplier, 

ceteris paribus, if and only if preferences follow IARA. 

Proof. See Appendix B. 

 
2 Eichner & Wagener (2011) discussed in detail about this. However, since, in the present context, this seems to 

be pointed towards an improbable result, we refrain to discuss in detail about this. 
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In other words, the risk-averse buyer will always reduce dependence upon the riskier primary supplier 

if the backup supplier is expected to fulfil her requirement, provided the buyer’s preferences satisfy 

IARA. 

Optimum portfolio choice owing to changes in the dependence structure 

Proposition 3. If 𝑝∗ > (<)1 2⁄ , the buyer will increase (reduce) her dependence on the supply of 

required quantity from the primary supplier (which is a vulnerable option), in response to the increase 

in the concordance between these two sources of risks, if and only if the elasticity of risk aversion w.r.t. 

the standard deviation of 𝑌̃ is less than (greater than) 1. 

Proof. See Appendix B. 

To understand the implication of this proposition, let us coin the famous terminology of “variance-

vulnerability” (or “variance-affinity”) according to Eichner & Wagener (2003; 2009; 2011; 2012). Here 

the risk-averse buyer can be diagnosed as variance-vulnerable (variance-affine) if she reduces (or 

increases) her optimal dependence on the riskier bait of receiving the required quantity from the primary 

supplier, owing to an increase in an erraticism in 𝑌̃, which is the result of the increase in the concordance 

between the two sources of risks (since (𝜕𝜎𝑌 𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)⁄ ) > 0). 

Whenever 𝑝∗ > (<) 1 2⁄ , an increase (a decrease) in 𝑝 would induce the buyer to opt for more 

inclination towards one of the two supply sources. Therefore, Proposition 3 tells us under what 

condition(s) the buyer responds to the increased concordance between the two sources of risks by 

choosing more inclination towards one of the volatile supply sources. 

As mentioned earlier, Eichner & Wagener (2009) demonstrated that 𝜀𝜎 > 1 − 𝛽 is equivalent to the 

“index of relative prudence” being smaller than 𝛽 in the EU-approach. Hence, putting 𝛽 = 0, we obtain 

the results that if 𝑝∗ > (<)1 2⁄  and for positive (negative) “index of relative prudence”, 

(𝜕𝜎𝑌 𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)⁄ ) > (<)0, which is similar in spirit to Epstein & Tanny (1980), although their 

contribution was only true for non-positively correlated asset returns, wherein our results hold for both 

positively and non-positively correlated random variables. 

According to Tomlin (2009), for a risk-averse buyer, as correlation between the riskiness in supply 

requirements from the primary and backup suppliers increases, the dual-sourcing strategy would be 

more preferred with a greater degree of risk-aversion (in our case, with 𝑝∗ > 0.5). This is because a 

risk-averse buyer would be more concerned about meeting the demand and would be more concerned 

about recuperating the remaining supply from the backup supplier. Hence, in such context of 𝑝∗ > 0.5, 
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the buyer would be reluctant to rely more on the backup supplier and rather would be inclined more 

towards the primary supplier. This is exactly what we have demonstrated in Proposition 3. 

To address this optimal portfolio choice decision of a buyer to get the required quantity from suppliers 

under lead time and capacity uncertainties, we have used an experimental setup to generate data using 

the DLS method. Subsequently, we analysed the experimental data to compare with the mean-variance 

decision-theoretic modelling approach to understand the buyer's risk preferences and optimum 

allocation of supply portfolio. Specifically, our experiment results demonstrate the nature of risk 

aversion behaviour of the decision-maker that conforms with our Propositions (1) through (3). 

However, for the given respondents, the results only demonstrate positive correlations between two 

sources of risk under supply disruptions due to catastrophes. At the same time, our analytical framework 

captures more generic and universal results, remaining valid for positively or negatively correlated 

supply risks. 

EXPERIMENTAL SETUP AND ANALYSIS 

To test our model, we have conducted four (repetitive) experiments to understand potential buyers' risk 

attitude in choosing between a primary and a backup supplier. For conducting the experiments, we 

contacted the respondents willing to participate in the experiment. In the first round, we aimed to find 

respondents with adequate experience in handling manufacturing firms' routine sourcing activities.  

In the last quarter of 2018, we contacted 669 respondents engaged across 40 manufacturing firms in 

India. We have selectively considered those 40 manufacturing (buying) firms who used supply rating 

(or vendor rating) scorecards to classify their suppliers. The list of suppliers rated higher than the 

minimum desired value is treated as qualifiers. Among these qualifying suppliers, the best graded 

supplier is classified as the primary supplier, and the next best one is classified as the backup supplier. 

Thus, to be consistent with our analytical setting we have considered two suppliers throughout the 

experiments. Furthermore, to measure potential buyers' risk attitude while going for optimal portfolio 

choices, we provide them various scenarios, wherein for each scenario, the resource endowment (i.e., 

lead time and capacity uncertainties) is different for each of the two suppliers. We sent a simple 

questionnaire having a set of two questions, namely:  

•  Professional details: Your job title; your organizational function; years of experience in 

purchasing; industry type. 

•  Experience details: Have you ever experienced supply disruption related issues while engaged 

in purchasing activities i.e., when your suppliers were not able to supply the required quantity 

on time because of disruption at their end? If yes, what percentage of times?   

After shortlisting the respondents i.e., based on experience (more than 5 years) and handling supply 

disruption (more than 20%), the final number of respondents narrowed down to 300, representing 44.8% 
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of the contacted respondents. Appendix D, Table D1 provides a detailed break-down of the shortlisted 

respondents sample. Approximately 72.7% of respondents were managers, mainly involved in 

purchasing (59%) and handling supply disruption issues for years. These respondents were having an 

average of 12.5 years of experience and are likely to possess an overarching, boundary-spanning view 

of their firms’ purchasing activities.  

EXPERIMENTAL ANALYSIS  

Step 1: Select purchase managers as respondents based on their purchasing experience. For this 

experiment, we have selected 300 purchase managers with ten years of experience. At least 

20% of the time, they have handled supply disruption during their purchasing of raw materials 

(more of a homogeneous sample in terms of experience).   

Step 2:  The respondents were grouped randomly into 30 groups, each comprising of 10 respondents. 

Here, we coded each group and its members for our further analysis. Meanwhile, we provided 

a detailed explanation of the DLS method to all the respondents. After sensitization, we put the 

idea of an industrial set-up where the same catastrophe (like flood, earthquake, and Tsunami) 

could happen and the portfolio choice of allocating your supply between the primary and the 

backup suppliers becomes realistic, rather than depending  on single source of supply. 

Step 3: Design survey template by controlling the effective capacity and remaining supply time as the 

manipulation variables to obtain the target quantity (using DLS method as proxy) to be supplied 

by both the suppliers individually, as treatment variables. Based on which perceived risk, as a 

direct measure, of the respondent were measured (Green, Tull, & Albaum, 2009). Moreover, it 

has been observed that such manipulation did not produce changes in measures of related but 

different constructs. 

Step 4: Create two sets of sequential treatments each having 10 scenarios for primary (Appendix D, 

Table A2) and backup (Appendix D, Table A3) suppliers, respectively.  

