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Abstract

Artificial intelligence (AI) techniques implemented at a large scale in intelligent trans-

port systems (ITS), have considerably enhanced the vehicles' autonomous behaviour

in making independent decisions about cyber threats, attacks, and faults. While, AI

techniques are based on data sharing among the vehicles, it is important to note that

sensitive data cannot be shared. Thus, federated learning (FL) has been implemented

to protect privacy in vehicles. On the other hand, the integrity of data and the safety

of aggregation are ensured by using blockchain technology. This paper applied classi-

fication approaches to VANET and ITS cyber-threats detection at the vehicle. Subse-

quently, by using blockchain and by applying an aggregation strategy to different

models, models from the previous step were uploaded in a smart contract. Lastly, we

returned the updated models to the vehicles. Furthermore, we conducted an experi-

mental study to measure the effectiveness of the proposed prototype. In this paper,

the VeReMi data set was distributed in a balanced manner into five parts in the

experimental study. Thus, classification techniques were executed by each vehicle

separately, and models were generated. Upon the aggregation of the models in

blockchain, they were returned to the vehicles. Lastly, the vehicles updated their

decision functions and accessed the precision and accuracy of cyber-threat detec-

tion. The results indicated that the precision and accuracy decreased by 7.1% on

average with comparable F1-score and recall. Our solution ensures the privacy pres-

ervation of vehicles whereas blockchain guarantees the safety of aggregation tech-

nique and low gas consumption.
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1 | INTRODUCTION

It is estimated by Fortune Business Insights (2022) that the global smart transportation market size will significantly increase in size over the

2021–2028 period. More precisely, the size of this market is anticipated to increase from USD 98.74 billion to USD 206.80 billion worldwide. In

particular, the Intelligent Transportation System Application (ITS) segment is expected to increase particularly. Already in 2020, this segment
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dominated the market with a share of more than 30%, and this domination is likely to continue. The ITS refers to the traffic management solutions

aimed at improving traffic flows and mobility. To be more precise, these solutions are based on real-time data that are analysed with an aim to

promptly respond to emergencies. It is necessary to implement effective traffic management systems because long travel times and related fuel

consumption lead to traffic congestion, which in turn, results in considerable financial losses. In addition, the ITS also contributes to better the

operational performance and reliability of road networks. Furthermore, the initially proposed vehicular ad-hoc networks (VANETs) (Zeadally

et al., 2012) were substantially changed through cutting-edge computation and communication technologies into the Internet of Vehicles (IoV)

(Obaidat et al., 2020). The IoV interconnects smart vehicles on the Internet and consequently enables the functioning of ITS. As reported by the

U.S. Department of Transportation (DOT) (Lamssaggad et al., 2021), the IoV has been proven to be especially efficient in reducing crashes com-

mitted by unimpaired drivers. It is estimated that IoV can help avoid approximately 79% of such crashes because it establishes the effective com-

munication and collaboration among vehicles as well as the interconnection of roadside infrastructure, pedestrians, and bicycles. The exchange of

messages on traffic conditions, accidents, and safety can not only resolve traffic jams and reduce accident rates but also contribute to a reduction

in environmental pollution. Consequently, overall safety, comfort, and convenience are improved.

Nevertheless, the integration of intelligent transportation systems (ITS) and consequent high connectivity has resulted in considerable chal-

lenges such as how to guarantee the security of all participants in intelligent transportation systems (Hassan et al., 2022; Rehman Javed

et al., 2020) because it is prone to malicious attacks. Furthermore, the exchange of sensitive data can lead to difficulties in ensuring privacy.

VANETs have experienced numerous attacks such as Man-In-The-Middle (MITM) which have resulted in compromised safety (Ahmad

et al., 2017; Aloqaily et al., 2019; Javed et al., 2020, 2021; Mittal et al., 2021; Sheikh et al., 2019). To illustrate, Hunt (2018), successfully con-

trolled features of Nissan LEAFs against an attack in 2016. Subsequently, in June 2016, a Mitsubishi Outlander PHEV (2016), via a smartphone

application with remote control through the hacked the controlling of non-driving essential components of the vehicle systems (e.g., to lock or

unlock doors, to turn on/off air conditioning, and to change charger settings). In addition, Keen Security Lab, a Chinese cybersecurity company,

managed to hack Tesla (Finkle, 2016). The scientists were able to control the components of Model S Tesla (e.g., mirrors and brakes) from a dis-

tance of 20 km away.

