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Risk Prediction of Product-harm Events Using Rough Sets and Multiple 

Classifiers Fusion: An experimental study of listed companies in China 

ABSTRACT 

With the increasing of frequency and destructiveness of product-harm events, study on enterprise crisis 

management becomes essentially important, but little literature thoroughly explores the risk-prediction method of 

product-harm event. In this study, an initial index system for risk prediction was built based on the analysis of the 

key drivers of the product-harm event’s evolution; ultimately, nine risk-forecasting indexes were obtained using 

rough set attribute reduction. With the four indexes of cumulative abnormal returns as the input, fuzzy clustering 

was used to classify the risk level of a product-harm event into four grades. In order to control the uncertainty and 

instability of single classifiers in risk prediction, multiple classifiers fusion was introduced and combined with 

self-organising data mining (SODM). Further, an SODM-based multiple classifiers fusion (SB-MCF) model was 

presented for the risk prediction related to a product-harm event. The experimental results based on 165 Chinese 

listed companies indicated that the SB-MCF model improved the average predictive accuracy and reduced 

variation degree simultaneously. The statistical analysis demonstrated that the SB-MCF model significantly 

outperformed six widely used single classification models (e.g. neural networks, support vector machine, and 

case-based reasoning) and other six commonly used multiple classifiers fusion methods (e.g. majority voting, 

Bayesian method, and genetic algorithm). 

Keywords product-harm; risk prediction; multiple classifiers; self-organizing data mining; rough set 

1. Introduction 

Product-harm crises can be defined as ‘discrete, well publicized occurrences wherein products are found to 

be defective or dangerous’ (Dawar & Pillutla, 2000). The increasing complexity of products, the increased 

demands of customers, and the greater vigilance on the part of the media have made product-harm crises 

increasingly visible occurrences (Klein & Dawar, 2004). In America, the frequency of product-harm events in the 

period 2000–2004 was 1.2 times that of similar events in the 1990s (Einwiller et al., 2006). In some emerging 

markets such as China, rising public awareness about social rights has increased the frequency of product-harm 

events. Between 2006 and 2014, there were over 500 incidents related to product-harm in China, some of which 

involved world famous brands. Some examples are the crisis faced by Procter & Gamble in 2006 related to high 

levels of mercury, Sanlu’s ‘melamine scandal’ of 2008 related to melamine-tainted milk, Shuanghui’s ‘clenbuterol 

event’ of 2011 involving tainted meat products, Volkswagen’s DSG gearbox failure event of 2012, and Husi 

Food’s expired meat crisis of 2014. 
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Although the probability of product-harm events is relatively low for an individual enterprise, such an event, 

if mishandled, will not only hurt the psychology and physiology of consumers but also lead to huge economic 

losses and a trust crisis for the enterprise. Further, it might have undesirable social and political impacts. For 

instance, in an investigation conducted by Sina.com, 84% of the interviewees stated that they would no longer buy 

Shuanghui meat products after the ‘clenbuterol’ scandal, while 7.8% of the interviewees were undecided. Only 

8.4% of the interviewees stated that they would continue to buy Shuanghui products, which would lead to 

cumulative economic losses of over 20 billion yuan for the Shuanghui group. Similarly, because of the ‘melamine 

scandal’, Sanlu Group, China’s third largest dairy company, went bankrupt. Moreover, this event led to public 

distrust and insecurity about food safety. According to a recent market report released by AC Nielsen about 

China’s infant milk powder, China’s brand of infant milk powder had less than 20% of the market share in 2012, 

down from 70% in 2007.  

Given that the destructiveness of a product-harm event, many challenge-seeking researchers among both 

academics and industry have spent a great deal of effort on the negative effects and contingency approach of 

product-harm crisis. However, literature shows that studies on the theory and method of product-harm risk 

forecasting are limited, despite the fact that they are the key processes affecting the success of crisis management. 

Predicting the enterprise risk is an interesting and challenging problem, and always an important concern for 

managers and stakeholders as well. Therefore, in this study, we attempt some exploratory research on the risk 

monitoring related to product-harm events. This study contributes to the literature in three ways. First, we propose 

a new multiple classifiers fusion method based on SODM to predict product-harm risk. Second, considering the 

soft boundaries of the risk grading and the main characteristics of the data such as uncertainty and vagueness, we 

adopt fuzzy clustering to classify risk level and divided the risk level of a product-harm event into four grades. 

Third, we obtain nine risk-forecasting indexes without losing information using rough set attribute reduction. 

2. Literature review 

2.1. Product-harm crisis 

Prior case studies show that some enterprises successfully navigated product-harm crises in the international 

market, while some enterprises failed in the aftermath of such crises. Why is the fate of enterprises so different? 

There have been extensive studies on the attribution of responsibility in the context of a product-harm crisis, the 

impact of such crises on the relevant variables, and the coping style of the affected enterprises. The attribution 

results of a product-harm crisis will affect the recognised risk and responsibility judgement of the consumers, 

subsequently affecting their buying behaviour. Therefore, some studies examined the attribution of responsibility 

from the perspectives of enterprise reputation, corporate social responsibility, essential features of events and 
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consumers traits, etc. (Klein & Dawar, 2004; Whelan & Dawar, 2014; Carvalho et al., 2014). In order to identify 

the negative impacts that a product-harm event could have and to determine how these impacts could be reduced, 

some studies examined the impact of product-harm crises based on Eindruckstheorie, the expectancy theory, etc. 

These studies reported that product-harm crises mainly affected the consumers’ risk perception, complaints, 

loyalty, purchase intention, and brand equity (Vassilikopoulou et al., 2009; Ma et al., 2014; Liu & Shankar, 2015). 

After a product-harm crisis, the company involved must take remedial action to change consumer perception and 

behaviour and to retain them at pre-crisis levels. In order to address this problem, scholars have proposed different 

strategies such as blame acknowledgement, voluntary product recall, and emphatic denial. The effectiveness of 

these strategies have been verified through experimental studies (Avnet & Laufer, 2014; Cleeren, 2014). 

The review of the extent literature shows that the research on product-harm risk prediction has not proposed 

sufficiently valuable solutions. Through product-harm risk prediction, enterprises could be warned before the 

crisis; moreover, they could take reasonable coping actions according to the different risk levels. If an enterprise 

cannot overestimate well the risk levels of a product-harm event, it could easily lead to over-reaction or 

under-reaction (Rhee & Haunschild, 2006). For instance, in 2004, there were media reports that the hydrogen 

peroxide content in Beijing Juneng Group’s calcium product could cause cancer. In fact, the hydrogen peroxide 

content in their calcium product was well below the legal limit. The company launched a series of measures, 

ranging from refunding money to apologising to their customers. However, this move did not alleviate the 

consumers’ risk perception; instead, the consumers perceived their products to be really harmful, eventually 

leading to the company’s bankruptcy. In contrast, during the clenbuterol event of 2011, due to underestimation of 

public aggressive behaviour risk, Shuanghui Group’ crisis-related public relations efforts involved suppliers and 

distributors, but not the consumers. This action made matters worse. As another example, KFC faced the ‘Sudan 

Red’ crisis in 2005. Because of the proper risk assessment and effective actions, this event did not affect their 

sales; instead, the event helped to consolidate KFC’s world famous brand image in the minds of Chinese 

consumers. Above all, it is necessary to study the prediction of product-harm risk in a systematic manner. 

2.2. Business risk prediction  

Since the 1960s, many studies have focused on enhancing the accuracy of business failure prediction. Prior 

studies usually approached bankruptcy prediction using various statistical methods such as the probit model 

(Lennox, 1999), the logit model (Hu & Sathye, 2015), and so on. However, these statistical methods require the 

predictive variables and functions to be independent. In practical terms, none of the predictive variables or 

functions are completely independent. In recent years, artificial intelligence models such as artificial neural 

networks, association rules mining, genetic programming models, case-based reasoning, and support vector 
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machines (SVMs) have been regarded as alternate classification technologies that can be used instead of statistical 

modelling to develop business failure prediction models (Kumar & Ravi, 2007; Ravisankar & Ravi, 2010; Tsai & 

Hsu, 2013; Geng et al., 2015). In particular, artificial intelligence techniques have been shown to have superior 

performance compared to statistical techniques (Tsai, 2008; Sun et al., 2015). 

The extant studies on the prediction of enterprise risk suffer from a few limitations. The first issue is related 

to the selection of the prediction indicators. The extant research on prediction indicators is mainly based on the 

daily operating conditions of enterprises. Since the financial data of enterprises can be obtained from their annual 

reports, these studies emphasise the use of financial indicators to build their model (Wang, et al., 2015; Geng et al., 

2015). However, product-harm events have obvious characteristics of an emergency; further, the root causes for 

the escalation of an event and the plights of the business are often not financial factors. Excluding these factors 

could result in an incomplete prediction model, which makes it required to study the prediction indicators of 

product-harm events. Secondly, the extant prediction models are mostly based on a single classifier. However, a 

single classifier’s performance with regard to specific issues largely depends on the mode characteristics of the 

sample, and every single classifier has its own unique uncertainty. Multi-classifiers can reduce the variance in 

estimation error and improve the overall performance of the model. Therefore, a few researchers have spent a 

great deal of effort on multiple classifiers fusion method. But the existing fusion algorithms tend to ensemble all 

of classifiers at hand. In fact, in terms of prediction accuracy, a sub-ensemble of select classifiers would be 

superior to an ensemble that includes all the classifiers (El-Melegy & Ahmed, 2007). As a consequence, in order 

to reduce the one-sidedness and uncertainty of a single classifier-based prediction model, it is necessary to 

develop a multi-classifier fusion mechanism to forecast the risk of product-harm events. 

