
Intl. Trans. in Op. Res. 00 (2014) 1–22
DOI: 10.1111/itor.12109

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

A biased random-key genetic algorithm for the minimization
of open stacks problem

José Fernando Gonçalvesa, Mauricio G. C. Resendeb and Miguel Dias Costac

aLIAAD, INESC TEC, Faculdade de Economia do Porto, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-464
Porto, Portugal

bAT&T Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932, USA
cFaculdade de Economia do Porto, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-464 Porto, Portugal

E-mail: jfgoncal@fep.up.pt [Gonçalves]; mgcr@research.att.com [Resende]; migueldiascosta@gmail.com [Costa]

Received 27 July 2013; received in revised form 27 May 2014; accepted 27 May 2014

Abstract

This paper describes a biased random-key genetic algorithm (BRKGA) for the minimization of the open stacks
problem (MOSP). The MOSP arises in a production system scenario, and consists of determining a sequence
of cutting patterns that minimize the maximum number of open stacks during the cutting process. The
proposed approach combines a BRKGA and a local search procedure for generating the sequence of cutting
patterns. A novel fitness function for evaluating the quality of the solutions is also developed. Computational
tests are presented using available instances taken from the literature. The high quality of the solutions
obtained validate the proposed approach.

Keywords: minimization of open stacks problem; cutting pattern; biased random-key genetic algorithm; random keys

1. Introduction

Cutting stock problems consist in cutting smaller pieces (items) from larger pieces (objects) and arise
in many industrial production scenarios, such as the furniture, paper, steel, and wood hardboard
industries. In the solution of cutting stock problems, we seek to minimize waste or maximize profit
through the selection of a set of good cutting patterns. However, in certain cases, it is also important
to determine the sequence in which the set of cutting patterns should be processed so as to minimize
the maximum stack of partially cut orders. A cutting stock solution defines a set of cutting patterns
and the number of times the patterns have to be cut to satisfy the demand for the items. When
the patterns are cut, the items cut are piled up in stacks, one stack for each item type. The first
time an item type is cut, a stack is considered “open.” It remains open until the last piece of the
corresponding item type is cut. A stack is “closed” when the last piece of an item type is cut. Because
of space availability or equipment limitations, which may force some stacks to be removed to free

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.

2 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

Table 1
Data for illustrative example MOSP

Items Patterns containing items
A 1, 3
B 1, 2, 4
C 1, 2
D 3
E 2, 4

Patterns

1 2 3 4

Items

A 1 0 1 0

B 1 1 0 1

C 1 1 0 0

D 0 0 1 0

E 0 1 0 1

Patterns

1 2 3 4

Items

A 1 1 1 0

B 1 1 1 1

C 1 1 0 0

D 0 0 1 0

E 0 1 1 1

Op. Stacks 3 4 4 2

(a) - M (b) - M 1

Fig. 1. M and M1 corresponding to permutation s = (1, 2, 3, 4) for the example of Table 1.

up space for the new stacks, it is desirable to maintain a small number of open stacks during the
cutting process. Closed stacks can be moved to another location or delivered to clients. If removed,
open stacks must be later returned so that work can be completed. This is inefficient since it takes
time and uses scarce resources. To avoid the inefficiencies caused by the removal and later return
of open stacks, it is important to determine the optimal cutting order of the patterns such that the
maximum number of open stacks during the cutting process is minimized. This problem is known
as the minimization of open stacks problem (MOSP). To illustrate the MOSP, we use an example
problem with five item types and four patterns. This problem is detailed in Table 1.

Yanasse and Senne (2010) define MOSP as follows: Let M be a Boolean matrix, where each row
corresponds to an item type and each column corresponds to a cutting pattern. Each entry of Mi,k
(with i = 1, . . . , n and k = 1, . . . , m) equals 1 if and only if at least one item of type i is contained in
pattern k. Let M1

s be the resulting matrix corresponding to the permutation s of the columns of M
such that in any row of M1

s , each 0 entry between two 1 entries are replaced by a 1. Figure 1 depicts
matrices M and M1 corresponding to the permutation s = (1, 2, 3, 4) for the example presented in
Table 1.

