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1 | INTRODUCTION

Summary

Detecting falls in the elderly population is a very important issue that is related with
the time of recovery. This study focuses on using wearable smart-watches to monitor the
movements of the user in order to detect patterns that might be related to fall events.
The proposed solution explores Symbolic Aggregate approXimation (SAX) Time Series
representation, together with two Information Retrieval techniques enriched with Transfer
Learning (TL). The solution is user-centred, that is, a model is developed for each specific
user. Basically, the fall detection approach makes use of a finite state machine to detect
peaks; the time series window embedding these peaks are represented using SAX. Assum-
ing the data from the public fall detection data sets as valid, a dictionary is prepared
using the most relevant words. This dictionary is then introduced as previous knowledge
to a on-line learning classifier that is trained with normal Activities of Daily Living. The
two classifiers are evaluated and compared with two classical approaches. Before this com-
parison, two clustering approaches are studied to produce the bag of relevant words. A
complete experimentation is included, which makes use of several publicly available data
sets and also with a data set developed by the research group. Comparisons are performed
for all the data sets, showing how the TL stage empowers the classifier. Results show this
solution produces high detection rates, while at the same time performed similarly for all
the individuals tested. Furthermore, the positive effects of TL in this context are clearly

remarked.
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Fall detection is still a challenge concerning to the elderly population |Willy and Osterberg|(2014). The performance of the fall detection devices,

in their different nature and applications, shows a relatively high number of false alarms or, even worse, unidentified fall events. As a consequence,

these alarming devices are considered annoying, costly and worthless.

Fall Detection is a very challenging research topic that has attracted the focus for several years. Solutions are very specific to the focused

population as the level of activity varies from one to another. In general, the smaller the amount of movement, the more difficult the FD is. One

of these groups is the elderly population; the activities are, in general, weaker and softer. For instance, as the elderly people walk slowly, the

O Abbreviations: 3DACC, triaxial accelerometer; Acc, Accuracy; ADL, Activities of Daily Living; CART, Classification and Regression Trees; DA, Discriminant
Analysis; DT, Decision Trees; FD, Fall Detection; FN, False Negative; FP, False Positive;FSM, Finite State Machine; IDF, Inverse Document Frequency; KNN,
K-Nearest Neighbour; LR, Logistic Regression; NN, Neural Network; OSVM, One-class Support Vector Machines; RS, Rule set; SAX, Symbolic Aggregation
Approximation; Sen, Sensitivity; SVM, Support Vector Machines; TF, Term Frequency; TH, threshold; TL, Transfer Learning; TN, True Negative; TP, True

Positive; TS, Time Series;
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measurements in the waist get reduces, and the arms movement range is shorter. Even the commercial devices for elder perform with a relatively
high false positive rate |Roberts|(2018).

There are many different techniques and solutions for fall detection. The wide variety of solutions includes in-mattress sensors to detect falls
when uprising from the bed, smart tiles in intelligent homes, on-waist wearable sensors, video surveillance, etc. Interested readers are referred to
Chaudhuri, Thompson, and Demiris|(2014); |Delahoz and Labrador|(2014); [Igual, Medrano, and Plaza|(2013); |Khan and Hoey|(2017) for a complete
review on the topic.

This study focuses on on-wrist 3DACC wearable devices to detect the FD. In this context, the majority of the published studies on this topic
focus on either the method (combination of pre-processing and modelling techniques) or in the design of the sensor or sensor network, or in both
of them (sensor network and FD method). Basically, the FD is performed using a peak detection method followed by a classification stage that
labels a set of transformations extracted from the current data window. Alternatively, a classifier continuously monitors the TS to detect a possible
fall event.

By far, 3DACC is the most common sensor used in wearable FD systems, in some cases combined with other sensors (such as gyroscopes or
inertial sensors) or independently. The most common locations are the waist (which is not affected by the relative movements of the arms and
mainly used with reduced movement people) or a wrist (which can be deployed on smart bands); some of the approaches also make use of the front
pocket of trousers. The most relevant studies with 3DACC wearable FD solutions are included in Table [1} This table specify the sensory system

and its location, the event detection method proposed in the study and the ML method. I-P refers to the proposal shown in |Kangas et al.|(2012).

In this table a distinction is made between generalized and used-oriented solutions. User-oriented solutions only make use of the data gathered
from the current user. They all need a specific training and testing stage to evaluate the performance of the fall detection method. On the other
hand, generalized solutions make use of all the data gathered from a set of users and propose a solution that can cope with FD for a user from the
focused population. User-oriented solutions have the drawback that it is almost impossible to train with fall event data but learning the behaviour
of the user might lead to a better set up of the models in order to detect a fall event.