3. Framework and Methodology 

3.1 Framework 

Given the limitations of the extant research, we proposed a forecasting model for product-harm events using 

rough sets and the fusion of multiple classifiers. Firstly, the risk level of a product-harm event was classified using 

the fuzzy clustering method. Secondly, based on the analysis of the key drivers of the product-harm event’s 

evolution process, we built an initial index system of risk prediction, and then obtain the ultimate index system 

using rough set theory. Lastly, we selected the basic classifiers based on individual optimisation and diversity 

criteria; subsequently, we employed SODM technology to make a decision-level fusion on the outputs of the basic 

classifiers. Thus, we obtained the fusion model that satisfies the optimal complexity theory and risk level 

prediction. The proposed framework is presented in Figure 1. 

Here insert Figure 1 
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3.2. Risk grading of product-harm event 

3.2.1. Selection of clustering variable 

A negative event can have an adverse-even disastrous-impact on the share price of a listed company. 

Therefore, the risk level of the product-harm event can be measured in terms of the variation in stock returns. 

Event studies usually use abnormal returns (AR) to study the variation in stock prices and returns in response to 

the related event. Brown and Warner (1985) introduced three ways to compute AR: mean adjusted returns, market 

adjusted returns, and ordinary least squares (OLS) market model. While all of these methods have been used in 

prior studies, the method based on market adjusted returns has been found to be more convenient and effective 

than the other two methods (Brown & Warner, 1985; Chen et al., 2013; Harris et al., 2014). After comprehensive 

consideration of the options, we chose cumulative abnormal returns (CAR) as the cluster variable for grading the 

risk after the event, and we used market adjusted returns to compute AR. Following the main findings reported in 

the extant research (Liu et al., 1990; Liu & Zhang, 2012), we studied the cumulative abnormal returns from the 

first day of exposure (R) over the next six days (R+6); i.e. the event window is [R, R+6].  

According to the formula for market adjusted returns, daily abnormal returns (AR) is calculated as 

, , , 6it it mtAR R R t R R+= − =                                (1) 

where itAR  is the abnormal returns of stock i  on day t ; itR  is the real returns of stock i  on day t ; and 

mtR  is the market returns on day t .  

The cumulative abnormal returns of stock i  from R to R+6 ( itCAR ) is calculated as 
6R+

it ijj R
CAR AR

=
= ∑                                        (2) 

According to the China Security Market Accounting Research (CSMAR) database, there are four main ways 

to measure mtR : the average returns of the whole stock market, the average returns of the stocks of the same 

industry, the average returns of stocks with similar size, and the average returns of stocks with similar levels of 

risk. Therefore, CAR, which we chose as the clustering variable for risk grading, should have four measures: the 

cumulative abnormal returns relative to the whole stock market ( amCAR ); the cumulative abnormal returns relative 

to the same industry ( smCAR ); the cumulative abnormal returns relative to similar-sized enterprises ( ssCAR ); and 

the cumulative abnormal returns relative to the stocks with similar risk levels ( srCAR ).  

3.2.2. Main step of fuzzy clustering analysis 

According to Boreiko (2003) and Amirian et al. (2015), the main steps of fuzzy clustering analysis are: 

Step 1: Data normalisation. Different data has different dimensions. Hence, it is necessary to apply a 

dimensionless method to the data and compress the data to the interval [0, 1]. 

Step 2: Establishing fuzzy similarity relation R . Establishing the fuzzy similarity matrix is also known as 
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calibration. It is important to define the statistics ijr  that can be used to measure the degrees of similarity of the 

objects. If the parameter c  is properly chosen, the result will be 0 1ijr≤ ≤ (Meng et al., 2014). In this paper, 

through the calculation and adjustment, we take 0.1c = , which can make the calculation results in the interval 

[ ]0,1  to disperse better. 

( )=1- ,ij i jr c d x x•                                        (3) 

where ( ),i jd x x is Euclidean distance, 2( , ) ( )i j i jd x x x x= −∑ . 

Step 3: Solving the transitive closure. The transitive closure of a fuzzy similarity relation R , also known as a 

fuzzy equivalence relation, is defined as the relation that is transitive, contains R  and has the smallest possible 

membership grades (Yue et al., 2015). In this study, we solved the transitive closure using quadratic programming. 

According to 2 4 2... ...
k

R R R R→ → → → → , after the limited operation, there will be 2 2 2( )
k k

R R= , and a 

transitive closure matrix can be calculated out 2kR R= . 

Step 4: Solving the cut matrix of the fuzzy matrix. Set R ( )= ij mnr  as the fuzzy equivalence matrix. For 

arbitrary [0,1]λ∈ , Rλ
( )( )= ij

mn
r λ  is the -λ cut matrix of R ( )= ij mnr  and ( )

ijr λ  is calculated as:  

( ) 1,
=

0
ij

ij
ij

r
r

r
λ λ

λ
≥

 <
                                     (4) 

Solving the cut matrix when λ  is equal to a certain value and clustering the corresponding rows of the 

matrix into the same class, we obtain the classification of the objects. λ  denotes the interception level which is 

also known as threshold. Different values of λ  are correspond with different levels of classification. According 

to the results of Rλ , the larger the value of λ , the more the number of the categories. In this paper, we decrease 

the value of λ  gradually from 1 to 0 and find that when =0.83λ , risk grading performance is optimal and the 

samples could be divided into four categories. 

3.3. Risk-prediction index system for product-harm events 

3.3.1. Designing the primary risk prediction indexes 

Determining the key drivers of the evolution process of a product-harm event is important for identifying the 

risk factors and building the risk prediction index system. The analysis of a large number of cases (such as KFC’s 

‘Sudan Red’ crisis, Volkswagen’s DSG gearbox failure event, Husi Food’s expired meat crisis, and so on) 

indicated that the direction and velocity of the evolution of a product-harm event are mainly affected by 

the initial characteristics of the event, enterprise emergency behaviour, public behaviour, adaptability of enterprise 

operation system, and the interactions among these factors, as shown in Figure 2. 

Here insert Figure 2 

The initial characteristics of a product-harm event, including the sensitivity and destructiveness of the issue, 
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corporate reputation, and media influence, are decisive forces with regard to the direction and velocity of its 

evolution (Zhao et al., 2012; Claeys & Cauberghe, 2015). According to the theory of attention, negative press 

about a company that is a household name is more likely to cause a ‘sensational effect’ (Rhee & Haunschild, 

2006). Further, the authority and reliability of the source of negative information can have an impact on the 

credibility of rumour. The higher the authority and the reliability of the media, the better it can guide public 

opinion (Hovland & Weiss, 1951).  

Enterprise emergency behaviour plays a decisive role in the development of the events (Sweeny, 2008), and 

the cognitive bias related to the risk of product-harm events is an important reason why enterprises to take 

improper countermeasures. The stress levels of an enterprise under normal conditions, its risk awareness, and its 

level of emergency preparedness can affect the policymakers’ risk perception (Sweeny, 2008; Wang & Ritchie, 

2013; Walumbwa et al., 2014). Additionally, public aggressive behaviour is another important factor leading to 

deterioration of the events. Their attitude and conduct depend on their risk perception, which is mainly affected by 

the sensitivity of the matter, the credibility of the media, the frequency of media reports, the extent of public 

involvement in the event, etc. (Park & Sohn, 2013; Goodwin & Sun, 2013; Zhao et al., 2013).  

The adaptability of enterprise operation system is significant for a company’s development. According to the 

sociotechnical system theory (Eason, 2014), when faced with negative information, a company ought to make use 

of all its resources, adjust the relation between internal society and technical factors, as well as the company and 

its stakeholders. Thus, it can tackle the external changes effectively. Some prior studies showed that the 

applicability of enterprise operation system in the event of a product-harm crisis is affected by the relationship 

between the company and its stakeholders, such as the government, suppliers, retailers, and employees, as well as 

by its short-time repayment abilities (Bonardi & Keim, 2005; Park et al., 2014; Meintjes & Grobler, 2014).  

Based on the analysis of the key drivers of a product-harm event’s evolution process, we built the initial 

index system for risk perception (as shown in Table 1). 

