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Resumen

En esta tesis se explora el uso del razonamiento cualitativo para la predicción del compor-

tamiento de un sistema dinámico al variar uno de sus parámetros, basado en una represen-

tación cualitativa del diagrama de bifurcación. Tres algoritmos fueron desarrollados para

la realización de esta tarea. El primer algoritmo captura las caracteŕısticas fundamentales

del diagrama de bifurcación y las translada a una representación cualitativa. El segundo

algoritmo utiliza la representación cualitativa obtenida del primer algoritmo y realiza la

simulación del comportamiento del sistema, dada una secuencia de variaciones en uno de

sus parámetros. El tercer algoritmo resuelve el problema opuesto, determina la variación

del parámetro partiendo de un estado inicial para llegar a uno final. El primer algoritmo

descompone el diagrama en Segmentos Monotónicos (MSs), donde los puntos que confor-

man a estos segmentos tienen el mismo comportamiento cualitativo (misma naturaleza y

comportamiento). Estos MSs son conectados a una red de transiciones. Esta red es utiliza-

da como la principal herramienta de los algoritmos de simulación y planeación. Finalmente

se presentan algunos ejemplos que ilustran la representación cualitativa, aśı como el com-

portamiento de los algoritmos de simulación y planeación para sistemas dinámicos de un

parámetro.





Abstract

This thesis explores the use of qualitative reasoning to predict the behavior of a dynamical

system given a change in one of its parameters based upon a qualitative representation of

its bifurcation diagram. Three algorithms were developed to perform this task. The first

algorithm captures the essential characteristics of the bifurcation diagram in quantitative

terms, and translates it into a qualitative representation of the system. The second one uses

the qualitative representation obtained from the first algorithm to simulate the behavior of

the system given a sequence of parameter adjustments or perturbations. The third algorithm

solves the opposite, control problem: it determines what parameters to change to take the

system from an initial to a given goal state. The first algorithm segments a quantitative

bifurcation diagram into Monotonic Segments (MSs) having the same qualitative behavior

(same nature and behavior). These MSs are then interconnected into a transition network.

The network is used by the other two algorithms to simulate and plan the behavior of the

system from an initial situation. Several examples illustrate the qualitative representations

and the behaviors of the simulation and planning algorithms for dynamical systems of one

parameter.
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Chapter 1

Introduction

The goals of science and engineering are to understand, to predict, and to control

the behavior of the world. To accomplish these goals, models that represent relevant aspects

of real-world phenomena have been developed. One form these models take are what we

call dynamical systems, which are used to represent and understand how complex systems

change over time. There are different types of dynamical system models: discrete, conti-

nuous, linear, and nonlinear. Continuous dynamical systems are often modeled by a set of

differential equations [Strogatz94, Boyce01].

Dynamical systems are models that exhibit changes over time. Traditionally, a

system’s behavior can be derived either by solving differential equations or by simulation.

Dynamical system models are formulated in terms of state variables and parameters that

may also be functions of time. We often assume that the system’s topology does not change.

However, this is not true for many complex systems. The mass of a rocket changes as it burns

fuel, the characteristics of an electrical machine change as it ages, the load of an electrical

power system changes during the day, etc. Changes in such parameters, sometimes even if

they are infinitesimal, may cause a dynamical system to exhibit totally different qualitative

properties. For instance, a damped mass-spring system may stop oscillating if the damping

increases. Changes in the topology of the phase space representation of the dynamical system

are known as bifurcations; the values of the parameters for which a bifurcation occurs are

called bifurcation points [Strogatz94].

1
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A bifurcation occurs in a dynamical system when its qualitative behavior changes

as a result of the variation in one or more of its parameters. The values of the parameters for

which the bifurcation occurs is called bifurcation point. A bifurcation diagram is the graphic

representation of a dynamical system that plots the set of bifurcation points. The bifurcation

points may be obtained after solving algebraically or numerically the differential equations,

but sometimes the solution of a dynamical system is complex, inaccurate, or too costly to

compute. Some applications have been developed that generate a bifurcation diagram of the

dynamical system without solving a differential equation (for example [Flores10, Barrera08]

use PSO Particle Swarm Optimization to obtain the bifurcation points).

1.1. Problem Definition

Qualitative Bifurcation Diagrams (QBD) are built by a computer program that

takes as input the quantitative data contained in a bifurcation diagram (bifurcation points).

It takes the essential features of the system and translates them into a qualitative repre-

sentation. The quantitative information found in a bifurcation diagram (bifurcation points)

does not facilitate the reasoning process needed to determine a behavior of the system as

one of the systems’ parameter is changed.

Early works [deKleer84, Kuipers94, Forbus84] have used qualitative reasoning to

describe the behavior of physical systems. To perform any qualitative reasoning on bi-

furcation diagrams, we need to take the quantitative data into a qualitative form that is

suitable to perform the reasoning tasks of simulation and control planning of the system.

In conclusion, the problems we address in this thesis are the following:

1. Given the set of points that compose a quantitative bifurcation diagram, translate

it to a language or representation that explicitly represents all qualitative features

that make qualitative analysis or reasoning possible. This representation is called a

qualitative bifurcation diagram.

2. Given a qualitative representation of a bifurcation diagram and the actions of the

system (i.e., perturbations, or increments/decrements in one the system’s parameters),
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determine the behavior of state variable of the dynamical system (x) as a result of

perturbations and changes in systems’ parameter (r).

3. Given a qualitative representation of a bifurcation diagram, and a systems’ initial and

goal states, determine the parameter changes required to take the system from the

initial to the goal state.

Throughout the development of this thesis, we have relied on the following assum-

ptions regarding dynamical systems [Flores06]:

• All variables and functions involved in the process are continuous and continuously

differentiable.

• The variation of the system’s parameters is much slower than the transient time to

stabilize the system after a perturbation. According to the definition of landmark

(Chapter 3), perturbations always occur at landmarks of r.

• If we need a perturbation to occur in between two landmarks, we simply create another

landmark between them and let the perturbation occur at the new landmark.

• Perturbations are small enough so as not to cross other fixed points. If we do not make

this assumption, the behavior of the system would depend on the relative magnitude

of the perturbation with respect to the distance to the next fixed point in the direc-

tion of the perturbation. This last assumption may not hold if a perturbation occurs

infinitesimally close to a bifurcation point; we assume perturbation occurs sufficiently

far from bifurcation points to prevent this situation from happening.

• Implementation of the system without the perturbation assumption, would lead to

branching in the prediction of behavior, i.e. at any perturbation, we would need to

consider cases where its magnitude would not reach, exactly meet, or pass each land-

mark in the direction of the perturbation.

This thesis deals with continuous dynamical systems that can be modeled by ordinary

differential equations (ODEs). An ODE is an equation of the form
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F (t, x,
dx

dt
, · · · ,

dnx

dnt
) = 0 (1.1)

A function f(t) is a solution to Equation (1.1) if it satisfies the original equation.

F (t, f(t),
df(t)
dt

, · · · ,
dnf(t)

dnt
) = 0 (1.2)

A phase portrait is a geometric representation of the trajectories that includes all

qualitative features that distinguish a dynamical system. Such characteristics include fixed

points (attractors and repellers), nullclines, limit cycles, and for more complex (chaotic)

systems, even strange attractors (see [Lee93]). Let us consider the nonlinear system repre-

sented by ẋ = x2 − 1. If we plot x against ẋ, we get a plot like that of Figure 1.1. Note

this is a flow plot, not a phase portrait. In the flow plot of Figure 1.1, trajectories lie on

the x axis, pointing to the right when ẋ > 0, and to the left when ẋ < 0, as indicated

by the arrows. When ẋ = 0 there is no flow; the places x∗ where ẋ = 0 are called fixed

points. There are three kinds of fixed points: stable attractors (solid black dots), unstable

repellers (open circles), and semistable (half is open circle and half is solid). As observed in

the Figure 1.1 if a perturbation occurs near the black dot (stable or attractor point), the

arrows indicate that the system is attracted to this point, but if a perturbation occurs near

the white circle (unstable or repelled point) the arrows indicate that the system goes some

where else different from this point.

-2 -1 1 2 x

-1

1

2

3

x.

Figure 1.1: Unidimensional flow for a first-order system

In all fixed points the derivative is zero, but there is a difference between stable and
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unstable equilibrium. We say that x∗ is a stable fixed point if all trajectories that start near

x∗ approach it as t→∞. On the other hand, a fixed point x∗ is unstable, if all trajectories

that start near it are driven away from it.

First-order systems are very simple systems, but they exhibit interesting features

when their parameters change with time. The qualitative structure of the phase portraits

can change when we allow parameters to vary. Fixed points can be created or destroyed, or

their stability can change. The qualitative changes in the topology of a phase portrait, due

to the change in parameters are called bifurcations, and the value of the parameters where

a bifurcation occurs are called bifurcation points.

Figure 1.2 shows the flow plots for equation ẋ = rx + x3 − x5, for different

values of parameter r; Figure 1.3 shows the respective Bifurcation Diagrams (BD).
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(a) r = −1
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(b) r = −0.2
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(c) r = 0
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x.

(d) r = 1

Figure 1.2: Flow plots of ẋ = rx + x3 − x5 for different values of r
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Figure 1.3: Bifurcation diagram for ẋ = rx+x3−x5. The black points corresponds to stable
fixed points, and the white points to unstable fixed points.

Bifurcation analysis has a large number of applications in science and enginee-

ring. Those applications range from radiation in lasers, outbreaks in insect populations,

electronics, electrical power systems, etc. [Strogatz94].

In order to derive the behavior of the system in the presence of bifurcations, it is

necessary to create a qualitative representation of the bifurcation diagram. This qualitative

representation must capture all the essential characteristics of the bifurcation diagram. We

use the qualitative representation to determine the behavior of the system.

1.2. Main Objective

Describe the qualitative behavior of a dynamical system from its quantitative

bifurcation diagram when one of its parameters is varied.

1.2.1. Particular Objectives

• Creates a qualitative representation of a bifurcation diagram that captures all the

essential information of the bifurcation diagram.

• Creates an algorithm that generates the qualitative representation from its bifurcation

points.
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• Creates an algorithm that describes the behavior of the system when one of its para-

meters is varied, using the qualitative representation.

• Creates an algorithm that describes the changes needed to one parameter of the system

in order to take the system from an initial state to a final state.

• Integrate the three algorithms described before to create a prototype application.

1.3. Justification

In this thesis I do not attempt to produce the bifurcation diagram from its dif-

ferential equation. I use the bifurcation diagram obtained from analytic, numerical or by

other alternatives like the ones developed by Flores and Lopez [Flores10] or by Barrera and

Flores [Barrera08]. Also in some of our experiments I used the information obtained from

XPPAUT [Ermentrout03] .

Textbooks like Nonlinear Dynamics and Chaos by Strogatz [Strogatz94] describe

the dynamic of a system using only the qualitative information of its derivatives. Using

these principles, I apply qualitative reasoning to describe the qualitative behavior of a

dynamical system. Using qualitative reasoning to describe the behavior of a physical system

it is necessary to capture the essential features of the physical system and translate them

into a qualitative representation. And create new methods that describe the behavior of

the physical system. In the thesis I produce the qualitative representation of the BD and

implement some algorithms that derive the possible behavior of the system.

With the implemented algorithms placed all in one single application called QBD

it is possible for researchers to predict the behavior of a dynamical system in an easy way

than the traditional one.

1.4. Previous Work

Earlier research in qualitative reasoning developed qualitative representations and

reasoning algorithms that provide solutions in qualitative terms. In 1984 de Kleer and

Brown introduced the concept of confluences in the article Qualitative Physics Based on
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Confluences [deKleer84]. Forbus in 1984 worked on what he called Qualitative Process

Theory[Forbus84], in 1986 Kuipers worked on Qualitative Differential Equations in the

book Qualitative Reasoning [Kuipers94]. In 2000 he also presented the work Semi Quali-

tative System Identification [Kay00]. All these works use qualitative reasoning to solve a

particular problem; we took some ideas from them to propose our qualitative representation

of a bifurcation diagram and developed our qualitative simulation and planning algorithms.

Also works like the ones presented by Lee[Lee93] and Sacks [Sacks90] dealt with dynamical

systems and performed some kind of qualitative reasoning with phase portraits. Neverthe-

less, none of them dealt specifically with bifurcations or performed any qualitative reasoning

based on bifurcation diagrams. Currently there is no research work in this direction, or a

close approach.

In one related article, Yip’s approach deals with discrete dynamical systems and

generates phase space portraits by intelligently guiding the numerical simulations performed

to complete the phase portrait with as many features as possible [Yip87]. Yip mentions

that bifurcations are detected when they notice a change in the phase portrait; however,

neither the bifurcations, bifurcation points, nor bifurcation diagrams are modeled or used

in reasoning.

The qualitative reasoning system developed here, called QBD (for Qualitative Bi-

furcation Diagrams), is based on the earlier work of Flores et al. [Flores06]. Their reasoning

system started from a given, qualitative representation of a dynamical system and per-

formed a qualitative simulation in order to obtain a prediction of the system’s behavior.

QBD extends Flores et al.’s work in several ways. First, the qualitative representation of

bifurcation diagrams has been improved; the new representation helps to solve the planning

problem, where in its previous version [Flores06] could not solve. In particular, the inclu-

sion of the transition table, which indicates to what state the system will go in response

to different external events (i.e., perturbation or changes of the parameter), facilitating the

simulation and planning algorithms. The resulting transition graph is a kind of envision-

ment [Johan De Kleer84] of possible trajectories the system can traverse in the bifurcation

diagram. Second, QBD extends the earlier work by automating the translation of a quanti-

tative bifurcation diagram into a qualitative form. Third, the simulation of the impacts of
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system events and control actions on qualitative system behavior is performed by a more

robust and improved algorithm. Finally, the development of control plans that can crea-

te desired changes in a qualitative system’s state is a completely new feature. At present,

the qualitative representation and the three algorithms presented in this thesis work with

dynamical systems of one parameter.

1.5. About this Document

The present document is organized as follow: Chapter 2 describes the basic con-

cepts about dynamical systems, bifurcation diagrams, and stability in bifurcation diagrams.

Chapter 3 proposes a qualitative representation that takes the essential features of a bifur-

cation diagram. This representation will be used for the simulation and planning algorithm.

Also, Chapter 3 presents an algorithm that generates the qualitative representation of the

bifurcation diagram proposed in the previous chapter. Chapter 4 presents the simulation

and planning algorithms. Both algorithms describe the behavior of the system in a qualita-

tive way. Some examples are described in Chapter 5. Finally the conclusions are presented

in Chapter 6.





Chapter 2

Dynamical Systems

2.1. Introduction

Dynamics is the study of change. A dynamical system describes how the variables

of a system interact with each other and change with time. From a different perspective,

a dynamical system is a concept in mathematics where a fixed rule describes the time

dependence of a point in a geometrical space. Dynamical systems are mathematical objects

used to model physical phenomena whose state changes over time. These models are used

in power systems, financial and economic forecasting, environmental modeling, medical

diagnosis, industrial equipment diagnosis, and a host of other applications.

Dynamical systems are divided in deterministic and stochastic. A deterministic

system is a system in which no randomness is involved in the development of future states

of the system. If the initial state of a dynamical system is known exactly, then the future

state of the system could theoretically be predicted. Contrary, stochastic means pertaining

to chance, therefore for a stochastic system one or more parts of the system has randomness

associated with it. In other words, a stochastic system does not produce the same output

given a particular input [Boukas02].

To illustrate a dynamical system, we could use a fish population example. Consider

xk is the current population of fish, and xk+1 is the next year’s population. Given this

nomenclature we could say that xk+1 = F (xk, xk−1, ..., x0) for any year k.

11
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In this Chapter we present a brief history of dynamical systems, classification, and

basic concepts of dynamical systems. This chapter also provides an introduction of concepts

like fixed point, bifurcation diagram, and the different types of bifurcation that occur in a

dynamical system.

2.2. Brief History of Dynamical Systems

Although at first dynamics was a branch of physics, with time it became an in-

terdisciplinary subject. The study of dynamics starts in the middle 1600s, when Newton

invented differential equations, while discovering the motion and gravitational laws. Both

laws (motion and gravitational) combined, explained Keplers’ laws of planetary motion

[Russell64]. In particular, he solved the two body problem (i.e., calculate the motion of

earth around the sun) [Strogatz94].

