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Abstract

This paper presents a local search, based on a new neighborhood for the job-shop scheduling problem, and
its application within a biased random-key genetic algorithm. Schedules are constructed by decoding the
chromosome supplied by the genetic algorithm with a procedure that generates active schedules. After an
initial schedule is obtained, a local search heuristic, based on an extension of the 1956 graphical method of
Akers, is applied to improve the solution. The new heuristic is tested on a set of 205 standard instances taken
from the job-shop scheduling literature and compared with results obtained by other approaches. The new
algorithm improved the best-known solution values for 57 instances.

Keywords: job-shop; scheduling; genetic algorithm; biased random-key genetic algorithm; heuristics; random keys;
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1. Introduction

In the job-shop scheduling problem (JSP), we are given a set J = {1, . . . , n} of n jobs and a set
M = {1, . . . , m} of m machines. Job j ∈ J consists of n j ordered operations Oj,1, . . . , Oj,n j

, each
of which must be processed on one of the m machines. Let O = {1, . . . , o} denote the set of all
operations to be scheduled. Each operation k ∈ O uses one of the m machines for a fixed processing
time dk. Each machine can process at most one operation at a time and once an operation initiates
processing on a given machine, it must complete processing on that machine without interruption.
Furthermore, let Pk be the set of all the predecessor operations of operation k ∈ O. The operations
are interrelated by two kinds of constraints. First, precedence constraints force each operation
k ∈ O to be scheduled after all operations in Pk are completed. Second, operation k ∈ O can only
be scheduled if the machine it requires is idle.
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Let a schedule be represented by a vector of finish times (F1, . . . , Fo). The JSP consists in finding
a feasible schedule of the operations on the machines, which minimizes the makespan Cmax, that is,
the finish time of the last operation completed in the schedule.

Not only is the JSP NP-hard, but it has also been considered to be one of the most computationally
challenging combinatorial optimization problems (Lenstra and Rinnooy Kan, 1979). Early attempts
at solving the JSP considered the following approaches:

� Exact methods (Applegate and Cook, 1991; Brucker et al., 1994; Carlier and Pinson, 1989, 1990;
Giffler and Thompson, 1960; Lageweg et al., 1977; Sabuncuoglu and Bayiz, 1999; Williamson
et al., 1997): Carlier and Pinson (1989) were the first to successfully solve the notorious 10 × 10
(10 jobs, 10 machines) instance of Fisher and Thompson (1963), proposed in 1963 and only solved
20 years later.

� Heuristic procedures based on priority rules (Baker and McMahon, 1985; French, 1982; Giffler
and Thompson, 1960; Gray and Hoesada, 1991).

� Shifting bottleneck (Adams et al., 1988; Balas and Vazacopoulos, 1998).

Problems of dimension 20 × 20 are still considered to be beyond the reach of today’s exact methods.
A growing number of heuristics have been proposed to find optimal or near-optimal solutions of
the JSP, including

� Simulated annealing (Lourenço, 1995; Van Laarhoven et al., 1992).
� Tabu search (Lourenço and Zwijnenburg, 1996; Nowicki and Smutnicki, 1996, 2005; Taillard,

1994; Zhang et al., 2007, 2008).
� Genetic algorithms (Aarts et al., 1994; Davis, 1985; Della Croce et al., 1995; Dorndorf and Pesch,

1995; Gonçalves et al., 2005; Storer et al., 1992).
� GRASP (Aiex et al., 2003; Binato et al., 2002).
� Other heuristics (Lourenço, 1995; Lourenço and Zwijnenburg, 1996; Pardalos and Shylo, 2006;

Pardalos et al., 2010; Vaessens et al., 1996).

Surveys of heuristic methods for the JSP are given in Blazewicz et al. (1996), Cheng et al. (1996,
1999), Pinson (1995), and Vaessens et al. (1996). A comprehensive survey of job-shop scheduling
techniques can be found in Jain and Meeran (1999).

In this paper, we introduce a new local search neighborhood for the JSP by extending the
graphical method of Akers (1956) for more than two jobs. This local search is hybridized with a
tabu search procedure. The hybrid local search procedure is coordinated by a biased random-key
genetic algorithm (Gonçalves and Resende, 2011b), or BRKGA. In computational experiments with
a large set of standard job-shop scheduling test problems, we show that our algorithm is competitive
with state-of-art heuristics for the JSP and improves the best-known solution values for 57 of these
instances.

The remainder of the paper is organized as follows. Section 2 introduces the new local search for
the JSP and Section 3 describes its use within a BRKGA. This section also describes a schedule-
generation procedure and a solution improvement procedure. Section 4 reports experimental results.
Section 5 presents the concluding remarks.
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Table 1
Problem data for four-job, three-machine example

J1 J2 J3 J4

Sequence Processing Processing Processing Processing
order Machine time Machine time Machine time Machine time

1 a 2 b 3 c 5 b 2
2 b 3 c 2 b 2 a 4
3 c 4 a 3 a 3 c 2

2. New local search for JSP

We present a new neighborhood for local search for the JSP based on a graphical method originally
proposed by Akers (1956) for JSPs with two jobs. To illustrate the various aspects of the approach,
we use an instance with data shown in Table 1. This example consists of four jobs (J1, J2, J3, J4) to
be processed on three machines (a, b, c).

In the remainder of this section, we present the original graphical approach of Akers (1956) for
two jobs, and propose its extension for more than two jobs, and a new local search that makes use
of the extension.

2.1. Graphical method for two jobs

Akers (1956) introduced a graphical method for JSP with two jobs. The method consists in trans-
forming the two JSPs into a shortest path problem. This problem is represented in a two-dimensional
(2D) plane with obstacles, where one axis corresponds to job J1 = {O1,1, O1,2, . . . , O1,n1

} and is
decomposed into n1 intervals and the other to job J2 = {O2,1, O2,2, . . . , O2,n2

}, and is decomposed
into n2 intervals. For i = 1, 2 and k = 1, . . . , ni, interval Ii,k has a length Li,k, that is equal to
the processing time of operation Oi,k. If operations O1,k and O2,l share the same machine, then the
rectangle induced by intervals I1,k and I2,l becomes an obstacle. The right and upper borders of the
rectangle defined by the start point S and the end point F correspond to the completion of the two
jobs. A feasible solution of the JSP corresponds to a path that goes from point S to point F while
avoiding the interior of the obstacles. A path consists of only horizontal, vertical, and diagonal
segments, where a horizontal (resp. vertical) segment implies that only J1 (resp. J2) is processed,
whereas a diagonal segment implies that both J1 and J2 are processed simultaneously. The length L
of a path is equal to the makespan of the corresponding schedule and is given by

L = LH + LV + LD√
2
, (1)

where LH , LV , and LD represent the total lengths of the horizontal, vertical, and diagonal segments,
respectively. Therefore, finding the schedule that minimizes the makespan is equivalent to finding
the shortest path in this plane. Figure 1 depicts the shortest path and the corresponding schedule
for a job-shop problem consisting of jobs J1 and J2 defined in Table 1.
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Fig. 1. Akers graphical method for two jobs.

Let r denote the number of obstacles in the shortest path problem. Brucker (1988) showed that
finding the shortest path on a plane with obstacles is equivalent to finding the shortest path in a
directed graph G that can be constructed in O(r log r) time, and on which a shortest path can be
found in O(r) time, where r is bounded above by O(n1n2). The digraph G = (V, E, d ) is constructed
as follows:

1. V is the set of vertices consisting of the start point S = (0, 0), the end point F , and all the
north-west (NW ) and south-east (SE) corners of the obstacles.

2. Each vertex v ∈ V \{F } has at most two successors obtained by moving diagonally (at an angle
of 45◦) from v, until an obstacle is hit. If the obstacle encountered is the last one, then F is the
unique successor of v (see Fig. 2a). If the obstacle represents a machine conflict, then its NW
and SE corners are the two direct successors of vertex v (see Fig. 2b).