Here insert Table 1 

3.3.2. Simplification of the index system using rough set theory 

Considering all the index data as input may not only increase the complexity of the model but also reduce the 

accuracy of the model because of indicator redundancy. Therefore, the rough set theory is employed to reduce the 

attributes of the samples. Rough set is an effective mathematical method for dealing with vagueness and 

uncertainty, which definitely seems suitable for the expression of vagueness and the induction of uncertainty. As it 

is known to all, the decision rule induction is an important work in data mining, the core idea of rough set is that 

knowledge reduction occurs through constant classification, and then the decision rule can be inferred from the 
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reduction result (Pawlak & Skowron, 2007; Zhang et al., 2003). 

Discretisation of continuous attributes. Considering that the variables that were selected for the risk 

prediction of product-harm events are mostly continuous attributes, and since the rough set cannot deal with 

continuous data directly, it became necessary to adopt the clustering algorithm to discretize the continuous 

attributes. However, in the existing clustering algorithm, the shutdown conditions and the parameter input are all 

human-controlled. That is, users need considerable knowledge of the field for using the clustering algorithm (Saha 

et al., 2007). Further, it is difficult to ensure the quality of clustering results. Therefore, we created an objective 

clustering standard on the basis of information entropy theory. Further, we combined fuzzy clustering, used 

membership as the basis of the information entropy calculation, and applied the pedigree method to determine the 

number of clusters. In the discretising process of continuous attributes, in order to avoid the low search efficiency 

for the cluster number caused by the large index system of candidate variables, this paper adopted a heuristic 

searching on the basis of the maximum discernibility value (MDV) function proposed by Wang et al. (2015). 

Please refer to the supplementary file or the paper by Wang et al. (2015) for the detailed fuzzy clustering 

discretisation steps based on the MDV function and information entropy. 

Attribute reduction. As the core content of rough set theory, the purpose of attribute reduction is to get the 

minimal attribute set without changing the resolution capability of the original information system. However, it 

has been proved that this problem is NP-hard (Pawlak & Skowron, 2007; Wang et al., 2015). So, it is necessary to 

simplify the calculation using heuristic information. The heuristic reduction method based on attribute 

significance has been widely researched, such as the traditional computing method of attribute significance based 

on algebra theory, the algorithm based on differential matrix, and the algorithm based on information theory. In 

this paper, we adopted the algorithm of attribute reduction based on the mutual information of binary channel 

proposed by Wang et al. (2015), and used it to simplify the index system for risk prediction of a product-harm 

event. Please refer to the supplementary file or the paper by Wang et al. (2015) for the detailed algorithm of the 

attribute reduction based on the channel capacity. 

3.4. SODM-based multiple classifiers fusion 

As noted by Feng and Wang (2015), the core element of multiple classifiers fusion is a fusion algorithm. The 

common fusion algorithms include Random Forests (Breiman, 2001), majority voting (Ruta & Gabrys, 2005), 

Bayesian approach (Kurzynski & Wozniak, 2012; Woźniak et al., 2014), and genetic algorithm (GA) (Kim & 

Kang, 2012), which tend to ensemble all the classifiers at hand. In fact, each basic classifier makes decisions 

according to the same classification task, which may lead to decision redundancy. It has been suggested that an 

ensemble composed of all the basic classifiers would not necessarily improve classification accuracy, while a 
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sub-ensemble of select classifiers may have better prediction performance (El-Melegy & Ahmed, 2007). 

Therefore, the key to a successful multi-classifier fusion algorithm is to fuse the classification results of multiple 

classifiers that efficiently conflict one another. Self-organising data mining (SODM) is a good tool for addressing 

this problem (Ivakhnenko, 1970; Costea, 2013). 

 The core technology of self-organising data mining (SODM) is the group method of data handling (GMDH). 

The GMDH partitions the entire sample into three parts for training, checking, and testing; subsequently, it builds 

the general relationships between the system’s inputs and outputs. This can be expressed using a complicated 

discrete form of the K-G polynomial. Take the items of the K-G polynomial as the initial neurons, different pairs 

of which are constructed and then fed to the network’s first layer. Consequently, the outputs of the neurons on the 

first layer are selected according to the external criterion as the inputs of the next layer. This process is repeated 

continuously to generate the competition models continuously until we find the optimal model. The main 

characteristic of the GMDH algorithm is that it can group the data and utilise both the internal and external criteria 

throughout the modelling process. It creates candidate neurons on the training subset according to the internal 

criterion and subsequently removes undesired neurons on the testing subset according to the external criterion. As 

the complexity of the model increases, it will reach the minimum value of the external criterion that is 

characterised by ‘complementarity’. When the algorithm converges to a global minimum, it means that the 

optimal complexity model has been found, according to the optimal complexity theory. In this process, the 

modeller provides only the data, the corresponding data group, and the external criterion; therefore, the structure 

of the model is generated by the computer automatically, the influence of the subjective evaluation of the modeller 

on the model is eliminated, and the objectivity of the model is ensured. Therefore, the GMDH network is 

relatively superior to the other models (Sheikholeslami et al., 2014). 

In this study, we introduced multi-layered SODM neural networks into multi-classifier fusion and built an 

SODM-based multiple classifiers fusion (SB-MCF) algorithm. The basic flow of SB-MCF algorithm is shown in 

Figure 3.  

Here insert Figure 3 

Step 1: The sample set is divided into training set A , checking set B , and testing set C . Let W A B=  . 

Step 2: Build the general relationships between the model’s output classes Y and k  classifiers’ 

classification ( 1 2 kR R R， ，...， ) in W. This can be expressed by a complicated discrete form of the K-G 

polynomial: 

         ( )1 2 1 1 2 2= k k kY f R R R a R a R a R= + + + ， ， ，                      (5) 

where ia  and ja  are the weighting coefficients calculated with least squares (LS) in the training set (Lin, 2012). 
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By the quadratic sub-expression in Eq. (6) for each row of k data triples, the following matrix equation can be 

given as =aR Y , where a  is the vector of unknown coefficients of quadratic polynomial in Eq. (5), and Y  is 

the vector of the output’s value from observation. The LS obtains the solution of the equations in the form of 

( ) 1T T−
=a R R R Y                                 (6) 

which determines the vector of the best coefficients of Eq. (6) for the whole set of k  data triples. 

Take the items of Eq. (6) as the k  initial neurons fed to the GMDH multi-layered neural networks: 

1 1 1 2 2 2 k k kv a R v a R v a R= = =， ， ， . 

Step 3: Select the minimum bias criterion as the stopping criterion of the fusion algorithm: 

          
22 ( ) ( ) ( )m m

bs t t t w
W y A y Bη

∈
= −                                 (7) 

where )(Ay m
t  stands for the tth output value estimated by the model on dataset A , and )(By m

t  stands for the 

tth output value estimated by the model on dataset B .  

Step 4: Different pairs of the initial neurons are constructed and fed to the network’s first layer; subsequently, 

we get 2
kC  candidate neurons of the quadratic polynomial, which is written as: 

( )21 2 1 2t i i j j kz a v a v i j k i j t C= + = ≠ =， ，， ， ； ； ，， ，                   (8) 

Step 5: Based on the stopping criterion in Eq. (7), evaluate the candidate neurons on checking set B ; 

subsequently, select several candidate neurons with minimum values as the inputs of the second layer. 

Step 6: Repeat Step 4 and Step 5; the second layer, the third layer, … candidate neurons are generated, until 

the model reaches the minimum value of the external criterion, and the optimal complexity fusion model is found 

according to the optimal complexity theory.  

Step 7: Input the classifiers’ classification ( )1 2, , , kr r r  in testing set C  to the optimal complexity fusion 

model to obtain the final predication results. 

4. Experiments design 

4.1. Samples and data 

We selected companies listed in the Shanghai and Shenzhen securities exchange that had faced product-harm 

crises during January 2006 to March 2015 as the samples for this study. First, we collected the samples of 

product-harm events from the financial investigation centre of Sina.com. Subsequently, we included the samples 

from Sohu.com and NetEase.com that had not been investigated by Sina.com. Sina.com, Sohu.com, and 

NetEase.com are China’s three major portals; their finance channels provide users with the latest news, full and 

timely financial reports, and online surveys on hot topics. Their investigation centres involve active user 

participation. Finally, in order to ensure the availability of data, we eliminated the samples that were not listed in 

the Shanghai and Shenzhen securities exchange and those for which we were unable to ascertain the first exposure 
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time of the event. Additionally, companies whose predictive indexes and cluster variable data were not complete 

were not considered. The final sample size was 165. All the selected samples of different risk levels met the 

stringent matching requirements for industry and asset size. Table 2 presents the relevant information about the 

sample selection process. 

Here insert Table 2 

In this study, the data of the clustering variables was obtained from the CSMAR database. The measuring 

methods of each index are shown in Table 3. The data pertaining to I1, I11 was obtained from the Baidu Index 

(index.baidu.com); the I3, I9, I10 data was obtained from the investment centres of Sina (survey.news.sina.com.cn), 

Sohu (survey.sohu.com), and NetEase (money.163.com); the I2 data was obtained from the Chinese Media 

Influence Ranking List for 2006–2014; the I5, I6, I7, I8 data was prepared by the author based on the corporate 

annual reports and clarification announcements that were obtained from the Wind Financial database; and the I13, 

I14 data was obtained from the Chinese listed companies’ social responsibility reports that were released by 

Hexun.com. All the other data was obtained from the CSMAR database. 