At the end of 1800s Poincaré [Poincaré85] initiated the qualitative theory of dif-

ferential equations, by introducing a new point of view that emphasize qualitative rather

than quantitative questions. One of the big questions, unresolved in general to this day,

is the long-term stability of something like our solar system. Poincaré used his qualitative

theory of differential equations to study this problem [Farkas81]. He was the first person to

introduce the possibility of chaos, where a deterministic system exhibits aperiodic behaviors

that depend particularly on its initial conditions [Wiggins90]. But chaos was not taken as

something relevant in the first half of 1900s, instead researches focused on nonlinear oscilla-

tors and their applications to physics and engineering [Lakshmanan96]. Nonlinear oscillators

played and important role at the time of development of new technologies like radio, radar,

lasers, etc.

The invention of a high-speed computer in the 1950’s allowed scientists to experi-

ment with differential equations in a way that was impossible before. Such experiments led

Lorenz in 1963 [Lorenz63], to discover a chaotic motion on a strange attractor. He found

that the solution of these differential equations never settled to an equilibrium state, the

system kept oscillating in an irregular way [Yang02]. Under those conditions Lorenz showed

the existence of structure in chaos. When he plotted the solution in three dimensions, the
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set of points took the form of a butterfly; we recognize a fractal structure in that attractor

[Peitgen04].

The boom of chaos took place until the 1970’s. In 1971 Ruelle and Takens proposed

a new theory for the onset turbulence in fluids [Ruelle70], based on abstract considerations

about strange attractors. Years later, May found examples of chaos at the time of interac-

tion of arising population maps. Next Feigenbaum [Ivancevic08] discovered that there are

certain universal rules governing the transition from regular to chaotic behavior. His work

established the link between chaos and phase transitions [Strogatz94].

In 1970s Mandelbrot codified and popularized fractals, and producing magnificent

computer graphics of them [Mandelbrot04], Winfree applied geometric methods of dynamics

to biological oscillations especially circadian and heart rhythms [Winfree80].

2.3. Discrete and Continuous Systems

There are two main types of dynamical systems: differential equations and iterated

maps. Differential equations describe the evolution of systems that are continuous in time,

whereas iterated maps arise in problems where time is discrete. Discrete time systems view

values of variables as occurring at distinct, separate points in time. Thus a variable jumps

from one value to another as time moves from one time period to the next. In these systems,

each variable of interest is measured once at each time period. The number of measurements

between any two time periods is finite. Measurements are typically made at sequential

integer values of the variable time.

In contrast, continuous time systems view variables as having a particular value

for potentially only an infinitesimally short amount of time. Between any two points in time

there are an infinite number of other points in time. The variable time ranges over the entire

real number line, or depending on the context, over some subset of it (e.g the non-negative

reals).
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2.3.1. Discrete Systems

Discrete dynamical systems can be used to model and analyze many real-world

problems including population growth, compound interest and annuities, radioactive decay,

pollution control, and medication dosages.

When we model a system as a discrete dynamical system, we imagine that we take

a snapshot of the system at a sequence of times. The snapshots could occur once a year,

once every millisecond, or even irregularly, such as once every time a new government is

elected. To complete the description of a dynamical system, we need to specify a rule that

determines, given an initial snapshot, what the resulting sequence of future snapshots must

be.

Informally, a discrete dynamical system is a numerical succession, defined as a

relation of recurrence. We mean that there is a rule that defines every number of the

succession based on the previous ones. For example if we open a bank account with an

initial amount of 100 and with an interest rate of 6 %, the next state will be the next year

because the interest rate is annual. With this information we can describe the rule of change

as Equation (2.1).

Xk+1 = 1.06Xk (2.1)

A discrete system can also be considered as a discrete representation of a continous

system.

2.3.2. Continuous Systems

In the last example the change occurs annually, nevertheless, there are systems that

are constantly changing, therefore the time can not be expressed as intervals. Generally in

discrete systems k denotes discrete time points, now for continuously changing problems

we use t instead of k to denote time, where t is a non negative real number instead of an

integer.

For example, if we throw a ball vertically, the system can be described at any

instant of time by two real numbers, h(t) to define the height of the ball and v(t) to define
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its speed. If we know that the speed is defined by dh(t)/dt = v and gravity is a factor that

affects the ball, defined by d2h(t)/dt2 = −g. Given this, the change in the system can be

defined in the Differential Equation (2.2).

ḣ(t) = v(t)

v̇(t) = −g
(2.2)

2.4. Linear and Nonlinear Systems

The term linear is used in geometry to specify objects like lines or planes. This

kind of objects keeps the same shape at the time of changing the scale that is been seen.

An example of nonlinear object is a sphere. This kind of objects may have a different

appearance, depending on the scale used to observe it. For example, if you look at the

sphere from too close, in the limit, looks like a plane. Instead, if you look at it from too far,

it could look like a point.

2.4.1. Linear Systems

Linear dynamical systems are dynamical systems where all functions that compose

them are linear. While dynamical systems in general do not have closed-form solutions,

linear dynamical systems can be solved exactly. In mathematics, a linear function f(x) is a

function which satisfies the following three properties [Farina11]:

• Additivity: f(x + y) = f(x) + f(y).

• Homogeneity of degree 1: f(αx) = αf(x) for all α.

• Superposition: f(αx + βy) = αf(x) + βf(y).

Linear systems can also be used to understand the qualitative behavior of general

dynamical systems, by calculating the equilibrium points of the system and approximating

it as a linear system around each such point.
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2.4.2. Nonlinear Systems

A system is non linear, if it does not fulfill all the proprieties of linear systems.

Usually nonlinear functions represent a big issue to solve a system. Some times takes to

much time to find the solution or it cannot be solved. The range of behaviors obtained in

the solutions of nonlinear systems is much wider than those found in linear ones. That is

the reason because there has been some research to solve them [Strogatz94].

2.5. Stability

Stability theory addresses the stability of solutions of differential equations and

the trajectories of dynamical systems under small perturbations. A system is stable if at

the time of small perturbations to the system, the system does not diverge. Contrary, the

system is unstable if, the system diverges when there is a small perturbation. For example,

Figure 2.1 shows two kinds of surfaces; if we apply a small perturbation to the mass in

Figure 2.1 (a) it will return to its original position (i.e., it represents a stable point). On the

other hand, if we push slightly the mass of Figure 2.1 (b), it will go away from its original

position (i.e., it represents an unstable point).

Figure 2.1: Stability

2.6. Geometry

We consider the system defined by the differential equation (2.3)

dx

dt
= sin(x) (2.3)
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To obtain the analytic solution it is necessary to separate the variables and inte-

grate, as shown in Equation (2.4)

dt =
dx

sin(x)

t =
∫

csc(x)dx

t = −ln|csc(x) + cot(x)| + C

(2.4)

To evaluate constant C, lets us assume that x = x0 at t = 0. Then

C = ln|csc(x0) + cot(x0)| (2.5)

Substituting Equations (2.4) and (2.5) we obtain Equation (2.6)

t = ln|csc(x0) + cot(x0)
csc(x) + cot(x)

| (2.6)

The result (Equation 2.6) is exact but not easy to interpret. On the contrary, a

graphical analysis of Equation 2.3 is clear and simple as shown in Figure 2.2. Think t as

time, x as the position of a particle moving along the real line, and ẋ as the velocity of that

particle. The differential equation ẋ = sin(x) represents a vector field on the line. Figure 2.2

shows graphically the fixed points and their stability of Equation (2.3). The arrows indicate

the flow of the system. The arrows point right if ẋ > 0, ẋ < 0 to the left, and when ẋ = 0

there is no flow. This points are call fixed points.

Figure 2.2 shows two kinds of fixed points. Black points represent stable fixed

points, also call attractors because the flow is oriented to them. Circles represent unstable

ones, also call repellers.

For example, to define the fixed points and stability of a system defined by the

differential equation ẋ = x2− 1, it is necessary to find when the slope is zero (ẋ = 0). After

solving we found the solution at x = ±1. We plot the the graph of x2 − 1 (Figure 2.3) and

mark the fixed points. According with the flow of the graph, we found that the fixed point

at x = −1 is stable and the one at x = 1 is unstable. Figure 2.3 shows the fixed points of

the system and their stability.
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Figure 2.2: Fixed points of the system described by the Differential Equation (2.3).
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Figure 2.3: Fixed points and stability of the system described by the Differential Equation
ẋ = x2 − 1.

2.7. Bifurcations

Bifurcation theory is a subject with a classical mathematical origin; however, the

modern development of the subject starts with Poincaré and the qualitative theory of dif-

ferential equations [Farkas81]. In recent years, this theory has undergone a tremendous

development with an infusion of new ideas and methods from dynamical systems theory

[Crawford91].

A bifurcation occurs in a dynamical system when at the time of varying one of its

parameters there is a qualitative change in the behavior of the system. A bifurcation point

is defined by the values of the parameters where a bifurcation occurs. For example, let us

consider the buckling of a beam. If a small weight is placed on top of a beam, the beam can

support the load, but if the load starts increasing constantly, there will be a time that the
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beam may not support the load. At the time that the vertical position becomes unstable,

the load may buckle and a bifurcation in the system occurs. Figure 2.4 shows the buckling

of a beam.

Figure 2.4: Buckling beam.

2.7.1. Saddle-node Bifurcation

The saddle-node bifurcation is a phenomenon present in dynamic systems where

fixed points are created and destroyed. A saddle-node bifurcation occurs when two fixed

points, one stable and the other one unstable, approximate until they meet. The saddle-

node point is the limit point between the stable zone and the unstable one. For example,

consider the system defined by the Differential Equation (2.7).

ẋ = r + x2 (2.7)

where, r is the system’s parameter. When r is negative, there are two fixed points, one

stable and the other one unstable. When r approaches zero, both points approximate each

other; so at the time that r is zero, both points are at the same point giving place to the

saddle node bifurcation. At this point, form one side the system is unstable, and from the

other one it is stable. If r > 0 there are no fixed points. This example can be observed

graphically in Figure 2.5.

A bifurcation diagram is a graphical expression that includes the fixed points of the

system for all possible values of the system parameter r. For this example, the bifurcation

diagram can be observed in Figure 2.6. Figure 2.6 the dashed section of Figure 2.6 represents

unstable fixed points, and the continuous line represents the stable fixed points.
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Figure 2.5: Behavior of ẋ = r + x2 for different values of r.

2.7.2. Transcritical Bifurcation

There are certain situations where a fixed point must exist for all values of a

parameter and can never be destroyed. For example, in simple growth models of a single

species, there is a fixed point at zero population, regardless of the value of the growth

rate. However, such fixed points may change their stability as the parameter is varied. The

transcritical bifurcation is the standard mechanism for such changes in stability [Strogatz94].

The normal form1 for a transcritical bifurcation is defined in Equation (2.8).

1A normal form is the simplest differential equation that captures the essential features of a system what
exhibitsa certain type of bifurcation.
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Figure 2.6: Bifurcation Diagram that illustrates a Saddle-node Bifurcation. The system is
defined by the Differential Equation (2.7).

ẋ = rx− x2 (2.8)

Figure 2.7 shows that regardless of the value of parameter r, there always exists

at least one fixed point. For example, when r < 0 there is an unstable fixed point at x = r

and a stable fixed point at x = 0; when r > 0 exists an unstable fixed point at x = 0 and a

stable one at x = r. And when r = 0 there is a semi-stable fixed point at x = 0. Note that

an exchange of stability has occurred to the fixed point at the origin.

The difference between the saddle-node and the transcritical bifurcation is that in

the last case, the fixed point never disappears after a bifurcation, it just changes stability.

Figure 2.8 shows the bifurcation diagram of the system.

2.7.3. Pitchfork Bifurcation

Pitchfork bifurcations are common in physical problems that have symmetry, whe-

re the fixed points appear and disappear in pairs. There are two kinds of bifurcations for

this type, the supercritical and the subcritical [Strogatz94].

The normal form of supercritical pitchfork bifurcation is defined by Equation (2.9).

Note that this equation is invariant under the change of variables x→ −x. If we replace x

by −x and then cancel the resulting minus signs on both sides of the equation, we get the
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Figure 2.7: Behavior of ẋ = rx− x2 for different values of r.

initial equation. Figure 2.9 shows the behavior of the system when the parameter r changes.

ẋ = rx− x3 (2.9)

When r ≤ 0, the origin is the only stable fixed point which is stable. If r > 0

the origin is unstable, and two new stable fixed points appear symmetrically located at

x = ±
√

r. Figure 2.10 shows graphically the bifurcation diagram of the system defined by

Equation (2.9).

The normal form for the subcritical pitchfork bifurcation is given by Equation

(2.10). Note that the difference between the supercritical is the cubic term. In the supercri-
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Figure 2.8: Bifurcation Diagram of the system defined by the Differential Equation (2.8)

tical case, the negative sign of the cubic term acts as a stabilizer, now being positive, it is

destabilizing.

ẋ = rx + x3 (2.10)

Figure 2.11 shows the bifurcation diagram for the system defined by Equation

(2.10). Compared with the supercritical bifurcation, now the pitchfork is inverted. The

fixed points that are located over x = ±
√

r are unstable, and the origin is stable when

r < 0, and unstable when r > 0.

2.7.4. Jumps and Hysteresis

To explain jumps and hysteresis let us consider the system defined by the Diffe-

rential Equation (2.11).

ẋ = rx + x3 − x5 (2.11)

The bifurcation diagram of the system is shown in Figure 2.12. From the bifurca-

tion diagram we can observe that the origin is locally stable when r < 0. Two symmetric

branches emerge from origin until r = rs. At r = rs, two new branches emerge, switching

stability from unstable to stable for all r > rs.
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Figure 2.9: Behavior of ẋ = rx− x3 for different values of r.

Let us analyze the bifurcation diagram of the Figure 2.12, and consider the follo-

wing:

1. The range of rs < r < 0, two qualitative different stables states coexist.

2. The existence of different states allows the possibility of jumps and hysteresis when the

parameter r is being varied. For example, lets consider the initial state of the system at

r < rs. At the time of increment for the parameter r, the system remains at the origin

until r = 0. When r ≥ 0, the origin became unstable; now a small perturbation will

cause that the system jumps to one of the large-amplitude branches. If we continue

incrementing the value of the parameter r, the system will remains in the same branch.
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Figure 2.10: Supercritical Pitchfork Bifurcation Diagram of the system defined by the Dif-
ferential Equation (2.9).

Figure 2.11: Supercritical Pitchfork Bifurcation Diagram of the system defined in the Dif-
ferential Equation 2.10

Furthermore, if we decrement the value of the parameter r lower than rs, the system

jumps one more time to the origin. This lack of reversibility as a parameter changes

is called hysteresis. Figure 2.13 shows this example of jumps and hysteresis.

3. The bifurcation at rs is a saddle-node bifurcation, where two fixed points (one stable

and the other unstable) appear as r increases.
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Figure 2.12: Bifurcation Diagram of the system defined in the Differential Equation (2.11).

Figure 2.13: Example of jumps and hysteresis

2.8. Chapter Conclusions

This chapter introduced some basic concepts about dynamical systems. These

concepts include fixed point, stability, and bifurcation diagram, which will be used in the

following chapters. In the following chapters we will propose a qualitative representation of

a bifurcation diagram. With the qualitative representation, we present two algorithms that

describe the behavior of a dynamical system when one of its parameters changes.



Chapter 3

Qualitative Representation of a

Bifurcation Diagram

Qualitative reasoning is the area of artificial intelligence that creates approximate

representations of continuous aspects of the world, such as space, time, and magnitude,

and supports reasoning with as little exact information as possible. The goal of qualitative

reasoning is to arrive at useful conclusions about a system when precise information about

the system is not available or is not necessary. This information about the system corres-

ponds to a model of the system (the numerical information of the system may or may not

be known). The problem is to select the essential characteristics of the system and put them

in a useful representation.

To reason about a situation or a system, it is usually necessary to model the system.

To create a model, it is essential to identify the relevant objects of the system and their

relationships within the system. Besides identifying the relevant objects, it is mandatory

to determine their essential characteristics. Once the identification of the essential objects

and their characteristics is performed, it is necessary to put this information into a given

representation.

A qualitative representation of a system is a description of the system’ essential

characteristics. It is obvious that there is no single, right, or best qualitative representation.

Instead, there exists a spectrum of choices, each with their own advantages and disadvanta-

27
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ges for a particular task. The characteristics that all of them have in common is that they

provide a notation for describing and reasoning about continuous properties of the physical

world in a discrete fashion.