3. When an obstacle D is hit, then two links (v, DNW ) and (v, DSE ) corresponding to the two
vertices being the direct successors of vertex v are created, where DNW and DSE are, respectively,
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Fig. 2. Successors of a vertex v.

the NW and SE corners of obstacle D (see Fig. 2b). The length d (v1, v2) of link (v1, v2) is equal
to its horizontal or vertical part plus the projection on one of the axis of its diagonal part.

A path going from S to F in digraph G = (V, E, d ) corresponds to a feasible schedule for the
problem and its length is equal to the makespan. Therefore, finding the optimal makespan for the
example is equivalent to finding a shortest path on the graph shown in Fig. 1.

2.2. Extension of the graphical method for n > 2

We now propose a new heuristic for solving job-shop problems with more than two jobs based
on the graphical method for the two-job problem described in Section 2.1. Jobs are added to the
schedule, one at a time. At each stage s, a new job is added. All jobs already scheduled are placed
below the horizontal axis and the new job is placed to the left of the vertical axis. Next, the graphical
method of Akers (1956) for n = 2 is used to find the shortest path taking into account the obstacles
generated by the operations that share the same machine in the job on the vertical axis and all the
jobs in the horizontal axis (see Fig. 3a where job J3 is added to the final schedule of jobs J1 and J2
in Fig. 1). After finding the shortest path, the schedules of the job on the vertical axis and the jobs
on the horizontal axis are updated accordingly (see Fig. 3b). Finally, all jobs already scheduled are
placed below the horizontal axis and another unscheduled job is placed left of the vertical axis. This
process is repeated until all jobs are scheduled.

To decode the shortest path into the corresponding schedules of each job we follow the same rules
used in the case n = 2. A horizontal segment implies that only the jobs in the horizontal axis are
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Fig. 3. Example of the extension of the Akers graphical method for n > 2.

being processed, a vertical segment implied that only the job in the vertical axis is being processed,
and a diagonal segment implies that all the jobs are being processed simultaneously. However, when
n > 2 the following two problems may arise when applying the exact two-job graphical method:

1. The shortest path obtained does not always correspond to a shortest path. This is so because
when there is a vertical segment all the schedules of the jobs in the horizontal axis are delayed,
which is not always necessary. To overcome this problem, we apply a left shift to all operations
in the schedule (in a left shift, we move all operations in the schedule as far left as possible).
Figure 3c illustrates the result of the application of a left shift to the schedule in Fig. 3b.
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Fig. 5. Pseudo-code for the AKERS_EXT schedule construction procedure.

2. It may happen that adding the link (v, DNW ) when moving diagonally from a vertex v until an
obstacle D is hit may lead to an invalid path segment going to the left (see Fig. 4). To overcome
this, we simply do not add to G links that correspond to path segments in the left direction.

Figure 5 presents pseudo-code for the scheduling procedure AKERS_EXT which extends the
graphical approach to the case n > 2. The procedure receives as input the set SchedJobs of
jobs already scheduled, the current schedule CurSch of all jobs j ∈ SchedJobs, and the sequence
AddSeq = {J1, J2, . . . , Jn} in which the jobs j /∈ SchedJobs will be added to schedule CurSch.
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Fig. 6. Removal of jobs J1 and J4 and left shifting of the resulting scheduling.

2.3. New local search

We next present a set of new local search algorithms for the JSP. Given a current schedule, we
generate new schedules by removing nr jobs, apply a left-shift operator to all remaining operations,
and add back the nr previously removed jobs using procedure AKERS_EXT, whose pseudo-code
is shown in Fig. 5.

To illustrate how the new schedules are generated, we consider again the 4-job example given in
Table 1. We use, as the current schedule, the initial schedule given in Fig. 6a. The first step consists
in removing a number of jobs from the schedule. We will remove jobs J1 and J4. We then apply a
left shift to the resulting schedule and end up with the schedule shown in Fig. 6b.

Next, the local search adds the removed jobs in the order given by AddSeq that we assume in
this example to be AddSeq = {J1, J4}. To obtain the new solution, all that is required is to run
procedure AKERS EXT with CurSch equal to the schedule given in Fig. 6b, AddSeq = {J1, J4},
and SchedJobs = {J2, J3}. Figures 7 and 8 depict the Akers graph, the shortest path, and the
corresponding schedules for jobs J1, J2, J3 and J1, J2, J3, J4 after adding back job J1, and J1 and J4,
respectively. Note that the new final schedule not only is different from the initial schedule, but also
has a smaller makespan.

Several variants of this local search algorithm can be produced by changing the number of jobs
to be removed. As before, let CurSch denote the current schedule associated with the set of jobs J
and nr be the number of jobs to be removed. The corresponding flowchart of this new variant of
the local search is shown in Fig. 9.

Despite being very effective, the LS AKERS EXT local search procedure can have long running
times when nr ≥ 2. To overcome this problem, we propose a new variant of LS AKERS EXT where
nr ≤ 2. When nr = 2, each job j ∈ J is combined with only nRand jobs, chosen at random from
the set J \ { j}. We call this new variant LS1+_AKERS_EXT and its corresponding pseudo-code is

C© 2013 The Authors.
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Fig. 7. Schedule after adding back job J1.

shown in Fig. 10. Note that the LS1+_AKERS_EXT local search guarantees that every job j ∈ J
is removed from the schedule and is added back. Also, note that when nRand = 0, we obtain the
LS_AKERS_EXT local search for the case where nr = 1. Likewise, when nRand = n − 1, we obtain
the LS_AKERS_EXT local search for the case where nr = 2.

The heuristic AKERS_EXT runs 2 × n × nr times in the LS1+_AKERS_EXT local search
and the complexity of AKERS_EXT is O(nr × n × m × log(n × m)). Therefore, the complexity
of LS1+_AKERS_EXT is O(n2 × m × log(n × m)). Since m = O(n), this complexity reduces to
O(n3 × log(n)) .
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3. The new heuristic

The new heuristic proposed in this paper is a BRKGA. In this section, first we briefly review the
BRKGA framework. Then, we describe the encoding/decoding of the chromosome with a schedule-
generation scheme and an improvement procedure. We finally describe a chromosome adjustment
procedure.
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Fig. 9. Flowchart for the LS AKERS EXT local search procedure.

3.1. BRKGA

Genetic algorithms with random keys, or random-key genetic algorithms (RKGAs), for solving
optimization problems whose solutions can be represented as permutation vectors were introduced
in Bean (1994). In an RKGA, chromosomes are represented as vectors of randomly generated real
numbers in the interval [0, 1]. A deterministic algorithm, called a decoder, takes as input a solution
vector and associates with it a solution of the combinatorial optimization problem for which an
objective value or fitness can be computed.

A RKGA evolves a population, or set, of random-key vectors over a number of iterations, or
generations. The initial population is made up of p vectors, each with o = n × m random keys. Each
component of the solution vector, or random key, is generated independently at random in the
real interval [0, 1]. After the fitness of each individual is computed by the decoder in generation k,
the population is partitioned into two groups of individuals: a small group of pe elite individuals,

C© 2013 The Authors.
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Fig. 10. Pseudo-code for the LS1+_AKERS_EXT local search procedure.

that is, those with the best fitness values, and the remaining set of p − pe nonelite individuals. To
evolve the population, a new generation of individuals must be produced. All elite individuals of
the population of generation g are copied, without modification, to the population of generation
g + 1. RKGAs implement mutation by introducing mutants into the population. A mutant is simply
a vector of random keys generated in the same way that an element of the initial population is
generated. At each generation, a small number pm of mutants are introduced into the population.
With pe + pm individuals accounted for in population g + 1, p − pe − pm additional individuals
need to be generated to complete the p individuals that make up population g + 1. This is done by
producing p − pe − pm offspring solutions through the process of mating or crossover.

