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Abstract. The Data Web refers to the vast and rapidly increasing quantity of 

scientific, corporate, government and crowd-sourced data published in the form 

of Linked Open Data, which encourages the uniform representation of hetero-

geneous data items on the web and the creation of links between them. The 

growing availability of open linked datasets has brought forth significant new 

challenges regarding their proper preservation and the management of evolving 

information within them. In this paper, we focus on the evolution and preserva-

tion challenges related to publishing and preserving evolving linked data across 

time. We discuss the main problems regarding their proper modelling and que-

rying and provide a conceptual model and a query language for modelling and 

retrieving evolving data along with changes affecting them. We present in de-

tails the syntax of the query language and demonstrate its functionality over a 

real-world use case of evolving linked dataset from the biological domain. 
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1 Introduction  

The Data Web consists of an increasing quantity of scientific, corporate, government 

and crowd-sourced data being published and interlinked across disparate sites on the 

web, usually in the form of Linked Open Data (LOD). The standard way of modeling 

LOD is the Resource Description Framework
1
 (RDF), which is a W3C recommenda-

tion. RDF supports the modelling of facts about entities in a simple triple format con-

sisting of a subject, a predicate and an object. Entities are identified by their Uniform 

Resource Identifiers (URIs), which are also referred to as Internationalized Resource 

Identifiers (IRIs). Collections of triples form directed labelled graphs of nodes con-

nected to other nodes or literals in semantically meaningful ways. Furthermore, the 
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standard recommendation for querying RDF datasets is SPARQL
2
, which is essential-

ly a graph query language. Because RDF is generic enough to enable users to define 

custom, loose relationships between data, it is not trivial to represent more complex 

meta-correlations, enable annotations in data at the triple level, assign context, model 

changes and so on. Data-aware practices, such as data interlinking between heteroge-

neous sources and data visualization, have a huge potential to create insights and ad-

ditional value across several sectors, however little attention has been given to the 

long-term accessibility and usability of open datasets in the Data Web. Linked open 

datasets are subject to frequent changes in the encoded facts, in their structure, or the 

data collection process itself. Most changes are performed and managed under no 

centralized administration, eventually inducing several inconsistencies across inter-

linked datasets. LOD should be preserved by keeping them constantly accessible and 

integrated into a well-designed framework for evolving datasets that offers functional-

ity for versioning, provenance tracking, change detection and quality control while at 

the same time provides efficient ways for querying the data both statically and across 

time.  

Most of the challenges related to the management of LOD evolution stem from the 

decentralized nature of the publication, curation and evolution of interdependent da-

tasets, with rich semantics and structural constraints, across multiple disparate sites. 

Traditional database versioning imposes that data and evolution management take 

place within well-defined environments where change operations and data dependen-

cies can be monitored and handled. On the other hand, web and digital preservation 

techniques assume that preservation subjects, such as web pages, are plain digital 

assets that are collected (usually via a crawling mechanism), time stamped and ar-

chived for future reference. In contrast to these two approaches, the Data Web poses 

new requirements for the management of evolution [18,19]. Observe Figure 1 where 

an example from the biological domain is presented. EFO is an ontology that com-

bines parts of several life science ontologies, including anatomy, disease and chemical 

compounds [14]. Its purpose is to enable annotation, analysis and visualization of data 

related to experiments of the European Bioinformatics Institute
3
. In the figure, a URI 

that represents a Cell Line class changes between two consecutive versions and be-

comes obsolete. EFO entities are being published in LOD format, enabling other sites 

to reference and interlink with them. EFO is regularly updated and new versions are 

published on the web, usually overwriting previous ones. In this context, several in-

teresting problems and challenges arise related to long-term preservation and accessi-

bility of evolving LOD datasets: 

Modelling evolving datasets. LOD datasets are evolving entities for which addi-

tional constraints may hold related to the way data is published, and evolve as dictated 

by domain-specific, complex changes. This calls for appropriate modelling methods 

for preserving across time a multitude of dimensions related to the internal structure 

of a dataset, its content and semantics as well as the context of its publication. Preser-

vation should exhibit format-independence, data traceability and reproducibility and a 

                                                           
2 http://www.w3.org/TR/rdf-sparql-query/ 
3 http://www.ebi.ac.uk/ 



common representation for data that originate from different models. Reference 

schemes (URIs) must be properly assigned such that unique identification and resolu-

tion is achieved across different sites, and most importantly across time. Provenance 

metadata can capture dataset lineage from the dataset to the record level. Distributed 

replication of LOD enhanced with temporal and provenance annotations can enable 

long-term availability and trust. 

Change management. Changes can occur at different granularity levels. At the da-

taset level, datasets are added, republished, or even removed, without versioning or 

preservation control; at the schema level, the structure may change calling for repair 

and validation on new versions; finally, at the instance level data resources and facts 

are added, deleted or updated. Discovering changes [20] and representing them as 

first class citizens with structural, semantic, temporal and provenance information is 

vital in various tasks such as the synchronization of autonomously developed LOD 

versions, or visualizing the evolution history of a particular dataset. A unified 

framework that deals with evolution must be able to allow change management as a 

dimension of the dataset’s evolution. 

 
Figure 1. Evolution of a Cell Line between versions 2.45 and 2.46 of the Experimental Fac-

tor Ontology. 

Longitudinal accessibility and querying. LOD preservation mechanisms must en-

able the long-term accessibility of datasets and their meaningful exploration over 

time. Datasets with different time and schema constraints coexist and must be uni-

formly accessed, retrieved and combined. Longitudinal query capabilities must be 

offered such that data consumers can answer several types of queries, within a version 

or across sets of versions. Querying must take place (i) across time, (ii) across da-

tasets and (iii) across different levels of granularity of evolving things.  



Considering the above, the benefits managing evolving LOD datasets can be 

placed into two categories, namely quality control and data analysis. Data evolution 

provides valuable insights on the dynamics of the data, their domains and the opera-

tional aspects of the communities they are found in, while tracking the history of and 

maintaining proper metadata of data objects across time enables better interoperabil-

ity, trust and data quality.  

To address these challenges, in this paper we propose a model and a query lan-

guage for evolving LOD datasets. At the basis of the archive lies a conceptual model, 

called DIACHRON model
4
 that captures structural concepts like datasets and their 

schemas, semantics like web resources, their properties and links between them as 

well as changes occurring on these concepts in different granularity levels. In the 

same time, our approach models in a uniform way both time-aware (evolving) and 

time-agnostic (diachronic) concepts, representing their between interconnections. 

Based on this model, a query language is designed that specifically caters for the 

model’s inherent characteristics and takes advantage of the abstraction levels thus 

making the user avoid complicated, implementation-dependent queries. The query 

language is designed as an extension of SPARQL, specific to the DIACHRON model, 

that tackles the duality of data (evolving vs. diachronic objects) in order to provide a 

query mechanism with the ability to correlate source data with changes, annotations at 

various levels and other kinds of DIACHRON related metadata across time. Finally, 

we implement these as an archiving framework capable of storing and making availa-

ble in the long term evolving LOD datasets.   

This paper provides the following contributions: 

1. We formally define the DIACHRON data model, a conceptual model for the 

representation of datasets and their evolving aspects, such as their structural, 

semantic, and metadata evolution. Specifically, we provide entities for model-

ling data that change through time in multi-version contexts, where their 

schema, data and metadata exhibit changes in a multitude of levels, from tu-

ples, to collections of datasets. 

2. We propose and formally define the DIACHRON Query Language as a means 

to enable retrieval of data and metadata across versions and datasets. The pro-

posed query language enables querying of evolving entities across time, along 

with the structural elements of the entities (e.g. the reified triples) as well as 

the changes affecting them.  

3. We provide an implementation of an archiving system that uses the 

DIACHRON model and implements the DIACHRON Query Language as an 

extension of SPARQL, and we perform experimental evaluation in terms of 

usability and performance on real-world datasets from the life sciences do-

main. 

This paper is outlined as follows. In section 2 we discuss related work, in section 3 we 

present the DIACHRON data model, in section 4 we present the DIACHRON query 
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language, in section 5 we describe our implementation of an archive that uses the 

proposed model and query language, while in section 6 we perform experimental 

evaluation. Finally, section 7 concludes the paper. 

2 Related Work 

Managing LOD evolution is a multi-faceted problem that consists of versioning, effi-

cient archiving, change representation, change detection, model abstraction and prov-

enance tracking, among others. Work has been done in most of these fields individu-

ally, but few approaches have regarded the issue as a singular problem of many inter-

dependencies, less so in the case of the Data Web, where datasets evolve independent-

ly, often in non-centralized ways, while citing and using one another. Versioning for 

LOD in the context of complete systems or frameworks has been addressed in 

[1,4,6,7,8,9,16,23,31]. However, these approaches address a subset of the problems 

discussed as will be discussed. 