4.2. Risk grading 

We used amCAR , smCAR , ssCAR , and srCAR  as the input variables for the fuzzy cluster analysis, and used the 

Matlab 2014b toolbox and its associated programming language to realise the experimental process. The results 

showed that when =0.83λ , the samples could be divided into four categories. The risk level of the four categories 

could be determined in terms of the descriptive statistics of the four variables in each category. Table 3 presents 

the descriptive statistics and the analysis of variance of the variables after classification. The statistics shows that 

the sample size of giant warning, heavy warning, medium warning, and light warning were 38, 47, 45, and 35, 

respectively. Each variable in the different categories had significant differences (p-values close to zero). This 

means that the risk grading is reasonable. 

Here insert Table 3 

4.3. Reduction of indicators 

The discretisation results in Table 4 were obtained based on the discretising interval adjustments according to 

expert advice. These experts include one professor in the field of crisis management, one professor in the field of 

data mining, and two operating managers of the enterprise. They fine-tuned the results of discretisation by group 

discussion and reached a consensus ultimately. The attribute reduction of the discretised data was implemented 

using rough sets, resulting in 36 reductions, including one smallest condition attribute set: {I1, I2, I4, I6, I9, I11, I12, 

I13, I15}. Subsequently, we constructed the experimental dataset based on the original data of the index on the 

smallest condition attribute sets, and we tested the prediction performance of the model. 
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Here insert Table 4 

4.4. Construct experimental datasets 

An SODM-based multiple classifiers fusion (SB-MFC) model can improve the prediction performance and 

decrease the uncertainty of the prediction process. For an empirical experiment, multiple experimental datasets are 

needed to get multiple performance statistics. In this study, the random multiple hold-out strategy was adopted. 

We simulated multiple experimental datasets by repeatedly and randomly dividing the initial sample into a 

training sample and a testing sample. Each time, by simple random sampling without replacement, two-thirds of 

the companies in each of the four categories (giant warning, heavy warning, medium warning, and light warning) 

were selected to form the training sample; the remaining one-third of the companies in each of the four categories 

were used to form the testing sample. After 20 iterations of random sampling, 20 experimental datasets were 

generated. 

4.5. Selection of basic classifiers 

The performance of multi-classifier fusion directly depends on the individual recognition performance and 

the diversity of the basic classifiers (Sun & Li, 2008b). Therefore, in this study, we followed the diversity 

principle and the individual optimised principle to select the basic classifiers. 

The diversity principle is based on the fundamental assumption that a perfect classifier never exists. Any 

single classifier is not a perfect classifier, they are required to remain certain degree of diversity. Thus, when some 

basic classifiers output the wrong predicted labels, the other basic classifiers could possibly output the right 

predicted label (Kuncheva, 2005). In order to utilise the superiority of different learning algorithms, the basic 

classifiers are trained using different learning algorithms (with heterogeneous model representations) on a single 

dataset. In this study, Q  statistics was used as the diversity measure (Yule, 1900; Yang, 2011). We defined 
1 2

11
k kM  

as the number of samples that are accurately recognised by classifier 1kf and classifier 2kf ; 
1 2

10
k kM  as the number of 

samples that are recognised accurately by classifier 1kf and misclassified by classifier 2kf ;
1 2

1
k kM ∗  as the number 

of samples that are recognised accurately by classifier 1kf ; 
1 2

0
k kM ∗  as the number of samples that are misclassified 

by classifier 1kf , and so on. The measure can be simply calculated by: 

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1 2 1 2

00 01 1011

00 01 1011
k k k k k k k k

k k
k k k k k k k k

M M M M
Q M M M M

−
=

+
                          (9) 

where the value range of 1 2k kQ is [-1, 1]; 1 2 =1k kQ  means there is a completely positive correlation between 

classifier 1kf and classifier 2kf ; and 1 2 =-1k kQ  means there is a completely negative correlation between classifier 

1kf  and classifier 2kf . 
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Individual optimisation is based on the fundamental assumption that we should pursue a perfect classifier 

continuously. Although it would be impossible to create a perfect classifier, we can get a near-to-optimal classifier 

by optimising the model parameters or model structure. Since different basic classifiers are trained using different 

learning algorithms on a single dataset, the product-harm risk prediction should be based on cross-validation 

accuracy. Therefore, in order to optimise the performance of a basic classifier, we can optimise the parameter and 

the model structure through grid search and genetic search.  

Based on the principles of individual optimisation and diversity, multiple discriminant analysis (MDA) 

(Meyer & Pifer, 1970), logistic regression (Logit) (So & Kuhfeld, 1995), back propagation neural network (NN) 

(Basheer & Hajmeer, 2000), decision tree (DT) (De Mántaras, 1991), support vector machine (SVM) (Weston & 

Watkins, 1998), and case-based reasoning (CBR) (Tseng & Chang, 2005) were selected as the six single classifiers. 

The detailed algorithms of the six single classifiers above are shown as Appendix A. In order to obtain the basic 

classifiers that were used for the multiple classifiers fusion, we optimised the learning algorithms of the six single 

classifiers on the same training samples. The diversity measures between each pair of basic classifiers are shown 

in Table 5. The statistics shows that there were no pairs of six basic classifiers with completely positive correlation 

or completely coincident recognition results. This means that each pair of basic classifiers was diverse to a certain 

degree. 

Here insert Table 5 

5 Experimental results and discussion 

5.1. Comparison of prediction performance between SB-MCF model and single classifiers 

In order to test the performance of the SODM-based multiple classifiers fusion (SB-MCF) model with regard 

to product-harm risk prediction, we compared the prediction performance of the six single classifier models that 

were used in the classifier fusion in this study; these models are widely used in the literature. The training 

accuracy and testing accuracy on 20 experimental datasets, and the corresponding mean, variances, and discrete 

coefficients of the basic classifiers and SB-MCF are listed in Table 6. The experimental results show that the 

average training and testing accuracy of the SB-MCF model are highest compared to the risk prediction methods 

based on single classifiers; moreover, the variance and discrete coefficient of the former model are the lowest. In 

addition, we created 20 experimental datasets based on the original data of the 17 initial indicators. Each model 

was trained and tested on these datasets. The results are presented in Table 6. Table 6 shows that the training and 

forecasting performances of each model that adopted the nine indicators after reduction as inputs were superior to 

the performances of the models that adopted the 17 initial indicators as inputs. This finding verified the necessity 

of reducing the indicators and the rationality of the reduction results.  
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Here insert Table 6 

To examine whether the performance of the SB-MCF model was significantly superior compared to that of 

each single classifier model in terms of product-harm risk prediction from a statistical perspective, the difference 

in accuracy and discrete degree of the models on the 20 experimental datasets were analysed using the t-test. The 

results are presented in Table 7 and Table 8. 

As shown in Table 7, the training accuracy of the SB-MCF model is significantly superior to that of the 

single classifiers at the 1% level, except the NN classifier, which is not significantly different from the SB-MCF 

model. The SB-MCF is significantly superior to the single classifiers in terms of the discrete degree, except the 

MDA and SVM, which are not significantly different from the SB-MCF model. These results are consistent with 

the characteristics and the experiment performance of each single classifier for two reasons. (1) There is 

consensus that NN has a very strong nonlinear fitting ability. As shown in Table 6, NN has the highest training 

accuracy. (2) The SVM and MDA are two kinds of single classifiers with the best training stability (Hui & Sun, 

2006). They have the lowest variance in training accuracy, as shown in Table 6. Therefore, the SB-MCF model 

could integrate the different training advantages of each single classifier. 

As shown in Table 8, the testing accuracy and discrete degree of the SB-MCF model is significantly superior 

to those of DT at the 1% level. The training accuracy of the SB-MCF model is significantly superior to that of all 

the single classifiers at the 5% level at least, except that of Logit. The SB-MCF model is significantly superior to 

DT in terms of testing accuracy and discrete degree at the 10% level at least. Thus, from a statistical perspective, 

the SB-MCF model is significantly superior to each single classifier in terms of testing accuracy and discrete 

degree.  

Additionally, we also analyze the mean testing accuracy class by class. The results are presented in Table 9. 

Furthermore, we performed t-test for the average testing accuracy of each risk level between SB-MCF model and 

other single classifiers. And the data show that the testing accuracy of SB-MCF model is significantly superior to 

that of all the single classifiers. In order to avoid redundancy, we do not report the result of t-test in this paper.  

The experimental results show that the SB-MCF model can improve the average prediction accuracy and 

reduce the discrete degree of prediction accuracy on different datasets. This model inherited the high recognition 

performance of Logit and CBR and the stability of SVM; additionally, it avoided the low recognition performance 

of DT and MDA and the instability of all the basic classifiers (except SVM). Therefore, the SB-MCF method 

could improve the product-harm risk prediction accuracy by using the complementary information of the different 

basic classifiers, taking full advantage of the benefits of the basic classifiers and avoiding their disadvantages. 