In this research we propose the use of Transfer Learning to enhance an on-line user-centred learning solution’s performance. On-line learning
allows the classifier to continuously learn from errors, while TL incorporates the knowledge gather from previous experiences of other users. We
propose using SAX to represent the TS, and a classifier uses the Manhattan distance instead of the cosine distances as proposed in |Senin and
Malinchik (2013). The evaluation of the TL and the classifier is done with two publicly available realistic fall detection data sets. Furthermore, a
comparison with up-to-date methods have been done using a new data set gathered with ADLs from three participants and falls of a life-saving
training mannequin.

This study is organized as follows. The next Section describes i) the data sets that will be used in this research, ii) the FD method that is proposed
in this research and iii) the experimental setups that will be used to test the proposal. Section is devoted to show and discuss the obtained results
from the experimental setups. Finally, the document ends with the Conclusions.

2 | MATERIAL AND METHODS

2.1 | Data

Two main sources of data sets have been used in this research. On the one hand, standard publicly available data sets were used to evaluate the
performance of the methods evaluated in this study. On the second hand, a new ad-hoc data set was gather mixing data gathered from participant
and from a dummy.

The data sets include instances with TS for each of the acceleration components (ay, ay, a,). The magnitude of the acceleration was computed
a = /a2 + aZ 4 aZ. Each magnitude TS was labelled as FALL or NOT_FALL according to whether the TS includes data from a real fall or not.

2.1.1 | Publicly available data sets
There exists a compilation of data sets related with FD and wearable devices that was published in |Casilari, Santoyo-Ramon, and Cano-Garcia
(2017a). In this research, up to twelve publicly available data sets were introduced; all of them included ADL and simulated FD when the participants
wore 3DACC sensors located on different body parts. Moreover, a new data set of similar characteristics has also been published |Sucerquia, Lopez,
and Vargas-Bonilla|(2017).

In this study we have chosen two of these TS datasets. These data sets have been chosen because they include 3DACC sensor placed on a
wrist, which is the solution that is being studied in this research. The data sets are:
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UMA Fall data set |Casilari, Santoyo-Ramon, and Cano-Garcia (2017b) : 17 participants for a total of 531 TS (208 of them are labelled as FALL).

The sampling frequency is 20 Hz. Includes forward, backward and lateral falls, running, hopping, walking and sitting.

TST |Gasparrini et al.{(2016) : 11 participants for a total of 264 TS (132 of them labelled as FALL). The sampling frequency is 100 Hz. Includes

forward, backward and lateral falls. Two 3DACC sensors are used, one on the waist and one on the right wrist.

The design of these data sets differs. On the one hand, the performance of the ADLs for the UMA Fall are stronger than for TST. On the other
hand, the distribution of the repeated ADL and simulated falls were different: in the case of the UMA Fall, there is neither a common number of
activities and fall simulations nor the same number of repetitions; while in the case of the TST, all the participants performed the same activities
more or less the same number of repetitions.

Because the variability in the number of TS associated to the participants in each of the data sets, participants with less than 20 TS or that did

not include 9 simulated falls at least were omitted from the experimentation.

2.1.2 | A new mannequin-based fall detection data set

Analyzing the information published about the available FD data sets and how the data were gathered, there is a reasonable doubt that the fall
events can represent real falls. That is the reason in this research we call these events as simulated falls. The point is that the participants fell on
a mattress and tried to remain as quiet as possible. Also, the way of falling differs from the typical falls. Therefore, a new data set using a SDACC
has been elaborated. To gather the data, a marketed smart-watch with a 3DACC sensor and a sampling frequency of 100 Hz was used.

Three members of the research team wore this smart-watch for a period of one day in their normal life; the aim was to capture data from ADL.
These time series correspond to activities of daily life (ADLs) like: Office work, daily household activities, driving, walking, running and other types
of exercises (push-ups, etc.).

Moreover, a standard rescue-training mannequin has been used to produce this data set; the dummy has the dimensions and weight equivalent
to an adult person -see Fig.[T)-. The reason of using this dummy is to mimic real falls, without the fear of injuring; however, this data set has a
drawback: it is impossible to mimic the erratic movements a human typically makes after a fall.

This data set focuses on two types of falls, although both falls were labelled as FALL:

Fainting : where the person vanishes or faints. The following procedure was performed in order to capture this type of falls: i) the dummy starts
in sitting position on a chair; ii) it is lifted by two members of the research team; iii) when fully up in front of the chair, it is dropped to the

ground, producing an acceleration peak, iv) five seconds later the procedure ends.