C© 2013 The Authors.
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A biased random-key genetic algorithm, or a BRKGA (Gonçalves and Resende, 2011b), differs from
a RKGA in the way parents are selected for mating. While in the RKGA of Bean (1994) both parents
are selected at random from the entire current population, in a BRKGA each element is generated
combining a parent selected at random from the elite partition in the current population and one
from the rest of the population. Repetition in the selection of a mate is allowed and therefore an
individual can produce more than one offspring in the same generation. As in RKGAs, parameterized
uniform crossover (DeJong and Spears, 1991) is used to implement mating in BRKGAs. Let ρe be
the probability that an offspring inherits the vector component of its elite parent. Recall that o
denotes the number of components in the solution vector of an individual. For i = 1, . . . , o, the ith
component c(i) of the offspring vector c takes on the value of the ith component e(i) of the elite
parent e with probability ρe and the value of the ith component ē(i) of the nonelite parent ē with
probability 1 − ρe.

When the next population is complete, that is, when it has p individuals, fitness values are
computed for all of the newly created random-key vectors and the population is partitioned into
elite and nonelite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem indirectly
by searching the continuous o-dimensional hypercube, using the decoder to map solutions in the
hypercube to solutions in the solution space of the combinatorial optimization problem where the
fitness is evaluated.

To specify a BRKGA, we simply need to specify how solutions are encoded, decoded, and how
their fitness is evaluated. We specify our algorithm in the next section by first showing how schedules
are encoded and then how decoding is done.

We have been building powerful heuristics based on the BRKGA framework for over 10 years
(Gonçalves and Resende, 2011b). We have observed that this framework allows the control and
coordination of one or more heuristics enabling us to find solutions of much better quality than
those found by the heuristics alone. The BRKGA works as a kind of long-term memory mechanism
that learns how to best control the heuristic as the generations proceed. For example, in a set
covering problem (Resende et al., 2012), the BRKGA controls a greedy algorithm by “learning”
which sets are in a partial cover and only uses the greedy algorithm, starting from the “learned”
partial cover, to complete the cover. In a 2D orthogonal packing problem (Gonçalves and Resende,
2011a), where a number of small rectangles are packed in a large rectangle with the objective of
maximizing the value of the packed rectangles, the BRKGA controls two simple heuristics (bottom-
left and left-bottom) by “learning” the sequence the small rectangles are packed and which simple
heuristic is used to pack each small rectangle. In the case of the JSP, we expected that the BRKGA
would learn a good order of the operations (and subsequent schedule), which could be improved by
the local search heuristics employed here. As we will see in the remainder of this paper, the BRKGA
does indeed achieve this goal.

3.2. Solution encoding

We now describe the chromosome representation, that is, how solutions to the problem are
represented. The direct mapping of schedules as chromosomes is too complicated to represent
and manipulate. In particular, it is difficult to develop corresponding crossover and mutation

C© 2013 The Authors.
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Fig. 11. Sequence of steps applied to each chromosome in the decoding process.

operations. As is always the case with BRKGAs, solutions (in this case schedules) are represented
indirectly by parameters that are later used by a decoder to extract a solution. In this BRKGA, a
schedule is represented by the following chromosome structure:

chromosome = (gene1, . . . , genen1
︸ ︷︷ ︸

n1

, genen1+1, . . . , genen1+n2
︸ ︷︷ ︸

n2

, . . . , geneo−nn+1, . . . , geneo
︸ ︷︷ ︸

nn

),

where n j represents the number of operations of job j = 1, . . . , n. Each gene is a randomly generated
real number in the interval [0, 1]. The value of each gene is used in the decoding procedure described
in the next section.

3.3. Decoding a random-key vector into a job-shop schedule

The decoding process of a chromosome into a schedule consists of three steps: initial schedule
generation, local search with tabu search, and chromosome adjustment. We next describe each of
these components. Figure 11 illustrates the sequence of steps applied to each chromosome in the
decoding process.

Initial schedule generation
An initial schedule is decoded from a chromosome with the following two steps:
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J.F. Gonçalves and M.G.C. Resende / Intl. Trans. in Op. Res. 21 (2014) 215–246 229

4 

0.35 

1 

0.78 

4 

0.87 

2 

0.49 

3 

0.02 

3 

0.17 

1 

0.93 

2 

0.07 

Unsorted genes 

Ordered jobs 

Sorted genes 

2 2 2 Unordered jobs 3 3 

0.67 0.78 0.49 0.07 0.35 0.87 0.17 0.02 0.93 

(a) n2=3 n3=3

3 

4 

0.67 

Ordered operations 

(b)

(c)

1 1 1 

n1=3

2 2 2 3 3 3 1 1 1 Unordered jobs 

O4,1 O1,1 O4,3 O2,2 O3,1 O3,2 O1,2 O2,1 O4,2 

1 

0.25 

2 

0.52 

3 

0.42 

4 4 

0.25 0.52 0.42 

n4=3

4 

4 4 4 

O1,3 O2,3 O3,3 

Fig. 12. Translating a chromosome into a list of ordered operations.

1. Translate the chromosome into a list of ordered operations.
2. Generate the schedule with a one-pass heuristic based on the list obtained in step 1.

To translate the chromosome, we use an operation-based representation where a schedule is repre-
sented by an unpartitioned permutation with n j repetitions of each job j (Bierwirth, 1995; Cheng
et al., 1996; Gen et al., 1994; Shi et al., 1996). Because of the precedence constraints, each repeat-
ing gene does not indicate a concrete operation of a job but refers to a unique operation that is
context-dependent. To illustrate the translation process, we will use the example in Table 1. The
process starts by filling an unordered vector of jobs with the number of each job repeated n j times
(see Fig. 12a). Next, the vector is ordered according to the values of the corresponding genes in the
chromosome (see Fig. 12b). Finally, the list of ordered operations is obtained by replacing, from
left to right, each kth job number occurrence in the ordered vector of jobs by the kth operation in
the technological sequence of the job (see Fig. 12c).

Once a list of ordered operations is obtained, a schedule is constructed by initially scheduling the
first operation in the list, then the second operation, and so on. Each operation is assigned to the
earliest feasible starting time in the machine it requires. The process is repeated until all operations
are scheduled (see Fig. 13 for the final schedule corresponding to the ordered operation list in
Fig. 12c). Note that the schedules generated by this process are guaranteed to be active schedules.
An active schedule is one where no activity can be started earlier without changing the start times
of any other activity and still maintain feasibility (Schrage, 1970).

Local search with tabu search
After an initial schedule using the random keys provided by the BRKGA is obtained and the
decoding procedure described in the previous section is carried out, we proceed by trying to improve
the schedule with a new hybrid local search that we developed. This new local search, denoted by
NEW_LS, combines the LS1+_AKERS_EXT local search (introduced in Section 2.3) with a tabu
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Fig. 13. Initial active schedule obtained from the list of ordered operations.

search procedure that uses the neighborhood structure proposed by Nowicki and Smutnicki (1996)
and will be denoted as TS_NS. This neighborhood randomly selects a critical path in the current
schedule and identifies all of its critical blocks (sequences of contiguous operations on the same
machine). Then, it considers for exchange only the first two and last two operations in every block
(the first two and last two operations in the critical path are excluded). To select a move, we must
first evaluate the makespan of every move in the neighborhood. Since the exact evaluation of a
move is time consuming, we use the fast approximate method of Taillard (1994) in place of the exact
evaluation. The move with the smallest approximate makespan is selected and applied. We then
compute the exact makespan. To do that, we use the topological order and the efficient updating
procedures for heads and tails of Nowicki and Smutnicki (2005).