Ontology or schema based approaches have been proposed in [3,5,8] with the most 

prominent example being the PAV ontology [33], a specialization of the W3C rec-

ommended PROV ontology [12] for modelling provenance. In our work, we consider 

the representation of provenance as an orthogonal problem, in the sense that any 

model for representing metadata annotations can be used in conjunction with our 

work. 

As far as querying is concerned, work has been done in extending SPARQL with 

temporal capabilities [2,11,14,23]. Contrary to our approach, in [23] no explicit data 

model is proposed, instead temporal information is used to separate triples in named 

graphs. Incorporation of annotations and provenance on the query side has been ap-

proached in [14] where triple annotations serve as context in the proposed SPARQL 

extension. This approach however does not differentiate between types of annota-

tions, and is limited to treating annotations as singular tags of triples. In [2] an ontolo-

gy-based approach is followed where temporal reasoning capabilities are provided to 

OWL-2.0 and SPARQL is extended to cater for the temporal dimension. While [2] 

extends an existing RDF query language with temporal reasoning, it limits its func-

tionality in this context and does not deal with evolution of structural concepts such as 

datasets, tuples, or individual triples. In contrast, our approach aims at providing que-

rying capabilities for both the semantic and the structural elements of an evolving 

dataset. In [12] a triple store is implemented that incorporates spatiotemporal query-

ing by utilizing the SPARQL extensions proposed in [23]. These approaches are spe-

cifically tuned to address temporal or spatiotemporal querying in RDF data, and do 

not rely on conceptual models for representing in a uniform way semantically rich 

evolving datasets, changes, and metadata through time. 

In [31] an approach is presented that builds on the Memento [30] framework, an 

extension of HTTP to include a traversable and queryable temporal dimension, 

adapted for LOD purposes. Non-changing, time-independent URIs are employed for 

current state identification. Dereferencing past versions of resources is done with 

temporal content negotiation, an HTTP extension. We draw from this work the notion 

of time-independent URIs for current state identification, however, we are not inter-



ested in providing functionality at the HTTP level; instead we take on a data-centric 

rather than a document-centric approach for deep archiving and preservation of large 

datasets. 

In [33], the authors tackle the problem of version management for XML docu-

ments by using deltas to capture differences between sequential versions and use del-

tas as edit scripts to yield sequential versions. The introduced space redundancy is 

compensated by the query efficiency of storing complete deltas rather than com-

pressed deltas. They go on to define change detection as the computation of non-

empty deltas and they argue that past version retrieval can be achieved by storing all 

complete deltas as well as a number of complete intermediate versions, finding the 

bounding versions of the desired ones and applying their corresponding deltas. Final-

ly, they use a query language based on XQuery in order to enable longitudinal query-

ing and they provide tag indices for each edit operation for faster delta application. 

While this approach deals with longitudinal querying by extending an existing stand-

ard, similar to our approach, they do not provide support for more complex semantic 

changes, or placeholders for capturing the evolution of other entity types, such as 

metadata and provenance annotations.  

In [3], the authors propose a method for archiving scientific data from XML docu-

ments. The approach targets individual elements in the DOM tree of an XML docu-

ment, rather than the whole versions themselves. They use time stamping in order to 

differentiate between the states of a particular element in different time intervals and 

they store each element only once in the archive. The timestamps are pushed down to 

the children of an element in order to reflect the changes at the corresponding level of 

the tree, an approach also followed in [20]. Our approach is inspired by the hierar-

chical attribution of time and we adopt this model and partially adapt it to the case of 

RDF. Moreover, we extend this hierarchical attribution to generic metadata annota-

tions instead of strictly temporal. 

In [28] the authors study the change frequency of LOD sources and the implica-

tions on dataset dynamics. They differentiate between the document-centric and the 

entity-centric perspectives of change dynamics, the latter further divided into the enti-

ty-per-document and global entity notions. We partially adopt this distinction in our 

work, as will be described further on. Specifically, we introduce a conceptual model 

that differentiates between entity types that represent both the structural aspects of a 

dataset, and the semantic ones.  

SemVersion [32] computes the semantic differences as well as the structural dif-

ferences between versions of the same graph but is limited to RDFS expressiveness. 

DSNotify [24] is an approach to deal with dataset dynamics in distributed LD.  The 

authors identify several levels for the requirements of change dynamics, namely, vo-

cabularies for describing dynamics, vocabularies for representing changes, protocols 

for change propagation and algorithms and applications for change detection. It im-

plements a change detection framework which incorporates these points in a unified 

functionality scheme, having as main motivation the problem of link maintenance. 

Both these approaches only support full materialization of datasets, contrary to our 

approach that supports a hybrid model of storing datasets and semantic deltas. Fur-



thermore, contrary to our approach, they do not deal with querying over time, changes 

and metadata. 

Our approach differentiates itself by considering versioning, annotating, change 

management, and dataset heterogeneity as necessary components of an evolving da-

taset, and are thus tackled together. Furthermore, most of the work presented in this 

section addresses the temporal aspect of evolution in datasets, instead we chose to 

consider temporality as an inherent characteristic of versioning. It is trivial to explicit-

ly create temporal operators for DIACHRON QL by evaluating datasets over their 

temporal metadata and translating temporal operators to version-based operators such 

as AT VERSION or BETWEEN VERSIONS. 

3 An archive model for evolving datasets 

Our modelling approach supports a format-independent archiving mechanism that 

maintains syntactic integrity by making sure that the original datasets are reproducible 

and at the same time takes advantage of information-rich content in these datasets. 

Format-independence enables different source models (e.g. relational, multidimen-

sional, ontological) to be transformed to a common RDF representation, uniformly 

annotated with temporal and provenance information.  

The DIACHRON model provides the basis for defining semantically richer entities 

that evolve with respect to their source datasets’ history. At the core of the model lies 

the notion of the evolving entity, which captures both structural and semantic con-

structs of a dataset and acts as a common placeholder for provenance, temporal, and 

other types of metadata. 

Evolving entities are identifiable and citable objects. These entities all share a 

common ancestor, the Diachronic Entity, which allows the aforementioned require-

ments to be addressed on different levels. The different types of entities in the 

DIACHRON model and their interactions can be seen in Figure 2 and Figure 3.  

Specifically, Figure 2 shows a class diagram that describes the relationships between 

concepts in the DIACHRON model, while Figure 3 provides an aggregated space 

where concepts are partitioned in time-aware vs time-agnostic, and data (non-curated) 

vs curated information space. There, example instantiations between the different 

concepts in the data model are presented. An example drawn from the EFO ontology 

can be seen in Figure 4. The entities of the model are described in the following. 



 
Figure 2. Class diagram for the DIACHRON model. 

 



 
Figure 3. The DIACHRON model space. 

Diachronic datasets and dataset instantiations. Diachronic datasets are conceptual 

entities that represent a particular dataset from a time-agnostic point of view, which in 

turn is linked to its temporal instantiations or versions. Furthermore, diachronic da-

taset metadata comprise information that is not subject to change, such as diachronic 

dataset identifiers. These identifiers serve as ways to refer to the datasets in a time 

and/or version unaware fashion (i.e. diachronic citations). On the other hand, dataset 

instantiations define temporal versions of diachronic datasets, holding information on 

how and when a particular dataset was relevant and actively used.  

Definition 1. A diachronic dataset D is defined as a set {d, m} where d is a set of 

dataset versions {d1, …, dn} and m is a collection of metadata annotations associated 

with D. Diachronic datasets usually carry housekeeping information about creation, 

modification etc. in the archiving context, which is included in m. In Figure 4, 

ex:EFO represents a diachronic dataset that describes the EFO ontology through time. 

The same example entity can be seen in Table 1 in an example RDF serialization. 

Definition 2. A dataset version, or instantiation, d is defined as a set {R, S, t, m } 

where R is a record set and S is a schema set, while t is a collection of temporal in-

formation associated with d, and m is a collection of non-temporal annotations associ-

ated with d. In Figure 4, instantiations of ex:EFO can be seen as versions 2.35 and 

2.36. These can also be seen in Table 1 in their serialized form. 

Record sets and Schema Sets. Record sets are collections of data entries (e.g. tu-

ples, triples) over a given subject/primary key within a particular dataset instantiation. 



Given a record set and the dataset’s metadata information, the dataset instantiation 

can be queried and reproduced in its original form. Similarly, schema set contains all 

schema-related entities (e.g. table definitions in the relational case, ontology entities 

in the ontological case etc.). Keeping data objects separate from schema objects 

makes versions interpretable by different schemata (e.g. new schema on old data or 

vice versa).  

Definition 3. A record set R is defined as a set {r, m}, where r is a set of records 

{r1, .., rn} and m is a collection of associated metadata for R. A record set R is always 

enclosed in the scope of a dataset instantiation d, as discussed in Definition 2. The 

record set for version 2.35 of the EFO ontology can be seen in Figure 4 and Table 1 

as ex:recordSet_2.35. 