Step 5: In Experiment 1, we ask each of the respondents from each of the groups to estimate the 

perceived probability (dependent variable as a direct measure) of supplying the target quantity 

(DLS based) by both the suppliers, this is based on the treatment variables. Subsequently, as a 

part of blocking the respondents’biasness, the Randomized Complete Block Design (RCBD) 

is performed (Following Montgomery, 2001) during the experimental data collection 

procedure (see Analysis of RCBD in appendix D, Table-D4 and -D5). where each group is 

considered as a block and DLS based target quantities are given as treatments to collect the 

data. Next, we obtain the random net realization i.e., by multiplying perceived probability with 

the DLS target for each respondent. 
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Step 6: Now we have 10 responses from each group based on given treatments, for both RQ and BQ.  

Next, we calculate the mean and standard deviation of the random net realization for each 

group.  

Thus, based on these 10 observations of random net realization values of each group, we calculate the 

two moments for the primary (𝜇𝑅𝑄, 𝜎𝑅𝑄) and backup suppliers (𝜇𝐵𝑄, 𝜎𝐵𝑄) in Experiment 1. 

Step 7:  In experiment 2, the mean and standard deviations obtained in Step 6 were now ranked on a 

scale of 1 to 10 by the respondents. Having hidden the identity, the mean and standard deviation 

were the only source for the ranking activity.  

Step 8: The summative value of ranks, for each of the choices is calculated 

Step 9: The minimum rank sum for each group for both RQ and BQ was identified and the 

corresponding probability of making the optimal choice is also calculated i.e., Minimum [(1-

(rank sum/100)), …)], probability of optimal choice = Minimum [(1-(14/100)), (1- (22/100)), 

…, (1-(73/100))] which is 0.86.  

Step 10: We obtain 30 optimal choices (p*) for each of RQ and BQ and arrange the same in descending 

order of p* value and plot the same against corresponding optimal values of μ and σ across 

groups in a μ – σ plane as reported in Fig. 4.  

Experiment 2 enables us to identify the intra-group probability of selecting RQ optimally (i.e., 𝑝∗). 

Choosing a backup supplier is just a complementary event.  

Fig. 4, where the vertical-axis measures mean (i.e., return) and the horizontal-axis measures the standard 

deviation (i.e., risk), demonstrates the decision-maker’s choice to take more risk (i.e., higher S.D.) if 

and only if, she is compensated with even higher return (i.e., her willingness-to-pay for more return 

increases with increase in risk). But this locus is strictly quasi-concave implying the increase in 

willingness-to-pay at a decreasing rate, with increase in risk. This reflects the risk vulnerability3 of 

preferences and appropriateness of risk aversion behaviour as suggested by Lajeri-Chaherli (2002) and 

Eichner (2008). Hence, the premium required for uncertainties on account of the supply prospects of 

both types of suppliers is certainly higher than that required to pay if the backup supplier is trustworthy 

i.e., supplying on time. Furthermore, from Figure 3 it is evident that all the optimal choices (i.e., 

corresponding 𝑝∗values) lie on a positively sloped strictly quasi-concave locus, which establishes the 

fact that group 𝑖 (𝑖 = 1, … ,30) is willing to give up more than the (𝑖 + 1)th group in terms of expected 

return for  reduction in risk. 

 
3 Please see Lajeri-Chaherli (2002, 27, Figure 4, pp. 55) and Eichner (2008, 54(3), Figure 1, pp. 590) and the 

explanation also given in Appendix B. 
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Fig. 4: Optimal choices across groups for selecting RQ and BQ based on their offerings  

Step 11: In experiment 3, considering the 30 optimal choices (𝜇𝑅𝑄
∗ ) individually (for RQ and BQ 

separately) we divide the mean optimal choices into four quartiles. Further, we choose the 

range of second and third quartile to generate new data whereas we maintain the original 

range of standard deviation i.e. we compress the mean w.r.t the standard deviation. 

Subsequently, we follow Step 7 through 9 to obtain the new optimal choice. Figure 4 reports 

the indifference curve of relative change in standard deviation w.r.t their means for both RQ 

and BQ, based on similar exercise. 

In experiment 3, we try to find the intra-group optimal probability (𝑝∗) of going to RQ when the relative 

change in the standard deviation happened w.r.t their means. We perform this by using the new dataset 

generated by compressing the mean w.r.t. the standard deviation. Subsequently, we plot the 

corresponding (𝜇𝑅𝑄) and 𝜎𝑅𝑄 against the newly obtained 𝑝∗. The same procedure (as followed in step 

7 through 9) is repeated for tracing out the change in 𝑝∗ owing to changes only in (𝜇𝐵𝑄) and (𝜎𝐵𝑄). 

Lastly, based on the selection of 30 optimal primary choices and 30 corresponding secondary choices, 

we find the covariance of the two optimal choices in each set. 

Fig. 5 reports the horizontal movement of buyers’ preferences keeping the vertical axis almost constant 

(i.e., small change in return), w.r.t. significant variation in risk. This is a scenario of relative increase in 

risk (w.r.t. return) in panels I and II, depicting increased steepness in the slope (i.e. higher “risk 

vulnerability” of the buyer) of the new indifference-curve present in the (μ − σ) plane. This reflects 

that the buyer will be more vulnerable towards choosing between the relative increase in risk w.r.t. 

return and the optimal choice at a fixed return in case of RQ. Therefore, the buyer will prefer to choose 

less risky return than optimal return under high risk conditions. Similar observations were also drawn 

in case of BQ. Moreover, these observations capture the analogous comparative static response as 

reported by Eichner (2008), also the results of this study is reported in Appendix C.  
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Additionally, Fig. 5 (in Panels I and II) explains the impacts on p* owing to the relative increase in 

standard deviations w.r.t. the means for RQ and BQ, respectively. As depicted in Figure 4, when the 

standard deviations of the realized quantities supplied for the primary and backup suppliers are 

increasing, w.r.t. their means, the loci of the newer choices become steeper than the original loci of 

optimal choices. These outcomes bolster the predictions as derived in propositions 1(a) and 2(a) 

together. 

 

Fig. 5: Indifference curves representing the relative change in 

standard deviations w.r.t. their means for RQ and BQ 

 

Step 12: In experiment 4, we compress the standard deviation with respect to mean following a similar 

procedure as to Step 11. Fig. 6 reports the indifference curve of relative change in means with 

respect to their standard deviations for both the suppliers. 

Figure 5 reflects the scenario of relative increase in mean (w.r.t. risk) in panels I and II, depicting the 

reduction in the slope of the new indifference curve at the new p* corresponding to its optimal  μ and σ 

choices, which reproduces  similar comparative static response to the one captured in Eichner (2008) 

also stated in Appendix C. 

Figure 5 (in Panels I and II) explains the changes in p* following the relative increase in mean w.r.t. 

standard deviation for RQ and BQ, respectively. As depicted in Figure 5, when the expectations of the 

realised quantities supplied by the primary and backup suppliers are increasing, w.r.t. their standard 

deviations, the loci of the new optimal choices become flatter than the loci of the initial optimal choices. 

These outcomes, therefore, strengthen the predictions derived in propositions 1(b) and 2(b) together. 
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Fig. 6: Indifference curves representing the relative change in 

means w.r.t. their standard deviations of supply for RQ and BQ 

After this, we also compute the correlation between these two sources of risk (𝜎𝑅𝑄 𝑎𝑛𝑑 𝜎𝐵𝑄) to check 

whether both sources of risks are indeed positively correlated among the 30 groups of respondents. The 

correlation coefficient is 0.86 at a 5% level of significance, indicating strong positive correlation, under 

the optimal choices. Albeit these experimental results only demonstrate positive correlations between 

two sources of risk under supply disruptions due to catastrophe, our analytical framework in the 

previous section yields more generic and universal results. Hence, our analytical framework remains 

robust for positively or negatively correlated supply risks. Therefore, any group of respondents would 

be categorized as variance-vulnerable (variance-affine) if that group reduces (increases) its optimal 

dependence on the riskier bait of receiving the required quantity from the primary supplier with 

increased concordance between these two sources of risks. 