These examples demonstrate that it is necessary to propose more complex solutions are needed to improve data transmission. For instance,

the payment systems must be enhanced to become efficient, secure, and integrated (Naeem et al., 2021). Following the introduction of Bitcoin,

blockchain technology (Nofer et al., 2017) has substantially changed digital currencies (Reyna et al., 2018). Blockchain represents a distributed led-

ger keeping an immutable log of transactions taking part in a network. Blockchain can be used in our context to ensure the safety of decisions per-

formed by a machine learning algorithm.

The convergence of machine learning and BIoV is likely to lead to novel services and applications that have been enabled to learn from train-

ing data, reach data-driven conclusions, assess the improvement of the network performance, and guarantee decision support (Jabbar

et al., 2022). However, the application of machine learning in mobile networks (e.g., vehicular networks) is primarily limited because of data that

takes the form of isolated islands. Consequently, the integration of different data sources in vehicular networks is difficult as it requires increasing

the number of vehicles, which in turn increases the data size and requires heavy computation (Du et al., 2020). Google developed ‘federated
learning’ (FL) (Hamdi et al., 2021; Qi et al., 2021) in 2016 to establish data models distributively and solve this problem. In this type of architec-

ture, data are kept on participating devices (e.g., smartphones or vehicles). The devices then download and train the model using their data.

In this way, they are going to learn from training data and reach data-driven conclusions, ensure decision support, and estimate how to

improve the network performance (Jabbar et al., 2022). In this paper, we use FL to protect vehicles' privacy while blockchain is used to ensure the

integrity of data and the safety of aggregation (Rehman et al., 2022). We apply classification approaches for VANET and ITS cyber-threats detec-

tion at the vehicle. Then, we upload each model, resulting from the previous step, in a smart contract using blockchain to apply an aggregation

strategy between different models. Finally, the updated models are sent back to the vehicles.

The rest of this paper is organized as follows: Section 2 outlines the related work. Section 3 gives an overview of the problem. Section 4 pre-

sents the proposed framework. Section 5 shows and discuss the experimental result of the proposed method. The conclusion is given in Section 6.

2 | RELATED WORK

We subdivide this section into two subsections. First, we discuss first the adaptation of blockchain technology in ITS and VANET. Next, we out-

line the use of FL to deal with some issues in VANET and ITS.

2.1 | Blockchain technology for ITS and VANET

It is paramount to guarantee security in vehicular networks and to prevent adverse impacts on the users. To illustrate, it is likely that cyberattacks,

hacker threats of hackers, and failures in ensuring security would lead to financial losses, roads accidents, and vehicle immobilization. Moreover,

2 of 16 MOULAHI ET AL.

 14680394, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13103 by Q

atar U
niversitaet, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



disclosure of sensitive data may result in endangering the safety of road users. Accordingly, numerous studies have focused on enhancing credibility,

transparency, identification, accessibility, integrity, confidentiality, immutability, reputation, resilience to attacks, trust, authentication, anonymity,

and privacy. Yang et al. (2019) developed a highly credible and trustworthy distributed blockchain-based platform for vehicular systems that is highly

credible and trustworthy. In this solution, vehicles use a Bayesian inference model to validate messages from vehicles in the vicinity. Depending on

the validation results, messages from source vehicles are rated. In addition, roadside units (RSUs) assess the trust value offsets of participating vehi-

cles, which are subsequently stored in blocks. While this solution is aimed at ensuring privacy and security, and its performance is assessed in terms

of these properties, cost and execution time are not taken into account. Furthermore, Li et al. (2018) investigated Creditcoin. Its architecture is

based on the privacy-preserving announcement. Accordingly, identities are preserved during the message broadcasting. The incentive mechanism

based on blockchain and anonymous message aggregation protocol enables the users to sign and forward messages. It is significant that Bitcoin,

which is typically employed for purchasing and selling commodities in a marketplace that is pseudo-anonymous and secure, was implemented into

this solution. Therefore, Bitcoin cannot be employed to generate smart contracts and programing features that can be used to resolve computational

problems and allow the transferring of sensitive data. In addition, Yang et al. (2017) used blockchain to create a novel reputation system aimed at

assessing data credibility. This solution enables cars to assess the transmitted data by observing the system. Subsequently, the shared data receives

a value kept in the block. The reputation of the sender and the credibility of the data are verified by vehicles on the basis of the score. Malik et al.