Forbus in [Forbus97] proposes that two key aspects of a qualitative representation

are its resolution and its compositionality. Resolution concerns the level of information

detail in a representation, which is an issue because one goal of qualitative reasoning is to

understand how little information is sufficient to draw useful conclusions.

Compositionality concerns the ability to combine representations for different as-

pects of a phenomenon or system to create a representation of the phenomenon or system as

a whole. Compositionality is an issue because one goal of qualitative physics is to formalize

the modeling process itself.

For our problem of capturing the essential characteristics of the bifurcation dia-

gram for the qualitative representation, we decompose the diagram in sections with common

qualitative characteristics. The common qualitative characteristics in this work are a set of

bifurcation points with the same derivative and same behavior (stability). In the following

sections we explain the structure of the proposed qualitative representation and we present

an illustrative example of it.

3.1. Qualitative Representation

The main components of a dynamical system are variables, parameters, and cons-

traints1. Since we are starting from a bifurcation diagram we do not need to represent the

structure of the system (the constraints). A bifurcation can thus be described in terms of

the values of its state variables and parameters at different points in time. At any point in

time, the value of each variable or parameter is specified in terms of its relationship with

a totally ordered set of landmark values and its direction of change. The set of landmark

values is called a quantity space.

The qualitative value of a variable can be a landmark or an open interval between

landmarks. The qualitative direction of a variable is the sign of its derivative, in this case,
1The constraints of a dynamical system are generally represented as a set of Ordiary Differential

Equations.
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related to change with respect to another variable. A landmark is a symbolic name for a

particular qualitative value (whose numerical value may or may not be known) that breaks

a continuous set of values into regions with different qualitative characteristics.

In a Bifurcation Diagram (BD), we plot the system’s state variable x, versus a

parameter r. Generally, x is not a function of r (in the strict mathematical sense), so we

need to represent the bifurcation diagram as a relation.

The qualitative representation of a bifurcation diagram, a QBD, is a tuple of

four elements 〈V, QS,BDS, T 〉. Where V is defined the state variable and the parameter

variable. QS defines the sets of state variable and parameter landmaks in the system. BDS

defines the Monotonic Segments (MS), each MS is described by its initial and final points,

its nature and its direction. T defines the transitions or next state for every possible action

(i.e., perturbation or increase/decrease in the parameter) for every MS defined in BDS.

The qualitative representation syntax is defined using EBNF (Extended BackusNaur Form)

[Scowen93].

• V is a set of the variables of the dynamical system, where x correspond to the state

variable and r to the parameter variable. Note that this representation only works

with bifurcation diagrams of one state variable and one parameter.

V = (x, r)

• QS is the set of the qualitative quantity spaces, one for each variable in V . Each

quantitative space has a set of landmarks; consider there are nx for the variable x

and nr landmarks for r. Notice that all numerical values are discarded, landmarks are

only ordered by magnitude. This mean that xk−1 < xk < xk+1.

QS = (QSx, QSr)

QSx = (x1, x2, x3, .., xnx)

QSr = (r0, r1, r2, ..., rnr)

• BDS is a set of n monotonic segments that defines the bifurcation diagram. Every MS

is described by its initial and final points, its nature and its direction. The initial and

final points are defined by two landmarks, one contained in QSx and other in QSr.



30 Chapter 3: Qualitative Representation of a Bifurcation Diagram

Nature is the stability of the segment (s for stable and u for unstable), and direction

is the slope (i.e., -, 0, +).

BDS = (S1, S2, .., Sns)

Si = ((xa, rb), (xc, rd), (nature, direction))

nature = s | u

direction = − | 0 | +

• T is a set of transitions; each segment’s transitions has four possible directions (Up,

Down, Left and Right). Two types of transitions are defined, the first case is when a

perturbation occurs. If a perturbation occurs, the Up or Down transition defines the

possible segments (if they exist) that the system will arrive to in case of a positive (Up)

or Negative (Down) perturbation. There are npert perturbations transitions defined for

every segment for positive and negative perturbations. The segment that the system

will arrive to depends on where in the BDS the perturbation took place. That is the

reason why a segment may have more than one transition; in such cases the boundary

(Limits) of Pert must be defined (i.e., (rinit, rend).

The second case occurs when the parameter r changes. If r increases and the value

of r goes over the limits of the segment, the system transits to another segment. Left

and Right Transitions define the the next segment (if it exist) that the system will

arrive to when the state reaches a point beyond the segment boundary. Left transition

for the case of going beyond the left end and Right Transition when going beyond the

right end. Notice that for this case there is only one possible segment that the system

may arrive to (See Flores work in [Flores06]).

T = (Up Transitions,Down Transitions, Left Transitions, Right Transitions)

Up/Down Transitions = {Pert1, P ert2, ..., P ertl}

Pert = (Snext, Limits)

Limits = (rinit, rend)

Left/RightTransitions = Si
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In summary a QBD is comprised of a set of qualitative segments (BDS) of a given

bifurcation diagram. Each segment is considered to be a qualitative line; a line has beginning

and end points, a qualitative slope or direction (i.e., +, -, or 0), and in this case, each line has

its own nature (i.e., is stable or unstable). Each segment may have segments beyond both of

its ends (Left or Right). The transitions of each segment (T ) define the next segment that

the system will follow in case of an event or action (i.e., perturbation, derailment, fall off,

etc.). Up/Down Transitions define the possible segments (if they exist) that the system will

arrive to in case of a positive (Up) or Negative (Down) perturbation. Pert defines the next

segment in case of a perturbation. For the case of a perturbation occurs in a stable segment

; Pert is the same segment where the perturbation occurs. Limits define the boundary of

the perturbation. Left/Right Transitions are used to define any possible segments that

the system will transition to when the system has exceeded the Left or Right ends of the

segment. With these directed connections between segments, a qualitative simulation can

be produced by following paths through the model along segments and across transitions.

These explicit representations of transitions extend the earlier representation [Flores06].

3.2. Example of the Qualitative Representation

To illustrate the proposed qualitative representation we use the system defined by

ẋ = 16 + rx − x3. For this example we use the application created by Flores and Lopez

[Flores10] to create the bifurcation diagrams. Figure 3.1 shows the bifurcation diagram of

the system; in the figure there are two kind of dots, blue dots correspond to stable fixed

points ones and red dots correspond to unstable ones.

To perform qualitative simulation of the behavior of the system, it is necessary to

capture only the essential characteristics of the diagram and translate them to an appro-

priate representation. In this case we need to group in sets of points with the same slope and

stability. Figure 3.2 shows the set of points grouped by slope and stability. From Figure 3.2

we observe three sets of dots, the black dots correspond to stable fixed points with negative

slope, the orange ones correspond to unstable fixed points with a positive slope, and the

gray ones correspond to stable fixed points with a positive slope.
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Figure 3.1: Bifurcation diagram defined by ẋ = 16+ rx−x3. Blue dots correspond to stable
fixed points and red dots to unstable ones.
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Figure 3.2: Breaking the bifurcation diagram of the system defined by ẋ = 16 + rx − x3.
The points are grouped by slope and stability.
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If we take only the initial and final points of the previous sets and join them by

a line we delete all the irrelevant information a take the essential characteristics. Figure

3.3 shows the monotonic segments of the bifurcation diagram; black dots represent stable

segments and red ones represent unstable segments.
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Figure 3.3: Bifurcation diagram of the system defined by ẋ = 16+ rx−x3 divided in mono-
tonic segments. The black lines correspond to a stable segment and the red line correspond
to an unstable segment.

The qualitative representation of the BD of the Figure 3.2 is a tuple of four elements

〈V, QS, BDS, T 〉. V is composed of x and r; x corresponds to state variable and r is the

system parameter. The quantitative space for variable x is defined by four landmarks (x0

to x3) and for variable r by three landmarks (r0, r1,r2). In the system there are only three

qualitative segments each of them are defined by its initial and final point, its stability and

its slope. Table 3.1 shows the qualitative representation of the system.

Transitions are defined in Table 3.2, where the directed connections between seg-

ments are defined. As we can observe in the Table 3.2 when a perturbation (positive or

negative) occurs in a stable segment the system remains in the same segment (see the row

of segment S0 at column Up/Down ={S0, {r1, r2}}). But if the system is at S0 and the

system decrease longer than r < r1, the system goes to segment S2 (See row S0 at column

Left = S2).

Finally if we plot the information contained in Table 3.1 we produce Figure 3.4.

Figure 3.4 shows a qualitative representation of the bifucation diagram. The dotted lines
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Table 3.1: Qualitative Representation of the Bifurcation Diagram of the system defined by
ẋ = 16 + rx− x3

Variables {r, x}

Quantity Space QSr {r0, r1, r2}
QSx {x0, x1, x2, x3, x4}

BDS
S0 {{r1, x1}, {r2, x0}, {−, s}}
S1 {{r1, x1}, {r2, x2}, {+, u}}
S2 {{r0, x3}, {r2, x4}, {+, s}}

Transitions See Table 3.2

Table 3.2: Transitions of the Bifurcation Diagram of the system defined by ẋ = 16+ rx−x3

Segment Up Down Left Right
S0 {S0, {r1, r2}} {S0, {r1, r2}} S2 {}
S1 {S2,{r1, r2}} {S0,{r1, r1}} {} {}
S2 {S2, {r0, r2}} {S2, {r0, r2}} {} {}

represent unstable segments and the continuous ones represent stable ones.
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Figure 3.4: Bifurcation diagram of the system defined by ẋ = 16+ rx−x3 divided in mono-
tonic segments. The black lines correspond to a stable segment and the red line correspond
to an unstable segment.
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3.3. Semi-stable Fixed Points

A bifurcation diagram is a set of points that represent solutions of the differen-

tial equations under different conditions. There are stable, unstable, and semi-stable fixed

points. (A semi-stable fixed point may be stable from above, or from below.) For instance,

the points at the intersections of segments S0 and S1 of Figure 3.4 are fixed points where

the derivative of the segment tends to infinity. Those fixed points are semi-stable; point p1

is stable from above and unstable from below (see Figure 3.5).

S0

S1

r1

x1

Figure 3.5: A Semi-stable Fixed Point

Since the qualitative nature of those points are different than those of their neigh-

boring segments, unstable points would form segments by themselves. Given that the de-

termination of a quantitative BD is done by a succession of discrete steps, the likelihood of

capturing those points in the quantitative bifurcation diagram is very low. For the sake of

completeness of the QBD, those semi-stable points could be included in the representation;

nevertheless, their inclusion would not change the outcome of the qualitative simulation.

The fact that the inclusion of semi-stable fixed points in the QBD is unnecessary will be

illustrated in Section 4.2. By now, I want to make clear that those fixed points were consi-

dered and I decided not to include them in the qualitative representation.

As mentioned in this chapter there is no single, unique, or best qualitative repre-
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sentation; there may be more than one of them . For our particular problem of predicting

the behavior of a bifurcation diagram, we need to capture the essential characteristics of the

system and translate them into an optimal qualitative representation. In this chapter we

proposed a qualitative representation which includes as a tuple of four elements (variables,

quantitative spaces, segments, and transitions). Chapter 3.4 describes an algorithm that

generates the qualitative representation from its quantitative form (bifurcation points) and

in Chapter 4 the simulation and planning algorithm are described. Both algorithms use the

qualitative representation for qualitative simulations.

3.4. Qualitative Representation Generation

This section describes the algorithm that generates the qualitative representation

of a bifurcation diagram. This algorithm, Qualitative Representation Generation (QRG)

takes as input the quantitative representation of the BD (bifurcation points); i.e., the set

of points from a quantitative bifurcation diagram along with the stability associated to

each fixed point. Specifically, we accept files generated by the system of Flores and Lopez

[Flores10] and XPPAUT [Ermentrout03], but our system could easily be adapted to use the

output from other applications that generate dynamical system bifurcation diagrams.

It is possible to perform simulations to predict the behavior of the dynamical sys-

tem based on the qualitative representation. Such a qualitative representation was proposed

in previous section; the algorithm proposed in this section takes the essential characteristics

of the system and translates them to the qualitative representation. QRG takes as input

the bifurcation points, split them into subsets and then generates the monotonic segments

(MSs). With these monotonic segments it takes the essential information to generate the

qualitative representation.

3.4.1. Qualitative Generation Algorithm

The pseudo-code for the algorithm for Qualitative Representation Generation

(QRG) is shown as Algorithm 1. Given the quantitative data of the bifurcation diagram,

delta, DeltaGlue, and W; in Line 1 QRG proceeds to break the information into connec-
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ted subsets, where the points appear to be part of a partial function (Section 3.4.2). A

bifurcation diagram is usually not a function, but may have a number of operating regions

for a given parameter value. In Line 3 each subset is then broken into smaller subsets, first

regions and then Monotonic Segments (MS) (Section 3.4.3); all the points contained in an

MS have the same qualitative behavior (i.e., sign of slope and nature). Since the input

may have imprecision or errors, there can be small gaps in the information and, therefore,

a lack of continuity between segments. Line 4 glues nearby segments together in order to

reestablish the underlying continuity (Section 3.4.4). Finally, in Line 5 the algorithm takes

the end points of the segments and store them with symbolic names (landmarks) in QS

(Section 3.4.5). Once the qualitative segments of the bifurcation diagram have been defi-

ned, the transitions between segments (Section 3.4.6) are generated (in Line 6), determining

behavioral links to other segments (Section 3.4.6). Last, the qualitative representation is

generated (Line 7) and returned (Line 8).

Algorithm 1 QRG(BDPoints, delta,DeltaGlue,W )
1: Subsets← {}
2: Subsets← SegmentBifurcationDiagram(BDPoints, SubSets, delta)
3: MSs← BreakingInToMS(Subsets, MSs,W )
4: MSs← GluingSegments(MSs, DeltaGlue)
5: Landmarks← SettingLandmarks(MSs)
6: Transitions← GenerateTransitions(MSs)
7: QualitativeRepresentation← GenerateQR(MSs,Landmarks, Transitions)
8: Return QualitativeRepresentation

3.4.2. Segmenting the Bifurcation Diagram

The segmentation algorithm takes as input the points in the quantitative bifur-

cation diagram (BDPoints). These points are generally not a function2, and therefore we

cannot treat them as such. It is useful to break the set of points into subsets, where all

the points in a given subset are a function. To solve this problem, subsets are generated by

taking all the points that can be observed from below (that is, taking the minimum value

of x for every value of r). We start from the lowest point of the BD (Line 4). From that
2f(x) is a function if for every value of x, the value of f is uniquely defined. In BDs, there are values of

the parameter r for which x can be multiply defined (i.e., several fixed points may exist).
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point we take all the points that can be observed from below first to the left (Line 5) then

to the right (Line 6). During this process we discard the points that do not belong to the

segment. To discard a point we check the distance of the point to its neighbors; delta is

the parameter used to discriminate a point or not. For example, if we start from the lowest

point of the diagram of Figure 3.6, and take all the points that can be observed from below,

there are certain points that belong to another segment (when r > 12 the observed points

are not being consider for the moment because the distance is greater than delta). If we

do not make this distinction we could take points that do not belong to the segment. After

selecting the points, they are removed from the original data (Line 8) and continue with

the same process until no more points remain. Algorithm 2 shows the complete algorithm

of this process.

Algorithm 2 SegmentBifurcationDiagram(BDPoints, SubSets, delta)
1: if BDPoints is Empty then
2: Return SubSets
3: else
4: Pos← PositionLowestPoint(BDPoints)
5: Set1← SelectAllLeftPointsFromPos(BDPoints, delta)
6: Set2← SelectAllRightPointsFromPos(BDPoints, delta)
7: SubSets← Append(SubSets, Append(Set1, Set2))
8: BDPoints← RemoveSelectedPoints(BDPoints)
9: Return SegmentBifurcationDiagram(BDPoints, SubSets, delta)

10: end if

Figure 3.6 (a) shows an example where the distance delta is not taken into con-

sideration to rule out segment sections that do not belong together. In this example we

took all the points observed from below starting from the lowest point. As we can observe

in Figure 3.6, if the algorithm takes all the points that can be seen from below starting

from the lowest point, the algorithm will take all the blue points. Notice that not all the

blue points correspond to a single segment. The blue points where r ε [0, 12] correspond

to another segment. Figure 3.6 (b) shows the correct segmentation by using the parameter

delta.