ECONOMETRIC ESTIMATION 

So far, we have done experimental study to understand the risk preferences across 30 groups (using 

RCBD), but did not consider the intragroup data for all respondents (30 groups of 10 respondents each), 

at different points of the entire Marginal Rate of Substitution (i.e., for the entire distribution of 𝑆). We 

assume the following flexible parametric buyer’s preferences that nest all possible risk preference 

structures: 

𝑈 = 𝑈(𝜎𝑌 , 𝜇𝑌) = 𝜇𝑌
𝑎 − 𝜎𝑌

𝑏        (15) 

Where 𝜇𝑌 and 𝜎𝑌 are already defined in Section 3, while 𝑎 and 𝑏 are parameters constituting risk-

preferences and we assume that 𝑏 > 0, for a risk-averse decision-maker. One can see Broll & 

Mukherjee (2017), Broll et al. (2020); Mukherjee et al. (2020) in this context. 

The MRS is now given by 𝑆(𝜎𝑌 , 𝜇𝑌) = −
𝑈𝜎(𝜎𝑌,𝜇𝑌)

𝑈𝜇(𝜎𝑌,𝜇𝑌)
=
𝑏

𝑎
𝜇𝑌
1−𝑎𝜎𝑌

𝑏−1. 
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Focusing only on the interior solution of the decision problem, the first order condition (F.O.C. 

hereafter) yields, 

𝜇𝑅𝑄 − 𝜇𝐵𝑄
(𝜕𝜎𝑌(𝑝∗)/𝜕𝑝)

= 𝑆(𝜎𝑌(𝑝
∗), 𝜇𝑌(𝑝

∗)) =
𝑏

𝑎
𝜇𝑌
1−𝑎𝜎𝑌

𝑏−1                                                      (16) 

Therefore, it is easy to infer 

ln 𝑆 = ln
𝑏

𝑎
+ (1 − 𝑎) ln𝜇𝑌 + (𝑏 − 1) ln 𝜎𝑌      (17) 

Where 𝜀𝜎(𝜇𝑌 , 𝜎𝑌) = (𝑏 − 1) and 𝜀𝜇(𝜇𝑌 , 𝜎𝑌) = (1 − 𝑎).  

To quantitatively test our predictions, we use (17) as our unique structurally estimable equation. 

Secondly, to capture the differences across respondents in terms of the structure of their risk preferences, 

we need to generate the coefficient estimates at different points of the entire risk distribution (i.e., of 𝑆). 

To meet these two objectives, we utilize the quantile regression method (Koenker, 2005). This is an 

extensively used estimation technique used to investigate the relation between the dependent variable 

and a set of explanatory variables in specific quantiles. 

Standard Ordinary Least Square techniques focus on estimating the average response of the dependent 

variable to the changes in values of the explanatory variables. However, in the present context, we need 

to estimate the coefficient of the explanatory variables at different points of distribution of the dependent 

variable. Thus, we have used the quantile regression technique, which can give us separate coefficient 

estimates (the risk aversion elasticities) for different quantiles of the dependent variable (participants’ 

attitude towards risks). Another advantage of this method is its robustness concerning the outlier values 

of the dependent variable. Once the coefficients are estimated, bootstrap replications are used to 

generate standard errors to avoid imposing distributional assumptions, which is also an advantage of 

using this method. 

Table 2A reports the estimation results. Subsequently, the F-tests reported in Table 2B shows that most 

of the coefficients significantly differ across consecutive quantiles, rationalizing the use of quantile 

regression in the present context.4 The risk appetite of the participants shows the following patterns. 

Table 2A: Regression Results 

Dependent variable: 

𝐥𝐧 𝑺 
10% 20% 30% 40% 50% 60% 70% 80% 90% 

 
4 There exists significant literature that have used quantile regression in the context of “small” sample comprising 

only 113 observations or less. One such example is of Gomanee et al. (2005).  
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ln 𝜇𝑌 

-0.161 -0.225* -0.201** -0.438** -0.378** -0.265** -0.345** -0.231** -0.177* 

(0.185) (0.109) (0.084) (0.061) (0.056) (0.051) (0.072) (0.084) (0.101) 

ln 𝜎𝑌 

0.385+ 0.187* 0.246* 0.308** 0.257** 0.387* 0.417** 0.279* 0.128+ 

(0.149) (0.102) (0.094) (0.077) (0.082) (0.091) (0.079) (0.109) (0.129) 

ln
𝑏

𝑎
 

-2.936** -1.531* 0.107* -1.916** -1.658** -1.368** -1.003** -0.774* 0.688** 

(0.399) (0.229) (0.193) (0.160) (0.150) (0.201) (0.186) (0.078) (0.048) 

Observations 300 300 300 300 300 300 300 300 300 

Pseudo 𝑅2 0.093 0.086 0.092 0.098 0.103 0.120 0.157 0.203 0.267 

Note: **, *, + are respectively denoting levels of statistical significance at 1%, 5% and 10% levels; 

standard errors are in parentheses. 

 

We have performed a quantile regression for 300 cross-sectional observations by collecting the data for 

all the groups without any time-effect. It is widely known that R-square is generally low in cross-

sectional data as compared to time-series data. Wooldridge (2002) also supports the same stating that 

in any regression using cross-sectional data, one should rely more on the significance of the individual 

coefficients (likewise we have found in our regression results) rather than the magnitude and 

significance of R-square. Hence, we are emphasizing more on the significance of individual 

coefficients. 

Starting with the intercept term, we can see that 𝛽1 i.e., ln
𝑏

𝑎
 is statistically significant for all quantiles. 

Consequently, the antilog of this term is also non-zero across all the quantiles. Therefore, none of the 

participants exhibit risk neutrality. After that looking at the coefficient of ln𝜎𝑌 (which corresponds to 

𝜀𝜎, which is also equal to 𝑏 − 1) is statistically significant across all quantiles. However, given that this 

term is positive across all the quantiles, 𝑏 is significantly greater than 1 or 𝑆𝜎 > 0, which implies all 

participants in these quantiles are “variance vulnerable”. On the other hand, since 𝜀𝜎 is greater than -1 

across all the quantiles, we can infer (i) 𝑏 > 0, implying risk aversion, and (ii) 
𝜕𝑝∗

𝜕𝜎𝑅𝑄
< 0 i.e.,  the 

participants in these quantiles reduced their optimal dependence upon the primary supplier (i.e., lower 

𝑝∗) in response to the greater uncertainty in its supply prospects. This is directly following Proposition 

1(a). In fact, since (𝑏 − 1) is less than 1 in all cases, we can state that 𝑝∗ is more likely to be less than 

½ and the participants are going to exhibit negative relative prudence w.r.t. the increase in the 

concordance between the two sources of risks. This is directly following our theoretical prediction 

stated in Proposition 3. Furthermore, because 
𝑏

𝑎
 is less than 1 in all quantiles barring the 30th and 90th 
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quantiles only, the preference structure for these participants are not characterized by constant relative 

risk aversion (CRRA). 