(2018) created a smart car authentication and revocation framework employing blockchain to update the status of participating vehicles. Accord-

ingly, when compared with solutions based on a trusted-authority central architecture, the cost of processing and communication is minimized. Fur-

thermore, Labrador and Hou (2019) employed blockchain technology to ensure and enhance the authentication of vehicle identity and shared data.

This solution includes a mechanism that can identify data and vehicles by analysing transmitted data packets. In addition, Reimers et al. (2019) cre-

ated a prototype based on blockchain. This prototype is aimed at ensuring transparency in a system based on the IoT. This solution includes a trace-

ability information system that gathers data (e.g., sensor data from IoT devices). Moreover, end-users can use the data. Mostafa (2019) developed a

trustworthy vehicle platform based on blockchain to identify malicious and misbehaving vehicles. In this way, vehicles decide if other vehicles are

trustworthy by validation of packets, VANET environmental data, and how the participating vehicles create and share blocks. In Zhang et al. (2014),

this platform was able to identify Sybil attacks. Rathee et al. (2019) also proposed a transparent and secure framework for CAVs using blockchain

for extracting and storing data. This solution minimizes the risk of exchanging information with fake participants, receiving corrupted data, and

compromising vehicles' smart sensors. Noh et al. (2020) used an authentication mechanism based on blockchain with a message authentication code

and asymmetric keys to authenticate messages for VANET and enhance privacy. PoW and PBWT were employed to ensure a message authentica-

tion consensus. Furthermore, Nadeem et al. (2019) developed a fog node-based distributed blockchain cloud architecture scheme to improve vehic-

ular data privacy and prevent attacks. This solution allows for the efficient management of enormous amounts of created data owing to the

extraordinary computational performance at the edge of the network. Successful vehicular systems require secure communication among vehicles.

Thus, Singh and Kim (2018) used blockchain to develop a trustworthy, smart communication protocol for a cloud vehicular system. An incentive

mechanism was applied to improve the trustworthiness of the notes. Consequently, the system achieved successful exchanges.

Furthermore, Jabbar, Fetais, et al. (2020) used blockchain to create a Decentralized IoT Solution for Vehicles Communication (DISV). More

precisely, the DISV (Jabbar, Krichen, Kharbeche, et al., 2020) is a real-time application specification created to ensure secure communication

among all transportation system users. Considering the limitations, it is not possible for this solution to be used by many vehicles in the vicinity,

and accordingly, it lacks scalability. The scalability problem was resolved by via a blockchain-based solution that ensures secure payment and com-

munication (PSEV) (Jabbar et al., 2022; Rateb, 2021). Nkenyereye et al. (2020) created a hybrid 5G and cloud vehicle network aimed at ensuring

the privacy of users' sensitive information and establishing a communication protocol for warning messages. Furthermore, Singh et al. (2020) pro-

posed a hybrid architecture to ensure vehicle-to-infrastructure and vehicle-to-vehicle communications. In addition, Kumar et al. (2020) developed

for a blockchain-based vehicular network an access control scheme hash-based storage for managing traffic data. There is an innovative, emerging

market of smart transport applications for vehicular systems and the IoV. Various APIs have been developed and tested by researchers which are

aimed at providing in-vehicle entertainment, ensuring traffic safety, and preventing congestion. In addition, different mobility services have been

created to locate, unlock, and read the odometers of cars across brands. Researchers have significantly contributed to the development of trans-

port applications for vehicle systems. These solutions primarily comprise the IoV security layer to ensure privacy and security. Various scientists

have developed platforms based on blockchain for establishing trusted multiparty insurance (Demir et al., 2019), training and learning autonomous

cars (Gandhi & Salvi, 2019), car leasing (Obour Agyekum et al., 2018), and smart car parking services (Hu et al., 2019; Jabbar, Fetais, et al., 2020;

Jabbar, Krichen, Shinoy, et al., 2020; Jabbar et al., 2021). Moreover, Masoud et al. (2019) developed the transparent dissemination of the users'

motor history for trading, whereas Zhang et al. (2019) used blockchain to ensure secure purchasing and selling of second-hand vehicles.