The way quantitative data is generated does not guarantee that the points are

continuous; there may be values of r for which not all fixed points of the system were
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Figure 3.6: Bifurcation diagram segmentation process. (a) In the bifurcation diagram all
the blue points corresponds to the points that can be observed from below (blue points).
But not all the blue points belong to the segment. (b) The segmentation algorithm consider
the delta parameter to discriminate points.

determined. That produces discontinuous streams of data, where for those indeterminate

values of r a data item are taken from a different segment; therefore, it is necessary to check

distances between neighboring points, and discard points that are too far away (delta).

When we are filtering the last layer of points, and no x was determined for a value of r,

no data is inserted in that place, creating holes in the segments. In either case, a segment

with discontinuities or holes has to be recognized and reassembled back together to form a

single BDS.

Figure 3.7 shows an example of this case illustrating gaps in the bifurcation dia-

gram. At r∗ there is a hole in the black segment. If we scan to determine the point seen

from below, we will take the orange point; this point do not belong to the black segment

(because of the hole). We use delta to verify if a point belong or not to a segment. If we

do not check the distance between neighbors we could include those points in the wrong

segment.

After selecting the points at the left, we continue with the same process to the

right (selecting all the points that can be seen from below to the right of the lowest point).

Both sets (left and right) are placed in a single segment.

Figure 3.8 shows the BD for a system defined by the differential equation ẋ =

rx + x3. The first step is to locate to the lowest point of the BD. From that point we take

all the points that can be seen from below to the left and then to the right. In this example
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r*

Figure 3.7: Gaps in a bifurcation diagram.

(Figure 3.8) we observe that from the lowest point there are no points to the left, but there

are points that can be seen to the right of the minimum. We take those points and remove

them from the BD (Figure 3.9) and continue until no points remain. Figure 3.10 shows the

diagram right before the last step.

-2 0 2
r

-1

0

1

x

Figure 3.8: Bifurcation Diagram defined by ẋ = rx + x3.

3.4.3. Monotonic Segments

Given the subsets of points obtained in the first step, a qualitative derivative

is determined for each point contained in each subset (Line 5). For this function W is the

window size of the kernel function (further information about the kernel function is described
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Figure 3.9: Removing the points that can be seen from below of the example in Figure 3.8.
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Figure 3.10: Continue removing the points until no points remain of the example in Figure
3.8. This Figure illustrate right before the last step.
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in Section 3.5). Line 6 detects the positions where exists a change in the qualitative slope

(i.e., change from a positive slope to a negative one); these changes define the initial and

final points of the MS. The subsets are segmented into regions having the same qualitative

behavior (Line 7), taking as breaking points the position changes defined before; each such

region is called a Monotonic Segment (MS). To obtain the qualitative slope of each point,

we use a qualitative noise filter developed by Kay et al [Kay00]. This filter produces a

qualitative derivative for each point of the subset; it operates by applying a qualitative

kernel function to a window of fixed size (W ), that is slid across the subset. Algorithm 3

defines the complete algorithm of the process of segmenting the information into MSs.

The kernel function defined in Section 3.5 determines the slopes of all the points

contained in a subset (positive, negative, or unknown). Given all the slopes, we traverse

that subset searching for the points where the slope or stability changes from one point to

the next. We take all the points found by the search into new subsets before finding any

points with different slopes or stabilities. This action is repeated until no points remain. As

noted above, all the points contained in each new subset have the same slope and stability

and constitute a MS. An MS is represented by its beginning and end, its nature (stable or

unstable), and its qualitative behavior (positive, zero, or negative slope).

Algorithm 3 BreakingInToMS(Subsets, MSs,W )
1: if Subsets is Empty then
2: Return MS
3: else
4: TemporalSet← First(Subsets)
5: Slopes← ApplyQualitativeFilter(TemporalSet,W )
6: PosChanges← FindChangesInSlope(Slopes)
7: TemporalMS ← BrakeSubsetFromPosChanges(TemporalSet, PosChanges)
8: Return BreakingInToMS(Rest(Subsets), Append(MS,TemporalMS),W )
9: end if

If we take the example of Figure 3.8. In fist step, we brake the BD in sets where

all the points belong to a function. We use the qualitative filter defined in section 3.5 to

define the qualitative derivatives of each point. We make a selection to form the monotonic

segments depending on its behavior (slope) and its nature (stability). Figure 3.11 shows

an example of a subset that has been broken into two MSs. One MS has a positive slope



3.4. Qualitative Representation Generation 43

and the other one has a zero slope.

(a) (b)

Figure 3.11: The points of a subset (a) before and (b) after being broken into two MSs.

3.4.4. Gluing Segments

In the previous steps the algorithm works with quantitative data. In this step the

system works with the initial and final points of each MS (at a qualitative level). The mono-

tonic segments produced by the previous step may leave gaps between the segments due to

imprecision and coarse granularity of the initial quantitative information. The bifurcation

diagram is to be continuous; i.e., there must be no gaps between segments.

In addressing the gaps issue, two cases can be distinguished. The first case deals

with scenario where several adjacent segments separated by holes genuinely form a single

segment and they must be glued into a single one. In this first case a sequence of segments

that belong together are glued to form a single segment. These segments must be close

enough to be considered part of the same segment. If both segments have the same qualita-

tive behavior, they are merged into one. The algorithm search an adjacent segment (Line 2)

and the resulting adjacent MS is aproximante to the current segment (Line 3). Figure 3.12

shows an example of the holes produced by the qualitativization of a segment of a BD

and the result of merging several segments when the segments have the same qualitative

behavior.

The second case occurs when the extremes of a pair of segments are very close,

but their natures or slopes are not the same. In this case, each segment is extended until

the segments meet, maintaining their slope and nature. Figure 3.13 shows an example of

this case. Algorithm 4 shows the complete process of gluing segments.
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(a) (b)

Figure 3.12: BD with gaps or holes (a) before and (b) after gluing the segments
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Figure 3.13: Two nearby segments that are not to be merged into one due to their different
qualitative nature – (a) before and (b) after filtering

3.4.5. Setting Landmarks

After gluing segments together to reestablish continuity, we generate the quali-

tative representation defined in Chapter 3.4. Each end point of an MS has associated r

and x values. These values are given symbolic names, called landmarks, and are stored in

the corresponding variable’s quantity space in order of their quantitative magnitudes. The

setting landmarks process start by taking the initial and final points of the MSs (Line 3

and 4 ).

A symbolic name is associate to this value (Line 5) and then the symbolic name

(landmark) is inserted in QS (Line 6). Note that at the time of insertion of the new land-

mark, it has to be at the right position. Algorithm 5 shows the complete process of setting

the landmarks.

A quantity space is a set of landmarks ordered by magnitude, i.e., the value of

Algorithm 4 GluingSegment(MSs,DeltaGlue)
1: for All MS in MSs do
2: AdjacentMS ← SearchAdjacentMS(MS,MSs, DeltaGlue)
3: MS ← ApproximateMS(MS,MSs, DeltaGlue)
4: end for
5: Return MSs



3.4. Qualitative Representation Generation 45

the ij landmark is greater (in magnitude) than the ij−1 landmark. The real quantitative

value of each landmark may or may not be known; that value is discarded anyway, since the

system only needs an order relation between landmarks. An example of a quantity space is

QSx = {x0, x1, ..., xn}, where x0 < x1... < xn.

During the simulation or planning process the real landmark values are not used.

All we know is an order relation. During the planning algorithm, new landmarks are gene-

rated, whose real values are not known. It is only known that the new landmark is between

two landmarks

The Quantitative Space (QS) is the set of landmarks ordered by magnitude. The

real values of the landmarks are discarded, but to create the set of landmarks, initially their

real values must be known. Before eliminating any quantitative value, the system stores all

the numerical values (left or right extremes of a segment). The r values are separated from

the x values and ordered by magnitude. For each element or value contained in both sets,

the algorithm substitutes the numerical value by a qualitative one (i.e., 0.2 by x1, 0.05 by

x2, ...). The obtained sets will be considered as the QS of the qualitative representation of

the system.

Algorithm 5 SettingLandmarks(MSs)
1: QS ← {}
2: for All MS Contained in MSs do
3: PointLeft← TakeInitialLeftPoint(MS)
4: PointRight← TakeInitialRightPoint(MS)
5: Landmark ← AssociateSymbolicName(PointLeft)
6: QS ← AppendOrderedByMagnitude(QS,Lendmark)
7: Landmark ← AssociateSymbolicName(PointRight)
8: QS ← AppendOrderedByMagnitude(QS,Lendmark)
9: end for

10: Return QS

3.4.6. Transitions

To analyze or simulate a dynamical system, means to determine how the system

will behave when a parameter r varies. We need to specify the changes r undergoes. Since

we are not interested in the precise value of time when the events happen, that description
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will not include time explicitly, it only includes the order in which they happen. During the

qualitative simulation, we want to know what MSs the system will traverse and the order

of the transition events, given changes in the value of a parameter or given a perturbation

to the state variable.

The qualitative representation stores each of the four transition directions. In Line

1UpT stores the transitions that may occur in the presence of a positive perturbation; In

Line 2DownT does the same for a negative one. If the parameter is incremented and the

system goes beyond the segment, the segment the system will transit to is stored in Right

(Line 3). Finally, if the parameter is decremented and the system goes beyond the segment,

the system stores the transition in Left (Line 4). Algorithm 6 shows the process of defining

the Transitions of the MSs.

Algorithm 6 GenerateTransitions(MSs)
1: UpT ← PerturbationTransitions(MSs, Up)
2: DownT ← PerturbationTransitions(MSs, Down)
3: LeftT ← IncDecTransitions(MSs, Left)
4: RightT ← IncDecTransitions(MSs,Right)
5: Return (UpT,DownT, LeftT, RightT )

When a perturbation occurs (Algorithm 7), if the system is at a stable fixed point,

the system will return to the same stable fixed point (Line 6), the boundary of the pertur-

bation is the same as the segment’s boundary. The algorithm records in PertTrans and

continue with the next MS. If the system is at an unstable fixed point, a positive perturba-

tion occurs, and there exists a stable fixed point above it, then the system will transition to

that fixed point. If there is no such stable fixed point above, the system will go to infinity

(i.e., it blows up). A similar behavior occurs for negative perturbations, with an unstable

system moving to a stable point below, or to minus infinity.

The transition segment of a perturbation depends where the perturbation took

place. Therefore the algorithm defines all possible transitions in case of a perturbation

across a segment. The Perturbation algorithm defines the limits of the search in Line 3

and 4; InitialPoint, for the left end of the segment, and EndPoint for the right end.

The algorithm searches the closest stable segment in the vertical direction (Line 10) from
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InitialPoint. The boundary of the perturbation (Algorithm 8) is defined considering the

limits of PertTemp and other segments that may cross between MS and PertTemp in

Line 12. The boundary defines the limits where the perturbation may occur. In Line 14,

the algorithm updates InitialPoint← Limit and continues the search of another region of

perturbation until InitialPoint reaches EndPoint (Line 9). The Perturbation Transition

process is defined in Algorithm 7.

Algorithm 7 PerturbationTransitions(MSs, Direction)
1: PertTrans← {}
2: for All MS in MSs do
3: InitialPoint← TakeInitialPoint(MS)
4: EndPoint← TakeEndPoint(MS)
5: if MS is stable then
6: Pert← (MS, InitialPoint, EndPoint)
7: else
8: Pert← {}
9: while InitialPoint < EndPoint do

10: PertTemp← ClosestVerticalMS(MS, InitialPoint, MSs)
11: if PertTemp is not Empty then
12: Limit← DefineBoundary(MSs, PertTemp, InitialPoint, EndPoint)
13: Pert← Append(Pert, (PertTemp, (InitialPoint, Limit)))
14: InitialPoint← Limit
15: end if
16: end while
17: end if
18: PertTrans← Append(PertTrans, Pert)
19: end for
20: Return (PertTrans)

When there is an increment or decrement in the parameter. Two types of events

may occur. One if there is an adjacent segment to MS. The other type of event that may

occur is what we call a fallOff. When the system is at a stable fixed point and parameter

r increases or decreases, the system will travel along the segment to which the fixed point

belongs. If the segment ends before the change in the parameter has completed, then there

is no other fixed point along that segment i.e., at that state. The system will transition to

the nearest attracting fixed point or to infinity. A more detailed explanation of these events

can be found in the work of Flores et al [Flores06].
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Algorithm 8 DefineBoundary(MSs, PertTemp, InitialPoint, EndPoint)
1: PertEnd← TakeEndPoint(PertTemp)
2: if PertEnd < EndPoint then
3: Limit← PertEnd
4: else
5: Limit← EndPoint
6: end if
7: Boundary ← SearchLowerMS(PertTemp, MS, MSs, PertTemp,Limit)
8: if Boundary is Empty then
9: Return (Limit)

10: else
11: Return (Boundary)
12: end if

Algorithm 9 defines the case of an increment or decrement in the parameter pro-

cess. Algorithm IncDecTransitions takes the end of the segment according the search

direction in Line 3(Limit). i.e., left end for the Left transition and right end for the

Right transition. In Line 4 the algorithm searches and adjacent segment by the function

SearchAdjacentSegment and store it in IncDecTrans (Line 5). This process is repeated

for all MS in MSs.

Algorithm 9 IncDecTransitions(MSs,Direction)
1: IncDecTrans← {}
2: for All MS in MSs do
3: Limit← TakeEndSegment(MS, Direction)
4: TransitionSegment← SearchAdjacentSegment(MS,MSs, Direction)
5: IncDecTrans← Append(IncDecTrans, TransitionSegment)
6: end for
7: Return (IncDecTrans)

Figure 3.14 shows an example of an artificial QBD used to illustrate the generation

of possible transitions in a BD. In the diagram, we assume the segment S0 is unstable. Lets

consider two different situations by which the system will move to a fixed point that does

not belong to the same segment. If a positive perturbation occurs between the landmarks r0

and r3, the system will go to the fixed point above the point where the perturbation occurs;

i.e., segment S1. If the system is at a stable fixed point in segment S1, and parameter r

grows from r0 towards r4, the system will remain at segment S1 until reaching r3. Since
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segment S1 ends at that point, the system will fall-off to segment S3 at r3. Table 3.3 shows

all possible transitions for BD of Figure 3.14.

S0

S1

S2

S3

S4

S5

r0 r1 r2 r3 r4 r5

x0

x1

x2

x3

x4

x5

x6

Figure 3.14: Artificial Qualitative Bifurcation Diagram used to Illustrate the Representation
of Transitions (stable and unstable segments are represented by solid and dashed lines,
respectively)

Table 3.3: Transitions of the Bifurcation Diagram on Figure 3.14.

Segment Up Down Left Right

S0

{S1, {r0, r3}}
{} {} {}{S3, {r3, r4}}

{S5, {r4, r5}}
S1 {S1,{r0, r3}} {S1,{r0, r3}} {} S3

S2 {S3,{r1, r3}} {S1,{r1, r3}} {} {}
S3 {S3,{r1, r4}} {S3,{r1, r4}} S1 S5

S4 {S5,{r2, r4}} {S3,{r2, r4}} {} {}
S5 {S5,{r0, r5}} {S5,{r0, r5}} S3 {}
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3.5. Qualitative Filter

The qualitative filter is defined in the work of Kay in Semi-Qualitative System

Identification [Kay00]. The qualitative filter brakes a set of points into monotonic subsets,

where all the points in a monotonic subset have the same derivative sign (+ for positive, -

for negative). Each sign is obtained using a qualitative kernel function (Equation 3.1). This

function defines the slope of a particular point using its neighbor points. For certain cases

the the kernel function cannot distinguish when derivative is the zero. For these cases it is

necessary to obtain the standard deviation of the points (Equation (3.3)).

The kernel function is applied to a window of size n; this window is slid across

the set of points. For every application of the kernel function we obtain a qualitative deri-

vative. + if the the points of the window are monotonically increasing, - if the points are

monotonically decreasing, and * if its slope can not be defined.

The kernel function defines the slope of a point using a window of points. This

function is defined by Equation (3.1). Where i is i-th term in the window. The terms t̄

and ȳ are used for the average of each variable of the whole set. The result of Equation

(3.1) is taken in a qualitative way. Form result of Equation (3.1) we obtain the qualitative

derivative in Equation (3.2)

slopej =





n∑
i=1

(ti − t̄)(yi − ȳ)

n∑
i=1

(ti − t̄)2



 (3.1)

qslopej = Sign(slopej) (3.2)

Since the information may have numeric imprecision, noise, etc., it is necessary to

obtain the standard deviation of the points. For this case we use Equation (3.3), where σv

is the standard deviation of the points. Therefore, if |slope| ≤ 3.5s the qslope is unknown

(i.e., *). The sign returned by the kernel function is based on a 3.5 σ confidence range, this

gives a 99 % certainty that the slope is not zero [Kay00].