Here insert Tables 7, 8 and 9 
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5. 2. Comparison of prediction performance between SB-MCF model and other multi-classifier fusion methods  

In order to test the performance of the SB-MCF model, we further compared the prediction performance of 

this model with that of different widely used multi-classifier fusion methods, such as random forests (RF) 

(Breiman, 2001), majority voting (MAJ) (Ruta & Gabrys, 2005), Bayesian method (Kurzynski & Wozniak, 2012; 

Woźniak et al., 2014), genetic algorithm (GA) (Kim, Kim & Lee, 2003), Borda counting method (Ho, Hull & 

Srihari, 1994), and least squares (LS) (Ting & Witten, 1999). The detailed algorithms of the six classifiers fusion 

methods above are shown as Appendix B. The method for the division of the sample into the training set and 

testing set was the same as the method used earlier. In this paper, the basic classifier pool size was set to six. We 

conducted twenty fusion experiments on the twenty experimental datasets using the fusion methods above 

respectively, and counted the number of basic classifiers selected by the SB-MCF model and the other six fusion 

methods during each fusion experiment, as shown in Figure 4. The results show that the other six fusion methods 

(such as RF, MAJ, Bayesian, GA, Borda counting, LS) will fuse all the classifiers in the basic classifier pool 

during each fusion. However, unlike the other six fusion methods, the SB-MCF method always select some of the 

most appropriate basic classifiers from a given basic classifier pool adaptively. And the number of basic classifiers 

selected in every experiment was stable. For example, among twenty fusion experiments, four basic classifiers 

were selected in twelve fusion experiments, and five basic classifiers were selected in eight fusion experiments. 

This fully demonstrates that the SB-MCF algorithm is characterised by the adaptive selection of basic classifiers. 

Here insert Figure 4 

The average prediction accuracy, variances, and discrete coefficients of the different fusion methods on the 

20 experimental datasets are shown in Table 10. Compared to the other fusion methods, the SB-MCF model has 

the highest average testing accuracy and the lowest variances and discrete coefficients on the 20 experimental 

datasets. Consistent with the results of Table 6, the training and forecasting performances of each model that 

adopted the nine indicators after reduction as inputs are superior to the performances of those that adopted the 

17 initial indicators as inputs. Additionally, we analysed the differences in the accuracy and discrete degree of the 

different fusion methods on the experimental datasets using the t-test; the results are shown in Table 11. The data 

shows that the SB-MCF model is significantly superior to the other fusion methods in terms of testing accuracy 

and discrete degree. Additionally, we also analyze the mean testing accuracy class by class. The results are 

presented in Table 12. Similarly, we also performed t-test for the mean testing accuracy of each risk level between 

SB-MCF model and other fusion methods. The results show that the testing accuracy of SB-MCF model is 

significantly superior to that of all other fusion methods. In order to avoid redundancy, we do not report the result 

of t-test in this paper. In summary, the performance of the SODM-based multiple classifiers fusion model in 
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relation to product-harm risk prediction is superior to that of other fusion methods. 

Comparing Table 10 and Table 6, the multiple classifiers fusion model did not necessarily outperform the 

best single classifiers. In this study, the average prediction accuracies of GA and LS were found to be slightly 

lower than those of single classifiers such as Logit, NN, and CBR. Further, the standard deviation and coefficients 

of variation of some of the multiple classifiers models were greater than those of some of the single classifiers. We 

found that this conclusion, an ensemble composed of all the basic classifiers does not necessarily improve 

classification accuracy, was consistent with the finding reported by Geng et al. (2015); however, it contradicted 

the result reported by Sun and Li (2008a) and Xiao et al. (2012). According to Table 8 and Table 11, the prediction 

performance of the SB-MCF model are superior to both the single classifiers and other multiple classifiers fusion 

model. This further verified the effectiveness of the SB-MCF model. 

Here insert Tables 10, 11 and 12 

6. Conclusion 

The empirical results indicate that the SODM-based multiple classifiers fusion model has higher prediction 

accuracy and prediction stability compared to those of widely used single classifiers (e.g. logistic regression, 

neural networks, support vector machines) and other fusion methods (e.g. majority voting, Bayesian method, 

genetic algorithm). Further, the proposed model has good adaptive fusion features, and it can adaptively select an 

appropriate subset from the pool of base classifiers for the fusion, which can improve the prediction accuracy of 

the model. Thus, the proposed model is effective and practical for risk forecasting related to product-harm events. 

Reducing the condition attributes using rough set theory, we obtained nine valid risk-forecasting indexes 

without the loss of information. These indexes are related to the sensitivity of the event, the credibility of the 

media, enterprise scale, the risk awareness of the enterprise, the degree of public involvement, the frequency of 

media reports, the relationship between the enterprise and the government, the relationship with suppliers and 

distributors, and working capital. Additionally, we divided the risk level of a product-harm event into giant 

warning, heavy warning, medium warning, and light warning levels using fuzzy cluster analysis, which provides 

an important basis for enterprises and the government to define the risk level of a product-harm event.  

In this study, the clustering analysis of product-harm risk was based on a sample of listed companies, and the 

analysis was limited to the use of stock market performance indicators. The role of financial and non-financial 

indicators, such as main business revenue fluctuation and customer churn rate, was not considered in this study. 

Future research could use financial and non-financial indicators in the clustering analysis to improve the risk 

grading results. Additionally, unlisted companies could be included in the samples of an empirical study on risk 

grading and early warning systems. 

javascript:void(0);
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Fig.1. Proposed framework for forecasting the risk of product-harm events 
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Fig.3. The basic flow of SB-MCF algorithm. 



 
 

Fig.4. Selection of basic classifiers using different fusion algorithms 



Table 1 Initial index system for risk prediction of a product-harm event 
Risk factors Indicators  Definitions and measures 

The initial characteristics 

of the event 

The sensitivity of the event 

(I1) 

The sensitivity of the public to the product quality problem that 

the event involved 

The influence of media (I2) The credibility of the media and the reliability of the information 

Degree of loss (I3) The direct loss caused by the event 

Enterprise scale (I4) Napierian logarithm of total assets 

The risk of enterprise 

emergency decision  

The level of emergency 

preparedness (I5) 

The perfective of measure or action plan that was constituted in 

advance by the enterprise to cope with a product-harm crisis  

Risk awareness (I6) The crisis awareness of an enterprise to an emergency under 

daily operating conditions 

Pressure level (I7) The attention that the same industry paid to such an event under 

daily operating conditions 

Response speed (I8) The interval between the first report of the event to the first 

response of the enterprise 

The risk of public 

aggressive behaviour 

Customer loyalty (I9) The degree of customers’ repeat purchases because of their brand 

preference under normal conditions  

Degree of public involvement 

(I10) 

The degree of public participation in commenting on and 

spreading information about the event 

Frequency of media reports 

(I11) 

The frequency of media reports about the product-harm event  

The adaptability of 

enterprise operation system 

Political relationship (I12)  The compactness degree of the relationship with the government or 

government officials 

Relationship with suppliers 

and distributors (I13) 

The harmonious degree of the relationship with suppliers and 

distributors  

Relationship with employees 

(I14) 

The harmonious degree of the relationship with employees  

Working capital (I15) The capital to be invested in floating assets 

Quick ratio (I16) The ability of an enterprise to reimburse current liabilities 

Interest cover ratio (I17) The ability of an enterprise to repay the loan interest 

 
Table 2 Sample selection process 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 total 

The companies collected by the 

investigation center of Sina.com 

26 28 35 43 49 55 62 69 78 30 475 

The companies added from the investigation 

center of Sohu.com and NetEase.com 

5 6 3 4 6 5 4 3 5 2 43 

Eliminating the companies which are not 

listed in Shanghai and Shenzhen securities 

exchange 

12 14 11 23 27 20 25 33 38 12 215 

Eliminating the companies whose exposure 

time of product-harm is not clear 

5 7 3 6 8 5 7 4 9 3 57 

Eliminating the companies whose data is not 

complete 

3 5 7 5 9 11 13 10 15 3 81 

The final samples 11 8 17 13 11 24 21 25 21 14 165 



Table 3 Descriptive statistics and variance analysis of the variables after classification 
Risk levels Statistics amCAR  smCAR  ssCAR  srCAR  

