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Sentiment Analysis in Organizational Work: 
Towards an Ontology of People Analytics 

 

Abstract 

The present paper proposes a conceptual ontology to evaluate human factors by modeling their 

key performance indicators and defining these indicators' explanatory factors, manifestations 

and diverse corresponding digital footprints. Our methodology incorporates six main human 

resource constructs: performance, engagement, leadership, workplace dynamics, organizational 

developmental support, and learning and knowledge creation. Using sentiment analysis, we 

introduce a potential way to evaluate several components of the proposed human factors 

ontology. We use the Enron email corpus as a test case, to demonstrate how digital footprints 

can predict such phenomena. In so doing, we hope to encourage further research applying data 

mining techniques to allow real time, less costly and more reliable assessments of human factor 

patterns and trends. 

 

Keywords: Human resource management; Key performance indicators; Sentiment analysis; 

People analytics; Workforce Analytics. 
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1. Introduction 

Organizations and their managements are constantly looking for ways to assess human resource 

management activities to manage their resources and capabilities more effectively. 

Organizations often approach consulting firms and research institutions, or run their own 

processes to assess human resource practices such as employee commitment, engagement and 

satisfaction. For example, Gallup® conducts an ongoing study of the American workplace, to 

assess employee engagement and its influence on individual and organizational performance 

(Gallup, Inc., 2014). Scholars frequently use survey and experimental studies to explore the 

motivations of individuals, groups and organizations, and the way they act. Despite the useful 

knowledge these methods yield, they have several shortcomings. First, they rely on self-reports, 

namely, information provided by the participants themselves about the questions at hand. For 

example, towards assessing employee commitment to an organization, researchers often ask for 

employee responses on a set of questions that measure the degree of their commitment to the 

organization. Although subjective assessments are widely used in fields such as psychology 

and management and are useful in assessing, for example, psychological attributes and states, 

caution is called for in interpreting their results, given certain known limitations (e.g., common 

method bias; see Brutus, Aguinis & Wassmer, 2013; Brutus, Gill & Duniewicz, 2010; 

Podsakoff, MacKenzie & Podsakoff, 2012). Second, these methods are naturally resource- and 

time-consuming, despite recently developed platforms (e.g., Amazon Mechanical Turk) that 

enable quick access of organizations and scholars to potential respondents. Other platforms 

such as SurveyMonkey® and Qualtrics® offer online surveys designed to collect and analyze 

data more effectively. However, the basic methodology has not changed. It requires substantial 

resources, and is challenged by limitations involved in using subjective data. Third, survey data 

do not provide real-time assessments. Surveys can take variable lengths of time before the data 

are collected and analyzed. A key issue concerns the inability of organizations or researchers 
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to approach potential populations on a frequent basis, thus inhibiting the capacity to trace 

patterns. In fact, many organizations are even reluctant to authorize researchers to conduct 

theoretical studies that involve surveying their members more than once a year, not to mention 

problems associated with using the same subjects for different surveys within a short timeframe 

(e.g., unreliable data due to an emerging automatic response mode).  Furthermore, surveys offer 

a post-factum snapshot of a particular issue. For example, if an organization administers a 

survey that assesses its employees' job satisfaction on June 30th, the results are unlikely to be 

available on the same day, and using surveys to capture changes in job satisfaction on a weekly, 

monthly, or quarterly basis is in fact impossible.  

Once acknowledged, these limitations have prompted large ICT companies to search for more 

effective modes of collecting and analyzing data on human factors (commonly known as 

people/workforce/HR management/analytics).  In Google®, “people analytics” engages in 

mining human resource and management performance data. “Project Oxygen”, for example, 

identifies characteristics of which great leaders are made by correlating phrases, words, praises 

and complaints to performance reviews, feedback surveys and nominations for top manager 

awards (Davenport, Harris & Shapiro, 2010; Sullivan, 2013). Similarly, IBM® and Kenexa® 

have each developed “HR analytics” to create a smarter workforce by mining real-time 

information, in ways such as linking HR planning systems with real-time reports.   

Following previous research studies (e.g., Gelbard & Carmeli, 2008; Piazza & Strohmeier, 

2013), we propose an ontology to evaluate human factors by modeling their key performance 

indicators (KPI) and defining the explanatory factors, manifestations and corresponding diverse 

digital footprints of these KPIs. According to Antoniou and Kehagias (2000, p. 623), “An 

ontology defines the terminology of a domain: it describes the constructs that constitute the 

domain, and the relationships between those constructs. Every information system uses its own 

ontology, either implicitly or explicitly. As applications become increasingly complex, we can 
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observe a trend towards the explicit representation and management of ontologies.” We apply 

a commonly used methodology to reveal human factors by translating prominent key 

performance indicators into three sets of sub-layers: explanatory factors, manifestations, and 

raw sources, as illustrated in Figure 1.  