The qualitative filter is applied to all the fixed points, and detects the changes in

directions. This mean that where a change in the qualitative slope occurs, the algorithm
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takes all the points with the same slope, and continues evaluating. Note that, when a change

in direction (slope) occurs (i.e., going form positive to negative slope) there is a point with a

zero slope. For our particular representation this point is not defined in it. For this case, the

qualitative representation takes only two segments. For example if we observe Figure 3.15,

we notice that at the beginning the first points have a positive slope, and later a change

in direction occurs. The following points change their qualitative slope. During the change,

exists a point with zero slope. The change occurs instantly, therefore this particular point

(a point with zero slope) is not considered in the representation.

sj =
σv√

n∑
i=1

(ti − t̄)2
(3.3)

As an example, consider the set of points plotted in Figure 3.15. In the figure we

can observe an increasing trend on the first part of the set, and a decreasing trend on the

second part of them. If we get the derivative with the traditional all across the set of points.

We get in some part of the increasing trend, that there are some really small part that has

the opposite slope (negative); we will be capturing the noise. When we use the qualitative

filter to determine a qualitative slope for a particular point, we define it using the next n

(window size) points of the set. That window of points give us more information to define

the qualitative slope. The result of applying the qualitative filter to Figure 3.15 can be

observed in Figure 3.16. Figure 3.16 shows that the qualitative filter is focus in determine

chances in derivatives of the data.

Figure 3.15: An example of a set of point with noise
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Figure 3.16: After applying the qualitative filter in the example defined in the Figure 3.15

3.6. An Example of Qualitative Generation

Consider the system defined by the differential equation ẋ = rx+x3. Its bifurcation

diagram is generated using Flores’ application [Flores10], and the result is shown in Figure

3.17 (a). From the quantitative information the algorithm splits the diagram in sets where

all the points contained in each set is defined by a function (Figure 3.17 (b)). In the Figure

3.17 (b) each set is defined by a different color.

The sets are used to define the monotonic segments using the qualitative filter.

These segments have the same nature and behavior. These mean that every point contained

in each MSs has the same slope and the same stability. That is why, we take only the initial

and final points of each MS and draw a line to join them. This representation can be

observed in Figure 3.17 (c). The black lines correspond to stable segments and the red lines

belong to unstable segments. As we can observe in Figure 3.17 (c) there are small gaps in

the diagram. In order to preserve continuity we join the segments according the to rules

explained above.

Finally, we take that information an translate it to the qualitative representation

defined in Chapter 3. Table 3.4 shows the qualitative representation of the bifurcation

diagram. Figure 3.18 shows the qualitative diagram of the BD of the Figure 3.17 (a).
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Figure 3.17: The progress of getting the essential characteristics of a bifurcation Diagram
defined by the differential equation ẋ = rx+x3. (a) The algorithm starts from the bifurcation
points (b) it brakes these points in sets where all the points are defined by a function, (c)
brake the function sets in MSs, (d) An continuity is reestablished.

Table 3.4: Qualitative Representation of the Bifurcation Diagram of Figure 3.18.

Variables {r, x}

Quantity Space QSr {r0, r1, r2}
QSx {x0, x1, x2}

BDS

S1 {{r0, x0}, {r1, x1}, {+, u}}
S2 {{r1, x1}, {r2, x1}, {0, s}}
S3 {{r0, x1}, {r1, x1}, {0, u}}
S4 {{r0, x2}, {r1, x1}, {−, u}}

Transitions See Table 3.5

3.7. Chapter Conclusions

As mentioned in this chapter there is no single, unique, or best qualitative repre-

sentation; there may be more than one of them . For our particular problem of predicting the
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Figure 3.18: Qualitative Bifurcation Diagram defined by the differential equation ẋ = rx +
x3.

Table 3.5: Transitions of the Bifurcation Diagram on Figure 3.18.

Segment Up Down Left Right
S1 {S4,{r0, r1}} {} {} {}
S2 {} {} {S4} {}
S3 {} {S4,{r0, r1}} {} {}
S4 {S4,{r0, r1}} {S4,{r0, r1}} {} {S2}

behavior of a system represented by a bifurcation diagram, we need to capture the essential

characteristics of the system and translate them into an optimal qualitative representation.

In this chapter we proposed a qualitative representation which includes as a tuple of four

elements (variables, quantitative spaces, segments, and transitions).

Also, in this chapter we presented an algorithm that captures the essential cha-

racteristics of a bifurcation diagram, and translate them into the qualitative representation

proposed . The algorithm starts from the quantitative information of the BD (bifurcation

points), breaks the diagram in sets where all the points form a function. Those sets are

converted to monotonic segments (segments with same behavior and nature). We use the

initial and final points of the monotonic segment to create the qualitative segments. With

the qualitative segments defined, it is possible to define the transitions of every segment.

Simulation and planning algorithms will use the qualitative representation of the
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bifurcation diagram. These algorithms will use only the information provided by the quali-

tative representation generated by this algorithm.





Chapter 4

Qualitative Simulation and Control

Planning

A dynamical system is a physical system that evolves with time. It can be modeled

by a set of differential equations. From the differential equations we can obtain a bifurcation

diagram. The BD can be used as an analysis tool, and it describes the stable operational

limits of the dynamical system.

Based on flow concepts to predict the evolution of a dynamical system, and using

only qualitative derivatives, books like Non Linear Dynamics and Chaos by Strogatz

[Strogatz94] describe the dynamic of the system. Using those principles we developed two

algorithms, one (simulation algorithm) to predict the behavior of the dynamical system

when one of its parameters is varied. The second one (planning algorithm) describes the

parameters changes that the system needs to transition from an initial state to a final state.

In this chapter the simulation and planning algorithm are presented. Both algo-

rithms start from the qualitative representation (Chapter 3) of the bifurcation diagram and

their output is in purely qualitative terms.

57
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4.1. Qualitative Simulation

Given a qualitative representation of a bifurcation diagram, we can simulate the

behavior of the represented system in response to perturbations and changes in its parameter

r. Given an initial state x of the system, located at some point on a segment of the bifurcation

diagram, we can trace how the system will move along the bifurcation diagram as r moves

from landmark to landmark or to a point between existing landmarks. We can also simulate

the effects of perturbations to the system.

A dynamics descriptor is a list of actions indicating successive values of r that the

system parameter will attain, plus any perturbations and their directions (either +, or -),

made to the system. The pseudo-code for performing Qualitative Simulation is shown in

Algorithm 10.

The input to QSimulation (Algorithm 10 )is a qualitative bifurcation diagram Q,

a state in Q {Scurrent, rcurrent} (state is defined as a position in a segment), a dynamics

descriptor (D), and the history of movements of the simulation (H). Changes in D are

stored in the form of a landmark if the system goes from the current state to the posi-

tion that indicates the landmark. A parameter change in D is represented as a landmark

value to which the parameter is to be adjusted. For positive or negative perturbations I

use the symbols + and - respectively. Initially, the history (H) is empty; the simulation

is performed by successively removing the first element of D, until it becomes empty. If

the removed element is a perturbation, function NextState determines the next segment

the system will reach (Line 6). If the current segment Scurrent is unstable, the next seg-

ment is determined by consulting the transition table, T , in Q. If Scurrent is stable, the

system will remain in the same segment. In either case, the parameter value r is unchan-

ged. The algorithm updates the segment, appends the perturbation change to the history

(Append(H, Perturbation(Scurrent, Snew, rcurrent, a))) in Line 10, and continues with the

next action indicated by the descriptor D (Line 11).

If the element removed from D indicates a new value a for the parameter r, there

is an increase or decrease in r. In the case that the current segment Scurrent is not stable

with a slope different from zero, then a Derailment will occur (Line 14). The system will
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Algorithm 10 QSimulation(Q, {Scurrent, rcurrent}, D, H)
1: if D is Empty then
2: Return H
3: else
4: a← TakeFirst(D)
5: if a is a Perturbation then
6: Snew ← NextState({Scurrent, rcurrent}, a, Q)
7: if Snew is Empty then
8: Return Append(H, BlowUP(Scurrent, Scurrent, Undefined))
9: end if

10: H ← Append(H, Perturbation(Scurrent, Snew, rcurrent, a))
11: Return QSimulation(Q, {Snew, rcurrent}, D, H)
12: else
13: // If D is not a perturbation, it is a change in r
14: if Scurrent is Unstable and Slope of Scurrent *= 0 then
15: //A Derailment occurs
16: Snew ← NextState({Scurrent, rcurrent}, a, Q)
17: if Snew is Empty then
18: Return Append(H, BlowUP(Scurrent, Scurrent, Undefined))
19: end if
20: xbehave ← DefineBehaveX(Scurrent, Snew)
21: rbehave ← DefineBehaveR(rcurrent, a)
22: H ← Append(H, Derailment(Scurrent, Snew, rcurrent, xbehave))
23: D ← InsertAtFirstPosition(D, a)
24: Return QSimulation(Q, {Snew, rcurrent}, D, H)
25: else
26: if a ε Scurrent then
27: rnew ← a
28: H ← Append(H, Follow(Scurrent, rcurrent, rnew, , rbehave, xbehave))
29: Return QSimulation(Q, {Scurrent, rnew}, D,H)
30: else
31: // The system moves to an adjacent segment
32: {Snew, rnew}← NextState({Scurrent, rcurrent}, a, Q)
33: if Snew is Empty then
34: Return Append(H, BlowUP(Scurrent, Scurrent, Undefined))
35: end if
36: D ← InsertAtFirstPosition(D, a)
37: xbehave ← DefineBehaveX(Scurrent, Snew)
38: rbehave ← DefineBehaveR(rcurrent, a)
39: H ← Append(H, Follow(Scurrent, rcurrent, rnew, rbehave, xbehave))
40: if a Falloff Occurs then
41: H ← Append(H, FallOff(Scurrent, Snew, rcurrent, xbehave))
42: end if
43: Return QSimulation(Q, {Snew, rnew}, D,H)
44: end if
45: end if
46: end if
47: end if
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Algorithm 11 NextState({Scurrent, rcurrent}, a, Q)
1: Column← DefineTransitionColumn(Scurrent, rcurrent, a)
2: T ← TakeTransitions(Q)
3: Row ← TakeRow(Scurrent)
4: if a is a Perturbation then
5: Snext ← TakePerturbationTransition(Row, Column, rcurrent)
6: Return Snext

7: else
8: {Snext, rnext}← TakeIncDecTransition(Row, Column, Q)
9: Return {Snext, rnext}

10: end if

move to another fixed point, at a segment defined by the function NextState (Line 16). It

then reinserts action a at the front of D (Line 23), so that we try to reach a again, since

we moved to another segment before reaching a. The derailment that occurred is added

to the history in Line 22, before considering the next element of D. If a describes a point

that is within the bounds of the current segment (a ε Scurrent) which is a stable segment or

segment with slope zero (Line 26), the value of parameter r will change to a (rnew = a) in

Line 27, within segment Scurrent, with the value of x changing according to the direction of

change of r and the slope of Scurrent.

In the remaining case, if the new value a of r is not within the extent of segment

Scurrent, the system state will change to another segment. Upon reaching the end of the

current segment, the system state will transition to another segment; function NextState in

Line 27 determines the new segment using the transition table T . Current state is updated to

(Snew, rnew), and this transition is added to the history in Line 39. If there is no neighboring

segment in that direction, a fallOff occurs; the system adds the fallOff to the history. The

system inserts the action “move to a” at the first position of D, because parameter r has not

yet reached a (Line 36). We repeat the same process, either remaining within the segment,

if a is within the reach of the segment, or falling off again, until eventually r reaches a.

When D becomes empty, the algorithm returns the history H (Line 2), recorded

during the simulation. History H represents what occurs in the system from applying the

descriptor D. In the history, we use Follow to indicate that the parameter continues along

a given segment from one position to another, Perturbation to indicate that a perturbation



4.1. Qualitative Simulation 61

event occurs at a defined position, fallOff to indicate that the system has reached the

end of the MS it was at, and it is transitioning to another MS in the same direction, and

Derailment to indicate that a derailment occurs in the system, moving from one segment

to another at a defined position. We use rbehave and xbehave to specify if the variable x or the

parameter r is incremented, decremented o remain in the same qualitative state. Table 4.1

shows the set of events considered in simulation by QBD.

Notice that the function NextState Algorithm 11 returns the next state in case of

a perturbation or an increment or decrement in the parameter. This function receives as an

input the current state, the action (a) i.e., perturbation, and the qualitative representation

(Q); this function returns the next segment if the action is a perturbation in Line 5 and

return the next state if the action is an increment/decrement of the parameter (Line 8).

The next state process is defined in Algorithm 11.

Table 4.1: List of events that can be recorded in the history H

Event Description
Follow[Scurrent, rinitial, rfinal, rbehave, xbehave] The system continues along the segment

from rinitial to rfinal

FallOff[Scurrent, Sfinal, rcurrent, xbehave] Fall off from Scurrent

to Sfinal at rcurrent

Derailment[Scurrent, Sfinal, rcurrent, xbehave] Derailment occurs from
Scurrent to Sfinal at rcurrent

Perturbation[Scurrent, Sfinal, rcurrent, rbehave] Perturbation occurs at rcurrent,
take the system from Scurrent to Sfinal

BlowUp[Scurrent, rcurrent, Undefined] The system goes to an undefined state

4.1.1. Simulation Example

To illustrate the behavior of the simulation algorithm let us use the qualitative

bifurcation diagram described in Chapter 3, Figure 3.4. As mentioned above, the algorithm

receives as input the qualitative representation of the BD, as defined in Table 3.1, an initial

state in the diagram, and the changes to the parameter r (Descriptor) defined in D. For this

example let us consider the system starts in segment S0 at r3, and the parameter changes

are D = {r4, +, r3}.

The first action is taking the first element in D (r4). This means that the system
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needs to move from r3 to r4. As we can observe in Figure 4.1, r4 does not belong to segment

S0. Since r4 is lower in magnitude than r3, the system moves across the segment until its

left end. Now, it is necessary to find the next segment (NextState) that the system will

reach once the system leaves the actual segment (S0). The function NextState uses the

Transition Table (Table 3.2) to define which segment the system will reach. The Transition

Table defines that the system will reach segment S2 and a FallOff will occur at r1. The

landmark r4 is inserted in D because the system has not arrived yet to the partial destination

r4. This part of the history is recorded in H.

At this point the system is located in segment S2 at r1. Once again the algorithm

takes the first element in D (r4). Since a point at r4 belongs to segment S2, the system

moves across the segment until reaching landmark r4. The algorithm updates the current

point to r4 and records the history in H.

At this point the system is located in segment S2 at r4 and the descriptor is defined

as D = {+, r3}. The algorithm takes the first element (+ a positive perturbation occurs

in the system). Since the system is located in a stable segment, the system returns to the

same point after the perturbation. The perturbation is recorded in H and the algorithm

continues taking the first element of D until no elements remain.

Figure 4.1 shows graphically the result of simulation process for this example.

The QBD corresponds to the system defined by the differential equation defined by ẋ =

16 + rx − x3. Dotted and continuous lines correspond to unstable and stable segments

respectively, and the blue lines to the path that the simulation follows. Table 4.2 shows the

output (history) of the simulation algorithm. The history of the simulation describes step

by step the behavior of the system when one of its parameters (r) is varied.

4.2. Semi-stable Fixed Points

This section revisits the discussion about semi-stable fixed points started in Section

3.3. For instance, in the previous example, if the system started at segment S0, with r

decreasing, when the system reached the left end of S0 it undergoes a derailment, ending up

in segment S2. Now, let us assume point p1 is included in the representation. The system
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Figure 4.1: Simulation example in the bifurcation diagram of the system defined by ẋ =
16+rx−x3 . The continuous lines correspond to a stable segment, the dotted lines correspond
to unstable segments, and the blue lines to the path that the system follows according to
the simulation algorithm.

Table 4.2: The output after applying the simulation algorithm to example described in
Figure 3.4

Action Description
1 Follow[S0, r3, r1,−, +] The system follows from r3 to r1 in the

segment S0, r is decremented (-),
and x is incremented (+).