On the other hand, the coefficient of ln 𝜇𝑌, which is related to (1 − 𝑎), is statistically significant from 

the 20th quantile up to the 90th quantile of the risk distribution. However, the point to be noted that (1 −

𝑎), or equivalently, 𝜀𝜇 , is negative across all the quantiles (with statistical significance from the 20th 

quantile) where 𝑏 > 1 (i.e. 𝑆𝜎 > 0). Given the fact that 𝑆𝜇 = (𝑏 𝑎⁄ )(1 − 𝑎)(𝜎𝑌
𝑏−1 𝜇𝑌

𝑎⁄ ) < (>)0 with 

𝑎 > (<)1, we can safely infer that the participants falling in these quantiles are exhibiting “decreasing 

absolute risk aversion” or DARA (with 𝑎 > 1) and simultaneously “variance vulnerability” with 𝑏 >

1. At the same time, since, 𝜀𝜇 = (1 − 𝑎) < 1, we also have 
𝜕𝑝∗

𝜕𝜇𝑅𝑄
> 0. This has been reported in 

Proposition 1(b). 

Table 2B: F-test for equality of coefficients across different quantiles 

Dependent 

Variable S 

20% 30% 40% 50% 60% 70% 80% 90% 

ln μ ln σ ln μ ln σ ln μ ln σ ln μ ln σ ln μ ln σ ln μ ln σ ln μ ln σ ln μ ln σ 

10%  5.58** 3.05* 

              

20% 

  

1.97* 0.09 

            

30% 

    

0.16 7.83** 

          

40% 

      

2.14* 0.23 

        

50% 

        

8.35** 0.08 

      

60% 

          

0.59 0.78 

    

70% 

            

4.66** 0.79 

  

80% 

              

0.06 5.15** 

Thus, this study provides an understanding of the buyer’s portfolio choice under uncertainties of supply. 

For example, based on experiment 1, mean and standard deviation of primary and backup supplier’s 

supply quantity are (147 ± 99) and (68 ± 44), respectively (see Appendix D). Now considering the 

quantile regression output for the case of 50% where ln
𝑏

𝑎
= −1.658, (1-a) i.e., coefficient of ln 𝜇𝑌 is 

−0.378 and (𝑏 − 1) i.e., coefficient of ln 𝜎𝑌 is 0.257. Based on these figures the computed value of ln 𝑆 

using equation (17) is −2.22. These observations imply that under no catastrophe, when the buyer is   

confronting the risk emanated from the uncertain supply-prospect of the primary supplier only, the 

buyer would have to be compensated by 15.72% more for him to diversify between both sources of 
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supply. In other words, the buyer would demand 15.72% more from the backup supplier, albeit the total 

requirement is of 300 units. 

CONCLUSIONS  

Under supply disruption due to catastrophe, when the primary supplier exhausts a certain proportion of 

her resources as well as some of her stipulated time to supply, the risk-averse buyer would prefer to 

split the order by giving the responsibility of supplying certain proportion of the remaining order to 

some backup supplier. However, maintaining a primary supplier and getting the desired quantity from 

backup suppliers under uncertainty of supply is challenging for any resource-dependent buyer. This 

task is understood to be complex, considering the stipulation of time (Snyder et al., 2016), capacity of 

the supplier disrupted by the catastrophe like global pandemic (or due to close geographical proximity 

to the site of catastrophe) and maintaining a long-term relationship with the primary supplier at the same 

time by revising the targets for both the suppliers. This revision is to aid them meet the newly set targets. 

This study uses the popular DLS method to split the orders.  

 

Because disrupted cricket matches provide a strong parallel with disrupted supplies in supply chains, 

we thought it fit to draw upon the nuances of the method of DLS, which is applied in the cricket matches 

to revised the targets for the competing teams, to revise supply targets for the primary and back-up 

suppliers. But, whereas the DLS method relies on the data available in hundreds of previously 

conducted, disrupted international cricket matches to estimate the model parameters, there are no such 

available past data in the context of supply chains. 

 

Subsequently, a two-moment model is considered to analyse the comparative static responses of 

perturbation under each of the stochastic parameters in the buyer’s portfolio of risky options. This is 

based on his/her relative trade-offs between risks and returns. The key determinants for the risk-

preferences of buyer’s choice turn out to be elasticities of risk aversion w.r.t. the mean and the standard 

deviation of the total random supply of both the suppliers taken together.  

 

The two moments approach yields all the comparative static responses in terms of the relative trade-

offs between returns and risks, without taking recourse to the higher-order or cross-derivatives of the 

utility functions and their composites. This is the primary advantage over the EU framework. We further 

undertake an experiment using the RCBD, considering 300 respondents to exemplify and test the 

robustness of the theoretical predictions across 30 different groups (blocks) of respondents. We 

analysed the data using a two-prong approach to study the risk preference of buyer at both the group 

level and the individual level. The risk preference of buyers at group level is analysed considering the 

supply prospect risk of timely supply, associated with both the suppliers. It is observed that the buyers 
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need to be compensated more for managing the risk for both primary and backup suppliers than in case 

of primary supplier only. Thus, the buyer’s perceived risk aversion towards uncertain supply prospects 

of the primary supplier is never enhanced considering unaltered precautionary premium even when the 

buyer diversifies the supply portfolio between the primary supplier and backup supplier, given the fact 

that the backup supplier  is also disrupted by the catastrophe. Considering propositions 1(a) and 2(a) 

together, the experimental outcome (experiment 2) bolsters the observations of Guo et al. (2016) that 

with unexpected enhancement in the riskiness of supply prospects w.r.t. returns for each of the two 

suppliers, the optimal choice of the buyers always inclines towards the relatively less risky supplier. 

However, with increase in the expectations of high returns w.r.t. risks, the buyers would optimally hinge 

over the relatively riskier supplier. These outcomes strengthen the predictions derived in propositions 

1(b) and 2(b) together. 

 

Although our analytical modelling framework suggests more generic and universal results for positively 

or negatively correlated risks associated with uncertain supply-prospects of the disrupted primary and 

backup suppliers, for the given sample, our experimental study exhibits strong positive correlation of 

perceived risks associated with the uncertain supply prospects from both sources, under the optimal 

choices. Nevertheless, the generic conclusion of proposition 3 from our analytical model, viz., owing 

to the increased concordance of the two sources of risks, the buyers reduce (or increase) their 

dependence on the riskier supplier, for receiving the required quantity from the primary supplier, also 

holds true in the experiment. This phenomenon is known as variance-vulnerable (variance-affine) by 

Zhao & Freeman (2019) because of the global nature of the disruption (as in our case) of affecting the 

disrupted suppliers due to their geographical proximity 

 

Subsequently, at the individual level the data are analysed using quantile regression. It is observed that 

all the respondents are variance vulnerable, implying a buyer risk aversion behaviour. The respondents 

in all quantiles reduced their optimal dependence on the primary supplier in response to the enhanced 

riskiness in its supply prospects as reported in Proposition 1(a). Moreover, based on the quantile 

regression the buyer would have to be compensated by 15.72% more in order to diversify between both 

the sources. The buyers exhibit negative relative prudence w.r.t. the increase in the concordance 

between the two sources of risks as reported in Proposition 3. The preference structure for these 

participants cannot be characterized by constant relative risk aversion (CRRA) because of the 

inconsistency (not being < 1) in the constant term of the quantile regression. However, considering 20th 

through 90th quantile of the risk distribution we infer that the participants in these quantiles exhibit 