Giant warning N 38 38 38 38 

Mean -13.314 -13.886 -14.129 -13.350 

Median -13.692 -14.850 -14.617 -13.480 

Std. Deviation 1.137 1.698 1.371 1.379 

Minimum -15.219 -15.887 -16.198 -15.656 

Maximum -12.043 -11.928 -12.582 -12.921 

Heavy warning N 47 47 47 47 

Mean -9.352 -9.137 -9.275 -9.819 

Median -9.391 -8.998 -9.506 -10.284 

Std. Deviation 1.741 1.673 1.431 1.185 

Minimum -11.369 -11.766 -11.495 -11.078 

Maximum -6.26 -6.19 -6.69 -7.68 

Medium warning N 45 45 45 45 

Mean -4.176 -4.375 -4.333 -4.396 

Median -4.290 -4.371 -4.616 -4.422 

Std. Deviation -1.086 -0.770 -0.953 -1.350 

Minimum -5.475 -5.381 -5.731 -6.528 

Maximum -2.219 -3.108 -2.725 -2.507 

Light warning N 35 35 35 35 

Mean -0.282 -0.256 -0.583 -0.532 

Median -0.342 -0.335 -0.623 -0.569 

Std. Deviation 1.907 1.563 1.517 1.662 

Minimum -3.426 -2.643 -2.644 -2.659 

Maximum 1.652 1.997 1.454 1.063 

 F 94.828 121.482 134.315 127.074 

P 0.000 0.000 0.000 0.000 

 
Table 4 Quantitative method of indicators and discretisation intervals 

Types Symbols Quantitative methods  
Discretization Intervals 

1 2 3 4 

The initial 

characteristics of 

the events 

I1 The search index of Baidu index(ten thousand)  [0,0.95) [0.95,1.88) [1.88,2.86) [2.86, +∞) 

I2 The media influence index [0,55) [55,80) [80,100] —— 

I3 The percentage of respondents who think the reported product 

quality problems is serious (%) 

[0,0.30) [0.30,0.45) [0.45,0.80) [0.80,1] 

I4 Napierian logarithm of total assets (hundred million) [0,15.70) [15.70,25.25) [25.25,30.5) [30.55,+∞) 

The risk of 

enterprise 

emergency decision 

I5 Using word frequency analysis method to count the number of 

occurrences of the emergency plan, emergency measures and 

emergency management in company annual reports a year before 

the event (time) 

[0,2) [2,5) [5,+∞) —— 

I6 Using word frequency analysis method to count the number of 

occurrences of quality, customer, risk and crisis in company annual 

reports a year before the event (time) 

[0,3) [3,5) [5, +∞) —— 

I7 Using word frequency analysis method to count the average number [0,4) [4,7) [7, +∞) —— 



of occurrences of product quality, risk and crisis in company annual 

reports of the first four companies in the same industry a year before 

the event (time) 

I8 The days from the event was first reported to the companies’ first 

response (day) 

[0, 1) [1,3) [3,7] [7,+∞) 

The risk of public 

aggressive behavior 

I9 The percentage of respondents who said no longer buy the products 

of involved enterprise (%)  

[0,0.35) [0.35,0.52) [0.52,0.85) [0.85,1] 

I10 The number of people participated in questionnaire (ten thousand) [0,2.50) [2.50,3.80) [3.80,5.50) [5.50, +∞) 

I11 Media index of Baidu index [0,260) [260,510) [510,780) [780, +∞) 

The adaptability of 

enterprise operation 

system 

I12 The proportion of board numbers with political connections (%) [0, 0.15) [0.15, 0.33) [0.33,1] —— 

I13 Represented by supplier, consumer rights responsibility index of 

Hexun.com 

[0, 57) [57, 82) [82,100] —— 

I14 Employees responsibility index [0, 35) [35,60) [60,80) [80,100] 

I15 The gap between the current assets and current liabilities 

(hundred million) 

(-∞, 1.32) [1.32, 2.50) [2.50,4.50) [4.50,+∞) 

I16 The ratio of quick assets dividing by current liabilities (%) [0, 0.33) [0.33,1.05) [1.05, +∞) —— 

I17 The ratio of corporate earnings before interest and tax dividing by 

interest expense (%) 

(-∞, -0.53) [-0.53,2.80) [2.80, 6.55) [6.55,+∞) 

Notes: All financial indicators data reflect values from the previous quarter before the events were reported for the first time. The 
data from the investigation centre of Sina.com and Baidu index reflect the values from the day that the event was reported. All the 
other indicators data report values from the preceding year before the events. 
 
Table 5 Q -statistics results 
Classifiers Logit NN DT SVM CBR 

MDA 0.951 0.943 0.899 0.965 0.957 

Logit — 0.960 0.904 0.963 0.930 

NN — — 0.918 0.952 0.955 

DT — — — 0.927 0.946 

SVM — — — — 0.950 

 
Table 6 Mean accuracy, variance, and discrete coefficients of SB-MCF model and single classifiers 
Predictive indexes                       Models MDA Logit NN DT SVM CBR SB-MCF 

I1、I2、I4、I6、I9、

I11、I12、I13、I15  

The results of 

training sample 

Mean 85.618 85.432 89.186 85.533 88.269 — 89.590 

Std. Deviation 1.679 3.358 5.157 7.862 1.525 — 1.176 

Discrete coefficient 0.019 0.039 0.058 0.092 0.017 — 0.013 

The results of 

testing sample 

Mean 80.681 84.290 82.118 80.552 82.367 83.360 85.966 

Std. Deviation 8.883 8.915 6.794 11.256 5.203 7.856 3.168 

Discrete coefficient 0.110 0.106 0.083 0.140 0.063 0.094 0.037 

17 initial indexes  The results of 

training sample 

Mean 84.973 84.726 87.382 84.112 86.575 — 88.029 

Std. Deviation 2.935 3.803 5.947 8.197 2.696 — 1.810 

Discrete coefficient 0.035 0.045 0.068 0.097 0.031 — 0.021 

The results of 

testing sample 

Mean 80.136 83.856 81.891 80.213 81.799 83.182 84.863 

Std. Deviation 8.912 9.238 7.159 11.923 5.869 8.403 4.750 

Discrete coefficient 0.111 0.110 0.087 0.149 0.072 0.101 0.056 

 
 



Table 7 t-test results of global training accuracy and discrete degree of each model (p-value) 
Models Indexes Logit NN DT SVM SB-MCF 

MDA Accuracy 0.586 0.000*** 0.704 0.004*** 0.000*** 

Discrete degree 0.052* 0.009*** 0.000*** 0.905 0.108 

Logit Accuracy — 0.000*** 0.899 0.002*** 0.000*** 

Discrete degree — 0.138 0.001*** 0.026** 0.004*** 

NN Accuracy — — 0.007*** 0.087* 0.899 

Discrete degree — — 0.033** 0.002*** 0.003*** 

DT Accuracy — — — 0.003*** 0.000*** 

Discrete degree — — — 0.000*** 0.000*** 

SVM Accuracy — — — — 0.001*** 

Discrete degree — — — — 0.111 

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

 
Table 8 t-test results of global testing accuracy and discrete degree of each model (p-value) 
Models Indexes Logit NN DT SVM CBR SB-MCF 

MDA Accuracy 0.000*** 0.061* 0.736 0.052* 0.038** 0.000*** 

Discrete degree 0.885 0.334 0.082* 0.091* 0.416 0.041** 

Logit Accuracy — 0.043** 0.000*** 0.045** 0.236 0.116 

Discrete degree — 0.337 0.064* 0.098* 0.528 0.043** 

NN Accuracy — — 0.318 0.934 0.461 0.008*** 

Discrete degree — — 0.049** 0.125 0.538 0.086* 

DT Accuracy — — — 0.043** 0.027** 0.000*** 

Discrete degree — — — 0.012** 0.053** 0.009*** 

SVM Accuracy — — — — 0.597 0.017** 

Discrete degree — — — — 0.335 0.121 

CBR Accuracy — — — — — 0.047** 

Discrete degree — — — — — 0.079* 

Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

 
Table 9 Testing accuracy class by class of each model 
Indexes MDA Logit NN DT SVM CBR SB-MCF 

Accuracy of light warning class 82.034 85.35 83.257 81.986 83.399 84.690 87.357 

Accuracy of medium warning class 79.630 83.101 81.006 79.456 81.427 82.447 84.833 

Accuracy of heavy warning class 79.361 83.500 81.249 79.22 81.22 82.115 84.799 

Accuracy of giant warning class 81.703 85.241 82.958 81.573 83.421 84.193 86.992 

 
Table 10 Global testing accuracy, variance, and discrete coefficient of different fusion algorithms 
Predictive indexes Statistics RF MAJ Bayes GA Borda LS SB-MCF 
I1、I2、I4、I6、I9、I11、

I12、I13、I15 
Mean 84.002 83.772 82.831 81.575 82.869 81.567 85.966 
Std. Deviation 5.539 5.396 6.437 5.619 7.277 5.183 4.168 
Discrete coefficient 0.066 0.064 0.078 0.069 0.088 0.063 0.049 

17 initial indexes Mean 81.405 81.972 82.151 80.834 81.518 81.095 84.863 
Std. Deviation 6.990 6.213 6.990 6.052 7.944 5.876 5.125 
Discrete coefficient 0.086 0.076 0.085 0.075 0.097 0.072 0.060 

 
 



Table 11 t-test results of testing accuracy and discrete degree of different fusion algorithms 
Models Indexes RF Bayes GA Borda LS SB-MCF 
MAJ Accuracy 0.278 0.222 0.097* 0.661 0.094* 0.096* 

Discrete degree 0.987 0.165 0.879 0.089* 0.931 0.105 
RF Accuracy — 0.097* 0.056* 0.098* 0.077* 0.099* 

Discrete degree — 0.270 0.881 0.092* 0.911 0.087* 
Bayes Accuracy — — 0.519 0.986 0.496 0.083* 

Discrete degree — — 0.401 0.701 0.091* 0.062* 
GA Accuracy — — — 0.537 0.873 0.011** 

Discrete degree — — — 0.104 0.364 0.099* 
Borda Accuracy — — — — 0.516 0.090* 

Discrete degree — — — — 0.083* 0.039** 
LS Accuracy — — — — — 0.008*** 

Discrete degree — — — — — 0.106 
Notes: *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. 