The TS_NS tabu search is embedded into the LS1+_AKERS_EXT local search between lines
9 and 10 of its pseudo-code. The tabu list, TL, consists of maxT operation pairs that have been
exchanged in the last maxT moves of the tabu search. If the move corresponding to the exchange of
the operations in pair {ou, ov} has been performed, its inverse pair {ov, ou} replaces the oldest move
in TL (or is added to the end of the list TL if it is not full). This process prevents the exchange of
the same operations for the next maxT moves. The pseudocode for the TS_NS hybrid local search
procedure is depicted in Fig. 14.

Chromosome adjustment
Solutions produced by the hybrid local search procedure NEW_LS usually disagree with the genes
initially supplied to the decoder in the vector of random keys. Changes in the order of the operations
made by the local search phase of the decoder need to be taken into account in the chromosome.
The heuristic adjusts the chromosome to reflect these changes. To make the chromosome supplied
by the GA agree with the solution produced by local search, the heuristic adjusts the order of the
genes according to the starting times of the operations. This chromosome adjustment not only
improves the quality of the solutions but also reduces the number of generations needed to obtain
the best values.

3.4. Fitness measure

A natural fitness function (measure of quality) for this type of problem is Cmax. However, since
different schedules can have the same makespan, this measure does not differentiate well the potential
for improvement of schedules having identical makespans. To better differentiate the potential for
improvement, we use a measure called modified makespan that is detailed in Mendes et al. (2009)
and Gonçalves et al. (2011c). The modified makespan combines the makespan of the schedule with
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Fig. 14. Pseudo-code for the TS_NS tabu search procedure.
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232 J.F. Gonçalves and M.G.C. Resende / Intl. Trans. in Op. Res. 21 (2014) 215–246

a measure of the potential for improvement of the schedule that has values in the interval ]0, 1[. The
rationale for this new measure is that if we have two schedules with the same makespan value, then
the one with a smaller number of activities ending close to the makespan will have more potential
for improvement.

4. Experimental results

We next report results obtained on a set of experiments conducted to evaluate the performance of
BRKGA-JSP, the algorithm proposed in this paper. BRKGA-JSP was implemented in C++ and
all the computational experiments were carried out on a computer with an AMD 2.2 GHz Opteron
(2427) CPU running the Linux (Fedora release 12) operating system. We list the benchmark instances
and algorithms used in the experiments, specify the parameter configuration used in the experiments,
and present the results.

4.1. Benchmark instances and algorithms

To illustrate the effectiveness of BRKGA-JSP, we consider the following well-known problem classes
from the job-shop scheduling literature:

� FT—Three problems denoted as FT06, FT10, and FT20 from Fisher and Thompson (1963).
� LA—Forty problems denoted as LA01–40 from Lawrence (1984).
� ABZ—Three problems denoted as ABZ07–09 from Adams et al. (1988).
� ORB—Ten problems denoted as ORB01–10 from Applegate and Cook (1991).
� YN—Four problems denoted as YN01–04 from Yamada and Nakano (1992).
� SWV—Fifteen problems denoted as SWV01–15 from (Storer et al., 1992).
� TA—Fifty problems denoted as TA01–50 fromTaillard (1994). Instances TA51–80 are commonly

considered easy and the corresponding results are not usually reported. Since BRKGA-JSP
obtained the optimal solutions to all these instances, we will focus our attention only on the
instances TA01–50, which are more difficult.

� DMU—Eighty problems denoted as DMU01–80 from Demirkol et al. (1997).

We compare our results with those obtained by the currently best performing approaches found in
the literature, namely:

� i-TSAB (Nowicki and Smutnicki, 2005).
� GES (Pardalos and Shylo, 2006).
� TS (Zhang et al., 2007).
� TS/SA (Zhang et al., 2008).
� AlgFix (Pardalos et al., 2010).

4.2. Configuration

All the computational experiments were conducted using the same configuration parameters shown
in Table 2.
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Table 2
Configuration parameters

Parameter Value

BRKGA
p max( 150, �0.5 × o	 )

pe 10
pm 10
ρe 0.85
Fitness Modified makespan (to minimize)
Stopping criterion 20 generations

LS1+_AKERS_EXT
nRand max( 4, min( �0.3 × n	, 12) )

TS_NS
maxNIM 100
maxT max( 4, �0.3 × n	 )

Number of runs 10

�x	 denotes the smallest integer greater than x.

4.3. Results

To compare with other approaches we use the following measures:

%RE = the % relative error of a solution with makespan

Cmax with respect to the best -known upper bound (UB), that is,

%RE = 100% × (Cmax − UB)/UB.

%ARE = average % RE over all instances.

Because some of the literature describing other approaches with which we compare our heuristic
do not report detailed results for each instance or report results relative to best-known values
that are not reported, we only compute %ARE for BRKGA-JSP using those instances reported
in detail in the literature. The values for which there are no detailed information are left blank in
our tables. For all instances we provide its lower bound (LB) and best-known value (UB) (when
LB=UB the best-known value is optimal). The updated values of LB and UB were obtained from
the following papers: Taillard (1994), Balas and Vazacopoulos (1998), Wennink (1995), Nowicki
and Smutnicki (1996), Vaessens et al. (1996), Demirkol et al. (1997), Jain (1998), Brinkkötter
and Brucker (2001), Schilham (2001), Henning (2002), Nowicki and Smutnicki (2002), Parda-
los and Shylo (2006), Zhang et al. (2008), Pardalos et al. (2010) and the URLs: http://
mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/jobshop.dir/best_lb_up.txt,
http://plaza.ufl.edu/shylo/TA.html, and http://plaza.ufl.edu/shylo/DMU.html.

The detailed experimental results obtained for the problem classes FT, ORB, LA, ABZ, YN,
TA, and DMU are presented in Tables A1–A9. Note that since not all the other approaches
report results for the same set of instances, we have to use two rows with labels %ARE and
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Table 3
Summary of %ARE obtained by each approach for each instance class

Class Approach GES TS TS/SA AlgFix i -TSAB

FT Other 0 0
BRKGA-JSP 0 0

ORB Other 0 0
BRKGA-JSP 0 0

LA Other 0.000 0.046 0.023
BRKGA-JSP 0.002 0.008 0.008

ABZ Other 0.350 0.202
BRKGA-JSP 0.100 0.100

YN Other 0.026
BRKGA-JSP −0.083

SWV01–10 Other 0.007
BRKGA-JSP −0.015

SWV11–15 Other 0.000
BRKGA-JSP 0.010

TA Other 0.194 0.119 0.518 0.194
BRKGA-JSP −0.023 −0.023 −0.023 −0.043

DMU Other 0.629 0.162 0.424 1.150
BRKGA-JSP −0.104 −0.155 −0.104 −0.138

Best values of %ARE are in bold.

Table 4
Description of additional experiments

Experiment Description

GA Run BRKGA alone, using chromosome adjustment
GA-TS Run BRKGA with tabu search and chromosome adjustment
GA-AK Run BRKGA with the LS1+_AKERS_EXT search and chromosome adjustment
GA-AKTS Run BRKGA with both LS1+_AKERS_EXT search and tabu search, but without chromosome adjustment

BRKGA-JSP %ARE at the bottom of some tables to aggregate the average %RE over all instances
being compared.