Falls : mimicking an accidental fall. The following procedure was performed in order to capture this type of falls: i) the dummy starts in sitting
position on a chair; ii) it is lifted by two members of the research team; iii) they walk the dummy one and a half meter, while moving the wrist

with the sensor as similar as human do; iv) the dummy is plunged forward, falling to the ground; v) five seconds later the procedure ends.

The data gathered from each detected acceleration peak consist of a 7500 ms TS windows with the 3-axis acceleration data and the corre-
sponding label. After the experimentation, the obtained dataset consists of 1072 time series of NOT_FALL 3DACC values and 87 time series of
FALL 3DACC values, of which 45 are fainting and 42 are falls. Examples of these windows are depicted in Fig. [2} From now on, we will refer to
this data set as FallOVI.

2.2 | Methods

2.2.1 | Peak detection

The same peak detection and feature extraction from |Abbate et al.[(2012); [Khojasteh et al.|(2018) is proposed in this study. A very simple finite
state machine is used to detect the falls - see Figure [3]-. The data gathered from a 3DACC located on the wrist is processed using a sliding window.
A peak detection is performed, and if a peak for a fall-like event is found, the data within the sliding window is analyzed to extract several features
which are ultimately classified as FALL or NOT_FALL. The FD block is performed with a clustering + classification approach. In |[Khojasteh et al.
(2018) it was claimed that the lower the computational cost the better as it must be run in the WD.

Each sliding window is transformed to a set of variables.-refer to Fig. . Let’s assume that the gravity is g = 9.8m//s. Given the current timestamp
t (please, refer to Fig. E) we search a peak at peak time pt = t — 2500ms (point 1). If at time t = pt the magnitude of the acceleration a; (computed
as ar = 4 /a3 + a2, + aZ) is higher than th; = 3 x g and there is no other peak in the period (t — 2500ms; t] (no other a; value higher than th;),
then it is stated that a peak occurred at pt.

The impact end ie (point 2) denotes the end of the fall event; it is the last time for which the a: value is higher than th, = 1.5 x g. Finally, the

impact start is (point 3) denotes the starting time of the fall event, computed as the time of the first sequence of an a; <= ths (th3 = 0.8 x g)
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FIGURE 1 Left) Rescue-training mannequin before fall, right-botton) Rescue-training mannequin after fall, right-top) the marketed smart-watch

followed by a value of a; >= th,. The impact start must belong to the interval [ie — 1200 ms, peak time]. If no impact end is found, then it is fixed
to peak time plus 1000 ms. If no impact start is found, it is fixed to peak time.
The following features are calculated whenever a peak is found:

e Average Absolute Acceleration Magnitude Variation, AAMV :Zite:is w with N the number of samples in the interval.
e Impact Duration Index, IDI = impact end — impact start.

e Maximum Peak Index, MPI = max;¢ i ie] (at)-

e Minimum Valley Index, MVI = min¢is_500,i¢] (at)-

e Peak Duration Index, PDI = peak endtime — peak starttime, with peak start defined as the time of the last magnitude sample below
thpp) = 1.8 x g occurred before pt, and peak end defined as the time of the first magnitude sample below thpp; = 1.8 x g occurred after pt.

o Activity Ratio Index, ARI, calculated as the ratio between the number of samples not in [thariiow = 0.85 X g, thariihigh = 1.3 X g] and the

total number of samples in the 700 ms interval centred in (is + ie) /2.

o Free Fall Index, FFI, the average acceleration magnitude in the interval [tgg, pt]. The value of trg is the time between the first acceleration
magnitude below thgr = 0.8 x g occurring up to 200 ms before pt; if not found, it is set to pt — 200ms.



Mirko Faiiez et al | s
@ Not fall 3DACC time series Fall 3DACC time series =
=N =]
2" g
= =)
P =
= o
E - =
g | | I I | e | I I | E
o ] 2000 4000 6000 a00a 0 2000 4000 6000 a000 E
= Peaktime (ms) Peaktime (ms) AL

FIGURE 2 FALL vs NOT_FALL time series comparison
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FIGURE 3 The finite state machine proposed in |Abbate et al.|(2012). Once a peak is detected, then a calm period must follow; any peak restarts
the timer. After this calm period is found, if a new period of relatively calm occurs that means the data needs to be analyzed in order to determine
if the peak is a fall.

e Step Count Index, SCI, measured as the number of peaks in the interval [pt — 2200, pt].

Once a peak is found, then the features are computed for the current sliding window and these features are the inputs to a classifier, which
should determine if it is a fall or not.

2.2.2 | Time Series representation and threshold determination

Following the literature in FD, this study makes use of the acceleration raw data |Abbate et al.| (2012); |Khojasteh et al.| (2018), despite a
standardization of the data might be required at any moment when modelling.