 

Table 12 Testing accuracy class by class of different fusion algorithms 
Indexes RF MAJ Bayes GA Borda LS SB-MCF 

Accuracy of light warning class 85.210  84.830  84.186  83.234  84.440  83.118  87.357 

Accuracy of medium warning class 83.021  82.108  81.396  80.149  81.781  80.494  84.833 

Accuracy of heavy warning class 82.512  83.005  81.112  79.999  81.592  79.755  84.799 

Accuracy of giant warning class 85.269  85.163  84.632  82.911  83.663  82.886  86.992 

 



Appendix A. 

(1) Support Vector Machine (SVM) 

SVM is a statistic learning method based on fewer samples, which was initially put forward to solve the 

two-class classification problem. In order to solve the problem of multi-class pattern recognition, many scholars 

have researched on multi-class SVM classification algorithms and achieved important results, including 

‘one-against-rest’, ‘one-against-one’, Decision Directed Acyclic Grach (DDAG), etc. In this paper, we adopt 

‘one-against-rest’ algorithm, details are shown as follows: 

Step 1: Let ( ){ }1 1, , , ( , ( )l
l lA x y x y X Y= ∈ ×  be the training set , C  be the testing set, where n

jx R∈ , 

{ }1, ,jy N∈  , 1, ,j l=  , l  is the sample size, N  is the number of categories (in this paper, 4N = ). 

Step 2: Contract N  sub-classifiers of SVM, and build the linear optimization model of thi  sub-classifier 

of SVM: 
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where c  is the penalty factor that can be obtained based on enumeration method (in this paper, 100=c ), i
jξ  is 

the relaxation factor that allows jx  to be divided into a wrong class. 

Step 3: By solving the linear optimization model, N  decision functions can be obtained: 

[ ]( ) sgn ( ) sgn ( , ) ( 1,2, , ; 1,2, , )i
i i j j j i

sv
f x g x y K x x b i N j lα 

= = + = = 
 
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where sgn( )  is the Symbolic function, ( , )i
jK x x  is the Kernel function used in thi  sub-classifier (in this 

paper, we adopt Radial Basis function), ib  is the threshold of thi  category. 

Step 4: Input each sample of testing set C  to N  decision functions, N  output values 

[ ]( ) sgn ( ) , 1,2, ,i if x g x i N= =   can be obtained. If there is only one positive value, take the corresponding 

category of this value as the category of the input sample. If there is more than one positive value or none positive 

value, comparing the output value ( )ig x , and take the corresponding category of the maximum output value 

( )ig x  as the category of the input sample. 

(2) Logit model (Logit) 

Logit model is the earliest discrete choice model and also one of the most widely used model. The traditional 

Logit model, the binomial Logit model, is used to solve two-classification problem. Considering the risk levels of 

product-harm event were divided into four levels, we chose multinomial Logit model, and the detailed algorithm 

is shown as follows: 



Step 1: Let A  be the training set, C  be the testing set. 

Step 2: Build the multinomial Logit regression model: 

(Y | )ln
( | )

1,2, , ,

i i
P i X x xP Y r X x

i N i r

α β= =  ′= + = = 
= ≠

                          (3) 

where i  stands for different category (in this paper, 4N = ), r  stands for the reference category (in this paper, 

we set the Giant warning as the reference category, that is 4=r ). For the convenience of solving the model, we 

let the regression coefficient vector βr  of reference category be zero vector. (Y | X )P i x= =  is the posterior 

probability of the sample x  belongs to the known category i . 

Step 4: Take regression analysis in training set A , N  probability equations can be obtained: 
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where 1, , Nβ β  are the estimates by using maximum likelihood, 1 2, , , Nα α α  are regression intercept. 

Step 5: Input each sample of testing set C  to Eq. (2), N  probability values can be obtained which mean 

the probability of the sample belongs to the known categories. Comparing the N  probability values, and take the 

corresponding category of maximum probability value as the category of the testing sample. 

(3) Multiple Discriminant Analysis (MDA) 

MDA is a multivariate statistical method, including maximum likelihood, distance discrimination method, 

Fisher discrimination method and Bayes discrimination method. In this paper, we adopt distance discrimination 

method, and the detailed algorithm is shown as follows:  

Step 1: Let A  be the training set, which include N  sample sets 1 2, , , NG G G  ( N  is the number of 

categories, in this paper, 4N = ), C  be the testing set. α
iX  is the thi  sample of αG , where 

1,2, , ; 1,2, ,N i nα = =   ( n  is the sample size). 

Step 2: Estimate the mean αµ  and covariance matrix αE  of αG  based on unbiased estimation: 
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Step 3: The mahalanobis distance from the sample X  to αG  can be obtained by Step2: 

2 1( , ) ( ) E ( ), 1,2, ,D X G X X Nα α α αµ µ α−′= − − =                  (6) 

The judging criterion is: 



2 2

1
( , ) min ( , )αα≤ ≤

∈ =i i k
X G if D X G D X G                        (7) 

Step 4: Input each sample of the testing set C  to Eq. (2) to obtain the mahalanobis distances of the testing 

sample to each sample sets ( 1,2, , )G Nα α =  , and take the corresponding categories of the minimum 

mahalanobis distance as the category of the testing sample based on the judging criterion. 

(4) Neural Network method (NN) 

BP neural network is the abbreviation of erroneous reverse transmission neural network, which is presently 

one of the most widely applied neural network models, the detailed algorithm is shown as follows: 

Step 1: Let (X ,Y )l lA  be the training set, where l  stands for the number of the training sample, C  be the 

testing set. 

Step 2: Initialize the weights and thresholds whose values are given randomly, and set 0=t . 

Step 3: Let 1 2( , , , )= 

l l l
l nX x x x  be the given input and 1 2( , , , )= 

l l l
l nY y y y  be the target output, where l

ix  

stands for the thi  indicator of the thl  sample, l
iy  stands for the desired output of the thl  sample. 

Step 4: Compute the output of three-layers neural network based on sigmoid function. The outputs of the 

hidden layer and output layer can be calculated respectively from: 
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where n  is the nodes in the input layer (in this paper, 10=n ), m  is the nodes in the hidden layer (in this paper, 

19=m ), p  is the nodes in the output layer (in this paper, 4=p ). 1
ijw  is the connection weight between input 

layer and hidden layer. 2
jkw  is the connection weight between hidden layer and output layer. 

Step 5: Adjust the interconnection weights during training by employing a method known as error 

back-propagation. The weights change equations on the hidden layer and output layer are respectively: 
1 1 1 1( 1) ( ) η δ+ = +ij ij pj iw t w t x                                 (10) 

2 2 2 2( 1) ( ) η δ+ = +jk jk pk jw t w t z                               (11) 

where η  is the learning rate controlling the update step size, 1δ pj  and 2δ pk  are the error terms for hidden units 

and output units respectively. 

If the neuron is in the output layer, 2δ pk  can be calculated from: 

2 0(1 )( )δ = − −pk k k k ky y y y                                (12) 

If the neuron is in the hidden layer, 1δ pj  can be calculated from: 
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Step 6: Minimize the square error: 

( 1) ( ) ε∆ = + − <E E t E t                               (14) 
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where ε  is the maximum allowable error. If 0 1ε≤ <  or 0≤t T  ( 0T  is the cycles), then the training of the 

network was finished, otherwise, set 1+ →t t , and continue to train the neural network. 

(5) Decision Tree (DT) 

Decision tree is one of well-known classification algorithms, including ID3 algorithm, C4.5 algorithm, 

CART algorithm, etc. In this paper, we adopt ID3 algorithm, details are shown as follows: 

Step 1: Let A  be the training set which contains N  categories (in this paper, 4N = ). Based on s  values 

of the attribute B , training set A  can be divided into s  subsets 1 2, , , sA A A . 

Step 2: Create a root node m . If the samples fall under the same category iC , let the node be the leaf, and 

label it with this category iC , otherwise, turn to Step3. 

Step 3: Compute the information gain for each attribute B  (that is ( )gain B ), and take the attribute B  

with the highest information gain as the test attribute of this node: 
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where jp  is the probability of category j  in training set A . 

Step 4: Establish a branch for each test attribute = iB b , and generate a leaf node for the subset iA . 

Step 5: The process above is a recursive procedure until one of the recursion limits is reached: 

All samples in the given node fall under the same category; 

None attribute left can be used to further divide the sample; 

The branch established by attribute ib  has no samples.  