-----    Insert Figure 1 about here   ----- 
 

We begin by mapping out an ontology that encompasses six main human resource (HR) 

constructs: performance, engagement, leadership, workplace dynamics, organizational 

developmental support, and learning and knowledge creation, and proceed to translate them 

into measurable digital data. By using data mining techniques and sentiment analysis, we have 

traced patterns and changes in various human factor activities. Next, we propose an initial 

illustration – rather than a complete solution – of the feasibility of our new approach, by using 

the Enron email corpus as a case-in-point, to show how digital footprints can predict vitality 

and engagement. In so doing, we hope to pave the way for a new research direction, and offer 

a practical ontology that enables linking digital data with HR practices and performance. 

The paper is structured as follows: The next section reviews related studies on workforce 

analytics and human factors. In section 3 we discuss the suggested ontology, and in Section 4 

we apply sentiment analysis to organizational emails. In section 5 we present the results, 

focusing on workforce vitality and satisfaction that emerge from Enron’s Email Corpus. 

Finally, in section 6 we discuss our findings and present our conclusions.  

2. Related work 

2.1 Workforce analytics 

Workforce analytics research aims to offer advanced tools and methodologies for measuring 

and improving HR processes and undertakings (Gartner, 2017). Such tools may include 

enhanced recruitment and placement processes, measuring employee performance, learning and 

development, benefits and perks, employee maintenance, etc. This goal is achieve by analyzing 
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data from different sources and using advanced methods. 

In the past few years, various studies have explored the use of AI, data mining, machine learning 

and IoT for various HR purposes, such as candidate selection, employee mood and sentiment 

analysis, churn prediction and more. Different methods have been used to this end:  Correlating 

job requirements with individual resumés (Yi, Allan & Croft, 2007; Bollinger, Hartdtke & 

Martin, 2012);  Analyzing candidate video-clips (such as provided by HireVue) and identifying 

characteristics or qualities incompatible with the job;  Predicting eventual and actual employee 

attrition by using prediction algorithms and social media data (Punnoose & Ajit, 2016, 

Robinson, Sinal & Winter, 2014);  Identifying employee moods and emotions such as 

happiness, surprise, anger, disgust, fear and sadness, by analyzing facial expressions captured 

by the organization's cameras (facial emotion detection) (Subhashini & Niveditha, 2015);  

Analyzing voice tones being used (Chan & Eric, 2010);  Analyzing sentiments through online 

employee reviews (Moniz & Jong, 2014) and social media platforms (Costa & Veloso, 2015);  

Inspecting employee productivity by sensors installed on employee badges (Ara et al., 2011). 

Such sensors enable identifying movement, tone of voice, speech speed, employee cohesion, 

etc.;  Exploring the effect of social media use on employee performance and motivation 

(Leftheriotis & Giannakos, 2014);  Measuring employee knowledge-sharing by analyzing 

information shared in social media (Zoonen, Verhoeven & Vliegenthart, 2016) or in 

organizational intranets (Koriat & Gelbard, 2014; Koriat & Gelbard, 2017).  

Numerous studies have dealt with other aspects that might be applicable to workplace research. 

Although those studies have not dealt with organizational research, they indicate that the 

relevant technology exists, is accessible, and could be applied to organizations. Such studies 

include:   Assessing age and gender based on a picture (Tian & Chen, 2017; Geng, Zhou & 

Smith-Miles, 2007; Eidinger, Enbar & Hassner, 2014);  Sentiment identification by body 

motions (Stock, Righart & Gelder, 2007) and tone of voice;  Activity profiling through body 
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motion analysis (Preece & Goulermas, 2009; Diego-Mas & Alcaide-Marzal, 2014);  Posture 

identification (Quwaider & Biswas, 2008; Mattmann et al., 2008); Posture analysis to identify 

emotions (Rosário & Diógenes, 2014; Rosario & Diógenes, 2016) and measure learners' interest 

level (Mota & Picard, 2003);  Analysis of sitting positions by sensors installed on chairs. This 

enables better adjustment of the chair to enhance physical comfort and could enhance 

performance (Haveman & Kant, 2015; Martins et al., 2014);  Room temperature monitoring 

(Wang, Gu, Ma & Yan, 2017), another factor affecting performance or employee comfort;  

Monitoring employee health (for example, detecting cough, sneezing, cold, flu, etc.) (Gouma 

et al., 2017; Costa, Nogueira-Neto & Nohama, 2015; Amoh & Odmae 2015). 