Definition 4. A schema set S is defined as a set {e, m}, where e is a set of schema 

objects {e1, .., en} and m is a collection of associated metadata for S. A schema set S is 

always enclosed in the scope of a dataset instantiation d, as discussed in Definition 2. 

The schema set for version 2.35 of the EFO ontology can be seen in Figure 4 as 

ex:schemaSet_2.35. 

Data and Schema Objects. Data objects consist of records and record attributes. A 

record represents a most granular data entry about a particular evolving entity. Rec-

ords are uniquely identified in order to make record-level annotation feasible in order 

to attribute provenance, temporality and changes on them. A record serves as a con-

tainer of one or more record attributes. Every data record is broken down to assertions 

(facts) that can be expressed as RDF triples. In this sense, a record reifies the predi-

cate-object pairs for a fixed subject. These predicate-object pairs are called record 

attributes. For instance, a tuple from a relational table is considered to be a record 

describing the tuple’s primary key, with each relational attribute being a record attrib-

ute. In [17,18] we describe in details how data records from relational, multidimen-

sional and RDF models can be mapped to data objects in our model. Schema objects 

represent the schema-related entities of the archived datasets given the dataset’s 

source model. For instance, the classes along with their class restrictions of an ontolo-

gy, the properties and their definitions (domains, ranges, meta properties depending 

on the expressivity) are modelled as schema objects. Similarly to data objects, the 

goal is to provide a reusable modelling mechanism for identifying and referring to 

schema elements and their evolution across datasets. In this way, schema evolution is 

captured by annotating schema elements with schema changes.  

Definition 5. A record r is defined as a set {s, a, m} where s is the identifier, or 

subject, of r, a is a collection of record attributes {a1, ..,. an} and m is a collection of 

associated metadata for r. In Figure 4, an example record can be seen as a part of 

ex:recordSet_2.35. A record describing the experimental factor EFO_0000887 can be 

seen in Table 1. 

Definition 6. A record attribute a is defined as a set {p, o, m} where p and o are 

predicate-object pairs and m is a collection of metadata associated with a. In Figure 4, 

the record attributes for version 2.35 are the direct children of the aforementioned 

record. In Table 1, two record attributes that describe the label of EFO_0000887 are 

shown, with the use of the rdfs:label property. 



Diachronic Resources and resource instantiations. Similarly to diachronic da-

tasets, a diachronic resource represents a time-agnostic information entity. The re-

source instantiation captures the resource evolution across time and its realization 

over a versioned dataset’s records. The definition of a resource consists of two parts; 

the resource identification definition gives the way an instantiated resource is identi-

fied within the archive. The resource description definition provides the way a re-

source is evaluated over the records of a particular dataset instantiation. Resources 

can be versatile in nature across datasets and data formats. For example, given an 

ontology and its instantiation, each class instance can describe a resource identified by 

the respective URI. Given a table of employees in a relational database, a resource in 

this sense can be a particular employee identified by his primary key. Finally, in a 

multidimensional dataset, a resource can be a specific observation identified by the 

values of the constituent dimensions.  More complex definitions of resources are al-

lowed and, in fact, encouraged for capturing more high-level, curator specific seman-

tics of evolution and dataset dynamics.  

Definition 7. A diachronic resource E is defined as a set {E, q, m} where E is a set 

of resource instantiations { E 1, …, E n}, q is a description definition and m is a col-

lection of metadata associated with E. The description definition q is a DIACHRON 

query. 

Definition 8. A resource instantiation E is defined as a set {g, t, m} where g is a 

set of data records {r1, .., rn}, t is the temporal information associated with E and m is 

a collection of metadata associated with resource E. 

Change sets. Changes come in Change Sets between two dataset instantiations of a 

diachronic dataset. These are comprised of changes between record sets, changes 

between schemata and changes between resource instantiations of the two datasets 

under comparison. 

Definition 9. A change set C is defined as a set {c, m} where c is a set of changes 

{c1, …, cn} and m is a collection of metadata associated with C.. The change set be-

tween versions 2.35 and 2.36 of the EFO ontology can be seen in Figure 4 as 

ex:changeSet_2.35-2.36. Furthermore, the same change set can be seen in Table 1 in 

a serialized form. 

The proposed data model provides a conceptual way of uniformly representing 

low-level and high-level evolving entities. Within the context of our model, an evolv-

ing entity is a dataset instantiation (affected by changes in its schema and contents), a 

schema object, a data object or finally a resource instantiation object. This gives us a 

uniform way to model evolution and annotate entities at different levels of granulari-

ties with information related to the changes affecting them. Furthermore, it enables us 

to enrich evolving entities with metadata related to the way these entities are pub-

lished on remote sites and collected in the archive, such as provenance information, 

quality and trust.  
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Figure 4. An example of a diachronic dataset (ex:EFO) that has two dataset instantiations 

(versions 2.35 and 2.36). The record and schema sets of version 2.35 can be seen in bold blue, 

while version 2.36 and the change set that is shared between 2.35 and 2.36 can be seen in pale 

blue. 



Table 1. Example RDF serialization of a diachronic dataset ex:EFO, two dataset instantia-

tions (versions) ex:EFO_v.235 and ex:EFO_v.236, in their respective record sets 

ex:RecordSet_2.35 and ex:RecordSet_2.36. The two record sets contain one record about 

efo:EFO_0000887, an original instance of the EFO ontology, which shows how its label chang-

es its capitalization between versions. Note that the prefix “ex” is an example prefix. A change 

set containing a sample LabelModificationChange can also be seen. 

 
    ex:EFO rdf:type diachron:DiachronicDataset ; 

  dcterms:creator "European Bioinformatics Institute" ; 

  diachron:hasInstantiation ex:EFO_v2.35 ; 

  diachron:hasInstantiation ex:EFO_v2.36 ; 

  diachron:hasChangeSet ex:ChangeSet_2.35_2.36 .   

ex:EFO_v2.35 rdf:type diachron:Dataset ; 

    dcterms:date "2015-01-02"^^xsd:date ; 

    diachron:hasRecordSet ex:RecordSet_2.35. 

ex:EFO_v2.36 rdf:type diachron:Dataset ; 

    dcterms:date "2015-02-02"^^xsd:date ; 

    diachron:hasRecordSet ex:RecordSet_2.36.   

ex:RecordSet_2.35 rdf:type diachron:RecordSet ;     

      diachron:hasRecord ex:Record_1      

ex:Record_1 diachron:subject efo:EFO_0000887 ; 

   diachron:recordAttribue ex:RecordAttribute_1 . 

ex:RecordAttribute_1 diachron:predicate rdfs:label ; 

      diachron:object "liver"     

ex:RecordSet_2.36 rdf:type diachron:RecordSet ;     

      diachron:hasRecord ex:Record_2 . 

ex:Record_2 diachron:subject efo:EFO_0000887 ; 

   diachron:recordAttribue ex:RecordAttribute_2 . 

ex:RecordAttribute_2 diachron:predicate rdfs:label ; 

      diachron:object "LIVER" . 

ex:ChangeSet_2.35-2.36 rdf:type diachron:ChangeSet ; 

                            diachron:oldVersion ex:EFO_v2.35 ; 

                            diachron:newVersion ex:EFO_v2.36 ; 

                            diachron:hasChange ex:Change1 . 

ex:Change1 rdf:type diachron:LabelModificationChange ; 

                            diachron:parameter1 ex:RecordAttibute_1 ; 

                            diachron:parameter2 ex:RecordAttibute_2 . 

 

4 The DIACHRON Query Language 

4.1 Requirements and Overview 



The DIACHRON model provides metadata placeholders in different granularities, 

from the dataset to the record level. In this section, we motivate the need for an ap-

propriate query language that exploits the specificities of the data model and provides 

ways to achieve the following: 

 Dataset and version listing: Retrieve lists of datasets stored in the archive, as well 

as lists of the available versions of a given dataset. These can either be exhaustive 

or filtered based on temporal, provenance or other metadata criteria. 

 Data queries: Retrieve part(s) of a dataset that match certain criteria.  

 Longitudinal queries: As above but with the timeline of all types of diachronic 

entities. Temporal criteria can be applied to limit the timeline (specific versions 

or time periods), or successive versions. 

 Queries on Changes: Retrieve changes between two concurrent versions of an 

entity (dataset, resource etc.). Limit results for specific type of changes, or for a 

specific part of the data. 

 Mixed Queries on Changes and Data: Retrieve datasets or parts of datasets that 

are affected by specific types of changes. 