2.2 | Blockchain-based FL for ITS and VANET

The purpose of introducing blockchain to FL is to respond to specific limitations. To illustrate, the problem of the dependency of the resiliency of

an aggregator being dependent on the robustness of the centre of charge of the FL network can be overcome. Similarly, vulnerability to malicious
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clients is reduced, especially for those clients that attach to the network via poisonous models. Lu et al. (2020) used FL to create a solution for

reducing the transmission load and ensuring users privacy through a hybrid blockchain architecture. This solution includes the local directed acy-

clic graph and allows blockchain to enhance model parameters' security and reliability. This solution also selected the node using DRL and accord-

ingly created an asynchronous FL scheme to enhance efficacy. The integration of learned models into the blockchain system and the

implementation of a two-stage verification can ensure the reliability of shared data. Furthermore, the numerical results demonstrated that faster

convergence and higher learning accuracy are achieved through this data-sharing scheme. However, this paper did not address critical perfor-

mance metrics in machine learning, including F1 score, sensitivity, and precision. In addition, Chai et al. (2021) created a hierarchical FL algorithm

and a hierarchical blockchain framework allowing knowledge sharing. Machine learning methods are employed in this process to allow vehicles to

learn environmental data and share the learned knowledge. Shared data can be reliable if learned models are incorporated in blockchain and if a

two-stage verification is implemented. Furthermore, it was data-sharing scheme that can improve learning accuracy and convergence. Privacy

requirements and the distributed pattern of IoVs can be met using the hierarchical FL algorithm. Moreover, it is possible to apply this hierarchical

blockchain framework to vehicular networks at a large scale. The proposed solution was demonstrated to have an approximately 10% higher

accuracy than conventional FL algorithms. Nevertheless, it is still necessary to explore the overhead and transaction throughput of the proposed

hierarchical blockchain framework. In addition, Otoum et al. (2020) integrated blockchain and FL and created an innovative solution that ensures

data privacy and network security maintenance. On end devices, this framework decentralizes the mutual machine learning models. A consensus

solution based on blockchain is employed as a second line of protecting privacy to make sure that the shared cloud training can be trusted. Cen-

tralized coordination and training of data coordination are not required in this model for enabling in this model because it is conducted via a con-

sensus method in blockchain. Nevertheless, it is necessary to perform more tests must be performed which take into account various FL

algorithms.

Abdel-Basset et al. (2022) developed a federated deep learning-based intrusion detection framework (FED-IDS). In this framework, the learn-

ing process is offloaded from servers to distributed vehicular edge nodes; and consequently, attacks are detected efficiently. A context-aware

transformer network is incorporated into FED-IDS. This network can classify various attack categories by learning spatial–temporal representa-

tions of vehicular traffic flows. However, the interpretability of classification decisions in IDS as an essential requirement for security communi-

ties, needs to be investigated in Smart Transportation Systems.

Maaroufi and Pierre introduced the BCOOL (Maaroufi & Pierre, 2021). This solution includes innovative, hybrid, and dynamic blockchain Fog-

based Distributed Trust Contract Strategy (FDTCS). Its purpose is to manage massages and assess the trustworthiness of vehicles. According to

the simulation results, the BCOOL significantly outperforms similar strategies. More precisely, it is 80% more reliable and 100% more efficient in

terms of responding to data congestion environments.

Cui et al. (2018) developed an edge-computing concept to enhance message authentication efficiency. In the proposed solution, the authenti-

cation tasks of vehicles are shared by roadside units (RSU) and edge computing vehicles (ECVs). Accordingly, the burden on the RSU is reduced.