Recent articles have criticized human capital analytics (Levenson & Fink, 2017; Boudreau & 

Wayne, 2017; Minbaeva, 2017), claiming that the many ongoing efforts to analyze human 

capital by artificial intelligence and machine learning methods have not yielded actionable 

items, and organizations do not adopt these methods. Among the reasons mentioned are lack of 

clear methodology, lack of focus, and attempts made by organizations to derive new insights 

from the data they possess without clearly defining purposes or questions, only to boast using 

advanced methods such as AI or machine learning. The results are sometimes insufficiently 

clear and seem to be a "black box", which is why decision makers do not rush to adopt these 

methods. Even if a certain method proves to be appropriate for a certain department of a certain 

company, there is no guarantee that it is suitable for other departments. Consequently, 

reluctance is noticed to adopt methods that have such massive implications without making sure 

they are better than the existing ones. 

In the present paper, we propose a framework that allows focusing on specific issues by 

modeling the human factor KPIs, and the explanatory factors, which are the KPI components. 

KPI and explanatory factor measurements, and the digital sources used may differ for each 

organization or location, depending on the nature and mode of work, and the organizational 
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culture. The present paper proposes a way to measure digital footprints. Notably, our work does 

not involve predictions, such as aptness of a candidate for a certain position or team, employee 

attrition, and course relevance, which are HR practices. We rather analyze the state of the 

organization in terms of human capital, providing a dynamic (proactive) description of the 

situation. Our products are similar to those of organizational employee surveys, albeit attained 

more frequently and with immediate results. They are therefore of interest to the business and 

link with the organization's goals.      

2.2 Human factors 

The research of human factors aims to develop a body of knowledge about human attributes, 

attitudes, abilities and limitations, within a particular context (Chapanis, 1991). As such, it has 

become a key area in various fields (e.g., psychology, organization and management, 

engineering), dealing with a variety of topics such as work environment and its design, 

performance, employee work attitudes, withdrawal behaviors, feedback, leadership, learning 

and knowledge creation, creativity and innovation. Given this wealth of aspects, individual 

studies tend to explore a single key aspect within this field. In the present article, we provide 

an overview of six key human factor constructs – performance, engagement, leadership, 

workplace relational dynamics, organization developmental support, and learning and 

knowledge creation – that are particularly relevant to the organizational workplace. This is 

followed by proposed ways to model these factors (section 3). 

A. Performance 

Performance measurement at the individual, group and even organization level is a complex 

task (Aguinis, 2009). It may take various forms, reflecting numerous perspectives and focal 

points within performance, such as creativity and service. . A good way to begin 

conceptualizing performance would be by distinguishing outcomes from behaviors. Recent 

studies have specifically called to address this point. As Montag et al. (2012) noted (drawing 
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on performance research by Campbell et al., 1993), “At the heart of this framework is the notion 

that the workplace criterion space includes both performance behaviors (i.e., behaviors directed 

toward achieving organizational goals) and outcome effectiveness (i.e., the evaluation of the 

outcomes of these behaviors along various dimensions such as quantity or quality), two distinct 

constructs.”  

We focus on six performance behaviors and outcomes:  

1) Creativity: “The ability to produce work that is both novel (i.e., original or unexpected) and 

appropriate (i.e., useful or meets task constraints)" (Sternberg & Lubart, 1991 p. 677). Its 

key manifestations are the number and originality of ideas;  

2) Innovation: The implementation of novel ideas (Anderson & West, 1998), namely, their 

realization in terms of number of new products, revenues derived from newly developed 

products, and product innovation (incremental, radical);  

3) Service quality: The extent to which the organization's service staff ensure that customers 

are satisfied and loyal. It is manifested in the number of repeat purchases, and complaints 

vs. compliments;  

4) Efficiency: The ratio of outputs (performed tasks) to inputs (e.g., efforts);  

5) Effectiveness: Often discussed in terms of goal attainment (Yuchtman & Seashore, 1967);  

6) Organizational citizenship behaviors: “Behavior(s) of a discretionary nature that are not 

part of the employee’s formal role requirements, but nevertheless promote the effective 

functioning of the organization” (Organ, 1988, p. 4).   