2 FallOff [S0, S2, r1, +] The system falloffs from S0 to S2 at
the position r1.

3 Follow[S2, r1, r4,−,−] The system follows from r1 to r4 in
segment S2, r is incremented (+).

4 Perturbation[S2, S2, r4, 0] The system occurs a perturbation, since
the segment S2 is stable,
it returns to the S2 at r4.

5 Follow[S2, r4, r3, +, +] The system follows from r4 to r3 in the
segment S2. r is incremented (+),
and x is incremented.

transitions to point p1 and instantaneously after, it undergoes a derailment, jumping to

segment S2 (Figure 4.2).

The derived behavior of the system does not change with the inclusion of the semi-

stable point (and its corresponding segment), and the simulation output would include an

unnecessary transition to that region. Given the above, we decided not to include semi-stable

points in the representation.
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Figure 4.2 shows the behavior of the system when it stars from a point in the

segment S0. The parameter r is decreased until it reached the left end of the segment. A

derailment occurs and the system reaches segment S2.
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r1 r2
r
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x1
x2

x3

x4

x†

Figure 4.2: Decreasing the parameter r in the bifurcation diagram. As we can observe the
system goes from Segment S0 to S2. The system goes through to the intersection point of
segments S0 and S1 and continues to segment S2

4.3. Qualitative Control Planning

The simulation algorithm derives the qualitative behavior of a system when a given

sequence of actions is applied to a given initial state. The planning problem for a dynamical

system is that of determining the inverse mapping: given an initial state and a goal state,

find a sequence of actions that will move the system from an initial to a goal state, if it

is possible. More specifically, the problem solved by the planning algorithm is finding a

descriptor D that takes the system from a given initial state (i.e., a segment and an r value)

to a given final state in the QBD.

The planning algorithm (Algorithm 12) receives as input a queue, a final state,

and a QBD. The queue holds a representation of the plans created so far. Every object

inserted in the queue has the form {Statecurrent States, anext, Path}. Where Statecurrent

({Scurrent, rcurrent}) is the actual position in the system. anext is the next action (dynamic)
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to be performed from Statecurrent (i.e., perturbation). States are the qualitative states

previously visited by the current plan, which is used to prevent loops in plans; Path is the

descriptor of actions taken so far for this plan.

Algorithm 12 Planning(Queue,FinalState, QBD)
1: if Queue is Empty then
2: Return Fail
3: else
4: next← DEQUEUE(Queue)
5: Scurrent ← ObtainSegment(next)
6: rcurrent ← ObtainPosition(next)
7: Statescurrent ← ObtainStates(next)
8: anext ← ObtainAction(next)
9: Path← ObtainPath(next)

10: if Scurrent == Send and rcurrent == rend then
11: Return Path
12: end if
13: if Scurrent == Send and Scurrent is stable then
14: Path← Append(Path, anext)
15: Return Path
16: else
17: if anext is Nil then
18: for All actions a in getActions(Scurrent, rcurrent, Statescurrent, QBD)

do
19: Queue← ENQUEUE(Queue, {Scurrent, rcurrent, Statescurrent, a, Pathcurrent})
20: end for
21: else
22: {Snew, rnew}← NextState({Scurrent, rcurrent}, anext, QBD)
23: Statesnew = Append(Statescurrent, Scurrent)
24: Path← Append(Path, anext)
25: for All actions a in getActions(Snew, Statesnew, QBD) do
26: Queue← ENQUEUE(Queue, {Snew, rnew, Statesnew, a, Pathnew})
27: end for
28: end if
29: Return Planning(Queue, {Send, rend}, QBD)
30: end if
31: end if

Prior to invoking the algorithm, an object {{Sinitial, rinitial}, Nil,Nil, Nil} is en-

queued on to Queue. The algorithm starts by checking the queue. If it is empty, then the

algorithm could not find a plan to get to the final position rend and halts (Line 2). If Queue

is not empty, the algorithm considers the first object from the Queue. The algorithm dis-
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Algorithm 13 getActions(Scurrent, rcurrent, Statescurrent, QBD)
1: Actions← {}
2: T ← TakeTransitions(QBD)
3: QS ← TakeQS(QBD)
4: Row ← TakeRow(Scurrent)
5: if {Sdest, {rfrom, rto} ε UpT (Scurrent) and rfrom < rcurrent < rto then
6: Actions← Append(Actions,+)
7: end if
8: if {Sdest, {rfrom, rto} ε DownT (Scurrent) and rfrom < rcurrent < rto then
9: Actions← Append(Actions,−)

10: end if
11: if {Sdest} ε LeftT (Scurrent) then
12: S ← TakeNextSegment(Row, Left)
13: Limit← TakeSegmentLimit(Scurrent, Left)
14: NewLandmark ← CreateNewLandmark(Limit, Scurrent, Right,QS)
15: Actions← Append(Actions,NewLandmark)
16: end if
17: if {Sdest} ε RightT (Scurrent) then
18: S ← TakeNextSegment(Row, Right)
19: Limit← TakeSegmentLimit(Scurrent, Right)
20: NewLandmark ← CreateNewLandmark(Limit, Scurrent, Right,QS)
21: Actions← Append(Actions,NewLandmark)
22: end if
23: Return Actions
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continues its search in the current direction if the current segment Scurrent is contained in

States, since a loop has been detected. If the system has reached the final position rend,

the algorithm will return Path of the current search object (Line 11). If the system is in

the final qualitative segment, and this segment is stable, the algorithm needs only to move

to the final parameter value. The algorithm adds the action to the final position (rend) to

Path and returns it (Line 15).

If the system is not in the final qualitative segment, the planning algorithm updates

its state to Snext and rnext within the qualitative bifurcation diagram by calling procedure

NextState when anext is not Nil (Line 17); the variable anext is only Nil on the first call

to Planning from the initial state. The function getActions searches in QBD for neighbor

segments that the system could reach from the current segment, referring to the Transitions

of the QBD (Line 18). The function searches from the current state to find possible actions

that will change the qualitative state of the system. For example, if the system is in a stable

segment, applying a positive or negative perturbation will not be useful, since the system

will simply return to the segment where the perturbation took place. For every possible

direction and action, the algorithm pushes a new object onto the Queue that includes the

new action a to be taken (Line 19). After this has been done, the algorithm Planning is

called recursively with the updated Queue to start the same process again (Line 29). By

placing possible plan states in the queue and considering them in that order, the planning

algorithm executes a breadth-first search for a control plan, guaranteeing a shortest plan in

terms of the number of control operations.

The function getActions (Algorithm 13) defines the possible actions defined in

the transitions table that the planning may perform from the current state. If exists a

perturbation transition defined in T, append a positive perturbation (Line 6); same case

for a negative perturbation (Line 9). Another case is if there is a Left transition is defined

in T for the current state (Line 13), the algorithm creates a new landmark just beyond the

left end of the current segment; and append the new landmark to Actions (Line 15). The

same process is performed to Right Transition (Line 21).
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4.3.1. Planning Example

To illustrate the planning algorithm let us use the same qualitative bifurcation

diagram used in the simulation algorithm (the QBD is described in Chapter 3, Figure 3.4).

The planning algorithm determines the parameter changes in order to arrive from an initial

state to a final destination in the QBD. It receives as input the final destination (goal state)

and a queue. For this example lets define the goal state in segment S2 at r3 and the first

object of the queue is defined as {S0, r3, Nil, Nil,Nil}.

When the queue is empty the algorithm finishes without finding a path. Since

the queue is not empty, the algorithm takes the first object of the queue and establishes

Scurrent = S0 and rcurrent = r3. At the beginning of the algorithm anext is Nil, for that

reason the algorithm enqueues all the actions obtained from the function getActions. This

function checks the row of the segment in the transition table, where all the actions that

the segment could arrive to are defined.

While checking the row for segment S0. Planning finds that the only possible

action is to move the system to the left. If we decrease (move the parameter to the left) the

parameter r to a value less than r1, a Falloff will occur and the system will reach segment

S2. For decreasing the parameter r, and move the system to segment S2, a new landmark

needs to be created (less than r1). A new landmark is created (r10) and inserted in QS,

between landmarks r4 and r1. A new object is inserted in the queue; this new object has

the form {{S0, r3}, r10, Nil, Nil} and the algorithm calls itself recursively.

The algorithm starts taking the first object of the queue and establishes Scurrent =

S0, rcurrent = r3, and anext = r10. The algorithm executes the action with the function

PerformAction (move to r10) and updates Snew = S2, rnew = r10, States = {S0}, and

Path = {r10}.

With this action the algorithm has arrived to the goal segment (S2). At this point,

the function getAction only returns the goal landmark, and establishes it as the new ac-

tion. The algorithm enqueues {S2, r10, {S0}, r3, {r10}} and calls itself once more, only to

perform the action. With the action performed the system has arrived to the goal state.

The algorithm finishes by returning the current Path joined with the last action ({r10, r3}).
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Table 4.3: The output after applying the planning algorithm example

D = {r10, r3}
QSfinal = {{r0, r4, r10, r1, r1, r3, r2}, {x0, x1, x2, x3, x4}}

The output of the algorithm is the Descriptor and the new QS. Since new land-

marks are created during the planning process the Quantitative Spaces need to be updated.

Table 4.3 shows the output for this example after applying the planning algorithm.

We tested the output of the planning algorithm in the simulation algorithm to

verify graphically that the plan produces the expected results (see Figure 4.3). As we can

observe, the system starts from S0 at r3 and after applying the actions described in the

descriptor D = {r10, r3} the system arrives to the goal state.
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Figure 4.3: Testing the output of the planning algorithm in the simulation algorithm.

4.4. Chapter Conclusions

In this chapter two algorithms were presented. The first algorithm (simulation)

describes the behavior of the system when one of its parameters is varied. The second one

(planning) finds the actions that the system needs to arrive from one initial to a goal state.

In both cases the input (a bifurcation diagram) is a qualitative bifurcation diagram, using

the syntax presented in Chapter 3.

Both algorithms are useful to describe the behavior of a dynamical system. The
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algorithms use the concepts of flows to predict the evolution of the system. The output of

the algorithms is in qualitative terms. At any point of the algorithms numerical values are

used.

The simulation and planning algorithms were implemented in Mathematica. The

operational explanation of the application is described in Chapter A. Also, some illustrative

examples to test the algorithms are presented in Chapter 5



Chapter 5

Results

The three main algorithms proposed in this work, were tested with several exam-

ples; previous chapters have shown some basic examples to illustrate the proposed repre-

sentation and parts of the algorithms. In this chapter we test the algorithms with four

examples. The first example corresponds to the system defined by the differential equa-

tion ẋ = rx + x3 − x5, the second one corresponds to the Morris-Lecar model, which is a

biological neuron model, the third one to the system defined by the differential equation

ẋ = 16 + x − x3, and the 4th one represents a system defined by the differential equation

ẋ = rx + x3

5.1. Example 1: A Simple Dynamical System

The first example corresponds to the model defined by the differential equation

ẋ = rx+x3−x5. Figure 5.1 shows the bifurcation diagram corresponding to this dynamical

system. For this the example, the input data (BD points) were obtained from the application

presented in [Flores10].

5.1.1. Qualitativization

In order to predict the system’s behavior, it is necessary to generate the qualitative

representation of the BD. Following Algorithm 1 we obtained the qualitative representation

of the BD. The graphic version of the qualitative representation is illustrated on Figure 5.2.

71
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From Figure 5.2 we observe that each segment is assigned a symbolic name. The dashed

segments are unstable, and the continuous ones are stable.
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Figure 5.1: Quantitative data of the BD defined by ẋ = rx + x3 − x5.
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Figure 5.2: Qualitative representation of the BD defined by ẋ = rx + x3 − x5.

Tables 5.1 and 5.2 show the qualitative representation of the BD of Figure 5.2.

Table 5.1 describes the variables, the quantity space, and the segments of the BD. Table 5.2

describes all the possible transitions reachable from each segment.

5.1.2. Simulation

Once the QBD was produced by the qualitativization algorithm, we can predict

the behavior of the system. To make a prediction, it is necessary to define an initial state and

the control sequence (descriptor) applied to parameter r. For this example, the simulation
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Table 5.1: Qualitative Representation of the Bifurcation Diagram of Figure 5.2

Variables {r, x}

Quantity Space QSr {r0, r1, r2, r3}
QSx {x0, x1, x2, x3, x4}

BDS

S0 {{r1, x1}, {r2, x2}, {+, u}}
S1 {{r1, x3}, {r3, x4}, {+, s}}
S2 {{r1, x3}, {r2, x2}, {−, u}}
S3 {{r1, x1}, {r3, x0}, {−, s}}
S4 {{r0, x2}, {r2, x2}, {0, s}}
S5 {{r2, x2}, {r3, x2}, {0, u}}

Transitions See Table 5.2

Table 5.2: Transitions of the Bifurcation Diagram of Figure 5.2

Segment Up Down Left Right
S0 {S4,{r1, r2}} {S3,{r1, r2}} {} {}
S1 {S1,{r1, r3}} {S1,{r1, r3}} S4 {}
S2 {S1,{r1, r2}} {S4,{r1, r2}} {} {}
S3 {S3,{r1, r3}} {S3,{r1, r3}} S4 {}
S4 {S4,{r0, r2}} {S4,{r0, r2}} {} S5

S5 {S1,{r2, r3}} {S4,{r2, r3}} S5 {}

starts at r6, located in Segment S2; the system undergoes the changes described as D =

{r4, r5,−, r2}, which means that parameter r will decrease from r6 to r4, then increase from

r4 to r5, in r5 there will occur a negative perturbation, and finally the parameter r will

decrease to r2.

Figure 5.3 shows the behavior of the system after applying the changes described

by D. As we can see, the system starts at unstable segment S2. When parameter r moves

to r4, the system first experiences a derailment to segment S4. When we arrive to segment

S4, the system stays in that segment until it reaches r4. When r increases to r5, the system

follows the same segment until reaching r2. In that position segment S4 ends and segment

S5 begins. The system follows segment S5 up to r5, where a negative perturbation occurs.

Segment S5 is unstable, so the system moves to segment S3 at position r5. When parameter

r decreases, the system follows the same segment until r2. Table 5.3 presents the output

history for the simulation.
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Figure 5.3: Graphic output of the qualitative simulation for Example 1

Table 5.3: The output after applying the simulation algorithm to example 1

Action Description
1 Derailment[S2, S4, r6,−] A derailment occurs from S2 to S4 at

position r6. The value of x is decremented.
2 Follow[S4, r6, r4,−, 0] The system follows from r6 to r4 in the

segment S4, r is decremented (-).
3 Follow[S4, r4, r2, +, 0] The system follows from r4 to r2 in

segment S4, r is incremented (+).
4 Follow[S5, r2, r5, +, 0] The system follows from r2 to r5 in the

segment S5. r is incremented (+).
5 Perturbation[S5, S3, r5,−] A perturbation occurs from S4 to S2 at

position r5. The value of x is decremented (-)
6 Follow[S3, r5, r2,−, +] The system follows from r5 to r2 in the

segment S3. r is decremented (-), and x is incremented.

5.1.3. Planning

To illustrate the planning algorithm and derive the descriptor needed to take

this system from segment S1 at r = r5, to a final state in segment S3 at position r5.

Table 5.4 shows these initial conditions. After applying the planning algorithm, we obtain

the descriptor and a new Quantitative Space. During the search process new landmarks are

generated; as the algorithm moves between qualitative state segments it generates arbitrary

landmarks within those segments. Table 5.6 shows the results of the planning algorithm.
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Table 5.4: Input of planning algorithm for example 1

Initial State {S1, r5}
Final State {S3, r5}

Table 5.5: The output after applying the planning algorithm in the example 1

D = {r10, r11,−, r5}
QSfinal = {{r0, r4, r10, r1, r2, r11, r5, r3}, {x0, x1, x2, x3, x4}}

To verify the results of the planning algorithm we submit those results to the

simulation algorithm. Table 5.6 shows the results of the simulation algorithm. We can

observe from Table 5.4 and Table 5.6 that the QS is not the same. This is because the

planning algorithm generates new landmarks at search time. The graphic results can be

observed on Figure 5.4.