Alfadhli et al. (2020) confirmed that CPPA schemes developed by Cui et al. (2018) could not provide enough driving safety for vehicles in critical

areas. In addition, vehicles are vulnerable considering VANET's management, communication, and computational efficiency. Furthermore, an

SD2PA authentication scheme using a hash function was proposed to prevent non-safe driving and to promote safer driving while also preserving

the vehicles' security and privacy. Blockchain acted as a Trusted Authority (TA) enabling the ledger management to store information about the

vehicle. Furthermore, using the intermediate node, vehicles must carry out mutual authentication with the TA. Nevertheless, this study highlighted

low computing overhead (Xu, Liang, et al., 2021). Kim et al. (2021) focused on studying common centralized protocols, including request/reply

and publish/subscribe, and decentralized P2P computing in constrained IoT environments. First, the authors introduced cost modelling of network

protocols aimed at analysing the basic network performance. Furthermore, a comparative analysis considering push, pull, and P2P-based IoT data

transmission approaches was conducted. In this experiment, latency and availability created by the request message and determined factors

influencing different IoT networks were evaluated. Xu, Li, et al. (2021) proposed a computationally efficient and safe key agreement scheme and

authentication for the IoV, allowing the RSU to authenticate vehicles. The authors conducted the analysis using the simulation tool ProVerif and

the Real-or-Random model and confirmed that the proposed scheme was secure. In comparison to previous schemes, this one enhanced authenti-

cation efficiency and reduced energy consumption. This scheme, however, took into account only the key agreement and authentication between

the vehicle and the TA. Therefore, in the future, studies should focus on exploring the key agreement and mutual authentication between differ-

ent vehicles. Hasan et al. (2022) proposed an artificial intelligence (AI)-based synchronization scheme aimed at resolving smart grid timing issues.

The back propagation neural network was employed as the AI method using the timing estimations and error corrections to ensure precise perfor-

mance. Furthermore, the innovative AIFS scheme takes into account radio communication functionalities to relate to the external timing server.

The simulation results confirmed this scheme's efficacy and substantial contributions such as no occurrence of synchronization errors do not

occur if the external clock receives increments daily in the Wide Area Monitoring application (WAM) of the smart grid system. In addition, Hasan

et al. (2020) developed an innovative resource-efficient Flow-enabled Distributed Mobility Anchoring (FDMA) framework. This solution improved

the functionalities of mobility entities and centralized network entities. The mathematical analysis revealed that the packed tunnelling cost and

the signalling overhead cost of the FDMA are lower than those of PNEMO (Ryu et al., 2013) and NBSP (Ernest et al., 2014).
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3 | PROBLEM OVERVIEW

In this section, we give an overview of the safety provided by the adaptation of BC in our context. Next, we outline the goals of FL. Finally, we

present the advantages of joining BC and FL in VANET and ITS for cyberthreats detection.

3.1 | Using the blockchain for safety

Studies have primarily focused on blockchain in the financial sector; however, the research focus has recently shifted to the Internet of Things

(IoT) (Reyna et al., 2018). The IoT is widely explored and employed because it is able to create a safe, trustworthy, and decentralized environment.

Owing to blockchain, new high technology has emerged in various sensitive and active sectors. To be more specific, the IoV solutions can ensure

reliable information due to consensus, that the records are immutable along with the transparency of transactions. Most importantly, blockchain

considerably improves security and trust. Moreover, smart contracts have enabled optimizing and automatizing of the managing process of infor-

mation, resulting in substantially lower costs (Ali et al., 2021). In comparison to traditional centralized architectures, this technology has many ben-

efits. However, there are significant limits to this technology of storage space, inflexibility, and expensiveness. Therefore, the integration of ITS

and blockchain technology brings extraordinary advantages such as efficient management of the ITS, big data storage, and improved intelligence

and security. Blockchain-based ITS solutions (BITS) have been investigated by academics and practitioners. Other emerging technologies, includ-

ing 5G, big data, and machine learning, contribute to their additional advancement (Mollah et al., 2021).

3.2 | Overview on FL

The basics of FL can be described mathematically as follows (Qi et al., 2021):

Let:

K: the number of clients participating in FL,

wt: the global model parameters,

wk
t : the client local model,

Dk: the local dataset of the client k (k � K),

nk = jDkj: the data in the client k,

l: indicates the loss function, and

rwk
i : describes the gradient symbol of wk

t .

The FL process starts when the server distributes wt to wk
t . Then computes the gradient is computed by the following equation:

gk 1ð Þ
t ¼rwk

i

X
xi ,yið Þ � Dk

l wk
i , xi,yið Þ� �

: ð1Þ

The next step is to collect all gradient at the server and applying the weighted average in order to update the parameters. In the next sub-

section we give more details on FL.