B. Engagement 

The concept of engagement stands for the motivational force underlying a particular activity or 

work behavior (Kahn, 1990). We include five elements in state engagement:  

1) Identification, a state engagement that stands for “the perception of oneness with or 

belongingness to an organization, where the individual defines him or herself in terms of 
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the organization(s) in which he or she is a member” (Mael & Ashforth 1992, p.104);  

2) Work-family balance, “an overall appraisal of the extent to which individuals’ effectiveness 

and satisfaction in work and family roles are consistent with their life values at a given point 

in time” (Greenhaus & Allen, 2011, p. 174);  

3) Satisfaction, the emotional reaction to the job, by which employees manifest the extent to 

which they are content with what they do (Locke, 1969);  

4) Vitality, the subjective feeling of being alive and alert (Ryan & Frederick, 1997). Vitality 

may generate a sense of aliveness and energy, denote mental and psychological strength, 

and result in optimal functioning;  

5) Withdrawal intentions (state engagement) “comprise several distinctive yet related 

constructs (e.g., thinking of quitting, intention to search, and intention to quit), which have 

been widely studied in relation to withdrawal behavior (e.g., absenteeism, actual turnover)” 

(Carmeli, 2005, p. 179). 

C. Leadership 

Scholars have conceptualized the construct of leadership from diverse perspectives. Research 

of leadership tends to focus on three broadly defined behavioral meta-categories: Task-oriented 

behaviors, where the primary objective is achieving efficiency and reliability outcomes; 

relationship-oriented behaviors, where the primary objective is enhancing commitment, trust 

and cooperation among organizational members; and change-oriented behaviors, where the 

primary objective is generating major changes that would result in substantial organizational 

improvements (Yukl, Gordon & Taber, 2002, p. 17).  Each meta-category may be manifested 

by a variety of behaviors. For example, task-oriented leaders focus on tasks that have to be 

completed and on the implications of outcomes (e.g., efficiency, quality). Similarly, the goals 

and performance that a leader sets and wishes to pursue determine his task orientation. 

Relationship-oriented leadership includes feedbacks, namely, leaders' feedbacks may help their 
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followers to develop and grow. Relationship orientations are cultivated by empowering leaders, 

who aim to develop, in members, a capability to take the lead in the absence of a formal leader 

(Manz & Sims, 1987). By supporting such autonomous structures these leaders allow for greater 

involvement and participation of group members in the decision-making process (Yukl, 1998). 

Change-oriented leadership articulates a vision that outlines paths defining the organization's 

identity, strategy and activities. .  

Role modeling may be regarded as a meta-construct capable of illustrating task, relationships, 

and change-oriented behaviors. For example, leaders are role models in displaying task 

orientation, but they also give clear cues as to how to approach and interact with others (i.e., 

relationship orientations), and whether they embrace new approaches and ideas and engage in 

their pursuit.  

D. Workplace Relational Dynamics 

Relationships are the living tissue that connects members and influences their capacity to thrive 

in the workplace. Relationships can take many forms: They may be destructive (e.g., contempt) 

or constructive (e.g., support), depleting or life-giving (Ragins & Dutton, 2007). To illustrate 

the positive relational dynamics that may emerge and be assessed in the workplace, we focus 

on four relationship constructs: Trust, psychological safety, connectivity and communication. 

Trust is defined as “a psychological state comprising the intention to accept vulnerability based 

upon positive expectations of the intentions or behavior of another” (Rousseau, Sitkin, Burt & 

Camerer, 1998, p. 395). Members may develop trust in their employer, in leaders and in peers. 

Psychological safety is the psychological condition that allows people to feel they are safe in 

taking interpersonal risks and voicing their opinion (Edmondson, 1999). In other words, 

psychological safety refers to “feeling able to show and employ one's self without fear of 

negative consequences to self-image, status, or career” (Kahn, 1990, p. 709). Connectivity 

refers to relationships characterized by openness and generativity (Dutton & Heaphy, 2003). 
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Connectivity in relationships enables people to see the diverse influences of others as 

opportunities to learn and grow at work. It involves recognizing the value of relationships in 

learning new things, generating new ideas, and seeking opportunities to explore and grow 

(Carmeli & Spreitzer, 2009, p. 174).  Communication is probably the most prominent mode of 

interrelation between people. It is a multidimensional construct, but consists of two specific 

components: 1) Content of the messages in terms of members’ satisfaction with what is being 

communicated, and 2) Mode by which information is propagate to other members within an 

organization (Smidts et al., 2001, p. 1052). These features are manifested by the degree to which 

exchanged and shared information is sufficient, accurate, timely, relevant, and attracts the 

intended level of attention. There is abundant research evidence suggesting that communication 

is a key mechanism, by which organizations are able to promote teamwork, job satisfaction and 

commitment in their members (e.g., Rodwell, Kienzle & Shadur, 1998). Meta-analytical results 

indicate that communication is related to various dimensions of psychological climate such as 

cooperation, fairness, and work group warmth (Benzer & Horner, 2015). 