The objective of MOSP is to find a permutation s∗ of the columns, such that the maximum number
of 1 entries in any column of matrix M1

s∗ is minimized. Figure 2 depicts one optimal solution for the
example. It corresponds to the permutation s = (3, 1, 2, 4) and has an MOSP value of three.

Though the interest of the operations research community in the MOSP increased after the
realization of the 2005 Constraint Modeling Challenge in the Fifth Workshop on Modeling and

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 3

Patterns

3 1 2 4

Items

A 1 1 0 0

B 0 1 1 1

C 0 1 1 0

D 1 0 0 0

E 0 0 1 1

Op. Stacks 2 3 3 2

Fig. 2. M1 corresponding to the optimal permutation s = (3, 1, 2, 4) for the example in Table 1.

Solving Problems with Constraints, which focused on the MOSP, the number of publications on
this problem is still not extensive.

The special case of MOSP, where there are at most two different item types per pattern, was
considered by Lins (1989). While trying to solve a problem faced by the Australian glass industry,
Yuen (1991, 1995) developed six simple heuristics for the MOSP. The third heuristic (called Heuristic
3) was considered the most efficient in computational tests. Yuen and Richardson (1995) proposed
the simple lower bound for the MOSP of the maximum number of different item types in the
patterns and an exact method that enumerates permutations of pattern sequences. The new lower
bound and upper bounds provided by the heuristics of Yuen (1991, 1995) were used to reduce the
search space for the exact method. Yanasse (1996) proposes polynomial time algorithms for MOSP
instances with special topologies. Yanasse (1997b), Limeira (1998), and Yanasse and Limeira (2004)
propose branch-and-bound algorithms to solve the MOSP. Yanasse (1997a) defines the MOSP
as a graph problem and shows that any MOSP instance corresponding to the same MOSP graph
are equivalent. Faggioli and Bentivoglio (1998) develop a mathematical formulation for the MOSP
and solution method involving three phases. The first phase finds a good solution with a greedy
heuristic similar to some of the heuristics of Yuen (1995). The second phase improves the solution
obtained in the first phase using a tabu search. The third phase uses an implicit enumeration scheme
of the permutations of patterns. Yanasse et al. (1999) and Becceneri (1999) propose arc contraction
heuristics. A new lower bound for the optimal value of the MOSP is presented in Yanasse et al.
(1999). Becceneri (1999) proposed the least-cost node heuristic for the MOSP, which was later
modified in Becceneri et al. (2004).

Metaheuristic-based heuristics have also been used to solve the MOSP. A simulated annealing
heuristic is proposed in Linhares et al. (1999), and simulated annealing and tabu search are used in
Fink and Voß (1999). A constructive genetic algorithm (GA) is proposed in Oliveira and Lorena
(2002). Yanasse et al. (2007) proposed exact and heuristic methods using properties of the solution
of MOSP to establish partial orders in which the nodes in the graph should be closed. An adaptive
GA for large-sized open stack problems is presented in De Giovanni et al. (2010, 2013).

Dynamic programming solutions to MOSP were developed by Banda and Stuckey (2007) and
Chu and Stuckey (2009), where the search was simplified through the use of the properties presented
in Becceneri et al. (2004) and Yuen and Richardson (1995).

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

4 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

Problems equivalent to the MOSP can arise in completely different contexts such as VLSI
design (the gate matrix layout problem, one-dimensional logic, and PLA folding) and graph theory
(interval thickness, node search game, edge search game, graph path-width, narrowness, split
bandwidth, edge separation, and vertex separation; see Linhares and Yanasse, 2002; Möhring,
1990). Yanasse and Senne (2010) present a review of some properties and their use in preprocessing
operations for the MOSP.