3.3 | FL illustration

As evident in Figure 1, a classical FL system's operational process is ideally comprised of four stages:

1. The MEC server that is deployed at the edge cloud selects a computing task in addition to the task requirements and the learning parameters,

such as selection of vehicular traffic analytics, task classification or prediction, and learning rate, respectively. Subsequently, it designates a

subset of devices as learning clients for collaborative learning. Practically, the MEC server is able to designate various subsets of devices

throughout various rounds of updating through the use of a fitting client scheduling mechanism for the purpose of ameliorating the quality of

its training (Masoud et al., 2019).

2. The server initiates a training model which is then sent to each client to set up a new training round. At this stage, each client trains the model

through the use of its own dataset and calculates a new update.

MOULAHI ET AL. 5 of 16
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3. All clients upload the update they computed to the MEC server to perform a global computation. A novel global model is constructed by the

server by means of aggregating all of the clients' updates in a way that decreases the loss function (Nguyen et al., 2021; Sattler et al., 2019).

4. The global model that has been previously computed is broadcasted by the server towards each client for the subsequent training round. The

FL process is repeated until either the global loss function converges or the sought-after accuracy is attained. Based on the learning procedure,

it is apparent that the classical FL is dependent on a centralized server; namely, an MEC server for model aggregation that has malfunction as

well as scalability problems in common wireless networks.

Furthermore, this type of centralized FL architecture is not able to attract devices which are far away from the server to be trained, which in

turn hinders the overall system's learning performance. The primary limitation of applying machine learning in mobile networks (e.g., vehicular net-

works) is the presence of data in the form of isolated islands. More specifically, it is highly challenging to integrate various data sources in vehicu-

lar networks because of necessary heavy computation, an increasing number of vehicles, and enormous data size (Du et al., 2020). To resolve this

issue, ‘federated learning’ (FL) (Qi et al., 2021) was developed by Google in 2016 for establishing data models distributive. In FL architecture, data

are stored on participating devices (e.g., smartphones or vehicles) that download the model and train the model by their data.

3.4 | Joining FL to blockchain

The operational process of blockchain-based FL in edge computing, as shown in Figure 2, is formulated through the following steps: First, the

devices send a participant request to the server to be integrated into the network. Then, there is the selection and the review of the appropriate

device by the server. After this stage of authentication, each terminal calculates its appropriate hashes, and then the data, including hashes and

model, is uploaded to the blockchain for providing local model update training with private data. The offloads of data from the blockchain to

servers perform to ensure the training update task. Finally, the server aggregates and updates parameters to be provided to the global model.

4 | PROPOSED FRAMEWORK

The proposed framework is given in Figure 3. The workflow is performed in eight steps that can be grouped into four phases. Before starting the

process, we divide the VeReMi dataset into five balanced sub-datasets. We suppose that each vehicle is working only with its dataset without

knowing each other. Table 1 summarizes the list of phases and steps.

F IGURE 1 Classical federated learning framework

6 of 16 MOULAHI ET AL.

 14680394, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13103 by Q

atar U
niversitaet, W

iley O
nline L

ibrary on [25/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4.1 | Phase 1: Local training

During the first step of this phase, each vehicle trains locally using four different models: Support vector machines (SVMs), Random Forest (RF),

Naïve Bayesian (NB), and k-nearest neighbours' algorithm (KNN) algorithm. The models are trained only on the local dataset issued from the initial

VeReMi dataset. In the second step, each vehicle extracts the decision parameters belonging to each model and sends them securely to the

blockchain.

The decision function for each model, which is based on the entered vector of features, and the list of parameters for each model and can be

described by the following equation:

F IGURE 2 Federated learning and BC

F IGURE 3 In the proposed framework steps 1–8 on the right side of the figure describe the list of tasks from executing ML locally, followed
by the aggregation and the improvement process, and finally, the sharing of final results

MOULAHI ET AL. 7 of 16
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DFmodel vi,pið Þ¼ 1 :Abormal behavior

-1 :Normal behavior

�
,

where: model = {SV M, KNN, NB or RF}. vi: The features of the entered vector. pi: The decision parameters of the model.

4.2 | Phase 2: Aggregate model

This phase is performed at the blockchain level and consists of two steps. In step 3, the aggregation of decision parameters is done for each

model. In step 4, the newly updated decision parameters are sent back to each vehicle.