Furthermore, we propose the use of Symbolic Aggregation approXimation (|Lin, Keogh, Lonardi, and Chiu|(2003)) to obtain a word representation
of the peak window. The SAX words are the basis of the classifying method and of the transfer learning proposed later on this study.

Finally, each TS representation needs its specific set of thresholds. Consequently, three different strategies are proposed in this study to
determine the thresholds and to compute the SAX representation:

o origTSorigTH: raw TS and the original thresholds proposed in |Abbate et al.|(2012) are used to detect the peaks and to compute the features.
When modelling with SAX the peak window is standardized using its mean and standard deviation.

e normISnormTH: the TS and the acceleration thresholds are standardized using the mean and standard deviation calculated with the ADL's
TS for the current participant. The original thresholds proposed in |Abbate et al.[(2012) are, thus, normalized with these statistics.
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FIGURE 4 The peak detection process. A peak is detected as the last acceleration measurement higher than th; followed by a period of 2500 ms
without any further peak.

o normISscldTH: the TS are standardized using the mean and standard deviation calculated with the ADL's TS for the current participant but
the thresholds are scaled. In this case, the peak threshold thi°™ is determined as a percentage of the maximum peak value for any fall in the
dataset (more specifically, 0.9 x min(max;cpaLL (TS;))); the remaining acceleration-based thresholds are obtained by scaling the thresholds
in |Abbate et al.|(2012) using the peak threshold as reference: thfo™ = thfbbate , thnorm /¢p/Abbate,

As a summary, for each strategy, a detected peak is characterized with the 8 features and a SAX word and a label (FALL or NOT_FALL). The 8
features will be used later by the state-of-the-art classifiers that will be used for comparison purposes. The SAX word is used in the proposal of
this study.

2.2.3 | The SAX based TF-IDF classifier

The classification is based on the classical Information Retrieval TF-IDF measurements and SAX; the basis of the classification were proposed in
Senin and Malinchik|(2013). The term frequency is computed using Eq. |1} while the inverse document frequency is calculated using Eq. [2| Basically,
there exists a dictionary of relevant words, each word has the TF-IDF value for each of the labels FALL and NOT_FALL.

0 freq(w, label) = 0
TF(w,label) = (1)
1 + log freq(w, label) otherwise
|D|
|{label € D/w € label}|’
In this case, there exist a dictionary of relevant words obtained from training with the current user. This training should consist of TS coming

IDF(w, D) = log (2)

from ADL's the user carries on during the training stage. If available, data will be transferred from previous experience of other users (see the next
section covering this topic). To classify an incoming word w, if the w is included in the dictionary then the label with higher TF-IDF measurement is
proposed. Otherwise, the closest word from the dictionary to w is retrieved and the label is assigned according to its TD-IDF values. To measure the
distances between words the Manhattan distance is used (Eq. ; where wi and w; are two SAX words of the same length. Thus, the Manhattan
distance function measures the distance between each pair of SAX symbols, so the distance between a and b is 1, while the distance between a

and d is 3. The distance between two SAX words is measured as the sum of the distances between the symbols, so the distance between aabba
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and daabais 3+ 0+ 1 + 0 + 0 = 4. In this algorithm, the centroids are determined as the word with the minimum distance to the words of the
cluster. From now on, we will refer to this classifier as SAX-MAN.

dist(w1,w2) = Z lwi,; — wal. (3)
i

A second classifier is proposed as well. In this case, the min_dist distance proposed in SAX. To classify an incoming word w, if the w is included in
the dictionary then the label with higher TF-IDF measurement is proposed. Otherwise, all the words in the dictionary with a distance to w smaller
than a given threshold (thgistance) are retrieved. The TF-IDF measurements for each class are aggregated using the maximum; as before, the label
with the final higher TF-IDF value is proposed. Finally, if no word is retrieved the FALL label is proposed. The distance measurement used in this
study is the mingist distance from SAX [Lin et al.|(2003); the thyistance is set to 15. We will refer to this classifier as TF-IDF.

2.2.4 | Learning the classifier and Transfer Learning

This study assumes the user of this FD solution must carry on with a short training stage in which the user performs with his/her normal life during
a period of time; no fall event is considered during this short period. The gathered data from this ADLs is processed in order to detect peaks; these
peaks generates the SAX words for the training. All these words are used in the generation of the bag of relevant words to compute the TF-IDF,
which in turn is used for the classification.

If no more data is available, the classifier has to work with the small size bag of words. However, the performance of the classifier can be greatly
improved if data is available from other users ADLs and falls, especially if the falls come from the same population (say, normal healthy elderly
people).