“decreasing absolute risk aversion” and variance vulnerability of preferences, which are supportive of 

the existence of “properness” in the risk aversion behaviour, as reported in Proposition 1(b). Thus, this 

paper contributes to the BOM literature by mapping the risk preference behaviour of risk averse buyers 



35 
 

at group and individual level. Where the buyers are dependent on supply resources under supply time 

and capacity uncertainty.  
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APPENDIX – A 

 We use the well-established DL-method to set the supply target reflecting the resource availability 

of the suppliers, keeping note of the buyer’s supply requirement.  Following DLS method we 

establish a two-factor relationship to determine the proportion of tentative quantity to be supplied 

by the supplier using two resources namely remaining supply time and in-hand capacity. To obtain 

this relationship we apply a mathematical expression using DLS method. For instance, a buyer 

could obtain 𝐺(𝑡) units of supply on an average in t days from a supplier (say RQ) which may be 

labelled by the following exponential equation (Duckworth & Lewis, 1998) 

𝐺(𝑡) = 𝐺0[1 − exp⁡(−𝛾𝑡)]    (A1) 

𝐺t will be 𝐺0 when 𝑡 → ∞, thus we can interpret  𝐺0⁡as the asymptotic average of total supply 

without any supply lead-time constraint and 𝛾 is the exponential decay constant obtained from the 

DLS method. Considering the loss of capacity with t days remaining to supply to be c, the 

asymptote becomes lower, and the decay constant becomes higher.  Both asymptotes being 

functions of c. Based on Duckworth & Lewis (1998) the revised relationship is of the form:  

𝐺(𝑡, 𝑐) = 𝐺0(𝑐)[1 − exp⁡{−𝛾(𝑐)𝑡}]  (A2) 

Similarly, 𝐺0(𝑐) is defined as the asymptotic average of total supply based on the remaining 

capacity without considering the lead-time constraint as previously mentioned and 𝛾(𝑐) being the 

exponential decay constant. Both the expressions depend on the portion of resources already lost.  

Considering equation (2) at the beginning of the supply (with no capacity lost) where (𝑡 =

𝑇⁡⁡and⁡𝑐 = 0), we get 

𝐺(𝑇, 0) = 𝐺0(𝑐)[1 − exp⁡{−𝛾𝑇}] 

and the ratio  

𝑃𝑟𝑜(𝑡, 𝑐) =
𝐺(𝑡,𝑐)

𝐺(𝑇,0)
    (3) 

 Equation (3) represents the average proportion of the tentative supply target with a lead-time of t 

period remaining and c percent capacity lost. Unlike an interrupted cricket match, where we can 

rely on the data observed in hundred previously conducted international matches the absence of 
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data for the suppliers urges the use of DLS parameter setting as a proxy to revise the target of the 

suppliers. Table A1 provides a snapshot from Fig 1 exhibiting the DLS based target, under time 

remaining and capacity lost parameter settings.  

Table A1: Snapshot of the resource-based parameters value 

  Capacity lost (1-Remaining 

Resources) in % 

Time Remaining 

(Total time- time passed) 

0 20 40 60 80 

50 (100%) 1.000 0.851 0.627 0.349 0.119 

40 (80%) 0.893 0.778 0.595 0.346 0.119 

30 (60%) 0.751 0.673 0.541 0.336 0.119 

20 (40%) 0.566 0.524 0.446 0.308 0.119 

10 (20%) 0.321 0.308 0.283 0.228 0.114 

 

Appendix - B 

Proof of Claim (4) 

Let us explicitly prove this below. 

Differentiating 𝜎𝑌 in Eq. (3) with respect to (w.r.t. hereafter) 𝑝, 

(𝜕𝜎𝑌 𝜕𝑝⁄ ) = (1 𝜎𝑌⁄ )[𝑝𝜎𝑅𝑄
2 − (1 − 𝑝)𝜎𝐵𝑄

2 + (1 − 2𝑝)cov(𝑅𝑄̃, 𝐵𝑄̃)] 

Therefore, at 𝑝 = 0, 

(𝜕𝜎𝑌 𝜕𝑝⁄ ) = (1 𝜎𝑌⁄ )[cov(𝑅𝑄̃, 𝐵𝑄̃) − 𝜎𝐵𝑄
2 ]; 

While, at 𝑝 = 1, 

(𝜕𝜎𝑌 𝜕𝑝⁄ ) = (1 𝜎𝑌⁄ )[𝜎𝑅𝑄
2 − cov(𝑅𝑄̃, 𝐵𝑄̃)]. 

Hence, for (𝜕𝜎𝑌 𝜕𝑝⁄ )𝑝=0 < 0 < (𝜕𝜎𝑌 𝜕𝑝⁄ )𝑝=1, to hold simultaneously, we need the following 

three criteria to be satisfied simultaneously as well: 

(i) cov(𝑅𝑄̃, 𝐵𝑄̃) < 𝜎𝑅𝑄
2 ; 
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(ii) cov(𝑅𝑄̃, 𝐵𝑄̃) < 𝜎𝐵𝑄
2 ; and 

(iii) cov(𝑅𝑄̃, 𝐵𝑄̃) < (𝜎𝑅𝑄
2 + 𝜎𝐵𝑄

2 )/2. 

It is easy to deduce that all of these above three inequalities are satisfied if cov(𝑅𝑄̃, 𝐵𝑄̃) <

min{𝜎𝑅𝑄
2 , 𝜎𝐵𝑄

2 }. Hence,  

cov(𝑅𝑄̃, 𝐵𝑄̃) < min{𝜎𝑅𝑄
2 , 𝜎𝐵𝑄

2 }.    (Q.E.D.) 

 

Proof of the Second-order Condition for the Interior Solution of 

𝐦𝐚𝐱
(𝟎≤𝒑≤𝟏) 𝑼(𝝈𝒀(𝒑, . . . ), 𝝁𝒀(𝒑, . . . )) s.t. (2) and (3) 

Let us rearrange the F.O.C. in (6) as 

𝜔 ∶

= (𝜇𝑅𝑄 − 𝜇𝐵𝑄)𝑈𝜇 (𝜎𝑌(𝑝, 𝜎𝑅𝑄 , 𝜎𝐵𝑄 , 𝜌)
𝑝=𝑝∗ , 𝜇𝑌(𝑝, 𝜇𝑅𝑄 , 𝜇𝐵𝑄)

𝑝=𝑝∗)

+ (𝜕𝜎𝑌(𝑝, 𝜎𝑅𝑄 , 𝜎𝐵𝑄 , 𝜌)
𝑝=𝑝∗ 𝜕𝑝⁄ )𝑈𝜎 (𝜎𝑌(𝑝, 𝜎𝑅𝑄 , 𝜎𝐵𝑄 , 𝜌)

𝑝=𝑝∗ , 𝜇𝑌(𝑝, 𝜇𝑅𝑄 , 𝜇𝐵𝑄)
𝑝=𝑝∗) = 0. 

Therefore, we have, 

𝜔𝑝(𝑝∗, . . ) = −(𝜕𝜎𝑌(. )𝑝=𝑝∗ 𝜕𝑝⁄ )
2
(1 𝑈𝜇

2⁄ )(−𝑈𝜎
2𝑈𝜇𝜇 + 2𝑈𝜎𝑈𝜇𝑈𝜎𝜇 − 𝑈𝜇

2𝑈𝜎𝜎) +

(𝜕2𝜎𝑌(. )𝑝=𝑝∗ 𝜕𝑝2⁄ )𝑈𝜎 (𝜎𝑌(𝑝, 𝜎𝑅𝑄 , 𝜎𝐵𝑄 , 𝜌)
𝑝=𝑝∗ , 𝜇𝑌(𝑝, 𝜇𝑅𝑄 , 𝜇𝐵𝑄)

𝑝=𝑝∗) (B1) 

Given the strict quasi-concavity of 𝑈(𝜎𝑌, 𝜇𝑌), the bordered Hessian determinant of 𝑈(. ) must be 

strictly positive, i.e. 