In this section, we propose the DIACHRON Query Language (DIACHRON QL), to 

tackle these requirements, and we discuss its design and implementation as an exten-

sion of SPARQL. The basis of the query language is the DIACHRON graph pattern, 

which, in the context of extending SPARQL, is a specialization of a SPARQL graph 

pattern, thus making SPARQL queries valid DIACHRON QL queries. New keywords 

are defined in order to cover the model’s characteristics and allow the user to query 

archived data intuitively, without the need to know the specificities of the implemen-

tation. In plain SPARQL engines, or any other query engine basis, the user would 

need to know how the DIACHRON model is implemented in the system, and how its 

entities are mapped to the system’s underlying information retrieval engine. With the 

use of a dedicated query language, we abstract the implementation details to the 

DIACHRON QL syntax. DIACHRON QL introduces keywords that allow defining 

the scope of a query with respect to the matched diachronic datasets and their ver-

sions, their change sets, or both.  

 

4.2 DIACHRON QL basics 

Given the above, diachronic datasets, versions and change sets can be bound to 

variables with the use of DATASET or CHANGES. This is simply done by using varia-

bles instead of explicit URIs, inside the query body, i.e. not in a FROM clause. For 

example, consider the case where we want to retrieve all the information (predicate-

object pairs) associated with the protein efo:EFO_0004626, and find out what the 

state of this information is for all the dataset versions of the EFO ontology it appears 

in (and what are those versions).  That is, the dataset versions as well as the actual 

information are to be retrieved. In DIACHRON QL this can be written as follows: 
SELECT ?version ?p ?o WHERE { 

 DATASET <EFO> AT VERSION ?version { 

  efo:EFO_0004626  ?p  ?o 

} 



} 

 This will retrieve all versions of EFO joined with predicate-object pairs for the 

protein efo:EFO_0004626. If we want to retrieve the records these predicate-object 

pairs appear in, without querying for the particular dataset versions. We can retrieve 

the URIs of the DIACHRON records these triples appear in by modifying the query 

as follows: 
SELECT ?rec ?p ?o FROM DATASET <EFO> WHERE { 

  RECORD ?rec {efo:EFO_0004626  ?p  ?o} 

} 

With the optional use of the RECATT keyword we can retrieve the URIs of the rec-

ord attributes of a matched record. The previous query would become: 
SELECT ?rec ?ra ?p ?o FROM DATASET <EFO> WHERE { 

  RECORD ?rec {efo:EFO_0004626   

RECATT ?ra {?p  ?o}  

} 

} 

When writing a DIACHRON graph pattern, the query can either contain simple 

triple patterns, or more verbose constructs that take into account the archive data 

model and structure. Specifically, the simple triples will match the de-reified data, 

whereas the RECORD and RECATT (abbreviation of ‘record attribute’) blocks will also 

take into account a triple’s record or record attribute. 
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Record n
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}
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{
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}

}
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Figure 5. (a) matches in a simple triple query, (b) matches a blown-out version of the same 

query with the RECORD and RECATT terms, selecting both data and structural elements. (c) 

matches subject, predicate, object and record, (d) matches predicate, object and record attribute. 

This is further exemplified in Figure 5 where we show how term and variable use 

is reflected on the matched graph of a particular reified triple. This way, metadata 



(e.g. temporal, provenance) of the records and/or record attributes can be queried as 

well as combined with data queries. It should be noted that in the simplest case where 

only the data are of interest, the query does not need to include RECORD or RECATT 

blocks.  

3.2 Query Syntax and Examples 

DIACHRON QL clauses are formally described in the following section and an over-

view of them is presented in Table 2. In Table 3 usage examples are presented for all 

DIACHRON QL clauses. 

 

FROM DATASET <diachronicURI> [[AT VERSION <instantiationURI>]] 

The FROM DATASET keyword is followed by a URI of a diachronic dataset to de-

clare the dataset scope of the query. If no FROM DATASET is given, then the whole 

corpus of datasets is queried.  The optional AT VERSION keyword limits the selected 

diachronic dataset to a specific dataset instantiation. No variables can be given in any 

of the parameters of FROM DATASET AT VERSION. 

Table 2. The DIACHRON query language syntax in E-BNF.  

DiachronQuery := ‘DIACHRON‘  

 ‘SELECT’ (‘DISTINCT‘)? (Var+|’*’)  

         Source_Clause*  

        ‘WHERE‘ Where_Clause*  

Source_Clause := ( ‘FROM DATASET’ <URI> [‘AT VERSION’ <URI>] | 

‘FROM CHANGES’ <URI> [‘BEFORE VERSION’ <URI> | 

 ‘AFTER VERSION’ <URI>   |  ‘BETWEEN VERSIONS’ <URI>+2] ) 

Where_Clause :=  ( Diachron_Pattern  

  [‘UNION’ Diachron_Pattern]  

  [‘OPTIONAL‘ Diachron_Pattern] )  

Diachron_Pattern :=  (Source_Pattern  Basic_Archive_Graph_Pattern ) 

Source_Pattern :=  ((‘DATASET‘ <VarOrURI> [‘AT VERSION’ <VarOrURI>]) |  

(‘CHANGES’ <VarOrURI> [‘BEFORE VERSION’ <VarOrURI>]) |  

(‘CHANGES’ <VarOrURI> [‘AFTER VERSION’ <VarOrURI>]) |  

(‘CHANGES’ <VarOrURI> [‘BETWEEN VERSIONS’ <VarOrURI>+2])) 

Basic_Archive_ 

Graph_Pattern := 

 ‘{‘ SPARQL_Triples_Block* Record_Block* Change_Block* ‘}’ 

Record_Block :=  ‘RECORD‘ <VarOrURI> ‘{‘ 



                        <VarOrURI> ((<VarOrURI>+2 ‘.’)*) |  

                           (‘RECATT‘ <VarOrURI> ‘{‘ <VarOrURI>+2 ‘}’)*  

        ‘}’ 

Change_Block :=  ‘CHANGE‘ <VarOrURI> ‘{‘  

                                         (<VarOrURI>+2 ‘.’)* 

                     ‘}’ 

SPARQL_ 

Triples_Block := 

As defined in the SPARQL recommendation
5
. 

FROM CHANGES <diachronicURI>  [[BETWEEN VERSIONS <version1URI> 

<version2URI>] || [BEFORE VERSION <versionURI>] || [AFTER 

VERSION <versionURI>]] 

FROM CHANGES is used to query change-sets directly. Optionally, it is immediate-

ly followed by a URI of a diachronic dataset that defines the diachronic dataset to be 

queried on its changes. If no URI is given, then all existing change sets will be used to 

match the query body. FROM CHANGES can optionally be used with BETWEEN 

VERSIONS, BEFORE or AFTER VERSION to limit the scope of the changes.  

 

DATASET <URI | ?var> [[AT VERSION <URI | ?var>]] { (query) } 

The DATASET keyword differs from FROM DATASET in that it is found inside a 

query body. It is followed by a URI/variable of a diachronic dataset to declare or bind 

the scope of the graph. DATASET is inside a WHERE statement and is followed by a 

graph pattern, on which the dataset restriction is applied. It is optional, meaning that if 

no DATASET is given, then the whole corpus of datasets will be queried, or the da-

tasets defined in the FROM DATASET clause. The AT VERSION keyword, when 

applied to a DATASET statement inside a WHERE clause, is used to either define a 

specific dataset instantiation or bind dataset instantiations to a variable for the graph 

pattern that follows. However, AT VERSION is optional and if no specific dataset 

instantiation URI or variable is declared, AT VERSION is omitted. An example of 

matching both triples and versions can be seen in Figure 6. 

 

                                                           
5 http://www.w3.org/TR/sparql11-query/ 
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Figure 6. Matching a reified triple in a query with variable versions. Blue nodes are selected by 

the query. 

 

RECORD <record_URI | ?record_var>  

{<subjectURI | ?subject_var > ATTRIBUTE_pattern} 

RECORD is used inside the body of a graph pattern for querying either a specific 

DIACHRON record or to match DIACHRON records in the pattern. It is followed by 

a record URI/variable. If neither of those is declared, the RECORD keyword can be 

omitted. Following RECORD is a block containing a graph pattern that can either be of 

SPARQL form, or used in conjunction with the RECATT keyword. 
 

Table 3. Query language keywords and usage examples. 

Keyword Parameters Usage example 

SELECT  variable list SELECT ?x, ?y, ?z 

FROM DATASET  URI of diachronic dataset SELECT ?x, ?y, ?z  

FROM DATASET <efo-protein-sample> 

FROM DATASET AT 

VERSION  

URI of dataset instantiation SELECT ?x, ?y, ?z  

FROM DATASET <efo-protein-sample> AT VERSION <v1> 

FROM CHANGES  URI of diachronic dataset  SELECT ?x, ?y, ?z  

FROM CHANGES <efo-protein-sample> 



FROM CHANGES ... 