Optimal solutions for all the instances in problem classes FT, ORB, and LA are known. For
problem classes FT and ORB, the approaches BRKGA-JSP, GES, TS, and TS/SA obtained optimal
solutions on all instances. For problem class LA, the approach GES obtained the optimal solutions
on all instances, while BRKGA-JSP failed to do so on instance LA29 where it obtained a value of
1153 instead of 1152. Approaches TS and TS/SA failed to find optimal values for instances LA29
and LA40. Problem classes ABZ, YN, TA, and DMU include some hard instances for which no
optimal solution is known. BRKGA-JSP obtained the best %ARE results for these classes with the
exception of problem class SWV where the TS approach, which only presents values for instances
SWV11–15, obtained a single better result (for instance SWV15). BRKGA-JSP improved the best-
known values (UB) for 57 instances (42 on the DMU class, nine on the TA class, one on the YN class,
and five on the SWV class). Table 3 presents a summary of the %ARE obtained by each approach
for each problem class (note that since not all the other approaches use the same set of instances
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Table 5
Percentage increase in makespan with respect to full algorithm for each experiment on all instance classes

Class n × m GA (%) GA-TS (%) GA-AK (%) GA-AKTS (%)

FT06 6 × 6 0.0 0.0 0.0 0.0
FT10 10 × 10 5.9 0.0 0.9 0.0
FT20 20 × 5 6.8 0.7 0.0 0.0
ORB01–10 10 × 10 7.0 0.6 0.3 0.0
LA01–05 10 × 5 0.9 0.0 0.0 0.0
LA06–10 15 × 5 0.0 0.0 0.0 0.0
LA11–15 20 × 5 0.0 0.0 0.0 0.0
LA16–20 10 × 10 2.2 0.1 0.1 0.0
LA21–25 15 × 10 7.0 0.3 1.1 0.0
LA26–30 20 × 10 7.6 0.9 1.4 0.2
LA31–35 30 × 10 0.2 0.0 0.0 0.0
LA36–40 15 × 15 11.2 1.3 1.6 0.0
ABZ07–09 20 × 15 14.7 2.3 3.1 0.3
YN01–04 20 × 20 13.6 1.8 3.6 0.5
SWV01–05 20 × 10 19.9 6.3 3.8 0.6
SWV06–10 20 × 15 22.9 6.9 6.6 1.5
SWV11–15 50 × 10 28.8 10.9 7.2 0.6
TA01–10 15 × 15 10.3 0.8 1.3 0.0
TA11–20 20 × 15 14.6 2.7 3.8 0.5
TA21–30 20 × 20 14.9 1.9 4.4 0.5
TA31–40 30 × 15 15.0 2.4 6.6 0.6
TA41–50 30 × 20 20.7 4.0 9.3 1.4
DMU01–05 20 × 15 17.6 1.8 3.6 0.4
DMU06–10 20 × 20 17.3 1.9 3.7 0.3
DMU11–15 30 × 15 16.4 2.7 6.9 0.5
DMU16–20 30 × 20 18.6 3.0 8.7 0.7
DMU21–25 40 × 15 7.8 0.0 2.3 0.0
DMU26–30 40 × 20 16.8 2.2 8.0 0.3
DMU31–35 50 × 15 3.7 0.0 1.2 0.0
DMU36–40 50 × 20 14.3 1.0 6.1 0.0
DMU41–45 20 × 15 22.8 7.2 6.4 1.5
DMU46–50 20 × 20 22.3 5.9 7.9 1.4
DMU51–55 30 × 15 28.8 10.1 9.5 2.1
DMU56–60 30 × 20 28.7 11.4 11.7 3.0
DMU61–65 40 × 15 31.5 13.8 11.1 0.2
DMU66–70 40 × 20 32.1 13.3 13.5 0.1
DMU71–75 50 × 15 33.1 15.3 12.5 0.1
DMU76–80 50 × 20 35.0 17.7 14.2 0.1

Overall average 15.0 4.0 4.8 0.5

we have to use two rows for each class of problems—the row that starts with “other” presents the
results obtained by the other approaches and the row starting with BRKGA-JSP presents the results
for the corresponding instance obtained by our algorithm).

To investigate the contribution of each of the components included in BRKGA-JSP (genetic
algorithm, tabu search, LS1+_AKERS_EXT, and chromosome adjustment), we conducted the
additional experiments using the components described in Table 4.
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Table 6
Average running times for BRKGA-JSP

BRKGA-JSP i -TSAB TS TS/SA AlgFix GES

GA TS AK Time Time Time Time Time Time
Class n × m (%) (%) (%) (seconds) (seconds) (seconds) (seconds) (seconds) (seconds)

FT06 6 × 6 12.50 25.00 62.50 1.0
FT10 10 × 10 4.44 6.67 88.89 10.1 41.1 3.8
FT20 20 × 5 1.75 1.75 96.49 13.4
ORB01–10 10 × 10 1.73 2.80 95.47 5.8 6.2
LA01–05 10 × 5 7.04 10.80 82.15 1.4 0.0
LA06–10 15 × 5 3.34 3.92 92.74 2.9
LA11–15 20 × 5 1.86 1.93 96.21 5.3
LA16–20 10 × 10 5.92 7.92 86.16 4.6 0.2
LA21–25 15 × 10 1.93 3.17 94.90 15.3 13.6
LA26–30 20 × 10 0.95 1.51 97.54 21.8 15.2
LA31–35 30 × 10 0.31 0.49 99.21 38.7
LA36–40 15 × 15 1.73 2.81 95.46 21.4 36.1
ABZ07–09 20 × 15 1.17 1.76 97.07 54.6 88.9
YN01–04 20 × 20 0.90 2.01 97.10 105.2 109.1
SWV01–05 20 × 10 0.71 1.52 97.78 42.5 138.3
SWV06–10 20 × 15 0.76 1.46 97.79 78.7 190.2
SWV11–15 50 × 10 0.69 1.87 97.44 2304.4 3118.2
TA01–10 15 × 15 0.48 1.17 98.35 30.4 79 65.3 10,000 30,000
TA11–20 20 × 15 0.18 0.61 99.21 65.8 390 235 10,000 30,000
TA21–30 20 × 20 2.48 3.93 93.59 143.2 1265 433 10,000 30,000
TA31–40 30 × 15 3.12 3.92 92.96 487.6 1225 370.4 10,000 30,000
TA41–50 30 × 20 0.31 0.69 99.01 1068.3 1670 845.8 10,000 30,000
DMU01–05 20 × 15 1.04 1.51 97.45 68.9 10,000 30,000
DMU06–10 20 × 20 0.92 1.78 97.31 145.4 10,000 30,000
DMU11–15 30 × 15 0.25 0.51 99.25 427.3 10,000 30,000
DMU16-20 30 × 20 0.21 0.72 99.07 1043.6 10,000 30,000
DMU21–25 40 × 15 0.09 0.28 99.64 1150.6 10,000 30,000
DMU26–30 40 × 20 0.08 0.37 99.55 3556.3 10,000 30,000
DMU31–35 50 × 15 0.08 0.18 99.74 2086.7 10,000 30,000
DMU36–40 50 × 20 0.05 0.24 99.71 9368.3 10,000 30,000
DMU41-45 20 × 15 0.56 1.21 98.23 78.9 10,000 30,000
DMU46–50 20 × 20 0.52 1.42 98.06 187.7 10,000 30,000
DMU51–55 30 × 15 0.16 0.49 99.35 701.4 10,000 30,000
DMU56–60 30 × 20 0.14 0.63 99.23 1545.8 10,000 30,000
DMU61–65 40 × 15 0.07 0.28 99.65 2684.3 10,000 30,000
DMU66–70 40 × 20 0.07 0.39 99.54 5394.2 10,000 30,000
DMU71–75 50 × 15 0.04 0.21 99.74 8070.1 10,000 30,000
DMU76–80 50 × 20 0.04 0.27 99.69 15,923.4 10,000 30,000

i-TSAB was run on a Pentium at 900 MHz, TS was run on a Pentium IV at 1.8 GHz, TS/SA was run on a Pentium IV at 3.0
GHz, and AlgFix and GES were run on a Pentium at 2.8 GHz.
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Table 5 lists, for each problem class, %GA, %GA-TS, % GA-AK, and %GA-AKTS, the average
percentage increase in makespan for GA, GA-TS, GA-AK, and GA-AKTS, respectively, with
respect to the average makespans of the solutions obtained by BRKGA-JSP.