Λ = |

0 𝑈𝜎 𝑈𝜇

𝑈𝜎 𝑈𝜎𝜎 𝑈𝜎𝜇

𝑈𝜇 𝑈𝜇𝜎 𝑈𝜇𝜇

| = (−𝑈𝜎
2𝑈𝜇𝜇 + 2𝑈𝜎𝑈𝜇𝑈𝜎𝜇 − 𝑈𝜇

2𝑈𝜎𝜎) > 0.  (B1.1) 

Given (B1.1), risk-aversion nature of the buyer (owing to which, 𝑈𝜎(. ) < 0), and strict convexity 

of 𝜎𝑌(. ) in 𝑝 (owing to which, (𝜕2𝜎𝑌(. ) 𝜕𝑝2⁄ ) > 0), from (B1) we have 𝜔𝑝(𝑝
∗, . . ) < 0. Hence, 

the S.O.C. for maximization is satisfied.            (Q.E.D.) 
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Proof of Proposition 1(a). 

Proof. Implicit partial differentiation1 of (6) w.r.t. 𝜎𝑅𝑄 yields, 

sgn(
𝜕𝑝∗

𝜕𝜎𝑅𝑄
) = sgn⁡ [𝑆(𝜎𝑌(. )𝑝=𝑝∗ , 𝜇𝑌(. )𝑝=𝑝∗)

𝜕2𝜎𝑌(. )𝑝=𝑝∗

𝜕𝑝𝜕𝜎𝑅𝑄
+

𝜕𝜎𝑌(. )𝑝=𝑝∗

𝜕𝑝

𝜕𝑆

𝜕𝜎𝑌

𝜕𝜎𝑌

𝜕𝜎𝑅𝑄
] 

Since, differentiating (3) and (7) partially w.r.t. 𝜎𝑅𝑄, we obtain  

𝜕𝜎𝑌

𝜕𝜎𝑅𝑄
=

𝑝∗2𝜎𝑅𝑄

𝜎𝑌(. )𝑝=𝑝∗
 

and,  

𝜕2𝜎𝑌(.)

𝜕𝑝𝜕𝜎𝑅𝑄
=

𝑝∗𝜎𝑅𝑄

𝜎𝑌(.)𝑝=𝑝∗
[2 − 𝐾1(. )𝑝=𝑝∗]  respectively. 

Where, 

𝐾1(. )𝑝=𝑝∗ =
𝑝∗

𝜎𝑦
(
𝜕𝜎𝑦

𝜕𝑝
)

𝑝=𝑝∗

> 0. 

This is because the buyer is risk averse. Therefore, in order to keep the risk-premium, 

(𝜇𝑅𝑄 − 𝜇𝐵𝑄), positive at the equilibrium, from the F.O.C. it is easy to see that (
𝜕𝜎𝑦

𝜕𝑝
) > 0, at 𝑝 =

𝑝∗. 

Substituting values, it is easy to obtain 

𝐾1(. )𝑝=𝑝∗ = 1 − 𝜎𝐵𝑄 (
(1 − 𝑝∗)𝜎𝐵𝑄 + 𝜌𝑝∗𝜎𝑅𝑄

𝜎𝑌
2 ). 

Using condition (8c) we have, 

 
1 We use the Signum function (sgn) because of implicit partial differentiation (e.g., Broll & Mukherjee, 2017; Broll 

et al., 2020). 
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(1 − 𝑝∗)𝜎𝐵𝑄 + 𝜌𝑝∗𝜎𝑅𝑄 > 0,∀𝜌 ∈ (−
(1 − 𝑝∗)𝜎𝐵𝑄

𝑝∗𝜎𝑅𝑄
, 1) 

Therefore, ∀𝜌 ∈ (−
(1−𝑝∗)𝜎𝐵𝑄

𝑝∗𝜎𝑅𝑄
, 1) ; &⁡∀𝜎𝐵𝑄 > 0, 𝜎𝑅𝑄 > 0, we always have 0 < 𝐾1(. )𝑝=𝑝∗ < 1. 

This demonstrates the robustness of our results for both positive and negative correlation between 

𝑅𝑄̃ and 𝐵𝑄̃. 

After some simple manipulations 

sgn(
𝜕𝑝∗

𝜕𝜎𝑅𝑄
) = sgn(

2

𝐾1(. )𝑝=𝑝∗
− 1 + 𝜀𝜎(𝜎𝑌(. ), 𝜇𝑌(. ))

𝑝=𝑝∗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(B2) 

Where, 𝜀𝜎(𝜇𝑌, 𝜎𝑌) is already defined in D1.  

Therefore, we have, 

⁡(
𝜕𝑝∗

𝜕𝜎𝑅𝑄
) ≤ 0, if⁡and⁡only⁡if⁡𝜀𝜎(𝜎𝑌, 𝜇𝑌) ≤ 1 −

2

𝐾1(. )
. 

Since, {1 −
2

𝐾1(𝑝∗)
} ≤ −1, 

𝜕𝑝∗

𝜕𝜎𝑅𝑄
< 0, whenever 𝜀𝜎(𝜎𝑌, 𝜇𝑌) > −1,∀(𝜎𝑌, 𝜇𝑌).       (Q.E.D.) 

Note that the above result holds ∀𝜌 ∈ (−
(1−𝑝∗)𝜎𝐵𝑄

𝑝∗𝜎𝑅𝑄
, 1). 

 

Proof of Proposition 1(b). 

Implicit partial differentiation of (6) w.r.t. 𝜇𝑅𝑄 yields 

sgn(
𝜕𝑝∗

𝜕𝜇𝑅𝑄
) = sgn⁡ [1 −

𝜕𝜎𝑌(. )𝑝=𝑝∗

𝜕𝑝

𝜕𝑆

𝜕𝜇𝑌

𝜕𝜇𝑌

𝜕𝜇𝑅𝑄
] 
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= ⁡sgn⁡

[
 
 
 
 
 
 

1 −
𝜇𝑌(𝑝, 𝜇𝑅𝑄 , 𝜇𝐵𝑄)

𝑝=𝑝∗

𝑆(𝜎𝑌(. ), 𝜇𝑌(. ))
𝑝=𝑝∗

𝜕𝑆

𝜕𝜇𝑌

(

 
 
 
 

1

{1 +
1

𝑝∗ ((𝜇𝑅𝑄 𝜇𝐵𝑄⁄ ) − 1)
}

)

 
 
 
 

]
 
 
 
 
 
 

 

= sgn⁡ [1 − (
1

{1 +
1

𝐿(. )𝑝=𝑝∗
}
)𝜀𝜇(𝜎𝑌(. ), 𝜇𝑌(. ))

𝑝=𝑝∗] 

                 (B3) 

Since, 𝐿(𝑝∗) = 𝑝∗ ((𝜇𝑅𝑄 𝜇𝐵𝑄⁄ ) − 1) < 1, as we have 𝜇𝑅𝑄 > 𝜇𝐵𝑄 > 0. Therefore, {1 +

1 𝐿(. )𝑝=𝑝∗⁄ } > 1. From (10), it is easy to infer 
𝜕𝑝∗

𝜕𝜇𝑅𝑄
> 0, if and only if 𝜀𝜇(𝜎𝑌, 𝜇𝑌) < {1 + 1 𝐿(. )⁄ }. 