Table 5.6: Output of the simulation algorithm for the planning example

Action
1 Follow[S1, r5, r1,−,−]
2 Falloff [S1, S4, r1,−]
3 Follow[S4, r1, r10,−, 0]
4 Follow[S4, r10, r2,+, 0]
5 Follow[S5, r2, r11,−, 0]
6 Perturbation[S5, S3, r11,−]
7 Follow[S3, r11, r5, +,−]
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Figure 5.4: Graphic representation of the output of the simulation for the planning example
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5.2. Example 2: The Morris-Lecar System

The second example corresponds to the Morris-Lecar Model. This model is a two-

dimensional reduced excitation model applicable to systems having two non-inactivating

voltage-sensitive conductances developed by Catherine Morris and Harold Lecar [Morris81].

This system of equations describes the relationship between membrane potential and the ac-

tivation of ion channels within a neuron’s membrane. The potential depends on the activity

of the ion channels, and the activity of the ion channels depends on the voltage [Tsumoto06].

The Morris-Lecar equations are defined by:

C
dV

dt
= I + gl(El − V ) + gkw(Ek − V ) + gcam∞(V )(Eca − V ) (5.1)

dw

dt
= (w∞(V )− w)λw(V ) (5.2)

5.2.1. Qualitativization

For this example the input data were obtained from the application XPPAUT

[Ermentrout03]. Figure 5.5 shows the bifurcation diagram corresponding to this dynamical

system. As mentioned before, to predict the system’s behavior, it is necessary to generate

the qualitative representation of the BD. Following Algorithm 1 we obtain the qualitative

representation of the BD. The graphic version of the qualitative representation is illustrated

on Figure 5.6. The dashed segments are unstable, and the continuous ones are stable.

Table 5.7 and 5.8 show the qualitative representation of the BD of Figure 5.5.

Table 5.7 describes the variables, the quantity space, and the segments of the BD. Table 5.8

describes all the possible transitions that each segment can reach.

5.2.2. Simulation

To perform a simulation it is necessary to define an initial state of the system and

the control sequence that the parameter I will go through (descriptor). In this example we

start at segment S4, located at I10. The actions that the system will suffer are defined as

D = {I11, I5,−, I9}. I.e., the parameter I will be decreased to I11, then it will be increased

to I5. A negative perturbation occurs at that point, to finally increase the parameter to I9.
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Figure 5.5: Bifurcation diagram of the Morris-Lecar system

Table 5.7: Qualitative Representation of the Bifurcation Diagram of Figure 5.5.

Variables {I, V }

Quantity Space QSI {I0, I1, I2, I3, I4, I5, I6, I7, I8}
QSV {V0, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11}

BDS

S1 {{I1, V0}, {I1, V0}, {+, u}}
S2 {{I1, V0}, {I2, V2}, {+, s}}
S3 {{I2, V1}, {I7, V3}, {+, s}}
S4 {{I0, V4}, {I2, V2}, {−, u}}
S5 {{I3, V5}, {I4, V6}, {+, u}}
S6 {{I4, V6}, {I6, V7}, {−, u}}
S7 {{I6, V7}, {I6, V7}, {−, s}}
S8 {{I6, V7}, {I7, V3}, {−, u}}
S9 {{I0, V4}, {I3, V5}, {+, u}}
S10 {{I6, V7}, {I8, V8}, {+, s}}
S11 {{I6, V7}, {I7, V10}, {+, u}}
S12 {{I2, V9}, {I2, V9}, {−, s}}
S13 {{I2, V9}, {I5, V11}, {+, s}}
S14 {{I5, V11}, {I7, V10}, {−, s}}

Transitions See Table 5.8

Figure 5.7 shows the behavior of the system after applying the changes described

by D. Table 5.9 presents the output history for the simulation.
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Figure 5.6: Qualitative representation of the bifurcation diagram of the Morris-Lecar system

Table 5.8: Transitions of the Bifurcation Diagram of Figure 5.6.

Segment Up Down Left Right
S1 {} {} {} {}
S2 {S2,{I1, I2}} {S2,{I1, I2}} {} S3

S3 {S3,{I2, I7}} {S3,{I2, I7}} S2 S10

S4 {} {S2,{I1, I2}} {} {}
S5 {S13,{I3, I5}} {S3,{I3, I5}} {} {}
S6 {S14,{I5, I6}} {S3,{I5, I6}} {} {}
S7 {S7,{I6, I6}} {S7,{I6, I6}} {} S10

S8 {S10,{I6, I7}} {S3,{I6, I7}} {} {}
S9 {} {} {} {}
S10 {S10,{I6, I8}} {S10,{I6, I8}} S7 {}
S11 {S14,{I6, I6}} {S10,{I6, I7}} {} {}
S12 {S12,{I2, I2}} {S12,{I2, I2}} {} S13

S13 {S13,{I2, I5}} {S13,{I2, I5}} S12 S14

S14 {S14,{I3, I7}} {S14,{I3, I7}} S13 S10

5.2.3. Planning

For the planning example it is necessary to specify initial and final states. For this

example, we start at segment S13 at I3, and our final destination is segment S10 at position I9
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Figure 5.7: Graphic output of the qualitative simulation for Morris-Lecar Model Example

Table 5.9: The output after applying the simulation algorithm to example 1

Action Description
1 Derailment[S4, S2, I10,−] A derailment occurs from S4 to S2 at

position I10. The value of v is decremented.
2 Follow[S2, I10, I11,−,−] The system follows from I10 to I11 in the

segment S2, I is decremented (-).
3 Follow[S2, I11, I2, +, +] The system follows from I11 to I2 in

segment S2, I is incremented (+).
4 FallOff [S2, S3, I2,−] The system falloffs from S2 to S3 at

the position I2.
5 Follow[S3, I2, I5, +, +] The system follows from I2 to I5 in

segment S3, I is incremented (+).
6 Perturbation[S3, S3, I5,−] A perturbation occurs from S3 to S3 at

position I5.
7 Follow[S3, I5, I7, +,+] The system follows from I5 to I7

in the segment S3. I is incremented (+),
and V is incremented.

8 FallOff [S3, S10, I7, +] The system falloffs from S3 to S10 at
the position I7.

9 Follow[S10, I7, I9, +, +] The system follows from I7 to I9 in the
segment S10. I is incremented (+),

and V is incremented (+).

(Table 5.10 shows these initial conditions). After applying the planning algorithm, we obtain

the descriptor and a new Quantitative Space. During the search process new landmarks are
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generated; as the algorithm moves between qualitative state segments, it generates arbitrary

landmarks within those segments. Table 5.10 shows the results of the planning algorithm.

Table 5.10: Input of the planning algorithm in the Morris-Lecar Model example

Initial State {S13, I3}
Final State {S10, I9}

Table 5.11: Output of the planning algorithm in the Morris-Lecar Model example

D = {I20, I21, I9}
QSfinal = {{I0, I1, I,11 , I10, I2, I3, I4, I5, I20, I6, I7, I21, I9, I8},

{V0, V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11}}

To verify the results of the planning algorithm we submitted them to the simulation

algorithm. Table 5.12 shows the results of the simulation algorithm. The graphic results

can be observed on Figure 5.8.

Table 5.12: Output of the simulation algorithm for the Morris-Lecar in the planning example
Action

1 Follow[S13, I3, I5, +, +]
2 Follow[S14, I5, I20, +,−]
3 Follow[S14, I20, I7, +,−]
4 Falloff [S14, S10, r7,−]
5 Follow[S10, I7, I21, +, +]
6 Follow[S10, I21, I9, +, +]
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Figure 5.8: Graphic representation of the execution of the results of the planning algorithm
for the Morris-Lecar Model
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5.3. Example 3

The third example corresponds to the model defined by the differential equation

ẋ = 16 + x− x3. Figure 5.9 shows the bifurcation diagram corresponding to this dynamical

system. For this the example, the input data (BD points) were obtained from the appli-

cation presented in [Flores10]. After translating the quantitative data into the qualitative

representation performed by the QRG algorithm. We observe that the qualitative represen-

tation of the dynamical system is formed by three MS, two stables and one unstable. The

qualitative diagram is illustrated in Figure 5.10. The qualitative representation is shown in

Table 5.13.
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Figure 5.9: Bifurcation diagram defined by ẋ = 16+ rx−x3. Blue dots correspond to stable
fixed points and red dots to unstable ones.

Table 5.13: Qualitative Representation of the Bifurcation Diagram for Example 3.

Variables {r, x}

Quantity Space QSr {r0, r1, r2}
QSx {x0, x1, x2, x3, x4}

BDS
S0 {{r1, x1}, {r2, x0}, {−, s}}
S1 {{r1, x1}, {r2, x2}, {+, u}}
S2 {{r0, x3}, {r2, x4}, {+, s}}

Transitions See Table 5.14

Let us show some simulations and a control planing for this third example, Table
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Figure 5.10: Bifurcation diagram of the third example divided in monotonic segments. The
black lines correspond to a stable segment and the discontinues line correspond to an uns-
table segment.

Table 5.14: Transitions of the Bifurcation Diagram for Example 3.

Segment Up Down Left Right
S0 {S0, {r1, r2}} {S0, {r1, r2}} S2 {}
S1 {S2,{r1, r2}} {S0,{r1, r1}} {} {}
S2 {S2, {r0, r2}} {S2, {r0, r2}} {} {}

5.15 shows the inputs for the different simulations. Notice that for all examples (simulations

and planning) the Quantitative Space (QS) used is the same. For the first simulation, the

simulation algorithm starts from the initial state defined as Start = {S2, r5}, and the

variations in the parameter are defined by D = {r3, r4, r3}. The first action is to move

the system from r5 to r3, since the actual segment (S2) is unstable, a Derailment occurs;

making the system arrive to the segment S1. After arriving to segment S1, due the actual

segment is stable the system Follow until r3. The next action is going from r3 to r4, this

mean a decrement in the parameter. The system Follow segment S1 until arrive the left end

of the segment (r1). But, the system has not yet arrive to r4, therefore the system takes

another segment to arrive r4. The parameter is decremented, then a Falloff occurs. The

system goes to segment S3, but has not arrive to r4. The system Follow the actual segment

until r4. Finally the last action is moving the segment from r4 to r3. Since the segment S3 is

stable and r3 is inside the boundary of the segment, the system only Follow until r3. Similar
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cases occurs in Simulation 2 and in Simulation 3. The graphically output of the simulation

algorithm for the first simulation is illustrated in Figure 5.11. Figure 5.12 and Figure 5.13

shows the graphically output for the simulation 2 and 3 respectively.

Table 5.15: Inputs for the simulation and planning algorithms for example 3

QS {{r0, r4, r1, r5, r3, r2}, {x0, x1, x2, x3, x4}}
Simulation 1

Initial State {S2, r5}
Descriptor D = {r3, r4, r3}

Simulation 2
Initial State {S2, r3}
Descriptor D = {r4}

Simulation 3
Initial State {S1, r3}
Descriptor D = {r4, r3}

Planning 1
Initial State {S1, r3}
Final State {S3, r3}
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Figure 5.11: Simulation process for the first simulation. The simulation is performed in
bifurcation diagram defined in the third example of this thesis. The simulation starts from
{S2, r5}, and the changes in the parameter are defined as D = {r3, r4, r3}. Blue lines shows
the path founded after applying the changes defined in D.

Now, let us describe the control planning simulation for this example. The system

starts from the initial state {S1, r3}, and the final state is {S3, r3}. Figure 5.14 shows

graphically the path (blue lines) found during the planning algorithm. During the planning
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Figure 5.12: Simulation process for the second simulation. The simulation is performed in
bifurcation diagram defined in the third example of this thesis. The simulation starts from
{S1, r3}, and the changes in the parameter are defined as D = {r4}. Blue lines shows the
path founded after applying the changes defined in D.
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Figure 5.13: Simulation process for the third simulation. The simulation is performed in
bifurcation diagram defined in the third example of this thesis. The simulation starts from
{S2, r5}, and the changes in the parameter are defined as D = {r4, r3}. Blue lines shows
the path founded after applying the changes defined in D.
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process new landamarks are created. For this example the landmark r10 was created and

inserted between r4 and r1. The changes in the parameter resulting in the planning process

and the new QS are shown in Table 5.16
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Figure 5.14: Simulation process after applying the output of the control planning process.
The simulation is performed in bifurcation diagram defined in the third example of this
thesis. The simulation starts from {S1, r3}, and the changes in the parameter are defined
by the output of the control planning process. The output founded is D = {r10, r3}. Blue
lines shows the path founded after applying the changes defined in D.

Table 5.16: The output after applying the planning algorithm in the example 3

D = {r10, r3}
QSfinal = {{r0, r4, r10, r1, r5, r3, r2}, {x0, x1, x2, x3, x4}}
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5.4. Example 4

The 4th example corresponds to the model defined by the differential equation

ẋ = rx + x3. Figure 5.15 shows the bifurcation diagram corresponding to this dynamical

system. For this the example, the input data (BD points) were obtained from the application

presented in [Flores10].
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Figure 5.15: Bifurcation diagram defined by ẋ = 16 + rx − x3. Blue dots correspond to
stable fixed points and red dots to unstable ones.

The qualitative diagram is illustrated in Figure 5.16. The qualitative representation

is shown in Table 5.17. As observed in the figure, there are four MS; three of them are

unstable and the other one is stable.

Table 5.17: Qualitative Representation of the Bifurcation Diagram for the Example 4.

Variables {r, x}

Quantity Space QSr {r0, r1, r2}
QSx {x0, x1, x2}

BDS
S1 {{r0, x0}, {r1, x1}, {+, u}}
S2 {{r1, x1}, {r2, x1}, {0, u}}
S3 {{r0, x1}, {r1, x1}, {0, s}}
S4 {{r0, x2}, {r1, x1}, {−, u}}

Transitions See Table 5.18

Let us show some simulations for this 4th example, Table 5.19 shows the input for

simulation and control for Example 4.
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Figure 5.16: Bifurcation diagram of the 4th example divided in monotonic segments. The
black lines correspond to a stable segment and the red line correspond to an unstable
segment.
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Figure 5.17: Simulation process for the simulation. The simulation is performed in bifurca-
tion diagram defined in the 4th example of this thesis. The simulation starts from {S1, r5},
and the changes in the parameter are defined as D = {r4, r3}. Blue lines shows the path
founded after applying the changes defined in D.
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Table 5.18: Transitions of the Bifurcation Diagram for the Example 4.

Segment Up Down Left Right
S1 {S3, {r0, r1}} {} {} {}
S2 {} {} S3 {}
S3 {S3, {r0, r1}} {S3, {r0, r1}} {} S2

S4 {} {S3, {r0, r1}} {} {}

Table 5.19: Inputs for the simulation and planning algorithms for Example 4

QS {{r0, r4, r5, r1, r3, r2}, {x0, x1, x2}}
Simulation

Initial State {S1, r5}
Descriptor D = {r4, r3}

Planning
Initial State {S4, r4}
Final State {S2, r3}
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Figure 5.18: Simulation process after applying the output of the control planning process.
The simulation is performed in bifurcation diagram defined in the 4th example of this thesis.
The simulation starts from {S4, r4}, and the changes in the parameter are defined by the
output of the control planning process. The output founded is D = {−, r20, r3}. Blue lines
shows the path founded after applying the changes defined in D.
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5.5. Chapter Conclusions

This chapter presents four examples of dynamical systems and their bifurcation

diagrams. The BDs were used to test the algorithms presented in previous chapters. We are

able to infer the evolution of the system with the simulation algorithm. We were also able

to define the changes to apply to the system in order to move the system to a goal state

using the planning algorithm.

Both algorithms use the qualitative representation presented in Chapter 3, pro-

duced using the QRG algorithm. The output of the algorithms are expressed in qualitative

terms. During the simulation or planning processes no numerical value was used to perform

any of these task.

More examples were tested (about ten of them), but I consider that the examples

included in this chapter illustrate the main of the three main algorithms. The simulation and

planning algorithm have problems when the dynamical system has as solution imaginary

roots. In those cases the fixed points do not fulfill the alternation of stabilities theorem

described in [Flores06]. Figure 5.19 shows an example of a bifurcation diagram produced

using XPPAUT, where two unstable segments are neighbors. In that case, if the state of

the system lies between them, to what state the system transition to? that is both fixed

points are repellers!. Figure 5.19 also show two segments too close together. In that case,

the segmentation algorithm cannot distinguish one segment from another. These are the

two main problems we are not able to solve with the proposed methodology.
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Figure 5.19: A bifurcation Diagram produced by XPPAUTO that shows the two main
problems the proposed methodology cannot solve.
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Conclusions

A dynamical system is a rule describing the evolution with time of a point in a

given set. This rule can be specied by very dierent means like ordinary dierential equations,

iterated maps, partial dierential equations, or cellular automata. Therefore, when we talk

about a dynamical system, we might first think of it in terms of differential equations,

numerical methods, etc. To describe the systems’ behavior we can use a computer to solve

the problem numerically. Thinking about solving numerical problems discarding numerical

information may sound irrational, but consider that the human brain makes decisions about

dynamical systems without any numerical operation.