From Table 5 it is clear that the BRKGA alone does not perform well since it produces an overall
average makespan increase of 15% with respect to the full algorithm. The combinations of the
BRKGA with the tabu search (GA-TS) and with the LS1+_AKERS_EXT (GA-AK) produce better
results. Nevertheless, they are 4% and 4.8%, respectively, above the ones produced by BRKGA-JSP.
Combining the BRKGA with both the LS1+_AKERS_EXT search and the tabu search into GA-
AKTS results in the best makespans of the four, with only an average makespan increase of 0.5%
with respect to the solutions found by BRKGA-JSP. This shows that the addition of chromosome
adjustment, used in the full algorithm (BRKGA-JSP), is consequential since it contributes to an
additional average makespan reduction of 0.5%. It also clear that the good performance of the algo-
rithm results mainly from the combination of the two local searches LS1+_AKERS_EXT and TS.

In terms of computational times, we cannot make any fair and meaningful comment since all the
other approaches were implemented with different programming languages and tested on computers
with different computing power. Hence, to avoid discussion about the different computer speeds
used in the tests, we limit ourselves to reporting in Table 6 the average running times per run
for BRKGA-JSP, while for each of the other algorithms we only report, when available, the CPU
used and the reported running times. We profiled our runs and also include the percentage of the
total time that was spent on each of the algorithm components of BRKGA-JSP (%GA—genetic
algorithm, %TS—tabu search, and %AK—LS1+_AKERS_EXT search). It is clear from Table 6
that BRKGA-JSP spends most of its time in the LS1+_AKERS_EXT search.

5. Concluding remarks

This paper proposes a new heuristic for the job-shop scheduling problem. The heuristic is based on
a biased random-key genetic algorithm (BRKGA) that uses a decoder with three phases. The initial
phase uses a procedure that takes the chromosome and produces an active schedule. This is followed
by a second phase that takes the active schedule and attempts to improve it with a local search that
moves back and forth between two neighborhoods, one based on an extension of the graphical
method of Akers (1956) and the other on the well-known tabu search based local improvement
procedure of Nowicki and Smutnicki (1996). Finally, in the last phase, the chromosome is adjusted
to reflect the solution found by the previous phases.

Computational experiments compared several configurations of the heuristic (phase 1 only, phases
1 and 2, and all three phases) and showed that the best results are achieved combining the BRKGA
with the three phases (BRKGA-JSP) with phase 2 having the greatest contribution to makespan
reduction.

The approach was tested on a set of 205 standard instances from the literature and compared
with other approaches. Of the 205 instances, 103 were open, that is, had best-known solutions not
yet proven optimal. Of these 103 instances, our new heuristic improved the best-known values for 57
of them. We improved the best-known solution for one of four open instances in class YN (Yamada
and Nakano, 1992), five of nine open instances in class SWV (Storer et al., 1992), nine of 32 open
instances in class TA (Taillard, 1994), and 42 of 56 open instances in class DMU (Demirkol et al.,
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1997). For instance DMU18, one of the instances in class DMU, our new heuristic found a solution
of value 3844, matching its previously best-known lower bound and thus establishing, for the first
time, optimality for this instance.

Compared to results reported in the literature for other algorithms, BRKGA-JSP found the
best average solutions for seven of nine problem classes, as shown in Table 3. In classes LA and
SWV11–15, the two classes for which BRKGA-JSP was not the best, it was second best with average
solutions only 0.002% and 0.01%, respectively, above those of the winners.
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Appendix

Table A1
Makespan and average percent deviation from best upper bound for problem class FT

BRKGA-JSP TS/SA TS

Prob. n × m Opt. Max Avg Min Min Min

FT06 6 × 6 55 55 55 55
FT10 10 × 10 930 930 930 930 930 930
FT20 20 × 5 1165 1165 1165 1165

%ARE 0 0 0
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Table A2
Makespan and average percent deviation from best upper bound for problem class LA

BRKGA-JSP GES TS/SA TS

Prob. n × m Opt. Max Avg Min Min Min Min

LA01 10 × 5 666 666 666 666 666
LA02 10 × 5 655 655 655 655 655
LA03 10 × 5 597 597 597 597 597
LA04 10 × 5 590 590 590 590 590
LA05 10 × 5 593 593 593 593 593
LA06 15 × 5 926 926 926 926 926
LA07 15 × 5 890 890 890 890 890
LA08 15 × 5 863 863 863 863 863
LA09 15 × 5 951 951 951 951 951
LA10 15 × 5 958 958 958 958 958
LA11 20 × 5 1222 1222 1222 1222 1222
LA12 20 × 5 1039 1039 1039 1039 1039
LA13 20 × 5 1150 1150 1150 1150 1150
LA14 20 × 5 1292 1292 1292 1292 1292
LA15 20 × 5 1207 1207 1207 1207 1207
LA16 10 × 10 945 945 945 945 945
LA17 10 × 10 784 784 784 784 784
LA18 10 × 10 848 848 848 848 848
LA19 10 × 10 842 842 842 842 842 842 842
LA20 10 × 10 902 902 902 902 902
LA21 15 × 10 1046 1046 1046 1046 1046 1046 1046
LA22 15 × 10 927 927 927 927 927
LA23 15 × 10 1032 1032 1032 1032 1032
LA24 15 × 10 935 935 935 935 935 935 935
LA25 15 × 10 977 977 977 977 977 977 977
LA26 20 × 10 1218 1218 1218 1218 1218
LA27 20 × 10 1235 1235 1235 1235 1235 1235 1235
LA28 20 × 10 1216 1216 1216 1216 1216
LA29 20 × 10 1152 1160 1154.7 1153 1152 1153 1156
LA30 20 × 10 1355 1355 1355 1355 1355
LA31 30 × 10 1784 1784 1784 1784 1784
LA32 30 × 10 1850 1850 1850 1850 1850
LA33 30 × 10 1719 1719 1719 1719 1719
LA34 30 × 10 1721 1721 1721 1721 1721
LA35 30 × 10 1888 1888 1888 1888 1888
LA36 15 × 15 1268 1268 1268 1268 1268 1268 1268
LA37 15 × 15 1397 1397 1397 1397 1397 1397 1397
LA38 15 × 15 1196 1196 1196 1196 1196 1196 1196
LA39 15 × 15 1233 1233 1233 1233 1233 1233 1233
LA40 15 × 15 1222 1226 1223.2 1222 1222 1224 1224

%ARE 0.000 0.023 0.046
BRKGA-JSP %ARE 0.002 0.008 0.008
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Table A3
Makespan and average percent deviation from best upper bound for problem class ORB

BRKGA-JSP TS/SA GES

Prob. n m Opt. Max Avg Min Min Min

ORB01 10 10 1059 1059 1059 1059 1059 1059
ORB02 10 10 888 888 888 888 888 888
ORB03 10 10 1005 1005 1005 1005 1005 1005
ORB04 10 10 1005 1011 1006.2 1005 1005 1005
ORB05 10 10 887 887 887 887 887 887
ORB06 10 10 1010 1010 1010 1010 1010 1010
ORB07 10 10 397 397 397 397 397 397
ORB08 10 10 899 899 899 899 899 899
ORB09 10 10 934 934 934 934 934 934
ORB10 10 10 944 944 944 944 944 944

%ARE 0 0 0

Table A4
Makespan and average percent deviation from best upper bound for problem class ABZ