For this reason, this study proposes to use TL from currently available data. The idea is to prepare a bag of relevant words from all the participants
in the data set. Each detected peak generates a word, which is assigned with a label (either FALL or NOT_FALL). Together with the training data
from the current user, an adaptation of the K-means algorithm is used to determine the most relevant words: the words that represent the centroids
are those relevant words.

It is worth noticing that this bag of relevant words is obtained once the training stage has been completed, considering the data from the current
user. For sure, the bag of words could have been calculated in advance and then the new words could have been added, but this method might
introduce noise to the clustering and, consequently, to the TF-IDF classifier.

Algorithm [I]shows the clustering algorithm used in determining the bag of relevant words. The Manhattan distance function has been use in
measuring the differences among two words (see Eq. [3). It is worth noticing that the Manhattan distance is used in both the TL and the SAX-MAN

classifier; these relationships must be kept to keep the coherence between the both parts. From now on, this clustering is referred as ALL-LABELS.

Algorithm 1 Pseudocode of the adaptation of K-means to cluster SAX words
Set the value of k
Set the initial assignment of each word w to a clusters c,,

Determine the k centroids
Set the maximum number of iterations maxlter
Set reassignment to TRUE
while reassignment is TRUE and maxlter > 0 do
Set reassignment to FALSE
Decrement maxlter in 1
for each word w do
Determine the nearest centroid to w, c{e¥
if cw different than ¢ then
Set reassignment to TRUE
end if
cw = ¢y
end for
Determine the k centroids
end while
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When determining the centroids, the values of the counters should also be updated. To do so, the counters for each label are determined as
the aggregation of all the words belonging to the cluster. However, this aggregation of the counters could lead to a masquerading of the minority
label. For instance, if we consider three words (with counters < F: 10,NF : 1 >, < F: 7,NF : 0 > and < F : 0, NF : 3 >) that form a cluster, the
aggregations would become < F : 17, NF : 4 >. In this case, the NOT_FALL label is masqueraded. To overcome with this problem we propose a
second clustering arrangement: the idea is to group the words belonging to each label independently.

Therefore, the TL available words are split according to their label, and then grouped using the same algorithm. Once finished, the centroids
are aggregated in a single bag of relevant words, the counters of common words are aggregated. For instance, if a word wgai is only included in
the FALL clustering, then its counters will be < F : X, NF : 0 >. Conversely, a word wyot faLL included in the NOT_FALL clusters would have
counters as < F : 0, NF : Y >. However, a word that has appeared as a centroid in both clusters will have countersas < F : X, NF : Y >. In all the

cases, X and Y represent positive values. This clustering schema is referred as BY-LABEL.

2.3 | Experimental set up

There are two main experiments: i) a set of experiments to evaluate the performance of the method, this set makes use of the publicly available
data sets; ii) a set of experiments to evaluate the method with totally new data, so to mimic real scenarios. For this latter experimentation set the

new data set delivered in this study was used.

2.3.1 | Evaluation of the performance of the method

To evaluate and to compare each proposed method with other similar solutions the UMA Fall and the TST data sets are used, considering all the
participants in a single data set. Furthermore, in order to compare the proposed solutions (SAX-MAN and TF-IDF, with and without TL) two state-
of-the-art methods are used: KNN (following the ideas proposed in |Abbate et al.[(2012)) and SVM (following the ideas propose in |Khojasteh et:
al. (2018)).

Because of the TL, the clustering described in the previous section should be performed. Therefore, it is needed to choose the best clustering
approach and the number of clusters. To define the best number of clusters and the best clustering approach a set of values was evaluated: {30,
40, 50, 60, 70, 80, 90, 100, 110, 120} clusters. For each number of clusters we performed the ALL-LABELS clustering; Algorithm describes the
experimentation carried out to evaluate the method. This algorithm i) prepares the TL for the current participant, ii) learns the classifier using the
training data, iii) evaluates the classifier on the test data set. The results with the SAX-MAN classifier are used to evaluate the candidate number

of cluster.

Algorithm 2 Pseudocode for the evaluation of the method'’s performance

Obtain classical comparison models: SVM & KNN
for each participant p do
Determine the TL without considering participant p
for each fold f do
Extract the training instances {TSfrai"f};\‘K‘OTfFALL
Learn the model M with the instances
Extract the testing instances D = {TSTSStf}Il\‘EOT*FAL" U{TSI}TEALL
for each instance | in D do
Classify | using the learned model
Update M with the correct label of |
end for
Evaluate SVM & KNN on D
end for
end for

To evaluate a participant p from the data set, first, the TL stage is carried out with the data from all the participants in the data set but participant
p. Let’s call NEALL and NKIOT eaLL the number of TS labelled as FALL and NOT_FALL, correspondingly, gathered for participant p. Secondly, 5x2

NP p
cross validation (5x2 cv) is performed only for the TS labelled as NOT_FALL ({TSP'}, NOTFALY) while all the TS labelled as FALL ({TSf’}’l\‘F“LL }) are
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kept for testing. Therefore, the training folds include only ADL data, while the test folds include both ADL (labelled as NO_FALL) and fall events
(labelled as FALL).