The MOSP is known to be NP-hard (Linhares and Yanasse, 2002). Therefore, when large instances
are considered, heuristics are often the methods of choice. In this paper, we present a novel biased
random-key GA (BRKGA) for the MOSP. The proposed algorithm hybridizes a local search
procedure with a GA based on random keys. The BRKGA is used to evolve the order in which the
patterns are inserted in a partial solution. To evaluate the quality of the solutions, a novel fitness
function is also developed.

The remainder of the paper is organized as follows. In Section 2, we introduce the new approach,
describing in detail the BRKGA, local search procedure, and novel fitness function. Finally, in
Section 3, we report computational experiments, and in Section 4 we make concluding remarks.

2. BRKGA

In this section, we present an overview of the proposed solution process. This is followed by a
discussion of the BRKGA, including detailed descriptions of the solution encoding and decoding,
evolutionary process, fitness function, and parallel implementation.

2.1. Overview

The new approach is based on a constructive heuristic algorithm that inserts patterns, one at a
time, in a partial pattern sequence for the problem. Once all the patterns are inserted, a solution is
obtained. The new approach proposed in this paper combines a BRKGA, local search procedure,
and novel fitness function. The role of the GA is to evolve the encoded solutions, or “chromosomes”,
which represent the “pattern insertion sequence” (PIS). For each chromosome, the following phases
are applied to decode the chromosome:

(1) Decoding of the PIS: This first phase decodes the chromosome into the PIS, that is, the sequence
in which the patterns are inserted into the partial pattern sequence.

(2) Construction of a solution: The second phase makes use of the PIS defined in phase 1 and a
local search procedure to construct a pattern sequence solution.

(3) Chromosome adjustment: The third phase adjusts the genes of the chromosome to reflect the
changes made in phase 2.

(4) Fitness evaluation: The final phase computes the fitness of the solution (or measure of quality of
the solution). For this phase, we developed a novel measure of fitness that significantly improves
the quality of the solutions.

Figure 3 illustrates the sequence of decoding steps applied to each chromosome generated by
the BRKGA. The remainder of this section describes in detail the GA, decoding procedure, local
search, and adjustment procedure.

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 5

Construction of solution using PIS
and a Local Search Procedure

Solution
Builder

Phase

Feedback Quality of the Chromosome
(MOSP)

Adjustment of Chromosome Genes
Chromosome

Adjustment

Decoding
of Genes

Chromosome

Decoding of
Pattern Insertion Sequence (PIS)

Fig. 3. Architecture of the algorithm.

2.2. BRKGA

“Random-key GAs” (RKGAs) or GAs with random keys were introduced in Bean (1994) for solving
sequencing or optimization problems whose solutions can be represented as permutations. In an
RKGA, chromosomes are represented as vectors of randomly generated real numbers in the interval
[0, 1]. A deterministic algorithm, the “decoder”, takes as input a chromosome and associates with
it a solution of the combinatorial optimization problem for which an objective value or fitness can
be computed.

RKGAs are particularly attractive for sequencing problems and/or when the chromosomes
have several parts (see, e.g. Gonçalves and Almeida, 2002; Gonçalves and Resende, 2004, 2012,
2013; Gonçalves et al., 2005, 2009; Gonçalves and Sousa, 2011; Morán-Mirabal et al., 2014).
Unlike the traditional GAs that use special repair procedures to handle permutations or sequences,
RKGAs move all the feasibility issues to the objective evaluation procedure and guarantee that all
offspring formed by crossover are feasible solutions. When the chromosomes have several parts,
traditional GAs need to use different genetic operators for each part. However, since RKGAs use
the “parametrized uniform crossover” of Spears and Dejong (1991) (instead of the traditional
one-point or two-point crossover), they do not need to have different genetic operators for each
part.