BETWEEN 

VERSIONS (params) 

URIs of dataset instantiations to 

define the change scope 

SELECT ?x, ?y, ?z  

FROM CHANGES <efo-protein-sample> BETWEEN VERSIONS <vm>, <vn> 

FROM CHANGES … 

AFTER / BEFORE 

VERSION (params) 

URI of dataset instantiation to 

define the start/end of the 
change scope 

SELECT ?x, ?y, ?z  

FROM CHANGES <efo-protein-sample> AFTER / BEFORE VERSION <vm> 

WHERE { (params) } DIACHRON patterns SELECT ?x, ?y, ?z  
FROM DATASET <efo-protein-sample>  

WHERE { 

 ?x a efo:Protein ; ?y ?z . 
} 

DATASET (params) URI or variable of diachronic 
dataset 

SELECT ?x, ?y  
WHERE { 

    DATASET ?x { 

 ?s a efo:Protein. 
    }  

    DATASET ?y { 

 ?s dcterms:creator “EBI” 
    } 

} 

DATASET … AT 

VERSION (params) 

URI or variable of dataset 

instantiation 

SELECT ?x, ?y  

WHERE { 

    DATASET ?x AT VERSION ?var { 
 ?s a efo:Protein. 

    }  

    DATASET ?y AT VERSION <v1> { 
 ?s dcterms:creator “EBI” 

    } 

} 

RECORD (params) URI or variable of 

DIACHRON record 

SELECT ?x, ?r, ?y  

WHERE { 
    DATASET ?x AT VERSION ?var { 

 RECORD ?r {?s a efo:Protein} 

    }  

    DATASET ?y AT VERSION <v1> { 

 ?s dcterms:creator “EBI” 

    } 
} 

RECATT (params) URI or variable of a 

DIACHRON record attribute 

SELECT ?var, ?r, ?ra 

WHERE { 
    DATASET <efo> AT VERSION ?var { 

 RECORD ?r { 
                  ?s RECATT ?ra {rdf:type efo:Protein} 

           } 

    }  
 } 



CHANGES (params) URI of diachronic dataset or 

variable 

SELECT ?c, ?param1, ?value1  

WHERE { 

  CHANGE ?c {?param1 ?value1 } 
} 

CHANGES ... 

BETWEEN 

VERSIONS (params) 

URIs of dataset instantiations 
or variables to define the 

change scope 

SELECT ?v1, ?v2, ?c 
WHERE { 

CHANGES <EFO> BETWEEN VERSIONS ?v1,                   

?v2 { 
?c rdf:type co:Add_Definition ; 

?p1 [co:param_value ?o3 . rdf:type co:ad_n1 ] ; 

?p2 [co:param_value ?o4 . rdf:type co:ad_n2 ] 
} 

} 

CHANGES … AFTER 

/ BEFORE VERSION 
(params) 

URI of dataset instantiation or 

variable to define the start/end 

of the change scope 

SELECT ?s ?p ?o 

WHERE { 

CHANGES <efo-protein-sample> BEFORE/AFTER    VERSION <vm> { ?s ?p ?o} 
    } 

} 

CHANGE (params) URI of change or variable SELECT ?v1, ?v2, ?c, ?p ?o WHERE { 

 CHANGES <EFO> BETWEEN VERSIONS ?v1     

?v2{ 
                      CHANGE ?c {?p ?o} 

} 

 

 

 

 

RECATT <recattURI | ?recatt_var>  

{ <predicateURI | ?predicate_var> <objectURI | ?var> } 

RECATT is used inside a RECORD block and separates the subject of a 

DIACHRON record with the record attributes that describe it. It is followed by a 

URI/variable. If no specific record attribute needs to be queried or matched in a varia-

ble, RECATT can be omitted. 

 

CHANGES <diachronicURI | var> [[BETWEEN VERSIONS <version1URI | 

?var1>] || [BEFORE VERSION <versionURI | var1>] || [> AFTER 

VERSION <versionURI | var1>]] 

CHANGES is used to limit the scope of a block within a larger query into a particu-

lar change set, or match change sets to a variable. If no URI is given, then all existing 

change sets will be used to match the query body. CHANGES can optionally be used 

with BETWEEN VERSIONS, BEFORE VERSION or AFTER VERSION to limit the 

scope of the changes or bind the dataset versions that match the change set pattern to 

variables. 

 

CHANGE <changeURI | ?change_var> 

The CHANGE keyword is used to query a particular change in a fixed query block 

within a larger query pattern. It is followed by a specific change URI or a variable to 



be bound. The succeeding block is used to declare the change parameters in a predi-

cate-object manner. 

4.3 DIACHRON QL formal definitions 

In order to formally describe DIACHRON QL as a SPARQL extension, it is neces-

sary to address the DIACHRON model as an extension of RDF, in a manner similar 

to [11,14,22,23]. Let I, B, L, V be infinite, pairwise disjoint sets of IRIs, blank nodes, 

literals and variables respectively. An RDF triple t is a triple (s, p, o) ∈ (𝐼 ∪ 𝐵) ×
(𝐼) × (𝐼 ∪ 𝐵 ∪ 𝐿), where s is the subject, p is the predicate and o is the object of the 

triple. An RDF graph is a collection of triples g = {t1,t2,…,tn). The union (𝐼 ∪ 𝐵 ∪ 𝐿) 

is denoted as 𝑇 and represents all possible bound values any node in an RDF graph 

can take. The set of all RDF graphs is denoted as 𝐺. Given the above, we define the 

DIACHRON model entities as follows: 

Definition 10. A record attribute 𝑎 is a tuple (𝑡, 𝑔) where t is an RDF triple, and g 

is a metadata subgraph for 𝑎. In essence a record attribute associates an RDF triple 𝑡 

with its metadata, expressed as an RDF graph 𝑔. We denote as 𝐺𝑎 ⊆ 𝐺  the set of all 

record attributes, and as 𝐼𝑎 ⊆ 𝐼  the set of all record attribute IRI nodes. 

Definition 11. A record r is defined as a tuple (𝐺𝑎
𝑠, 𝑔), where 𝐺𝑎

𝑠 ⊆  𝐺𝑎  is a set of 

record attributes over subject s, and g is a metadata subgraph associated with r. The 

set 𝐺𝑎
𝑠  is only relevant to the particular context and is not meant to be an exhaustive 

list of triples with s as common subject. We denote as 𝐺𝑟 ⊆ 𝐺  the set of all records, 

and as 𝐼𝑟 ⊆ 𝐼  the set of all record IRI nodes. 

Definition 12. A record set R is defined as a tuple (𝐺𝑟
′ , 𝑔), where 𝐺𝑟

′ ⊆  𝐺𝑟   is a set 

of records, and g is a metadata subgraph associated with R. We denote as 𝐺𝑅 ⊆ 𝐺  the 

set of all record sets, and as 𝐼𝑅 ⊆ 𝐼  the set of all record set IRI nodes. 

Definition 13. A schema set S is defined as a tuple (𝐺𝑠
′, 𝑔), where 𝐺𝑠

′ ⊆  𝐺𝑟   is a set 

of schema elements, and g is a metadata subgraph associated with S. We denote as 

𝐺𝑠 ⊆ 𝐺  the set of all schema sets, and as 𝐼𝑆 ⊆ 𝐼  the set of all schema set IRI nodes. 

Definition 14. A dataset instantiation d is a tuple (𝐺𝑅
′ , 𝐺𝑆

′ , 𝑔) where 𝐺𝑅
′ ⊆  𝐺𝑅 and 

𝐺𝑆
′ ⊆  𝐺𝑆 are the record set and schema set of the instantiation. We denote as 𝐺𝑑 ⊆

𝐺 the set of all dataset instantiations, and as 𝐼𝑑 ⊆ 𝐼  the set of all dataset instantiation 

IRI nodes.  

Definition 15. A diachronic dataset D is a tuple (𝐺𝑑
′ , 𝑔) where 𝐺𝑑

′ ⊆  𝐺𝑑 is an arbi-

trary set of dataset instantiations as per Definition 14. We denote as 𝐺𝐷 ⊆ 𝐺 the set of 

all diachronic datasets, and as 𝐼𝐷 ⊆ 𝐼  the set of all diachronic dataset IRI nodes.  Sim-

ilarly to SPARQL we allow for blank nodes and literals to be identifier values, as well 

as triple subjects, even though in practice this is not supported by most frameworks. 

Note further that the metadata subgraph can be an empty graph. This allows for defi-

nitions of datasets and other DIACHRON entities without necessarily associating 

metadata with them. 

The above definitions serve to regard the entities of the DIACHRON model as ex-

tensions of RDF. Examples of these are shown in Figure 4 and Table 1, as discussed 

in Section 3.  



In order to define the syntax of DIACHRON QL, we briefly recall the notion of a 

SPARQL graph pattern presented in [22]. A SPARQL graph pattern expression is 

defined recursively as follows:  

 

1. A tuple from (T∪V )×(I ∪V )×(T∪V ) is a graph pattern.  

2. If P1 and P2 are graph patterns, then (P1 AND P2), (P1 OPT P2), and (P1 

UNION P2) are graph patterns.  

3. If P is a graph pattern and R is a SPARQL built-in condition, then the ex-

pression (P FILTER R) is a graph pattern.  