4.3 | Phase 3: Update training models

During this phase, in step 5, each vehicle updates its decision parameters depending on the received values from the previous step. If the results

of the predictions are not satisfactory (step 6), then the vehicles can go to step 7 by sending a request sent to the blockchain to improve the

aggregation strategies.

4.4 | Phase 4: Improve models

This optional phase is optional and is executed only in the case of non-satisfactory classification results in the previous phase. Many possible actions

can be taken to improve the aggregation strategy, such as excluding some vehicles that appear to be fraudsters. This can be decided if the decision

parameters are not close to other vehicles' parameters. The degree of closeness can be defined depending on the deviation compared to mean values.

5 | EXPERIMENT AND RESULTS

In this section, we present the experimental study and the evaluation of the results. Finally, we discuss the obtained results.

5.1 | Dataset description

The VeReMi dataset is available in VeReMi (2022). In Table 2, we outline the different types of attacks and faults in this dataset.

5.2 | Evaluation parameters and environment setup

In this subsection, we describe the environment of simulation and different versions of the used systems. Next, we outline the parameters of

evaluation.

TABLE 1 The proposed framework's phases and steps

Level Phase Step Step description

Vehicle level Phase 1 Step 1 Each vehicle executes ML locally

Step 2 Send decision parameters to BC

Blockchain level Phase 2 Step 3 Aggregate models

Step 4 Send updated models to vehicles

Vehicle level Phase 3 Step 5 Update decision parameters

Step 6 Compare (1) and (5). If the results are not satisfactory, go to (7)

Blockchain level Phase 4 Step 7 Request improvement of aggregation strategies

Step 8 If the request is accepted, then update the aggregation strategy and go to (3)

8 of 16 MOULAHI ET AL.
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5.2.1 | Environment setup

The environment setup and different system version are given in Table 3.

5.3 | Evaluation parameters

Accuracy: describes a ratio of correctly predicted attacks among all attacks. Accuracy is defined by the following equation:

Accuracy¼ TPþTN
TPþFPþFNþTN

: ð2Þ

Precision: shows the ratio of correctly predicted positive attacks among the total predicted positive attacks. A high precision relates to the

low false-positive rate. It is defined by the following equation:

Precision¼ TP
TPþFP

: ð3Þ

Recall, also called sensitivity: describes the ratio of correctly predicted positive attacks to all attacks in the actual class. It is defined by the fol-

lowing equation:

Recall¼ TP
TPþFN

: ð4Þ

TABLE 2 Cyberthreats in VeReMi dataset

ID Cyberthreats Type Description

1 Constant position Fault The vehicle broadcasts a defective constant position (X, Y). Every time a new faulty

node is introduced, the fixed values are discarded

2 Constant position offset Fault The vehicle broadcasts its true position with coordinates (X, Y)

15 Constant speed Fault The vehicle broadcasts a defective constant speed controller

16 Constant speed offset Fault The vehicle broadcasts a defective restricted number of random positions

3 Random position Fault The vehicle broadcasts a defective restricted number of random positions

4 Random position offset Fault With a small random offset, the vehicle diffuses its true position

18 Random speed Fault The vehicle broadcasts a malfunctioning limited random speed

19 Random speed offset Fault The vehicle broadcast its real speed with a limited random offset

17 Delayed messages Attack The vehicle sends out the right messages; however, they are sent out following a delay (t)

13 Eventual stop Attack The malicious node disseminates a fixed position and a null speed, simulating an abrupt stop

5 DoS Attack The car sends messages at a higher rate than what is specified in IEEE or ETSI standards.

As a result of the overhead on the transmission channel, other cars may be unable to use it

6 Dos Random Attack The vehicle launches a DoS attack while also generating random data for all V2X messages

7 DoS random Sybil Attack To avoid detection, the attacker does a DoS Random by changing her identity in any forward

message

10 Disruptive Attack The malicious vehicle replicates previously received communications that were sent by a

random neighbour. This may prevent real messages from being broadcast and cause the

network to become overburdened

12 DoS disruptive Attack At the same time, the attacker launches DoS and disruptive attacks

11 DoS disruptive Sybil Attack The malicious vehicle launches a Dos Disruptive assault while also changing its identity

in all forwarding data

8 Data Replay Attack The attacker delivers the previously received data to a distinct destination neighbour.

The attacker's certificate is used to sign this message

9 Data Replay Sybil Attack The attacker uses a Data Replay attack, changing their pseudonym on each new destination

MOULAHI ET AL. 9 of 16
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F1-score describes the weighted average of Precision and Recall. It is defined by the following equation:

F1Score¼2� Recall�Precisionð Þ
RecallþPrecisionð Þ : ð5Þ

6 | RESULTS DISCUSSION

The machine learning (ML) results that were executed on the whole VeReMi dataset are taken directly from Sharma and Liu (2021). The results of

our contribution are called FL results. The levels of accuracy are shown in Figure 4. The best accuracy for FL is provided by SVM with (82.45%).