Finally, the training takes place. This training can be carried out with or without the TL knowledge, so it is possible to compare how the TL
affects the model. Afterwards, the learned model is evaluated with each instance in the test fold. The results for each instance of the test fold
will be stored to compute the standard classification measurements: Accuracy, Kappa Factor, Sensitivity, Specificity and F1. As a summary, each
participant will have a 5x2 cv on the ADL data, training without and with the TL. The testing fold will include all the participant’s FALL instances.

After choosing the optimum number of clusters, the remaining options were compared. Firstly, the same algorithm and number of clusters
was run with the BY-LABEL clustering and the SAX-MAN classifier. This experiment would lead to choose among the two clustering strategies.
Secondly, the same algorithm and number of clusters using the best clustering strategy was performed for the TF-IDF classifier. After all these
experiments, the best configuration will be obtained.

2.3.2 | Evaluation using the FallOVI data set

The point of this experimentation is to evaluate how the proposal performs when facing different participants, with no established protocol of
ADLs and falls, with different sensors, etc. Because the current approach is user-centred, the comparison can only be performed with published
solutions considering this type of modelling. To our knowledge, only an already published study developed a user-centred solution [A. K. Bourke
et al.[(2016), while the remaining studies developed a generalized model obtained with data from all the participants. Nevertheless, the method
published in |A. K. Bourke et al.[{{2016) made use of 3DACC together with a gyroscope. Unfortunately, none of the available data sets includes data
for the gyroscope; therefore, this solution cannot be used in the comparison.

Here, also the two well-known methods KNN and SVM are computed to compare the results of TL. The FallOVI data set will be used, splitting
the samples in as follows. The three participants will be considered independently, the data from these participants include only ADL. The simulated
falls will be considered as the fall data for each participant. Let's denote as {TSgaLL} the TS gathered from the simulated falls. Let’s also denote
{TS;} the TS gathered for participant p. Then, the Algorithm describes the process. The best configuration found in the previous experimentation
will be used.

Algorithm 3 Pseudocode for the evaluation with FallOVI
Determine the TL with UMA Fall | TST
Obtain classical comparison models: SVM & KNN

for each participant p do
for each fold f do
Extract the training instances { TSy}
Learn the model M with the instances
Extract the testing instances D = {TS;™"} U{TSkaLL}
for each instance | in D do
Classify | using the learned model
Update M with the correct label of |
end for
Evaluate SVM & KNN on D
end for

end for

The evaluation of each model with each fold will be compared using the same standard classification measurements used before: Accuracy,
Kappa Factor, Sensitivity, Specificity and F1. As a summary, each participant will have a 5x2 cv on the ADL data, the testing fold will include the

FALL instances from the mannequin. For each participant two learning cases will be considered: learning the model without TL and learning with TL.

3 | RESULTS AND DISCUSSION

The results are divided in the two experimental setups describe before: the evaluation of the classifier using standard data sets and, on the other
hand, the evaluation of the classifier with the FallOVI data set.
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FIGURE 5 Screen plot using the aggregation of the FALSE NEGATIVE (FN) values. In black/blue/red the performance for the norml-
SnormTH/normTSscldTH/origTSorigTH scenarios, respectively.

3.1 | Classification results using standard data sets

Results from this experimental set up includes:

the aggregation of the confusion matrix for all the participants in the data sets to determine the best number of clusters in Table [2]and Fig.

Bl

comparison of the two clustering approaches using the aggregation of the confusion matrices in Table [3]

for each scenario, the aggregation of the confusion matrix among the folds in Table [and Fig. [8lusing the SAX-MAN with and without the
transfer learning, KNN and SVM classifiers,

the mean and standard deviation of the Accuracy and the Sensitivity of the SAX-MAN classifier with and without the transfer learning, KNN
and SVM classifiers for each scenario and participant from the TST and UMA Fall data sets in Tables (normTSnormTH), E](normTSscIdTH)
and [7[origTSorigTH).

for each scenario, the aggregation of the confusion matrix among the folds in Table [8]and Fig. [7]using the TF-IDF classifier with and without
the TL, KNN and SVM classifiers,

the mean and standard deviation of the Accuracy and the Sensitivity of the TF-IDF classifier with and without the transfer learning, KNN
and SVM classifiers for each scenario and participant from the TST and UMA Fall data sets in Tables E](normTSnormTH), (normTSscldTH)
and [LTJorigTSorigTH).