(6) Case Based Reasoning (CBR) 

The case-based reasoning is a strategy to demonstrate knowledge, and its primary feature is to use previous 

similar experiences to solve current problems. The detailed algorithm of case-based reasoning is as follows: 

Step 1: Let the training set 1 2( , , , )=  nA x x x  be the case set in the case base. },,,{ 21 mfffF =  is the 

index set of the samples (in this paper, 10=m ). Vector ( )1 2, ,= i i i imB b b b  represents the measurement of case 

ix  for the index set F , where 0 1≤ ≤ijb . 

Step 2: Calculate the similarity between the testing sample *x  and the case ix  which has been restored in 

the case base: 
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Step 3: Calculate the differences between the testing sample *x  and the case ix  which has been restored in 

the case base: 
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Step 4: Calculate the comprehensive similarity between the testing sample *x  and the case ix : 
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                                       (19) 

Step 5: Get the maximum comprehensive similarity max( )aa =j i , and take the corresponding category of 

the case jx  as the category of the testing sample. 

Appendix B. 

(1) Random forests (RF) 

Random forests algorithm is a combination of tree predictors such that each tree depends on the values of a 

random vector sampled independently and with the same distribution for all trees in the forest, details are shown 

as follows. 

Step 1: The random forest classifier consists of x  decision trees, and each tree is composed of y  basic 

classifiers. Each classifier is used to test the risk prediction indexes, and then get )1(Truth  or )0(False  (in this 

paper, 7=x , 6=y ). 

Step 2: For each sample in the training set A , each basic classifier determines whether it belongs to giant 

warning, and then get x  bity −  binary digits. These binary digits are subscripts of x arrays with 2y  size and 

these arrays are named G . Every time get such a subscript, the corresponding figure of G  adds 1. In the same 

way, the array H  (heaving warning), the array M  (medium warning) and the array L  (light warning). 

Step 3: For a given testing sample, x  bity −  binary digits xiRi ,,2,1, =  can be obtained after it was 

determined by all the basic classifiers. The posterior probabilities of giant warning, heaving warning, medium 

warning and light warning can be defined respectively as: 

))()()()(/()(][ RiLRiMRiHRiGRiGiPosteriorG +++=                (20) 

))()()()(/()(][ RiLRiMRiHRiGRiHiPosteriorH +++=                (21) 

))()()()(/()(][ RiLRiMRiHRiGRiMiPosteriorM +++=                (22) 

))()()()(/()(][ RiLRiMRiHRiGRiLiPosteriorL +++=                 (23) 

Step 4: Compute the average value of the above four arrays respectively, and take the corresponding class of 

the largest average value as the final risk grading. 



(2) Majority voting (MAJ) 

The multi-classifier fusion based on majority voting assuming that each classifier gives a single class label as 

an output and the final prediction result determined by the most classifiers' outputs, details are shown as follows. 

Step 1: Let K  be the number of classifiers, N  be the number of categories and },,2,1{ N=Φ  be the 

set of class labels (in this paper, 6=K , 4=N ). For a given sample x , the prediction output by classifier kf  

is represented as )(xfk , let binary characteristic function be defined as follows: 
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Step 2: The final risk grading of sample x  can be defined as: 

))((max)()( iFijF cxTcxTifjxF ∈=∈=
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                    (25) 

(3) Bayesian method 

The Bayesian method can be applied to classifiers fusion under the condition that the outputs of classifiers 

are expressed in posterior probabilities, details are shown as follows. 

Step 1: Let K  be the number of classifiers, N  be the number of categories and },,2,1{ N=Φ  be the 

set of class labels (in this paper, 6=K , 4=N ). Suppose the confusion matrix of classifier kf  is denoted as 

kCM . 
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When ji = , k
ijn  represents the number of samples which belong to class ic  and are correctly classified as 

ic  by classifier kf . When ji ≠ , k
ijn  represents the number of samples which belong to class ic  but are 

misclassified as jc  by classifier kf .  

Step 2: The number of samples which are classified as jc  by classifier kf  is denoted as k
jn :  
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k
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k
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Step 3: Under the precondition that sample x  is classified as class jc  by classifier kf , the conditional 

probability of this sample truly belonging to class jc  should be represented as follows: 
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Step 4: The probability of this sample x  belonging to class jc  should be represented as follows: 
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Step 5: The final risk grading of sample x  can be defined as: 

)(max)()( iFijF cxPcxPifjxF ∈=∈=
F∈

                      (30) 

(4) Genetic algorithm (GA) 

GA-based multiple classifiers combination method that integrates the measurement level classification 

results generated by multiple classifiers into a single result, details are shown as follows. 

Step 1: Generate initial population io . Let K  be the number of classifiers, N  be the number of 

categories and },,2,1{ N=Φ  be the set of class labels (in this paper, 6=K , 4=N ). For a given sample x , 

each classifier representing it by a measurement vector },,,{ 21 Nkkkk mmmM = , where Kk ,,2,1 =  and ikm  

is the measurement value of thk  classifier for class ic . Suppose that },,,{ 21 Nkkkk wwwW =  is the weight 

vector representing the relative significance of thk  classifier for all categories, where Kk ,,2,1 =  and ikw  is 

the degree of importance of thk  classifier for class ic .  
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Step 2: The fitness function is defined as follows: 
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where S  is the total number of training data and ∑
=

=
K

k
ikikqi mwWSo

1

)( , λ  is the constant to control the 

influence of potential hit on overall learning process and j  is the true class for the input (in this paper, =λ 0.5). 

Step 3: Selection operator. The probability of selecting candidate solution )( qWSP  is given by 
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where M  is the constant denoting the population size (in this paper, =M 150). 

Step 4: Crossover and mutation operators. In order to introduce variation into the new offspring, we apply 



the crossover and mutation operators to the individuals of the current population. 

Crossover involves the mixing of two individuals to yield two new ones. The mutation operator selects some 

elements of an individual at random based on the mutation rate and adds a random value to it. This operation 

ensures the diversity in the weight matrices over long periods of time and prevents stagnation in the convergence 

of the optimization. 

Step 5: Repeat Step3 and Step4 until one of the following two conditions is met: 

The number of iterations is greater than the set threshold η  (in this paper, =η 100); 

δ<−− |))1(()))((max(| genPFitnessgenPFitness , where δ  is a pre-set positive decimal (in this paper, 

=δ 0.01). 

Step 6: The final risk grading of sample x  can be defined as:  
** max,)( iij oojxF F∈==                            (35) 

(5) Borda counting method 

Borda counting for a class is the sum of the number of categories ranked below it by each classifier, details 

are shown as follows: 

Step 1: Let K  be the number of classifiers, N  be the number of categories and },,2,1{ N=Φ  be the 

set of class labels (in this paper, 6=K , 4=N ). Rank the classes according to the output vector of classifier kf , 

then assign the first class, the second class, …, the last class the value of )1( −N  to 0 respectively. For a given 

sample x , let kjb  be the score of thk  classifier for thj  class. 

Step 2: Calculate the score of sample x  belongs to thj  class   
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Step 3: Take the corresponding class of )(max ii
b

Φ∈
 as the final risk grading. 

(6) Least squares (LS) 

LS-based multiple classifiers fusion is a special kind of linear fusion that all the weights of basic classifiers 

are estimated by LS, details are shown as follows: 

Step 1: For a given sample ix  in training set A , suppose that )( ixy  is the actual risk grading vector, 

)( ik xy  is the measurement vector of classifier kf . The prediction error information matrix E  can be defined 

as: 
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where )()( ikiki xyxye −=  is the prediction error of thk  classifier for sample ix  , P  is the sample size. 

Step 2: Let T
KwwwW ),,,( 21 =  be the weight vector of K  classifiers, where kw  is the relative 

significance of thk  classifier for all categories. Suppose Pixyxye iii ,,2,1),()( =−=
∧

 representing the 



prediction error of the combination early warning model for sample ix , where 

)()()()( 2211 iKKiii xywxywxywxy +++=
∧

  is the combination early warning model. The sum of squared error of 

LS-based multiple classifiers fusion model can be defined as: 
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Step 3: According to the minimum square error criterion, the optimal weight coefficients optW  can be 

determined by the following model: 
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The optimal weight 
RER

REW Topt 1

1

−

−

=  can be obtained by solving the above model. 

Step 4: Let N  be the number of categories and },,2,1{ N=Φ  be the set of class labels (in this 

paper, 4=N ). For a given testing sample x , each classifier representing it by a measurement vector 

},,,{ 21 Nkkkk mmmM = , where Kk ,,2,1 =  and ikm  is the measurement value of thk  classifier for class 

ic . The output of the LS-based multiple classifiers fusion model can be defined as: 

T
NoptK gggWMMMG ],,[],,[ 2121  ==                      (40) 

where ig  is the measurement value for class ic . 

Step 5: The final risk grading of sample j  can be defined as: 

)(max)( iij ggifjxF F∈==                                (41) 
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