This accuracy level was (88.38%) with an ML approach. The use of the FL approach is very beneficial in terms of privacy preservation; however, it

can decrease the level of accuracy due to the distrusted behaviour of FL. In this case, the rate of accuracy reduction is (5.93%). The decrease in

levels of accuracy is (7.68%) for KNN, (6.85%) for NB, and (10.83%) for RF.

Figures 5 outlines the precisions results of ML approach compared to our FL approach. The precision shows the rate of detected true attack.

The best level of precision in our approach is provided again by SVM at (91.02%). However, this precision level is (5.4%) less than that of ML

approach. This decrease is due to the choice of favouring the privacy preservation. The decrease in level of precision is 8.22% for KNN, 8.36% for

NB, and 6.72% for RF.

Figure 6 shows the recall result of ML approach compared to our FL approach.

Figure 7 outlines the F1-score results. According to these results, we can see that there are no big differences between FL and ML. Recall

and F1-score are almost for SVM in both approaches. For other models, the maximum difference is (1.57%) for RF. These results show that the

loss in recall and f1-score are very acceptable compared to the advantage of our method with is essentially the privacy preservation.

The curve shown in Figure 8 outlines amount of gas to execute aggregation methods for each model. The amount of gas is linked to the num-

ber of instructions executed for each model. This final result is needed in case of similarity in the previous performance of accuracy. The

TABLE 3 Environment setup

OS Windows 10

CPU i7-7500U CPU @ 2.70 GHz

RAM 8 GB

Language Python and Solidity

Compiler of solidity Solc 0.5.16

Test framework Truffle 5.0.5

Local ethereum Ganache v 5.4

F IGURE 4 Comparison of accuracy between ML approach and the developed FL approach
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consumed gas can be used to select the best model to apply when the level of accuracy or precision is almost the same. In this case, it is prefera-

ble to apply a model that minimizes gas consumption. We can see that SVM is the lowest model in terms of consumed gas with only (5.2 gwei)

while KNN is the highest model in terms of gas consumed reaching 10.1 gwei.

Figure 9 describes the elapsed time for aggregation according to the model. We can see that times results are confirm consumed energy

results. Elapsed time can vary depending on the processing capacity of the machine where the simulation is one. The best time is achieved by

SVM with less than 0.2 s while KNN takes the longest time.

7 | CONCLUSION

This paper developed a framework based on FL used to preserve vehicles' privacy and blockchain that ensured the safety of the aggregation strat-

egy and data integrity. The classification models (SVM, KNN, NB, and RF) were applied to VANET and ITS cyber-threats detection and executed

F IGURE 5 Precisions results of ML approach compared to our FL approach

F IGURE 6 Recall results of ML approach compared to our FL approach

MOULAHI ET AL. 11 of 16
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F IGURE 7 F1-score results of ML approach compared to our FL approach

F IGURE 8 Consumed gas in (gwei) for aggregations according to models

F IGURE 9 Elapsed time in (seconds) for aggregations according to models

12 of 16 MOULAHI ET AL.
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locally on vehicles. Subsequently, we aggregated the models on the blockchain and returned them to vehicles. In comparison to previous studies

that applied centralized ML on the same dataset, our approach was demonstrated to decrease precision and accuracy by 7.1% on average while

maintaining the F1 score and the recall. The developed solution ensures the privacy preservation of vehicles whereas blockchain guarantees the

safety of aggregation technique and a low consumption of gas. Future research should improve the definition of the most appropriate aggregation

strategies and the selection of vehicles for participating in the FL process while removing malicious ones. It is critical to assess the behaviour of

the vehicle in a prepossessing phase by classifying the vehicles before including them in the FL process.
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