The criteria to choose the best number of clusters is the number of undetected alarms (measured with the aggregated number of FN) as long

as this value is critical in deploying a FD system. Therefore, we analysed the results in Table [2]for three scenarios at the same time using the
SAX-MAN classifier and the ALL-LABELS clustering method (the screen plot in Fig. . We choose the value of 60 as the best number of clusters
candidate as this value as long as it enhances the normTHscldTH performance while doing well enough in the remaining scenarios.

With this number of clusters, we proceeded to compare the two clustering methods (ALL-LABELS and BY-LABEL) in Table [3| Clearly, the ALL-
LABELS clustering outperforms the BY-LABEL method; therefore, from now on we continue the experimentation using the ALL-LABELS clustering

with 60 clusters.
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FIGURE 6 The evolution of the ratio FP/(TP + TN + FP + FN) when using the SAX-MAN classifier for each participant. In black/blue/red the

ratio for the normT SnormTH/normTSscldTH/origTSorigTH scenarios, respectively.

It is worth noticing from Table the effect of TL in the performance of the SAX-MAX classifier. Although there are some exceptions, it is clear
the improvement in the results of the classifier when TL is used. And what is more surprising is the competitive results obtained when using raw
data (origTSorigTH scenario), with reduced aggregated FN and similar aggregated FP than the also successful normTSnormTH scenario. Besides, the
KNN and SVM show quite similar performance in the first and second scenarios. WRT KNN, the following noteworthy points can be commented:
i) the high rate of false alarms (FP), ii) the detection of nearly all the fall events, but in scenario normTSnormTH where it can be found several fails
in UMA Fall dataset. On the other side, SVM outperforms KNN respect the negative samples (TN and FP). In addition, it can be stated that KNN
shows similar number of false alarms (FN) than SAX-MAN+TL, while SVM outputs also the similar number of false ADLs (FP) than SAX-MAN+TL.
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TABLE 1 Summary of fall detection approaches in the literature. Ref: the reference, Sensor: type of the sensor, SP: sensor placement, ED: event

detection method, MM: modelling method, G/UB: generalized versus user-based modelling.

Ref Sensor SP ED MM G/UB
Abbate et al|(2012) 3DACC Waist FSM NN Generalized
Bianchi, Redmond, Narayanan, Cerutti, and LoveIIHZOlOb 3DACC + Wrist TH + If-Then rules Generalized
Air pressure TIME
IA. Bourke, O'Brien, and Lyons|42007b 3DACC Wrist + TH If-Then rules Generalized
Thigh
A. K. Bourke et al|(2016) 3DACC + Waist TH cas Generalized
Gyroscope
|Casi|ari and Oviedo-Jiminez| 42015b 3DACC + Wrist + TH RS User-Based
Gyroscope Pocket
Deutsch and Burgsteiner| 42016b 3DACC Wrist TH NN Generalized
Gjoreski, Bizjak, and Gams| 12016 3DACC Wrist TH RS Generalized
Hakim, Huq, Shanta, and Ibrahim 12017} 3DACC Wrist TH kNN, DT Generalized
SVM, DA
|Huynh, Nguyen, Irazabal, Ghassemian, and Tran| 42015b 3DACC + Wrist TH If-Then rules Generalized
Gyroscope
|Igua|, Medrano, and Plaza| 42015b 3DACC Waist or NN or Generalized
Pocket SVM
Uatesiktat and Ang|(2017) 3DACC + Waist TH SVM Generalized
Gyroscope +
Barometer
Kangas, Konttila, Lindgren, Winblad, and JémsaéHZOOSb 3DACC Waist TH RS Generalized
Kangas et al. (2012) 3DACC Waist TH RS Genealized
Khojasteh, Villar, Chira, Gonzalez, and de la CaIHZOle 3DACC Wrist TH NN, SVM Generalized
DT, RBS
Kostopoulos, Nunes, Salvi, Deriaz, and Torrent| dZOle 3DACC Wrist TH RS Generalized
Medrano, Plaza, Igual, Sdnchez, and CastrOHZOlép 3DACC Pocket - NN, SVM Generalized +
kNN model fitting
3DACC Wrist - SVM Generalized
kNN
Putra, Brusey, Gaura, and Vesilo|(2018) 3DACC Chest + FSM SVM, LR, Generalized
Thigh kNN, CART,
1+P
|Sabatini, Ligorio, Mannini, Genovese, and Pinna| 42016b 3DACC + Wrist - RS Generalized
Gyroscope +
Barometer
|Sorva|a, Alasaarela, Sorvoja, and MyIIyIaHZOle 3DACC + Waist + - RS Generalized
Gyroscope + Ankle
|Tsinganos and Skodras| 42017b 3DACC Wrist FSM kNN Generalized
Waist +TH
F. Wu, Zhao, Zhao, and Zhong] (2015 3DACC Wrist - RS Generalized
Zhang, Wang, Xu, and Liu|12006p 3DACC Waist TH OSVM Generalized
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TABLE 2 Selection of the number of clusters using the ALL-LABELS clustering and the SAX-MAN classifier. Aggregation of the confusion matrix
results for all the participants.