E.   Organizational Support 

Organizational support refers to members’ perception of the degree to which an organization 

appreciates their effort and contribution, and cares about their wellbeing (Eisenberger, 

Huntington, Hutchison & Sowa, 1986). Organizational support has three facets: 

1) Enhancing employee development by a variety of practices such as training, job mobility, 

and mentoring;  

2) Providing instrumental support by allocating the resources, tools and time required to 

successfully accomplished tasks, while at the same time ensuring people's wellbeing;  

3) Behavioral orientation, indicating that the organization values the contribution of 

individuals, shows interest in their expectations and needs, builds their confidence, and 

gives them a sense of ownership. 
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F.   Learning and Knowledge Creation 

Learning is a process whereby new knowledge is created, exchanged and integrated (Argote, 

1999). Learning may take different forms, such as learning from failure vs. learning from 

success, or learning from direct experience vs. learning from indirect experience. Each mode 

of learning implies different processes. Three fundamentals define the knowledge creation 

process: access to knowledge, exchange of knowledge, and the combination of exchanged 

knowledge (Nonaka & Takeuchi, 1995; Smith, Collins & Clark, 2005). To determine who 

knows what and how reliable the knowledge is, knowledge bases may have to be unraveled. 

3. The Proposed Ontology 

Utilizing a commonly used methodology, as specified above (see also Figure 1), we have put 

together an ontology of human resource factors, in an attempt to advance workplace analytics 

research. Figure 1 shows the components we used to identify the key performance indicators 

(KPIs) of human capital. The first step of the modeling process was conceptually defining each 

human capital KPI. Next, we identified key components that underlie the KPIs of human 

capital. For example, the key components underlying organizational support are support 

directed at employee development, means (instrumental) support and behavioral support. The 

last component comprises digital sources that yield the data required to assess latent variables, 

and their components and manifestations. Although the present ontology is rather complex (i.e., 

comprised of six main components that are further broken down into three sub-level elements), 

we made an effort to present it in a simplified way. To this end, we focused on one KPI – 

Engagement (Table 3), on two explanatory factors of engagement (satisfaction and vitality), 

and within them on manifestations of emotional response to work, as proxied by email 

sentiments. These form two pathways of email sentiment: 1) Raw source of email 

correspondences (digital footprint)  emotional response (manifestation)  satisfaction 

(explanatory factor)  engagement (KPI); 2) Raw source of email correspondences (digital 
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footprint)  sense of aliveness (manifestation)  vitality (explanatory factor)  engagement 

(KPI).      

Research studies frequently use surveys to assess human factors. We propose a different 

approach that is based on assessing the digital footprints of various human factors.  Tables 1 to 

6 present ontology of six human factors: performance, engagement, leadership, workplace 

relational dynamics, organizational developmental support, and learning and knowledge 

creation. Drawing on the existing literature, we list the explanatory factors for each KPI and 

their manifestations. They are shown in the upper block of Figure 1, where the KPI is broken 

down into digital factors, each depicted by specific manifestations. A potential digital source is 

then recommended to assess each factor.  The digital sources refer to: Calendar, eMail, Forums 

& Portals, HR reports; Manuals, Quality Assurance, Releases, Tasks (PMO), and others (noted 

as "z").  The frequency of the data collection use the notation: Y =Year, Q =Quarter, M =Month, 

W =Week.  The formatting representation may be: Abs =Absolute values, Delta = Absolute 

Changes, Per = Percentage Change, etc.  

-----     Insert Tables 1 to 6 about here    ------- 
 

Tables 1 to 6 map out the six proposed KPIs. Table 1 illustrates the performance factor. For 

example in assessing human performance, we may evaluate members’ creativity, innovation, 

service quality, efficiency and effectiveness, and extra-role behaviors (citizenship). To assess 

creativity we may use managers’ evaluation of their employees. This can be done on an annual 

basis, but in organizations where performance evaluation is carried out more frequently (e.g., 

every six months) assessment may be adjusted accordingly. To assess innovation, we may use 

organizational and external records to tabulate the number of newly developed 

products/services, the number of patents by IP submissions, product quality by QA reports, 

sales of new products using the financial statement, and development speed by the PMO. 