 

Given this, a DIACHRON QL graph pattern expression (DGP) is defined hierarchi-

cally and recursively as follows: 

1. A SPARQL graph pattern P is a DGP. 

2. If 𝑋 ∈ (𝐼𝑎 ∪ 𝑉) then (X RECATT P) is a DGP (a record attribute pattern). 

3. If 𝑋 ∈ (𝐼𝑟 ∪ 𝑉) then (X RECORD P) is a DGP (a record pattern). 

4. If P is a DGP, 𝑋 ∈ (𝐼𝐷 ∪ 𝑉) and 𝑌, 𝑍 ∈ (𝐼𝑑 ∪ 𝑉) then : 

(a) (( (DATASET X) AT VERSION Y ) P), 

(b) (( (DATASET X) AFTER VERSION Y ) P), 

(c) (( (DATASET X) BEFORE VERSION Y ) P),  

(d) (( (DATASET X) AFTER VERSIONS Y, Z ) P) 

(e) ((DATASET X) P) 

are DGPs (dataset instantiation patterns). 

5. If 𝑃1 and 𝑃2 are DGPs, then the following are DGPs: 

(a) 𝑃1 𝐴𝑁𝐷 𝑃2 

(b) 𝑃1 𝑂𝑃𝑇 𝑃2 

(c) 𝑃1 𝑈𝑁𝐼𝑂𝑁 𝑃2 

DIACHRON QL built-in conditions for filtering are similar to [22] and are not further 

addressed in this paper. Furthermore, formal definitions for CHANGES are similar to 

DATASET and are not further discussed in the name of readability. Examples on all 

keywords and constructs of DIACHRON QL can be seen in Table 3. 

 

Semantics of DIACHRON QL graph pattern expressions 

We are now ready to define the semantics of DPG expressions. Borrowing the no-

tation of [22], a SPARQL mapping, or substitution, μ is defined as a partial function 

𝜇 ∶ 𝑉 → 𝑇 for a subset 𝑉′ ⊆ 𝑉, such that the variables in 𝑉′ are replaced with values 

from T as is defined in μ. The domain of μ: 𝑑𝑜𝑚(𝜇) is the subset of V where μ is 

defined. A pair of mappings µ1 and µ2 exhibits compatibility when for all v ∈ dom(µ1) 

∩ dom(µ2), it holds that µ1(v) = µ2(v). Let Ω1 and Ω2 be sets of mappings, then the 

join, the union, and the difference between Ω1 and Ω2 are defined as follows:  

 Ω1 ⋈ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible},  

 Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},  

 Ω1 \ Ω2 = {µ ∈ Ω1 | for all µ ′ ∈ Ω2, µ and µ ′ are not compatible}.  

Finally, the left outer-join (OPTIONAL) is defined as:  

 Ω1 ⋊Ω2 = (Ω1 ⋈ Ω2) ∪ (Ω1 \ Ω2). 



Given the above, the notion of mapping remains the same in DIACHRON QL.  

In DIACHRON QL, the hierarchical relationship between entities enables graph 

patterns to be limited in scopes, with respect to the DIACHRON model. Evaluating a 

triple pattern within the scope of two different record patterns can result in different 

output, and also enables pattern expressions involving the binding of DIACHRON 

model entities as well.  

Formally, we need to define what the scope of a graph pattern is. A scope σ is a 

function 𝜎: 𝑃 → 𝑇′ ⊆ 𝑇 that maps a graph pattern P to a closed set 𝑇′ , so that any 

mapping 𝜇𝑝 of P is only valid with respect to 𝑇′, i.e. 𝜇𝑃 ⊆ 𝜎(𝑃). Given this, we go on 

to define the lowest wrapping scope 𝜆  as a partial function  𝜆 ∶ 𝑃 → 𝜎(𝐼 ∪ 𝑉)  that 

maps P with a scope, such that the variables in P are mapped to elements in that 

scope, and there exists no other scope that is a subset of the one derived from λ. This 

implies that any graph pattern P is equipped with a function 𝜆(𝑃) ∈ 𝜎(𝐼 ∪ 𝑉) such 

that  𝜇(𝑃) ∈ 𝜆(𝑃)  and  ∄𝜆′(𝑃) ≠ 𝜆(𝑃)| 𝜆′(𝑃) ⊆ 𝜆(𝑃) . Furthermore, we denote with 

𝜆𝐷′(𝑃) when 𝜆(𝑃)is limited to a specific subset of diachronic datasets and dataset 

instantiations 𝐷′. Intuitively, a lowest wrapping scope for a particular query is the 

lowest entity type in the DIACHRON model hierarchy where P is expressed. For 

example, a record attribute pattern Pa in a query is nested within a record pattern Pr 

and a dataset instantiation pattern Pd. Then  𝜆(𝑃𝑎) = 𝜎(𝑃𝑟) and  𝜆(𝑃𝑟) = 𝜎(𝑃𝑑) . An 

example of scoping in a DIACHRON query can be seen in Figure 7. 

We are now ready to define the evaluation of a DIACHRON QL graph pattern. 

Given a diachronic dataset D with a set of dataset instantiations d over T, such that 

𝐷′ ⊆ 𝐷 is the subset of D in which d exists, and DGPs P, P1 and P2 defined in 𝐷′, 𝐷1
′  

and 𝐷2
′  respectively, then the evaluation of a DGP denoted as [[⦁]]𝐷′  is as follows: 

 [[𝑃]]𝐷′ = {𝜇 | 𝑑𝑜𝑚(𝜇) = 𝑣𝑎𝑟(𝑃) 𝑎𝑛𝑑 𝜇(𝑃) ∈ 𝜆𝐷′(𝑃) }  

 [[𝑃1 𝐴𝑁𝐷 𝑃2]]𝐷1
′ ,𝐷2

′  = {𝜇 =  [[𝑃1]]𝐷1
′  ⋈ [[𝑃2]]𝐷2

′  | 𝜇 ∈  𝜆𝐷1
′ (𝑃1) ∩ 𝜆𝐷2

′ (𝑃2)}  

 [[𝑃1 𝑈𝑁𝐼𝑂𝑁 𝑃2]]𝐷1
′ ,𝐷2

′  = {𝜇 =  [[𝑃1]]𝐷1
′  ∪ [[𝑃2]]𝐷2

′  | 𝜇 ∈  𝜆𝐷1
′ (𝑃1) ∪ 𝜆𝐷2

′ (𝑃2)}  

 [[𝑃1 𝑂𝑃𝑇 𝑃2]]𝐷1
′ ,𝐷2

′  = {𝜇 =  [[𝑃1]]𝐷1
′  ⋊ [[𝑃2]]𝐷2

′  | 𝜇 ∈  𝜆𝐷1
′ (𝑃1) ∪ 𝜆𝐷2

′ (𝑃2)}  

 

Evaluation of filters remains the same as with the original SPARQL specification [22] 

and is not reported herein. Finally, note that we do not consider the case of named 

graphs within DIACHRON graph patterns, because the general notion of a SPARQL 

named graph is specialized in the more refined DIACHRON entity types. 

Given a DIACHRON graph pattern expression (( (DATASET X) AT VERSION Y 

) P), its evaluation will be equal to the evaluation of P over diachronic dataset X at 

version Y, i.e. the set of all mappings μ such that 𝜇(𝑃) ∈ 𝜆𝑋′(𝑃) , with 𝑋′ being the 

subset of X that contains version Y.  



 

Figure 7. An example of scopes in a DIACHRON QL query. 

5 Implementation 

In this section we present the implementation of the proposed query language. We 

first provide an overview of the overall architecture of the DIACHRON archive. The 

archive employs the proposed DIACHRON model for storing evolving LOD datasets. 

The query engine is a core component of the archive, responsible for processing 

queries expressed in the DIACHRON QL and retrieving data out of the archive.  

5.1 System architecture 

The architecture of the archive and various components of the archive can be seen in 

Figure 8. The archive’s web service interface is exposed via the HTTP protocol as the 

primary access mechanism of the archive through a RESTful web service API. The 

Data Access Manager provides low level data management functionality for the ar-

chive. It is bound to the specific technology of the underlying store, in our case 

Openlink Virtuoso 7.1
6
, as well as external libraries that provide data access function-

ality for third-party vendors. For this we used the Jena semantic web framework
7
. It 

serves as an abstraction layer between the store and the query processor.  

                                                           
6 http://virtuoso.openlinksw.com/ 
7
 https://jena.apache.org/  
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Figure 8: Architecture of the archive. 

The archive employs a Data Access Manager, a Store Connector, a Data Modeler, 

an Archive Optimizer and a Query Processor. The Store Connector is the software 

package that provides an API to other components of the archiving module for com-

munication and data exchange with the underlying store and is implemented with the 

Virtuoso JDBC Driver package
8
. The Data Store employs a Virtuoso 7.1 instance. 