Since {1 + 1 𝐿(. )⁄ } > 1, it can safely be concluded 
𝜕𝑝∗

𝜕𝜇𝑅𝑄
> 0 always holds true, whenever 

𝜀𝜇(𝜎𝑌, 𝜇𝑌)𝑝=𝑝∗ < 1 holds true.2       (Q.E.D.) 

 

Proof of Proposition 2(a). 

Implicitly differentiating (6) w.r.t. 𝜎𝐵𝑄 yields, 

sgn(
𝜕𝑝∗

𝜕𝜎𝐵𝑄
) = sgn⁡ [𝑆(𝜎𝑌(. ), 𝜇𝑌(. ))

𝑝=𝑝∗ (
𝜕2𝜎𝑌(. )

𝜕𝑝𝜕𝜎𝐵𝑄
)

𝑝=𝑝∗

+ (
𝜕𝜎𝑌(. )

𝜕𝑝
)

𝑝=𝑝∗

𝜕𝑆

𝜕𝜎𝑌

𝜕𝜎𝑌

𝜕𝜎𝐵𝑄
] 

Since, partial differentiation of (3) and (7) w.r.t. 𝜎𝐵𝑄 yields respectively 

𝜕𝜎𝑌

𝜕𝜎𝐵𝑄
=

(1 − 𝑝∗)2𝜎𝐵𝑄

𝜎𝑌(𝑝∗)
 

and, 

 
2 This result is, also, evidently independent of the sign of 𝜌. 
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(
𝜕2𝜎𝑌(. )

𝜕𝑝𝜕𝜎𝐵𝑄
)

𝑝=𝑝∗

=
(1 − 𝑝∗)𝜎𝑅𝑄

𝜎𝑌(𝑝∗)
[𝐾2(𝑝

∗) − 2] 

Where, 

𝐾2(𝑝
∗) = −

(1 − 𝑝∗)

𝜎𝑦
(
𝜕𝜎𝑦

𝜕𝑝
)

𝑝=𝑝∗

. 

After some rearrangements 

sgn(
𝜕𝑝∗

𝜕𝜎𝐵𝑄
) = −sgn(

2

𝐾2(𝑝
∗)

− 1 + 𝜀𝜎(𝜎𝑌(. ), 𝜇𝑌(. ))
𝑝=𝑝∗)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(B4) 

Since, 𝑝 denotes the probability associated with a risky activity and the buyer is risk-averse, 

(𝜕𝜎𝑦 𝜕𝑝⁄ ) > 0. If 𝑝∗ → 0, i.e. the riskiness associated with the primary supplier’s supply prospect 

is highly uncertain, and 𝑆 is bounded from above, it can be inferred 𝐾2(𝑝
∗) ∈ (−∞,0].3 Therefore, 

2

𝐾2(𝑝∗)
− 1 ∈ (−∞,1] and subsequently (

𝜕𝑝∗

𝜕𝜎𝐵𝑄
) > 0 for all parameter values, if and only if 

𝜀𝜎(𝜎𝑌, 𝜇𝑌) < −1⁡∀ (𝜎𝑌, 𝜇𝑌).          (Q.E.D.) 

 

Proof of Proposition 2(b). 

Implicit partial differentiation of (6) w.r.t. 𝜇𝐵𝑄 yields 

sgn(
𝜕𝑝∗

𝜕𝜇𝐵𝑄
) = −sgn⁡ [1 + (

𝜕𝜎𝑌(. )

𝜕𝑝
)

𝑝=𝑝∗

𝜕𝑆

𝜕𝜇𝑌

𝜕𝜇𝑌

𝜕𝜇𝐵𝑄
]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(B5) 

Note that 

𝜕𝜇𝑌

𝜕𝜇𝐵𝑄
= (1 − 𝑝∗) > 0;⁡(

𝜕𝜎𝑌(. )

𝜕𝑝
)

𝑝=𝑝∗

> 0. 

 
3 Therefore, for this result to hold true, we do not need any a priori assumption regarding the sign of 𝜌. 
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Therefore, (
𝜕𝑝∗

𝜕𝜇𝐵𝑄
) < 0, if and only if 

𝜕𝑆

𝜕𝜇𝑌
= 𝑆𝜇 > 0⁡∀ (𝜎𝑌, 𝜇𝑌).   (Q.E.D.) 

Proof of Proposition 3. 

Implicit partial differentiation of (6) w.r.t. Cov(𝑅𝑄̃, 𝐵𝑄̃) yields 

sgn⁡ (
𝜕𝑝∗

𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)
) = −sgn⁡

[
 
 
 
 𝑆

𝜕2𝜎𝑌

𝜕𝑝𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)

𝜕𝜎𝑌

𝜕𝑝

+ 𝑆𝜎

𝜕𝜎𝑌

𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)

]
 
 
 
 

 

After marginal simplification, we obtain 

sgn⁡ (
𝜕𝑝∗

𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)
) = −sgn⁡[Λ(𝑝∗) + 𝜀𝜎]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(B6) 

Where, 

Λ(𝑝∗) =

𝜎𝑌
𝜕2𝜎𝑌

𝜕𝑝𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)

𝜕𝜎𝑌

𝜕𝑝
𝜕𝜎𝑌

𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)

. 

Since, 

𝜕𝜎𝑌

𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)
=

𝑝∗(1 − 𝑝∗)

𝜎𝑌
> 0, 

and, 

𝜕2𝜎𝑌

𝜕𝑝𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)
=

𝜕2𝜎𝑌

𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)𝜕𝑝
=

1 − 2𝑝∗

𝜎𝑌
−

𝑝∗(1 − 𝑝∗)
𝜕𝜎𝑌

𝜕𝑝

𝜎𝑌
2 , 

one can therefore obtain 

Λ(𝑝∗) = 𝜎𝑌

1 − 2𝑝∗

𝑝∗(1 − 𝑝∗)
𝜕𝜎𝑌

𝜕𝑝

− 1.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(B7) 
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From (B7), one can easily see (𝜕𝑝∗ 𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)⁄ ) < 0, if and only if 𝜀𝜎(𝜎𝑌, 𝜇𝑌) > −Λ(𝑝∗). 

However, from (B7) one can understand that we get⁡Λ(𝑝∗) ∈ (−∞,−1) provided 𝑝∗ > 1 2⁄  

(whereas Λ → −∞ would only materialize if 𝜇𝑅𝑄 ≅ 𝜇𝐵𝑄 takes place), and Λ(𝑝∗) > −1, if and only 

if 𝑝∗ < 1 2⁄ .4 

Therefore,  

(i) Whenever 𝑝∗ > 1 2⁄ , (𝜕𝑝∗ 𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)⁄ ) > 0 only if 𝜀𝜎(𝜎𝑌, 𝜇𝑌) > 1. 

(ii) Whenever 𝑝∗ < 1 2⁄ , (𝜕𝑝∗ 𝜕Cov(𝑅𝑄̃, 𝐵𝑄̃)⁄ ) < 0 only if 𝜀𝜎(𝜎𝑌, 𝜇𝑌) < 1. 

              (Q.E.D.) 