Service quality may be assessed by probing the level of customer loyalty and satisfaction, and 
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the delta in sales relative to services. Customer loyalty may be assessed based on meeting 

cancellations and fluctuation or migration (churn) on a periodic basis. Customer satisfaction 

may be assessed by organizational records that contain digital service evaluation forms and 

complimentary letters. Change in sales may be assessed annually using the financial reports. 

To asses efficiency, the following statistics may be used: Completion of tasks on time based on 

PMO data, use of allocated resources to complete tasks, based on PMO budgetary evidence, 

quality of completed tasks based on QA reports, and task load based on number of weekly 

overtime hours. Effectiveness may be assessed by evaluation of tasks completed on time within 

or beyond the allocated budget. Finally, organizational citizenship behaviors may be assessed 

by peer behavior evaluations and members’ responses to queries in organizational portal 

forums.    

4. Applying Sentiment analysis to Organizational eMails 

4.1 Text mining for sentiment analysis 

Sentiment analysis aims to identify the emotional attitude of text authors regarding certain 

phenomena, such as movies they watch or events occurring in organizations for which they 

work (Pang, Lee & Vaithyanathan, 2002; Ghazizadeh, McDonald & Lee, 2014). Towards 

developing our model we analyzed employee emails from the Enron email corpus (Klimt & 

Yang, 2004), to identify the general sentiment of the body of Enron employees (and not of 

individual employees). To this end, we assessed the sentiment of each individual email over a 

few weeks, and aggregated them to create a collective picture. 

A widely used approach in building sentiment analysis solutions is that of using classifiers – a 

machine learning tool (Liu & Zhang, 2012). Classifiers may be trained using a loss function – 

a function that expresses an error of the classifier over the training data. In this case, classifier 

training simply seeks to minimize the loss function.  In the case of a Support Vector Machine 

classifier, the loss function is smooth and differentiable, and may be minimized as described in 



16 

Gu & Sheng 2017, or in Gu, Sheng, Tay & Li, 2015. However, when the search for a solution 

takes the form of a combinatorial optimization problem, other families of optimization 

algorithms are used. One effective approach is based on combining a Genetic Algorithm and 

Ant Colony Adaptive Collaborative Optimization (MGACACO) algorithm (Deng, Zhao, Zou, 

Li, Yang & Wu 2017), used to solve the traveling salesman problem. Another approach uses 

an improved adaptive Particle Swarm Optimization (DOADAPO) algorithm that is applied to 

the airport gate assignment problem (Deng, Zhao, Yang, Xiong, Sun & Li 2017). Yet another 

effective way to solve global optimization problems is developed in Xue, Jiang, Zhao & Ma 

2017, where self-adaptive techniques are used to improve the Artificial Bee Colony algorithm 

with an application to a real clustering problem, based on K-means technique. 

To tune their parameters, classifiers require a tagged corpus as input, namely, a body of text 

documents, each of which is given a single sentiment tag (e.g. positive, negative or neutral) 

(Calix, Javadpour & Knapp 2011). In constructing a sentiment analysis for the Enron corpus, 

we were challenged by its lack of balance: only a very small percentage of the emails could be 

categorically tagged as displaying a positive or negative sentiment, whereas the vast majority 

was neutral. The rate of non-neutral emails was below 0.1%. As a rule, it is very hard to achieve 

high classification accuracy from unbalanced corpora such as this (Chawla, 2010).  

Another challenge was that no email corpus was available that was manually tagged for 

sentiment. To overcome this problem, we used a tagged corpus from another domain that was 

open to the public – sentiment analysis in movie reviews (Cornell Movie Review Data, 2012). 

Our choice was based on the observation that the sentiment lexicon – the set of words used to 

describe sentiments – is largely domain-independent. However, when applied to the Enron 

email corpus, our sentiment analysis as trained on the movie corpus proved inaccurate. We 

therefore decided to adjust the movie corpus by adding to it a small subset from the email 

corpus. We manually tagged the added emails and used the adjusted corpus to construct a new 
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classifier. The accuracy of the new classifier proved much better: about half of the emails tagged 

as displaying a positive or a negative sentiment, corresponded to their sentiment tags, whereas 

the vast majority of the neutral emails had indeed been tagged as neutral. This level of accuracy 

was sufficient to reveal fluctuations in sentiment among the Enron employee body over time 

(e.g., after the CEO was replaced, or once the employees had accepted the new CEO). We used 

the correlation between our sentiment analysis over time and important events in Enron's history 

to validate our approach of estimating overall employee sentiment in an organization. 