The Data Modeler component handles the dataset input functionality and data trans-

formations from the DIACHRON dataset model to the native data model of the store 

and vice versa, and consists of the Data Translator and the Data Loader. The Archive 

optimizer component supports the optimization of the datasets’ storage method based 

on various archive strategies as shown in [26] that are not discussed in this paper. It 

                                                           
8 http://docs.openlinksw.com/virtuoso/VirtuosoDriverJDBC.html 



performs analysis of the dataset characteristics and chooses the most efficient storage 

strategy based on metrics.  

The Query Processor component is the base mechanism for query processing and 

thus data access. It consists of the following subcomponents: 

 Validator: validates the DIACHRON queries for syntactic validity against the 

DIACHRON QL syntax described in section 3. 

 Query parser: parses the queries in DIACHRON QL so as to create a structure 

of elements that correspond to DIACHRON Dataset Entities and DIACHRON 

query operators.  

 Query Translator: creates the execution plan of DIACHRON queries by trans-

lating the queries in SPARQL. The translator also makes use of the various ar-

chive structures implemented in the persistence store and the appropriate indexes 

and dictionaries. The query translator is the subcomponent that ties the 

DIACHRON archive module to the specific storage technology of RDF and 

SPARQL. Translation is further described in section 5.2 

 Executor: executes the created execution plan step by step and retrieves the raw 

data from the store so as to build the result set of the query. It uses also the Data 

Modeler component in order to perform, if necessary, data transformations from 

the native data model of the underlying store to the DIACHRON dataset model. 

5.2 Translation of DIACHRON QL to SPARQL 

Our implementation is based on mature standards and state of the art triple stores that 

implement RDF storage and SPARQL querying. This imposes that DIACHRON enti-

ties are converted to RDF and queries are mapped to SPARQL expressions. In this 

context, DIACHRON graph patterns can generally be translated to SPARQL as 

shown in Table 4. However, a direct mapping is not generally possible, as the two 

models differ conceptually. The actual translation to SPARQL is ultimately dependent 

on factors that are affected by the implementation at hand, such as the storage poli-

cies, the structure of the archive and its dictionary, and the pre-processing require-

ments of the query engine. For this reason, we have implemented a middle layer be-

tween the DIACHRON QL parser and the SPARQL query executor, where the fol-

lowing steps take place: 

1. Identification of the query’s relevant scope(s), and in-memory mapping to 

DIACHRON structural elements 

2. Extraction and mapping of graph patterns to their respective scopes 

3. Conversion of lowest level graph patterns to SPARQL 

4. Detection of non-materialized dataset versions that contain possible scope 

candidates 

5. Temporary materialization of non-materialized dataset versions 

6. Mapping to final SPARQL query 

In the above flow of actions, step 1 is responsible for extracting the scopes 𝜎(𝑃𝑖) for 

all 𝑃𝑖  that are sub-expressions of a DIACHRON query expression P. References to 

their respective URI nodes or variables point to their subsumed DGP and are stored in 

memory for future reference. In step 2, we map each scope to its respective DGP 



found in the query string, and populate the query object in-memory. In step 3, we 

identify the data-relevant part of the query (i.e. the part that references actual records 

and attributes), and rewrite it to SPARQL independently of its scope. In step 4, we 

detect whether a scope is actually materialized in the archive. This step deals with 

cases where the chosen storage policy differs from full materialization, however it is 

not in the scope of this work to address the implementation issues of storage policies, 

the storage-querying trade-off, or storage optimization for contexts with versioning. 

Furthermore, simple lookups in the dictionary for a given query’s scopes is not suffi-

cient to determine which 𝜎 are eventually referenced, because a scope can be un-

bound (i.e. a variable). These points are all taken into account in steps 4 and 5. Final-

ly, step 6 relies on the output of the previous steps in order to build one or more 

SPARQL queries that will be executed by the query engine. Hence, in order to im-

plement DIACHRON QL in a SPARQL setting, the added expressivity of 

DIACHRON QL over SPARQL is translated to a series of steps, rather than a direct 

1:1 mapping of entities and graph pattern expressions. 

 
Table 4. DIACHRON graph patterns and their translation to SPARQL 

DIACHRON Pattern (Parsed Syntax) SPARQL 

{?s ?p ?o} { [a evo:Record ;  

      evo:subject ?s ;  
      evo:hasRecordAttribute   

             [ evo:predicate ?p ;  evo:object ?o ]]} 

   RECORD ?r {?s ?p ?o}  {?r a evo:Record ;  
      evo:subject ?s ;  

      evo:hasRecordAttribute   

              [evo:predicate ?p ; evo:object ?o]} 

 RECORD ?r {  

    ?s RECATT ?ra {?p ?o} 
      } 

{?r a evo:Record ;  

      evo:subject ?s ;  
      evo:hasRecordAttribute  ?ra .   

      ?ra evo:predicate ?p ; 

            evo:object ?o} 

 

DATASET <EFO> AT VERSION ?v  

  { 

   RECORD ?r {  

    ?s RECATT ?ra {?p ?o} 
      } 

   } 

{GRAPH <dataset_dictionary> { 

    <EFO> evo:hasInstantiation ?v .  

    ?v evo:hasRecordSet ?rs 

} GRAPH ?rs{ 

    ?r a evo:Record ;  
      evo:subject ?s ;  

      evo:hasRecordAttribute  ?ra .   

      ?ra evo:predicate ?p ; 
            evo:object ?o }} 

FROM DATASET <EFO> AT VERSION 
<EFO/v1> 

 

{   
   RECORD ?r {  

    ?s RECATT ?ra {?p ?o} 

{GRAPH <dataset_dictionary> { 
    <EFO> evo:hasInstantiation <EFO/v1> .  

    <EFO/v1> evo:hasRecordSet ?rs 

} GRAPH ?rs{ 
    ?r a evo:Record ; evo:subject ?s ;  

      evo:hasRecordAttribute  ?ra .   



      }    

} 

      ?ra evo:predicate ?p ; 

            evo:object ?o }} 

FROM CHANGES <EFO> BETWEEN 

VERSIONS <EFO/v1> <EFO/v2> 

 
{   

     CHANGE ?c {?p ?o} 

} 

{GRAPH <dataset_dictionary> { 

  ?cs  a evo:ChangeSet ;  

         evo:oldVersion <EFO/v1> ;  
         evo:newVersion <EFO/v2>  

} GRAPH ?cs{ 

    ?c a _:Change ; ?p ?o }} 

6 Evaluation 

In this section we present the evaluation of our approach over a real world evolving 

biological use case of the EFO ontology as well as use case concerning evolving mul-

tidimensional data of the statistical domain published on the web in LOD format fol-

lowing the Data Cube Vocabulary
9
 approach. As a first step, in Table 7, we provide a 

qualitative evaluation of supported storage policies, querying scopes, supported 

change representation, and metadata granularity of a framework implementing the 

DIACHRON model and Query language, compared with related works discussed in 

Section 2. Specifically, we compare our approach with traditional version control, as 

well as SemVersion [32], Auer and Herre [1], Im et al [8], Hauptmann et al [7] and 

Memento LD [30,31], and we find that these approaches cover parts of the functional-

ity offered by a framework that implements DIACHRON. Furthermore, we conducted 

a performance evaluation and a usability evaluation. The performance evaluation aims 

at showing that there is no significant overhead imposed in query processing that 

introduces above-linear performance for queries of increasing difficulty. The usability 

evaluation aims at measuring with objective metrics the syntax overhead that the pro-

posed DIACHRON Query Language introduces.  

In the first case, we consider 15 consecutive versions of the ontology, that exhibit 

various types of changes, both simple and complex, as well as four multidimensional 

datasets each comprised of three consecutive versions. We load all datasets into the 

same archive instance, and in order to do so, the data are first converted to fit the RDF 

mapping of the DIACHRON model. For this, we implemented a conversion mecha-

nism as part of the Data Modeller component presented in the previous section. The 

modeller reifies data to records and record attributes. Data are mapped to the 

DIACHRON data model in the following manner. First, classes and their definitions 

(domains, ranges) are modelled as schema objects. The triples are grouped by their 

subjects. For each subject URI, its corresponding predicate-object pairs are modelled 

as record attributes and grouped in records. The subject records are in turn connected 

with the record attributes created for each triple associated with a subject URI. For a 

more in-depth discussion of the mapping process the reader is referred to [17]. 

 

                                                           
9 http://www.w3.org/TR/vocab-data-cube/ 



Table 5. Qualitative comparison of each framework’s support for (a) storage policies, 

(b) querying scopes, (c) change representation, and (d) provenance and metadata granu-

larity. (CB = change-based storage, FM = full materialization) 

 

6.1 Experimental Evaluation 

The goal of the experimental evaluation was to assess the performance of our imple-

mentation w.r.t three main aspects: the time overhead related to the initial loading of 

the archive, the time overhead related to the retrieval of the datasets in their original 

form (de-reification and serialization) and the time overhead of executing queries of 

different difficulty. Specifically, we want to assess (i) the runtime performance of the 

pre-processing step for DIACHRON QL, and (ii) whether there is extra processing 

overhead that makes query processing non-linear with respect to query difficulty. Our 

approach was implemented in Java 1.7, and all experiments were performed on a 

server with Intel i7 3820 3.6GHz, running Debian with kernel version 3.2.0 and allo-

cated memory of 8GB. 