APPENDIX - C 

 

 
Figure B: (v, µ) Indifference curves  

(Source: Eichner (2008, 54(3), p. 590; Figure 1) 

In the above figure, Eichner (2008) measured variance or risk (v) in the horizontal axis and mean 

(μ) in the vertical axis. He represented point A as the initial optimum choice, point B as the change 

in the optimal choice from point A after an increase in mean (given risk, i.e. variance), and point 

C as the change in the optimum choice from point B after an increase in variance (given mean). 

Hence, in his paper, the comparative static response of the increase in risk, given mean, is reflected 

 
4 However, the proof of this result doesn’t require any assumption regarding the direction of correlation between 𝑅𝑄̃ 

and 𝐵𝑄̃. 
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by the movement from point B to point C, and the comparative static response of an increase in 

mean, given risk, is reflected by the movement from point A to point B. Also, as Eichner (2008) 

proved, movement from point A to point B leads to reduction in the slope of the tangent line to the 

indifference curve in the (Risk, Return)-plane. Since this slope is nothing else but the marginal 

rate of substitution between risk and return, or, equivalently, the mean-variance analogue of the 

Arrow-Pratt measure of the absolute risk aversion, reduction in the slope with w.r.t. mean (keeping 

variance constant) reflects the notion of “decreasing absolute risk aversion” (DARA). However, 

increase in the slope w.r.t. variance (keeping mean constant) makes the indifference curve more 

“convex”, and thereby reflects notion of “variance vulnerability” of preferences. 

However, in our paper, we have used mean–standard deviation (μ, σ) preferences, which is 

equivalent to the mean-variance preferences considered in Eichner (2008). In our experiment, 

Figure 4 in our paper, reflects precisely the scenario of relative increase in risk (w.r.t. return) in 

panels I & II, depicting increased steepness in the slope of the new indifference-curve in the (σ, μ)-

plane. Since this slope is nothing else but the marginal rate of substitution between risk (standard 

deviation) and return, or, equivalently, the mean – standard deviation analogue of the Arrow-Pratt 

measure of the absolute risk aversion, increase in this slope also reflects the notion of variance 

vulnerability of preferences. 

Figure 5 reflects the scenario of relative increase in mean (w.r.t. risk) in panels I & II, depicting 

the reduction in the slope of the new indifference curve at the new p*. This reduction in the slope, 

by the same argument as above, reflects DARA. 

Appendix - D 

Data Collection and Experimental Setup 

Table D1. Sample 

Industry N % 

Automotive and Parts 57 19 

Chemical 96 32 

Pharmaceutical 60 20 

Construction and Building 

Materials 

45 15 

Electronic and Electrical 

Equipment 

42 14 

Respondent job title   
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CxO/Vice President 14 4.7 

Director/Department Head 68 34.6 

Manager 218 72.7 

Respondent function   

Supply Chain Management 71 23.7 

Production/Manufacturing 52 17.3 

Purchasing 177 59.0 

Experience in purchasing   

5 to 9 years  32 10.7 

10 to 14 years 183 61.0 

15 years and above  85 28.3 

 

To verify that the sample respondents were having adequate experience for experimental setup. 

We test the mean experience of the respondents (as 10 years) where the variance is unknown, and 

the sample follows normal distribution because of large sample (300 respondents). 

Null hypothesis, 𝐻0: Average⁡Experience⁡of⁡respondents = 10⁡years against alternative 

hypothesis, 𝐻𝑎: Average⁡Experience⁡of⁡respondents < 10⁡years. 

We accept the null hypothesis at 5% level of significance as 𝑡0.05,299
𝑜𝑏𝑠𝑒𝑟𝑣𝑒(= 1.451) ⁡< ⁡ 𝑡0.05,299

𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒𝑑 (= 

1.645). Hence, the sample is well experienced having 10 years of experience and at least 20% of 

the time they have handled supply disruption during materials purchasing.   

 

Data Collection templates using the treatment variables   

Sample data collected from a respondent given in Table D2 and D3 against primary and backup 

supplier respectively.  

Table D2: Data collection Set-up for Primary Supplier 

Control variables  Treatment  Dependent  Computed  

Available 

Effective 

Capacity 

Time 

remaining 

DLS 

Target 

Perceived 

Probability of 

supplying the 

DLS target 

Random net 

realization 𝑅𝑄̃ =

(𝑇𝑅𝑅𝑄 − 𝐷̃𝑅𝑄)  

10% 10% 33 0.3 10 

20% 20% 67 0.5 34 

30% 30% 103 0.6 62 

40% 40% 138 0.6 83 
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50% 50% 174 0.7 122 

60% 60% 208 0.8 166 

70% 70% 240 0.85 204 

80% 80% 266 0.92 239 

90% 90% 287 0.95 264 

100% 100% 300 0.99 285 

For example, one of the sample respondent’s Mean = 147 and Standard Deviation = 99 can be 

calculated based on the primary supplier selection set-up 

Table D3: Data collection Set-up for Backup Supplier 

For example, same sample respondent’s Mean = 68 and Standard Deviation = 44 can be 

calculated based on the backup supplier selection set-up 

To remove the biasness in the experimental design we have followed Randomized Complete Block 

Design (RCBD) approach (Montgomery, 2001). Here, we have one observation per treatment in 

each block (group of 10 respondents); while the order, in which the treatments run within each 

block, is determined randomly. In this experiment, we are interested to test for the equality of the 

treatment and block means. Table-D4 and -D5 report the test statistics for treatments and blocks. 

Control variables  Treatment  Dependent  Computed  

Available 

Effective 

Capacity 

Time 

remaining 

Remaining 

quantity 

Perceived 

Probability of 

supplying the 

remaining quantity  

Random net 

realization 

𝐵𝑄̃ = (𝑇𝑅𝐵𝑄 −

𝐷̃𝐵𝑄) 

10% 10% 267 0.4 107 

20% 20% 233 0.5 117 

30% 30% 197 0.55 108 

40% 40% 162 0.65 105 

50% 50% 126 0.7 88 

60% 60% 92 0.75 69 

70% 70% 60 0.8 48 

80% 80% 34 0.85 29 

90% 90% 13 0.9 12 

100% 100% 0 0.95 0 
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From these two tables, we can confirm that the differences between groups (blocks) are not 

statistically significant at 5% level. Hence, we can really on the data. 

Table D4: Analysis of Variance for The Perceived Probability of Supplying the DLS Target 

by The Primary Supplier   

Source of 

variation  

Sum of 

square  

Degree 

of 

freedom  

Mean 

square  

F0 Observation  

Treatments 

(DLS based 

Targets for the 

primary 

supplier) 

23.30 9 2.59 1.61 F0(1.61) < F0.05,9,261(1.88) 

Blocks (Groups 

of respondents) 

61.50 29 2.12 1.33 F0(1.33) < F0.05,29,261(1.47) 

Error  417.80 261 1.60  --- 

Total  502.6 299   --- 

 

Table D5: Analysis of variance for the Perceived Probability of supplying the remaining 

quantity 

By the backup Supplier   

Source of 

variation  

Sum of 

square  

Degree 

of 

freedom  

Mean 

square  

F0 Observation  

Treatments 

(Supplying the 

remaining 

quantity by the 

backup supplier) 

31.5 9 3.5 1.72 F0(1.72) < F0.05,9,261(1.88) 

Blocks (Groups 

of respondents) 

74.1 29 2.56 1.25 F0(1.25) < F0.05,29,261(1.47) 

Error  532.7 261 2.04  --- 

Total  638.3 299   --- 
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