BRKGA-JSP TS/SA TS

Prob n × m LB U B Max Avg Min Min Min

ABZ07 20 × 15 656 656 661 658 656 658 657
ABZ08 20 × 15 645 665 668 667.7 667 667 669
ABZ09 20 × 15 661 678 681 678.9 678 678 680

%ARE 0.100 0.202 0.350

Table A5
Makespan and average percent deviation from best upper bound for problem class YN

BRKGA-JSP TS/SA

Prob. n × m LB U B Max Avg Min Min

YN01 20 × 20 826 884 889 886 884 884
YN02 20 × 20 861 907 909 906.5 904 907
YN03 20 × 20 827 892 895 893.1 892 892
YN04 20 × 20 918 968 979 973 968 969

%ARE −0.083 0.026

Newly found upper bounds by BRKGA-JSP are in bold.
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Table A6
Makespan and average percent deviation from best upper bound for problem class SWV

BRKGA-JSP TS/SA TS

Prob. n × m LB U B Max Avg Min Min Min

SWV01 20 × 10 1407 1407 1413 1408.9 1407 1412
SWV02 20 × 10 1475 1475 1490 1478.2 1475 1475
SWV03 20 × 10 1369 1398 1404 1400 1398 1398
SWV04 20 × 10 1450 1470 1478 1472.8 1470 1470
SWV05 20 × 10 1424 1424 1441 1431.4 1425 1425
SWV06 20 × 15 1591 1678 1694 1682.1 1675 1679
SWV07 20 × 15 1446 1600 1609 1601.2 1594 1603
SWV08 20 × 15 1640 1756 1770 1764.3 1755 1756
SWV09 20 × 15 1604 1661 1675 1667.9 1656 1661
SWV10 20 × 15 1631 1754 1772 1754.6 1743 1754
SWV11 50 × 10 2983 2983 2989 2985.9 2983 2983
SWV12 50 × 10 2972 2979 2994 2989.7 2979 2979
SWV13 50 × 10 3104 3104 3140 3111.6 3104 3104
SWV14 50 × 10 2968 2968 2968 2968 2968 2968
SWV15 50 × 10 2885 2886 2904 2902.9 2901 2886

%ARE 0.007 0.000
BRKGA-JSP %ARE −0.015 0.010

Newly found upper bounds by BRKGA-JSP are in bold.

Table A7
Makespan and average percent deviation from best upper bound for problem class TA

BRKGA-JSP GES AlgFix i -TSAB TS/SA

Prob. n × m LB U B Max Avg Min Min Min Min Min

TA01 15 × 15 1231 1231 1231 1231 1231 1231 1231 1231
TA02 15 × 15 1244 1244 1244 1244 1244 1244 1244 1244
TA03 15 × 15 1218 1218 1218 1218 1218 1218 1218 1218
TA04 15 × 15 1175 1175 1175 1175 1175 1175 1175 1175
TA05 15 × 15 1224 1224 1227 1224.9 1224 1224 1224 1224
TA06 15 × 15 1238 1238 1240 1238.9 1238 1238 1238 1238
TA07 15 × 15 1227 1227 1228 1228 1228 1228 1228 1228
TA08 15 × 15 1217 1217 1217 1217 1217 1217 1217 1217
TA09 15 × 15 1274 1274 1280 1277 1274 1274 1274 1274
TA10 15 × 15 1241 1241 1241 1241 1241 1241 1241 1241
TA11 20 × 15 1323 1357 1365 1360 1357 1357 1358 1361 1359
TA12 20 × 15 1351 1367 1376 1372.6 1367 1367 1367 1371
TA13 20 × 15 1282 1342 1351 1347.3 1344 1344 1342 1342
TA14 20 × 15 1345 1345 1345 1345 1345 1345 1345 1345
TA15 20 × 15 1304 1339 1360 1348.9 1339 1339 1339 1339
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Table A7
Continued

BRKGA-JSP GES AlgFix i -TSAB TS/SA

Prob. n × m LB U B Max Avg Min Min Min Min Min

TA16 20 × 15 1302 1360 1371 1362.1 1360 1360 1360 1360
TA17 20 × 15 1462 1462 1478 1470.5 1462 1469 1473 1462 1464
TA18 20 × 15 1369 1396 1407 1400.9 1396 1401 1396 1399
TA19 20 × 15 1297 1332 1338 1333.2 1332 1332 1332 1335 1335
TA20 20 × 15 1318 1348 1357 1350.4 1348 1348 1348 1351 1350
TA21 20 × 20 1539 1643 1650 1647 1642 1647 1643 1644 1644
TA22 20 × 20 1511 1600 1600 1600 1600 1602 1600 1600 1600
TA23 20 × 20 1472 1557 1570 1562.6 1557 1558 1557 1557 1560
TA24 20 × 20 1602 1646 1654 1650.6 1646 1653 1646 1647 1646
TA25 20 × 20 1504 1595 1611 1602 1595 1596 1595 1595 1597
TA26 20 × 20 1539 1645 1658 1652.3 1643 1647 1647 1645 1647
TA27 20 × 20 1616 1680 1689 1685.6 1680 1685 1686 1680 1680
TA28 20 × 20 1591 1603 1617 1611.7 1603 1614 1613 1614 1603
TA29 20 × 20 1514 1625 1629 1627.4 1625 1625 1625 1627
TA30 20 × 20 1473 1584 1598 1588.5 1584 1584 1584 1584 1584
TA31 30 × 15 1764 1764 1766 1764.4 1764 1764 1766 1764
TA32 30 × 15 1774 1790 1801 1794.1 1785 1793 1790 1795
TA33 30 × 15 1778 1791 1799 1793.7 1791 1799 1791 1793 1796
TA34 30 × 15 1828 1829 1834 1832.1 1829 1832 1832 1829 1831
TA35 30 × 15 2007 2007 2007 2007 2007 2007 2007 2007
TA36 30 × 15 1819 1819 1827 1822.9 1819 1819 1819 1819
TA37 30 × 15 1771 1771 1784 1777.8 1771 1779 1784 1778 1778
TA38 30 × 15 1673 1673 1681 1676.7 1673 1673 1673 1673
TA39 30 × 15 1795 1795 1806 1801.6 1795 1795 1795 1795
TA40 30 × 15 1631 1673 1689 1678.1 1669 1680 1979 1674 1676
TA41 30 × 20 1859 2006 2027 2018.7 2008 2022 2022 2018
TA42 30 × 20 1867 1945 1957 1949.3 1937 1956 1953 1956 1953
TA43 30 × 20 1809 1848 1874 1863.1 1852 1870 1869 1859 1858
TA44 30 × 20 1927 1983 2003 1992.4 1983 1991 1992 1984 1983
TA45 30 × 20 1997 2000 2000 2000 2000 2004 2000 2000 2000
TA46 30 × 20 1940 2008 2023 2015.5 2004 2011 2011 2021 2010
TA47 30 × 20 1789 1897 1908 1902.1 1894 1903 1902 1903 1903
TA48 30 × 20 1912 1945 1973 1959.2 1943 1962 1962 1953 1955
TA49 30 × 20 1915 1966 1983 1972.6 1964 1969 1974 1967
TA50 30 × 20 1807 1925 1932 1927 1925 1931 1927 1928 1931

%ARE 0.194 0.518 0.194 0.119
BRKGA-JSP %ARE −0.023 −0.023 −0.043 −0.023

Newly found upper bounds by BRKGA-JSP are in bold.
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Table A8
Makespan and average percent deviation from best upper bound for problem class DMU (DMU01–DMU40)