First, bulk operations on whole datasets have been tested, namely loading and re-

trieving full dataset versions. Loading and retrieval times can be seen in Figure 9 (a) 

and (b). A series of 10 tests were run for each version of the datasets and the averages 

have been used in computing execution time, using least squared sums. Loading a 

dataset in the archive implies splitting it into the corresponding structures, i.e. dataset, 

record set, schema set and change set, and storing it in different named graphs. The 

splits were done directly in the store using the SPARQL update language and basic 

pattern matching, thus no need to put a whole dataset in memory arose, which would 

Storage Querying Changes Provenance 
Granularity

Version control CB (sequential) N/A Low level None

SemVersion FM Graph Patterns Low level None

Auer et al CB (sequential) Changes High level Changes

Im et al CB 
(aggregated)

Graph Patterns Low level Datasets

Hauptmann et al CB (sequential) Graph Patterns Low level Datasets

Memento LD FM Resources N/A Resources

DIACHRON Hybrid Datasets,
Versions,
Graph Patterns,
Resources, 
Changes, 
Longitudinal

High level Datasets,
Versions, 
Resources, 
Changes, 
Triples



be costly in terms of loading in and building the respective Java objects in Jena
10

. The 

increasing sizes of the input datasets are the effect of their evolution, as new triples 

are being added. In the same Figure 9 (b), retrieval times can be seen for the same 

datasets. Retrieval of a dataset is the process of de-reifying it to recreate the dataset 

version at its original form and structure. As can be seen, both loading times and re-

trieval fit into a linear regression w.r.t to the datasets’ sizes as measured in record 

attributes and imply that no additional time overhead is imposed that would destroy 

linearity as new versions of a dataset are stored in the archive. 

Figure 9 (c)-(h) show running times of 14 queries we devised for this experiment. 

An analysis of the queries’ characteristics can be seen in Table 6. In Figure 9 (c) and 

(d) we perform a series of queries on different dataset versions. Specifically, two sets 

of 5 queries have been devised to run on a fixed dataset. Each query is run on one 

particular version, and the total running time of all 5 queries in each set (c) and (d) is 

calculated after retrieving the results and storing them in memory, which implies a 

simple iteration on all results. The query sets are made up from SELECT queries that 

combine structural entities (records, record attributes etc.) with actual data entries 

(subject URIs etc.) in different levels of complexity. In Figure 9 (a) no aggregate 

functions, OPTIONALs or other complex querying capabilities have been used, while 

in Figure 9 (b) the queries consist of selecting, aggregating and filtering graph pat-

terns. As in the case of loading and retrieval, the archive behaves in a linear way as 

the size of a dataset increases. 

Finally, four queries, Q11-Q14, with variable datasets that search in the entire ar-

chive have been devised and run on an incrementally larger archive, that is, the que-

ries have been tested on deployments of the archive where versions of datasets are 

being incrementally added to their corresponding diachronic datasets. The queries use 

dataset versions as variables. The results can be seen in Figure 9 (e)-(h) where line-

arity is still being preserved when new datasets are stored. 

Running times for the pre-processing step can be seen in Figure 10. Specifically, 

we have measured the total running time required to create and populate a 

DIACHRON query object, prior to execution, as opposed to a SPARQL query object, 

for queries Q1-14 on an archive instance that contains the maximum number of tested 

versions. The pre-processing overhead for DIACHRON QL is proportional to the 

intermediate steps, but does not impose a large difference when compared with plain 

SPARQL queries in the majority of cases. The SPARQL queries appear to impose a 

constant overhead, while the time needed to pre-process DIACHRON queries in-

creases along with the query expressivity and complexity of mapped scopes and 

DIACHRON elements. Even so, the pre-processing overhead is negligible (in most 

cases <100ms). For queries Q13 and Q14 the pre-processing step is very costly, be-

cause of the sequenced nature of pre-processing steps required to combine material-

ized and non-materialized datasets in queries with variable diachronic datasets and 

dataset instantiations.  

 

                                                           
10 https://jena.apache.org/ 



Table 6. Characteristics of the experiment queries 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 

DISTINCT √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

Unbound predicates        √ √ √ √ √ √ √ 

Filters           √ √ √ √ 

Aggregate Functions       √ √ √ √ √ √ √ √ 

ORDER BY       √ √ √ √ √ √ √ √ 

OPTIONAL            √   

SELECT √ √ √ √ √ √ √ √ √ √  √ √ √ 

CONSTRUCT           √    

Reified data √ √ √ √ √        √ √ 

De-reified pattern      √ √ √ √ √ √ √ √ √ 

Diachronic metadata     √ √   √ √ √ √ √ √ 

Unbound named graphs           √ √ √ √ 

Non-materialized datasets             √ √ 

6.2 Usability Evaluation 

 

In order to evaluate usability, we make use of three objective metrics in order to 

compare the compactness, expressiveness and usability of DIACHRON QL with re-

spect to SPARQL. Specifically, we compare (i) the number of language-specific key-

words used in each of the 14 queries, (ii) the total number of triple/record patterns, 

and (iii) the number of intermediate variables that were neither part of the original 

query, nor requested by the user. The results can be seen in Table 7.  

As the number of SPARQL TPs increases, the number of DIACHRON QL rec-

ord patterns remains at low levels, thus abstracting the complexity of writing large 

queries. This is especially evident in queries Q13 and Q14, where we have used hy-

brid storage policies, thus forcing the query engine to decide on parse-time which 

dataset versions are materialized and which have to be materialized as nested graph 

patterns. For instance, query 13 that features a bound diachronic dataset with an un-

bound version (using AT_VERSION ?v) can be expressed with just two 

DIACHRON patterns, whereas the SPARQL query uses 33 triple patterns to cater for 

the versions that follow a mixed storage policy. Note, however, that independently of 

the underlying storage policies, even if the user was inclined to express a query in a 

language like SPARQL and rely on an existing query engine for execution, the set of 

intermediate steps executed by our system would be omitted in the process, thus limit-

ing the expressivity of the possible queries, as was discussed in section 5.  

The number of keywords used in each of the two languages for the 14 queries is 

smaller for small queries (queries Q1-Q5), but SPARQL tends to overcome 

DIACHRON in total number of language-related keywords as the query gets larger 

and more complicated. This is also dependent on the various scopes and filters used 

by a query. Finally, SPARQL eventually depends on a number of dynamically gener-

ated intermediate variables that are used in the translated query, which is not needed 



by DIACHRON. These variables bind dictionary elements, scopes, versions, record 

sets and so on to variables that are further used in GRAPH clauses and FILTERs in 

the SPARQL translation.  
Table 7. Comparison of (i) number of keywords, (ii) number of triple (or record) pat-

terns, and (iii) number of generated variables not existing  in the original query. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 

# keywords (SPARQL) 4 4 4 4 4 7 9 8 8 8 10 12 27 46 

# keywords (DIACHRON) 6 6 5 5 5 5 5 6 6 5 7 7 6 7 

   

# TPs (SPARQL) 5 5 5 5 10 6 7 9 9 9 19 21 33 44 

# TPs (DIACHRON) 1 1 1 1 1 2 2 2 2 2 4 4 2 2 

   

# non-TP vars (SPARQL) 2 2 1 2 3 2 2 3 2 2 4 5 6 9 

# non-TP vars (DIACHRON) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 



 
Figure 9: Loading times (a), retrieval times (b), select queries without filters and aggregates 

(c), select queries with filters and aggregates (d), select queries with variable datasets (e)-(h). 



 
Figure 10. Logarithmic plot of pre-processing time (in milliseconds) for queries Q1-Q14. 

7 Conclusions 

In this paper, we have discussed the challenges and requirements for the preservation 

and evolution management of datasets published on the Data Web and we have pre-

sented an archiving approach that utilizes a novel conceptual model and query lan-

guage for storing and querying evolving heterogeneous datasets and their metadata. 

The DIACHRON data model and QL have been applied to real world datasets from 

the life-sciences and open government statistical data domains. An archive that em-

ploys these ideas has been implemented and its performance has been tested using 

real versions of datasets from the aforementioned domains over a series of loading, 

retrieval and querying operations. 

The growing availability of open linked datasets has brought forth significant new 

problems related to the distributed nature and decentralized evolution of LOD and has 

posed the need for novel efficient solutions for dealing with these problems. In this 

respect, we have highlighted some possible directions and presented our work that 

tackles evolution and captures several dimensions regarding the management of 

evolving information resources on the Data Web. 
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