normTSnormTH
Num Cluster TN TP FP FN
30 105 1412 125 48
40 97 1424 133 36
50 101 1419 129 41
60 101 1422 129 38
70 93 1429 137 31
80 101 1412 129 48
90 99 1418 131 42
100 99 1414 131 46
110 99 1409 131 51
120 97 1397 133 63
mean 99.2 1415.6 130.8 44 4
normTSscldTH
Num Cluster TN TP FP FN
30 84 1457 159 82
40 73 1462 170 77
50 76 1460 167 79
60 78 1470 165 69
70 90 1458 153 81
80 80 1457 163 82
90 86 1463 157 76
100 78 1464 165 75
110 79 1448 164 91
120 81 1449 162 90
mean 80.5 1458.8 162.5 80.2
origTSorigTH
Num Cluster TN TP FP FN
30 75 1437 155 23
40 76 1432 154 28
50 84 1425 146 35
60 82 1427 148 33
70 83 1432 147 28
80 83 1434 147 26
90 83 1426 147 34
100 88 1420 142 40
110 88 1428 142 32
120 84 1420 146 40
mean 82.6 1428.1 147.4 31.9

TABLE 3 Selection of the clusters method using the SAX-MAN classifier. Aggregation of the confusion matrix results for all the participants.

normISnormTH
Cluster Method TN TP FP FN
ALL-LABELS 101 1422 129 38
BY-LABEL 122 1355 108 105
normTSscldTH
Cluster Method TN TP FP FN
ALL-LABELS 78 1470 165 69
BY-LABEL 107 1388 136 151
origTSorigTH
Cluster Method TN TP FP FN
ALL-LABELS 82 1427 148 33
BY-LABEL 90 1392 140 68
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TABLE 4 Results obtained for the standard data sets. Evaluation of the SAX-MAN, SAX-MAN + TL, KNN and SVM classifiers. Aggregation of the

results from the confusion matrix for all the scenarios and methods. TL stands for transfer learning.

normTSnormTH
SAX-MAN SAX-MAN + TL KNN SVM
source pariD| TN TP FP FN |TN TP FP FN |TN TP FP FN |TN TP FP FN
TST 1 0 40 3 13 |0 53 3 0 0 53 3 0 0 51 3 2
TST 2 0 60 O 0 0 56 O 4 0 57 0 3 0 60 O 0
TST 3 17 40 2 20 | 7 60 12 O 2 60 17 O 8 58 11 2
TST 4 0 42 4 18 |0 60 4 0 0 60 4 0 0 57 4 3
TST 5 27 34 O 16 |12 49 15 1 3 50 24 O 11 48 16 2
TST 6 0 5 0 0 0 5 0 0 0 5 0 0 0 55 0 0
TST 7 0 60 O 0 0 60 O 0 0 60 O 0 0 60 O 0
TST 8 0 57 3 10 | O 67 3 0 0 67 3 0 0 66 3 1
TST 9 0 52 0 0 0 52 0 0 0 52 0 0 0 52 0 0
TST 10 0 35 7 25 1 59 6 1 0 60 7 0 0 57 7 3
TST 11 0 60 O 0 0 60 O 0 0 60 O 0 0 60 O 0
UMAFall 1 30 57 O 38 |15 94 15 1 3 95 27 O 12 91 18 4
UMAFall 2 0 60 O 0 0] 59 0 1 (0] 60 O 0 0 60 O 0
UMAFall 3 43 45 O 45 |25 87 18 3 6 88 37 2 21 84 22 6
UMAFall 4 5 47 2 27 |5 68 2 6 0 69 7 5 2 69 5 5
UMAFall 9 0 56 3 37 | O 90 3 3 0 91 3 2 0 88 3 5
UMAFall 12 14 11 1 20 |11 30 4 1 1 31 14 O 6 28 9 3
UMAFall 15 10 30 4 15 10 44 4 1 1 45 13 O 4 4 10 1
UMAFall 16 39 221 O 51 15 262 24 10 | 5 263 34 9 19 266 20 6
UMAFall 17 14 28 2 35 | O 57 16 6 1 58 15 5 5 58 11 5
| normTSscldTH
TST 1 6 30 O 30 | O 57 6 3 0 60 6 0