BRKGA-JSP TS GES i -TSAB AlgFix

Prob. n × m LB U B Max Avg Min Min Min Min Min

DMU01 20 × 15 2501 2563 2563 2563 2563 2566 2566 2571 2563
DMU02 20 × 15 2651 2706 2716 2714.5 2706 2711 2706 2715 2706
DMU03 20 × 15 2731 2731 2741 2736.5 2731 2731 2731
DMU04 20 × 15 2601 2669 2679 2672.4 2669 2669 2669
DMU05 20 × 15 2749 2749 2771 2755.4 2749 2749 2749
DMU06 20 × 20 2834 3244 3250 3246.6 3244 3254 3250 3265 3244
DMU07 20 × 20 2677 3046 3063 3058.6 3046 3053 3046
DMU08 20 × 20 2901 3188 3191 3188.3 3188 3191 3197 3199 3188
DMU09 20 × 20 2739 3092 3095 3094.4 3092 3092 3094 3096
DMU10 20 × 20 2716 2984 2985 2984.8 2984 2984 2985 2984
DMU11 30 × 15 3395 3453 3449 3445.8 3445 3455 3453 3470 3455
DMU12 30 × 15 3481 3516 3529 3518.9 3513 3516 3518 3519 3522
DMU13 30 × 15 3681 3681 3698 3690.6 3681 3681 3697 3698 3687
DMU14 30 × 15 3394 3394 3394 3394 3394 3394 3394 3394
DMU15 30 × 15 3332 3343 3343 3343 3343 3343 3343
DMU16 30 × 20 3726 3759 3769 3758.9 3751 3759 3781 3787 3772
DMU17 30 × 20 3697 3836 3870 3850.6 3830 3842 3848 3854 3836
DMU18 30 × 20 3844 3846 3847 3845.4 3844 3846 3849 3854 3852
DMU19 30 × 20 3650 3775 3803 3791.8 3770 3784 3807 3823 3775
DMU20 30 × 20 3604 3712 3718 3715.3 3712 3716 3739 3740 3712
DMU21 40 × 15 4380 4380 4380 4380 4380 4380 4380
DMU22 40 × 15 4725 4725 4725 4725 4725 4725 4725
DMU23 40 × 15 4668 4668 4668 4668 4668 4668 4668
DMU24 40 × 15 4648 4648 4648 4648 4648 4648 4648
DMU25 40 × 15 4164 4164 4164 4164 4164 4164 4164
DMU26 40 × 20 4647 4647 4686 4658.4 4647 4647 4667 4679 4688
DMU27 40 × 20 4848 4848 4848 4848 4848 4848 4848 4848
DMU28 40 × 20 4692 4692 4692 4692 4692 4692 4692
DMU29 40 × 20 4691 4691 4691 4691 4691 4691 4691 4691
DMU30 40 × 20 4732 4732 4732 4732 4732 4732 4732 4749
DMU31 50 × 15 5640 5640 5640 5640 5640 5640 5640
DMU32 50 × 15 5927 5927 5927 5927 5927 5927 5927
DMU33 50 × 15 5728 5728 5728 5728 5728 5728 5728
DMU34 50 × 15 5385 5385 5385 5385 5385 5385 5385
DMU35 50 × 15 5635 5635 5635 5635 5635 5635 5635
DMU36 50 × 20 5621 5621 5621 5621 5621 5621 5621
DMU37 50 × 20 5851 5851 5851 5851 5851 5851 5851 5851
DMU38 50 × 20 5713 5713 5713 5713 5713 5713 5713
DMU39 50 × 20 5747 5747 5747 5747 5747 5747 5747
DMU40 50 × 20 5577 5577 5577 5577 5577 5577 5577

Newly found upper bounds by BRKGA-JSP are in bold.
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Table A9
Makespan and average percent deviation from best upper bound for problem class DMU (DMU41–DMU80)

BRKGA-JSP TS GES i -TSAB AlgFix

Prob. n × m LB U B Max Avg Min Min Min Min Min

DMU41 20 × 15 2839 3264 3304 3281.9 3261 3267 3277 3278
DMU42 20 × 15 3066 3401 3429 3403.9 3395 3416 3401 3448 3412
DMU43 20 × 15 3121 3443 3468 3452.7 3441 3459 3443 3473 3450
DMU44 20 × 15 3112 3489 3539 3510.7 3488 3524 3489 3528 3489
DMU45 20 × 15 2930 3273 3316 3287.3 3272 3296 3273 3321 3273
DMU46 20 × 20 3425 4043 4071 4043.2 4035 4080 4099 4101 4071
DMU47 20 × 20 3353 3950 3991 3968 3939 3972 3973 3950
DMU48 20 × 20 3317 3795 3812 3800.9 3781 3795 3810 3838 3813
DMU49 20 × 20 3369 3724 3735 3729.6 3723 3735 3754 3780 3725
DMU50 20 × 20 3379 3737 3776 3746.5 3732 3761 3768 3794 3742
DMU51 30 × 15 3839 4202 4258 4222.9 4201 4218 4247 4260 4202
DMU52 30 × 15 4012 4353 4366 4352.3 4341 4362 4380 4383 4353
DMU53 30 × 15 4108 4419 4438 4420.2 4415 4428 4450 4470 4419
DMU54 30 × 15 4165 4405 4409 4402.7 4396 4405 4424 4425 4413
DMU55 30 × 15 4099 4303 4310 4299.4 4290 4308 4331 4332 4321
DMU56 30 × 20 4366 4985 5026 4768.4 4961 5025 5051 5079 4985
DMU57 30 × 20 4182 4698 4716 4704.9 4698 4698 4779 4785 4709
DMU58 30 × 20 4214 4787 4759 4752.8 4751 4796 4829 4834 4787
DMU59 30 × 20 4199 4638 4641 4633.3 4630 4667 4694 4696 4638
DMU60 30 × 20 4259 4805 4786 4777 4774 4805 4888 4904 4827
DMU61 40 × 15 4886 5228 5248 5233.3 5224 5228 5293 5294 5310
DMU62 40 × 15 5004 5311 5316 5304.4 5301 5311 5354 5354 5330
DMU63 40 × 15 5049 5371 5399 5386.6 5357 5371 5439 5446 5431
DMU64 40 × 15 5130 5330 5340 5321.8 5312 5330 5388 5443 5385
DMU65 40 × 15 5072 5201 5247 5211.5 5197 5201 5269 5271 5322
DMU66 40 × 20 5357 5797 5827 5806.6 5796 5797 5902 5911 5886
DMU67 40 × 20 5484 5872 5900 5881.3 5863 5872 6012 6016 5938
DMU68 40 × 20 5423 5834 5857 5843.7 5826 5834 5934 5936 5840
DMU69 40 × 20 5419 5794 5856 5804 5776 5794 6002 5891 5868
DMU70 40 × 20 5492 5954 5984 5968.2 5951 5954 6072 6096 6028
DMU71 50 × 15 6050 6278 9298 6603.8 6293 6278 6333 6359 6437
DMU72 50 × 15 6223 6520 6593 6560.7 6503 6520 6589 6586 6604
DMU73 50 × 15 5935 6249 6297 6250.5 6219 6249 6291 6330 6343
DMU74 50 × 15 6015 6316 6354 6312.6 6277 6316 6376 6383 6467
DMU75 50 × 15 6010 6236 6326 6282.4 6248 6236 6380 6437 6397
DMU76 50 × 20 6329 6893 6910 6885.4 6876 6893 6974 7082 6975
DMU77 50 × 20 6399 6868 6934 6892.7 6857 6868 7006 6930 6949
DMU78 50 × 20 6508 6846 6875 6855.7 6831 6846 6988 7027 6928
DMU79 50 × 20 6593 7055 7084 7060.9 7049 7055 7158 7253 7083
DMU80 50 × 20 6435 6719 6810 6757.9 6736 6719 6843 6998 6861

% ARE 0.162 0.629 1.150 0.424
BRKGA-JSP %ARE −0.155 −0.104 −0.138 −0.104

Newly found upper bounds by BRKGA-JSP are in bold.
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