4.2 The text mining algorithm  

To build an organizational sentiment analysis model, we used a naïve Bayes classifier (Zhang 

2004). Let C  be the set of classes. The naïve Bayes classifier regards each document as the set 

of all its words. It also assumes that for each word w, the probability of observing w in document 

d, given class C, may be written as follows: 





dw

wcd )c|Pr()|Pr(      (1) 

This assumption means that given class C, words in the document are independent of other words 

in the document, their relative position in d, the length of the document and any other context 

of the document. This assumed independency gave rise to the name of the classifier.  

Next, based on the Bayes theorem (Mitchell 1997), it is possible to write the probability of a 

class in a given document, as follows: 

)Pr(
)|Pr()Pr()|Pr(

d
cdcdc     (2) 

Using this expression, the definition of the classification function is: given document d, 

choose class C  that maximizes the above probability 

)|Pr(max)( dcdclassify c     (3) 

Since the denominator of expression (2) does not depend on c, the classification function may 

be rewritten as follows 
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)|Pr()Pr(max)( cdcdclassify c     (4) 

Using (1) we get 





dw

c cwcdclassify )|Pr()Pr(max)(     (5) 

To make the above derivations applicable in practice, the probabilities  Pr(c)  and  Pr(w|c) are 

estimated based on a training corpus that consists of a set of documents D, where each 

document  Dd    is assigned a class Cc . 

4.3 The Enron email corpus 

As mentioned, we used the Enron email corpus to validate our argument that human capital 

KPIs can be evaluated by analyzing information available in the organization's systems. The  

Enron  email  dataset  was  made  public  by  the  Federal  Energy  Regulatory Commission  

while the company was under investigation. Originally, the database had comprised over 

600,000 diverse emails, both personal and official, generated by 158 employees. Some of the 

emails were deleted in a redaction effort prompted by employee requests (for a more 

comprehensive review of this dataset see Keila & Skillicorn, 2005; Sebastian, Bródka & 

Kazienko, 2011; Shetty & Adibi, 2004).  In our analysis, we used a clean version of the dataset 

containing 250,000 email messages generated by 151 employees.  

First we had to isolate a unit in the organization and analyze its e-mail correspondence.  By 

examining the overall body of e-mail correspondence, we identified employee groups who 

exchanged messages frequently. A closer look at the group's messages enabled us to identify 

the manager. By further examining the manager's focal group messages, we were able to verify 

that we indeed identified the entire unit. We used external web data (e.g., LinkedIn) to 

corroborate our findings.  At the end of the process we succeeded in extracting the 

organization's legal unit and identifying its manager. 

Our second task was identifying significant events that occurred over the period covered by the 

corpus, namely, week 32 of 2000 to week 9 of 2002. 
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The events we chose to relate to were: 

 A:  W:7 Y:2001 – Skilling appointed Enron CEO. 

 B:  W:33 Y:2001 – Skilling resigns, Lay reappointed CEO. 

 C:  W:42 Y:2001 – Inquiry launches. 

 D:  W:48 Y:2001 – Enron goes bankrupt, thousands of workers laid off. 

5. Results - Vitality and Satisfaction as Manifested in Enron's Email 

Towards achieving the desired results, we conducted the following experiments:  

First, we looked to evaluate vitality (V), which is an explanatory factor of engagement. We used 

the ratio between emails sent during off-work and work hours; i.e. 
WE

E
V 0  

Figure 2 shows vitality to be an explanatory factor for the group and the manager, indicating 

that vitality was significantly affected by the events. Prior to Skilling’s resignation and the 

Securities Commission inquiry, significant changes had occurred in employee vitality. An 

interesting observation concerns the manager’s level of vitality, which had changed about two 

weeks earlier than that of his/her group. This may indicate that the manager had access to 

information on the state and functioning of the organization that was unavailable to other 

employees.  

------    Insert Figure 2 about here    ------ 
 

The second experiment involved sentiment in the company. It analyzed the aggregated 

sentiments that came up in the emails, and studied them against the events listed above. Figure 

3, which measures satisfaction, shows how the events affected sentiment in the company.  As 

mentioned, event A denotes the appointment of a new CEO.  In situations where CEOs are 

dismissed due to major problems, one might expect uncertainty accompanied by a certain 

amount of hope for change and ultimately for better outcomes. As Figure 3 shows, negative 

sentiment increased in the organization during the adaptation period, but then gradually 

subsided and went below the starting point, implying that the new CEO was accepted as capable 
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of leading the company in a better direction.  However, once the CEO resigned due to increased 

pressure on the company, the reappointment of the former CEO (Event B) was not as successful, 

as members seemed to have lost hope, and were distrustful of this change. As the results 

indicate, sentiment never recovered before Enron finally crashed. 