The idea of qualitative reasoning is to create non-numerical descriptions of physical

systems and their behaviors, preserving important behavioral properties and qualitative

distinctions. In this thesis, I describe the behavior of a dynamical system discarding all

numerical values, instead qualitative values were used. When investigating related work in

the area of qualitative reasoning, we found that there are works in qualitative reasoning in

the area of dynamical systems but none of them address the bifurcation analysis problem.

6.1. General Conclusions

In this thesis, I present three algorithms that together allow us to describe and

control the behavior of a dynamical system using qualitative reasoning. The first algorithm

transforms a bifurcation diagram of a given dynamical system, described in numerical terms,

93
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into a qualitative representation of a bifurcation diagram. The second and third algorithms,

simulation and planning, use this qualitative representation of the system to define the

evolution of a system or define the parameter changes to arrive to a goal state.

The goal of qualitative reasoning is to develop representation and reasoning met-

hods that enable computer programs to reason about the behavior of physical systems,

without precise quantitative information. The first algorithm generates the representation

that discards the precise quantitative information; the second and third algorithm are the

reasoning methods that enable a computer to reason about bifurcation diagrams of physical

systems.

The first algorithm (QRG) generates a qualitative representation of a bifurcation

diagram (a QBD) from a given quantitative representation. This algorithm starts from

a quantitative bifurcation diagram and segments it into qualitative regions or Monotonic

Segments (MSs). All the points contained in a region have the same qualitative behavior.

A qualitative filter is used to obtain the qualitative slope of each point in the diagram.

The qualitative filter is necessary to deal with noise present in the numeric data. With

the qualitative slope, it is possible to break the diagram into Monotonic Segments. Due to

imprecision in the given quantitative information, some adjustments to the segmentation

are made. Once defined the MSs, all the next possible states are define by an interconnected

net call links.

The qualitative representation proposed in this work was tailor made to keep the

relevant information and discard everything else; in this process, new information is genera-

ted (links). This qualitative representation was developed based on previous works. I took

some ideas from different previous works, like the ones presented in [Flores06], [Kuipers94],

[Forbus84], [Johan De Kleer84]. Some ideas were taken from these works and adapted for

this particular problem in order to capture the essential features of the system.

The links define the next state of the system form any point of the bifurcation dia-

gram, therefore are the relevant part of the simulation and planning algorithms. Without

them, the algorithms (simulation and planning) should have to implement new methods to

define the next state of the system. Since the next states are non defined, the simulation

will have to implement new methods that determine the next state. During simulation and
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planning the application works without any numerical information, therefore the implemen-

tation of the next state methods will be harder to implement.

In discrete systems, the future state of the system can be analyzed in terms of

individual component behavior. Envisionment involves predicting the series of qualitative

states that will result from any perturbation to the system[deKleer82]. The transition table

defines the next state that will result from any change in the system. This table adds the

envisonment to the system.

As already mentioned, both algorithms work without any numerical information.

What both of them use is the transitions table (envisionment) and the quantitative space.

The quantitative space are two sets of landmarks (for xs and rs) that are ordered by

magnitude. This order establishes the relation of magnitude and allows us to discard the

numerical information for the simulation and planning algorithms.

QRG uses different techniques to segment the information contained in the bifur-

cation diagram; selecting the data observed from below, or the use of the qualitative filter

to define the slope. But once we segment the bifurcation diagram, it is necessary to put

everything back together in qualitative terms. Finally, we add the links to the representation

to facilitate the implementation of the next two algorithms.

Now let us talk about the simulation and planning algorithms, given a QBD, the

simulation algorithm needs only to follow paths described in the transitions table. It is not

only possible to simulate the behavior of the system given an initial situation and dynamics

descriptor, but also to determine a control sequence (dynamics descriptor) that takes a

system from an initial to an end point. Given an initial state and a dynamics descriptor,

the simulation describes the system’s behavior in qualitative terms, i.e., how it moves from

qualitative state (segment) to qualitative state, driven by the dynamics descriptor. Through

a typical problem-solving search process, the planning algorithm is able to discover control

sequences that can take a system from an initial to a final qualitative state, when such a

path exists.

In terms of complexity, QBD traverses D; during this traversal each action can

only result in a finite number (at most the number of segments) of steps. The worst case

complexity of the algorithm is O(|D|× |S|), but it would expect be of the order of O(|D|).
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(D is the action descriptor list and S is the set of MSs in the BD). The planning algorithm

performs a breath first search, so will it find a path if it exists. Planning will visit every

segment of the QBD, trying all actions at each segment. By recording the visited states,

we can avoid the exponential growth of this search when we repeat searches starting at

previously visited segments. So, by pruning the search procedure, the resulting complexity

for the planning algorithm is of order O(|S|).

The system QBD has been tested with a dozen of continuous systems, taken from

books and from application areas like Electrical Engineering and Biology. In this report

we are presenting one example from Strogatz’s book and one application example from the

area of Biology.

The methodology and all three algorithms have been implemented in Mathematica

[Wolfram10]; all the output and plots presented for the examples were produced by the

implementation.

The work presented in this thesis proves that sometimes, and for some particular

problems, there is not need to perform numerical computations to solve dynamic systems

problems. Instead there are alternatives like qualitative reasoning that allow to achieve good

conclusions for dynamic systems problems.

We observe that by taking the essential features of the system, using them in an

appropriate way, we can arrive to useful conclusions. Currently there is no research work in

this direction, or a close approach.

In summary, in this thesis we deal with the problem of bifurcation diagram analy-

sis; dealing with it in qualitative terms. For that reason a qualitative representation (QR)

was designed without any previous work on the problem. In the qualitative representation a

envisionment (links) was added. Once the QR was designed, the methods that analyze the

bifurcation diagrams were created (simulation and planning algorithms). The implemen-

tation of the three algorithms help to automatize the bifurcation diagram analysis. This

automation facilitate the analysis of a dynamical system.
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6.2. Future Work

In this thesis we perform a bifurcation diagram analysis in qualitative terms. For

future work we can consider different directions:

• In this work we only consider problems with one state variable, and one parameter.

In future work, we intend to generalize the dimensionality for the qualitative repre-

sentation of a bifurcation diagram with two or more parameters or state variables.

• Every work can be improved if you reconsider the problem one more time. We could

improve the qualitative representation developed in this work by deleting the compo-

netes that are not used in the simulations, and adapt the algorithms to work with this

improved representation. With the improved representation we could intend to solve

problems with a bigger dimensionality.

• In this work during the simulation and planning methods we discarded all numerical

information. In real problems, performing a bifurcation diagram analysis we may want

to use real values. For example increasing the parameter until a real value instead of

a symbolic name (landmark). We may think of adapting the algorithms to work with

quantitative and qualitative values. We could perform a semi-qualitative bifurcation

analysis.

• In another direction, we can think about solving other kind of problems using quali-

tative reasoning (not solving numerically). We can think of translating the problem

in qualitative terms and from there infer useful conclusions.





Apendix A

QBD A user’s manual

QBD is the implementation of the three algorithms proposed in the previous chap-

ters. The first algorithm corresponds to the qualitative representation generation. This al-

gorithm captures the essential features of the bifurcation diagram and translates them to

the proposed qualitative representation. The second algorithm describes the behavior of the

system when one of its parameters changes. And the third algorithm describe the parameter

changes to move the system from an initial to a final state.

Chapter describes how to operate the application. We will describe the structure of

the input, and the structure of the output, and how to run the application. The application

is implemented in Mathematica 8.0 [Wolfram10].

A.1. Data Input

A dynamical system is usually modeled by a set of differential equations. The

solution of the differential equations are the fixed points of the system for one particular

value(s) of the parameter(s). Varying one or more of the system’s parameters and solving

the system we obtain a set of fixed points. This set of fixed points form the bifurcation

diagram. As mention in previous chapters, the input of the application QBD starts with

the set of fixed points of the bifurcation diagram. To obtain the fixed points for our expe-

riments we used two different sources, the system implemented by Flores [Flores10], and

XPPAUT [Ermentrout03]. Routines were implemented to standardize the input to a single

99
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format.

The input format of the QBD application are two arrays of points. Each array

corresponds to the stable and unstable fixed points, respectively. Every point of the array

is constituted by its x and its y coordinates, for example:

• StableF ixedPoints = {{x1, y1}, {x2, y2}, ..., {xn, yn}} for n stable fixed points.

• UnstableF ixedPoints = {{x1, y1}, {x2, y2}, ..., {xm, ym}} for m unstable fixed points.

Figure A.1 illustrates the format for the first 20 elements of the unstable fixed

array from one example.

Figure A.1: The format of the first 20 elements of the unstable fixed points array from one
experiment.

A.2. Qualitative Representation Generation

To perform the simulations of the system behavior, it is necessary to transform the

bifurcation diagram to the qualitative representation defined in Chapters 3 . To produce

the qualitative representation it is necessary to load the implemented libraries. The libraries

needed to run the complete application are:

• QualitativeGeneration.m This library defines the routines to translate the quanti-

tative data of the bifurcation diagram to the qualitative representation defined in

previous chapters.

• SelectData.m This library defines the necessary routines to break the bifurcation

diagram into Monotonic Segments.

• GenerateLinks.m This library defines the routines to generate the interconnected

network where the continuity of the qualitative segments are defined.
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• FromXppoutToMath.m This library defines the necessary routines to translate the

XPPAUT bifurcation diagram format to the QBD format.

• Simulacion.m in this library are defined the necessary routines to perform the simu-

lation of the system.

• Planning.m in this library are defined the necessary routines to perform the Control

Planning of the system.

Figure A.2 illustrates the libraries loaded to execute the QBD application.

Figure A.2: Loaded Libraries of the QBD application.

To generate a qualitative bifurcation diagram it is necessary to run the GenerateQR[PI, PE]

function. This function receives two input parameters; the sets of stable and unstable fixed

points. The output of this routine is the MSs, the set for links of every segment and the QS.

Figure A.3 shows the routine GenerateQR receive as parameters the stable and unstable

sets of fixed points, and generates as an exit the MSs, Links of the segments and QS. Figure

A.4 illustrate the format of the output.

Figure A.3: Input of qualitative representation generation.

Within the function GenerateQR[PI, PE] are certain parameters that can be

varied depending on the problem. The parameters that can be changed are:

• grid: This parameter is used to define the distance between every point in the x

axis. It is used to discretize the information. For example, if we take the data from
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Figure A.4: Output format of qualitative representation generation.

XPPAUT, the data is not uniform. Note that the distance between each point of the

x axis depends on the problem.

• delta: This parameter is used in Algorithm 1 Line 1 at the time of segmenting the

bifurcation diagram. To brake the bifurcation diagram in sets where all the points

belong to a function (defined at Section 3.4.2). We take all the points that can be

observed from below, but not all of them belong to the segment (as observed in the

Figure 3.6). For this cases we need to define a distance from one point to another, to

consider if the next point observed belongs to the segment, delta is that distance.

• hole: This parameter is also used in Line 1 of Algorithm 1. Since the information is

discretized, it may presents noise. Therefore, there may be gaps in the information as

observed in Figure 3.7. In this part, the algorithm starts taking points that can be

observed from below from the lowest point of the diagram in one direction (left or

right). During this process, it may find holes, but it may also start considering points

that belong to another segment. (see Figure 3.6). If we take some consecutive points,

and these points are discarded because they are too far according to the parameter

delta, we say there is a hole in the diagram. If the hole is too big, the process is stopped

and a new search is started. This parameter is used to define the consecutive number

of points to consider before braking the process (define the size of the hole).
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• deltaglue Algorithm 1, Line 3, the algorithm glues the segments resulting from the

previous step. deltaglue is the parameter used to define how far the end of a segment

is from another segment to be glued. In this case, to glue a segment to another, both

segments needs to have the same slope and stability

• deltaintersec Used in the same case of the parameter deltaglue. But this parameter

is used for intersecting segments with different slope or stability.

• w This parameter is used to define the window size for the kernel function, at the

time of generating the qualitative slope in the qualitative filter.

Figure A.5 shows the parameters inside the routine that can be varied for each

problem.

Figure A.5: Parameter for qualitative representation generation.

A.3. Simulation

The input to simulation process is the qualitative representation of the bifurcation

diagram, and the descriptor of an initial state. The qualitative representation is obtained

from GenerateQR[PI, PE] function. Figure A.6 illustrates the execution of this function;

it shows the definition of the QR, the initial state, and the descriptor.

As observed in Figure A.6, all numerical values are discarded (observe QS2 ). Also

if we observe QS2, we notice that two new landmarks are added to the Quantitative Space

and no numerical values are needed. The simulation routine returns the History for the

process as mention in description Algorithm 10.
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Figure A.6: illustrating the simulation function.

A.4. Control Planning

The Planning algorithm defines the parameter changes (descriptor) to move the

system from one initial to a final state. The function receive as input the QR, the initial

state, the goal state, and the index value for the creation of new landamarks. Since the

planning algorithm creates new lardmarks, this parameter indicates the staring parameter

value. For example if parameterStart = 10 the new landmarks created in the process will

start naming them at r = 10. The output of this routine is the Descriptor and the new QS

(new landmarks were added in the process). Figure A.7 shows the execution of the planning

routine.

Figure A.7: illustrating the planning routine.
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A.5. Plotting Qualitative Bifurcation Diagrams

The function GenerateQR defines the behavior of the dynamical system when

the parameter is changed. Changes are defined in a descriptor as explained before, and

the result of the function is the History. To illustrate the History we use the function

PlotSimulation. But first the system creates the arrows with the function GraphHistory.

Note that the parameter QS has the real values of the landmarks. This is the only function

that works with quantitative information. Example of running the function can be observed

in Figure A.8.

Figure A.8: Graphical output of a simulation. In this Figure we observe the path (blue
arrows) resulting form the simulation algorithm.

A.6. Chapter Conclusions

In this chapter we described the use of QBD. This application is the implemen-

tation of the three algorithms described in this thesis. During this chapter the parameters

that can be varied were described. Also the chapter illustrates how to execute the functions

to operate the application.





References

[Barrera08] Barrera, J., Flores, J. J., and Fuerte-Esquivel, C. R. Plotting of comple-

te bifurcation diagrams using a dynamic environment particle swarm

optimization algorithm. En IC-AI, pages. 399–406. 2008.

[Boukas02] Boukas, E.-K. and Liu, Z.-K. Deterministic and stochastic time delay

systems. Control engineering. Birkhäuser, Boston, Basel, Berlin, 2002.

ISBN 3-7643-4245-5.

URL http://opac.inria.fr/record=b1104718

[Boyce01] Boyce, W. E. and DiPrima, R. C. Elementary Differential Equations.

Wiley, 2001. ISBN 0-471-31998-8.

[Crawford91] Crawford, J. D. Introduction to bifurcation theory. Reviews of Modern

Physics, 63(4), 1991.

[deKleer82] de Kleer, J. and Brown, J. S. Foundations of envisioning. En Proc. of

AAAI-82, pages. 434–437. Pittsburgh, PA, 1982.

[deKleer84] de Kleer, J. and Brown, J. S. A qualitative physics based on confluences.

Artif. Intell., 24(1-3):7–83, 1984.

[Ermentrout03] Ermentrout, B., Mahajan, A., and Reviewer. Simulating, Analyzing,

and Animating Dynamical Systems: A Guide to XPPAUT for Resear-

chers and Students. Applied Mechanics Reviews, 56(4):B53, 2003. doi:

10.1115/1.1579454.

URL http://dx.doi.org/10.1115/1.1579454

107



108 References

[Farina11] Farina, L. and Rinaldi, S. Positive Linear Systems: Theory and Appli-

cations. John Wiley and Sons, 2011.

[Farkas81] Farkas, M. Qualitative theory of differential equations. Vol. 2. Colloquia

mathematica Societatis János Bolyai. Amsterdam Oxford New York,

N.Y. North-Holland, 1981. ISBN 0-444-86173-4.

URL http://opac.inria.fr/record=b1089766

[Flores06] Flores, J. J. and Proskurowski, A. Qualitative reasoning and bifurca-

tions in dynamic systems. En MICAI, pages. 259–271. 2006.
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