------    Insert Figure 3 about here    ------ 
 

6. Discussion and Conclusion 

Schneider's claim (1987) that “the people make the place” remains as true as it was several 

decades ago. Understanding people's attitudes, intentions, and behaviors is therefore 

fundamental to cultivating better work processes and outcomes.  People's perceptions about 

their work and organization shape their behavior in the workplace, which in turn has 

implications for events that occur in their units and organizations, and for their functioning.  

Yet interpreting people's perceptions and behaviors is a complex task.  Conventional tools such 

as survey-based data collection to assess employee perceptions require substantial resources. 

What is more, they have limitations that call for caution in interpreting the data, since the 

information, being subjective, is often inflated and biased, and real-time assessment is seldom 

feasible. To address this issue, large companies such as Google® and IBM® have been 

developing data mining procedures, intended to equip organizations with less costly and more 

reliable tools that would enhance their understanding of their human resources and help manage 

them in a way that would improve the outcomes. Following this line of thought, the new 

approach of the present study proposes that organizations and researchers use data mining 

techniques (sentiment analysis and opinion mining) that would enable them to trace emergent 

patterns and evaluate changes in various human factors. This is done by modeling key 

performance indicators and defining their explanatory factors, manifestations and diverse 

corresponding digital footprints. We used the Enron email corpus as a case-in-point to 

demonstrate the feasibility of our approach by showing how digital footprints can serve to trace 
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satisfaction and vitality, which are explanatory factors of the engagement KPI. To determine 

employee satisfaction, we identified negative sentiment levels by period, indicating low 

satisfaction. To determine vitality, we analyzed the change in the ratio between off-work emails 

to working hour emails and identified changes in the employees’ vitality against critical 

company events. Although the feasibility test run on the Enron email corpus demonstrated the 

predictability of two manifestations relevant to the engagement KPI,  and was limited to a single 

digital footprint (e-mail correspondence), it confirmed that our method was potentially useful 

in  understanding and analyzing human factors within organizations.   

Our approach offers a reliable and convenient way to evaluate human factors by using digital 

sources and footprints available in any organization's information systems. Furthermore, it also 

enables an integrated view of numerous perspectives indicating levels of individual and group 

behaviors in organizations. By adopting this method, an organization enhances its capacity of 

tracing and predicting emerging behavioral patterns. This, in turn, enables the organization to 

engage in “preventive actions” or “promoting actions” that are capable molding behaviors 

towards a desired end. For example, tracking the way organization members come to accept a 

new management team could suggest what kind of messages should be communicated to the 

employees, to persuade them that the new strategic orientation is robust, and elicit further 

engagement in the new direction.  

While our approach and method offer some obvious advantages, one should also be aware of 

potential limitations or hurdles that could be encountered in their implementation. One critical 

issue regards members’ privacy. Concerns for privacy are liable to preempt the willingness and 

ability to implement the full model, thus impeding the full realization of our method's potential. 

We must therefore guarantee that the privacy of individuals and groups is meticulously 

preserved, by taking one or several of the following measures. First, the data should be extracted 

and analyzed in a way that would not expose individual identities, namely, data should carry 
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only technical identifiers and all personal identification must be deleted (see also Yuan, Sun & 

Lv, 2016).  Second, the data should be aggregated and avoid any reference to individual 

members Third, the analysis and presentation of the results should focus on patterns of 

behaviors rather than on exact numerical values. Fourth, instead of content-based processing, it 

is recommended that organizations and researchers adopt technical text-based processing, 

similar to anti-virus or fraud detection programs that search for patterns in the text rather than 

explore its content.       

Further research is required to substantiate the assumption that digital data analysis provides 

equally reliable results as traditional subjective survey reports. While we conducted a test of 

principle that showed feasibility for one specific element, future research should further explore 

this method.  Scholars in a variety of fields have used proxies to evaluate socio-psychological 

concepts (e.g., "rewards are viewed as proxies for goals/targets and outcomes", see Samnani & 

Singh, 2014). However, these proxies should be employed with caution as a systematic analysis 

is required, to assess the relationship between a proxy and the behavior it aims to capture.   

Three key avenues should be explored in future research.  The first involves a systematic 

examination of all theoretical factors to support each with a corresponding model.  Second, 

each model should be examined in different environmental settings such as knowledge-

intensive organizations, public sector organizations, and non-governmental organizations.  

Finally, for a more robust evaluation of the power of our approach and method, the model 

findings should be examined against annual surveys conducted in different organizations. 
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