An RKGA evolves a “population” of random-key vectors over a number of “generations” (iter-
ations). The initial population is made up of p vectors of r random keys. Each component of the
solution vector, or random key, is generated independently at random in the real interval [0, 1]. After
the fitness of each individual is computed by the decoder in generation g, the population is divided
into two groups of individuals: a small group of pe “elite” individuals, that is, those with the best

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

6 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

fitness values, and the remaining set of p − pe “nonelite” individuals. To evolve a population g, a
new generation of individuals is produced. All elite individuals of the population of generation g are
copied without modification to the population of generation g + 1. RKGAs implement mutation by
introducing “mutants” into the population. A mutant is a vector of random keys generated in the
same way in which an element of the initial population is generated. At each generation, a small
number pm of mutants is introduced into the population. With pe + pm individuals accounted for in
population g + 1, p − pe − pm additional individuals need to be generated to complete the p indi-
viduals that make up population g + 1. This is done by producing p − pe − pm offspring solutions
through the process of “mating” or “crossover.”

A “BRKGA” (Gonçalves and Resende, 2011) differs from an RKGA in the way parents are selected
for mating. While in the RKGA of Bean (1994) both parents are selected at random from the entire
current population, in BRKGAs each element is generated combining a parent selected at random
from the elite partition in the current population and one is selected at random from the rest of the
population. Repetition in the selection of a mate is allowed, and therefore an individual can produce
more than one offspring in the same generation. As in RKGAs, parameterized uniform crossover is
used to implement mating in BRKGAs. Let ρe be the probability that the vector component of an
elite parent is inherited by the offspring. For i = 1, . . . , r, the ith component c(i) of the offspring
vector c takes on the value of the ith component e(i) of the elite parent e with probability ρe and
the value of the ith component ē(i) of the nonelite parent ē with probability 1 − ρe.

When the next population is complete, the corresponding fitness values are computed for all the
newly created random-key vectors and the population is divided into elite and nonelite individuals
to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization problem indirectly
by searching the r-dimensional continuous hypercube, using the decoder to map solutions in the
hypercube to solutions in the solution space of the combinatorial optimization problem, where the
fitness is evaluated.

To specify a BRKGA, we simply need to specify how solutions are encoded and decoded, and how
their corresponding fitness values are computed. Next we specify our algorithm by first showing
how the solutions of an MOSP are encoded and then decoded, and how their fitness evaluation is
computed.

Chromosome representation and decoding
A chromosome encodes a solution to the problem as a vector of random keys. In a direct repre-
sentation, a chromosome represents a solution of the original problem and is called “genotype,”
while in an indirect representation it does not, and special procedures are needed to obtain from it a
solution called a “phenotype.” In the present context, the solutions will be represented indirectly by
parameters that are later used by a decoding procedure to obtain a solution. To obtain the solution
(phenotype), we use the decoding procedures described in Section “Solution builder.”

In this paper, a solution to the MOSP is represented indirectly by the following chromosome
structure:

chromosome = (
gene1, . . . , genem

)
,

where m is the number of patterns. The decoding (mapping) of the m genes of each chromosome into
a PIS, which will be used by the solution builder (see Section “Solution builder”), is accomplished

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 7

Unordered patterns

Unsorted genes

Pattern Insertion Sequence (PIS)

Sorted genes

4

0.49

7

0.87

2

0.67

8

0.17

1

0.45

3

0.35

1

0.45

2

0.67

3

0.35

4

0.49

5

0.07

6

0.78

7

0.87

8

0.17

5

0.07

6

0.78

Pattern Insertion Sequence (PIS)

Fig. 4. Decoding of the pattern insertion sequence (PIS).

by sorting the patterns in an ascending order of the corresponding gene values. Figure 4 shows an
example of the decoding process for the PIS. In this example, there are eight patterns. The sorted
genes correspond to the PIS = (5, 8, 3, 1, 4, 2, 6, 7).

Solution builder
The solution builder follows a sequential process that inserts patterns into a partial solution, one
pattern at each stage. The order in which the patterns are inserted into the partial solution is defined
by the PIS evolved by the BRKGA. Each stage comprises the following two main steps:

(1) Selection of pattern to be inserted.
(2) Selection of the insertion position in the partial solution of the pattern selected in step 1).

The pattern selected for insertion at each stage j is given by PISj . The position in the partial
solution, where pattern PISj will be inserted, is defined by a local search procedure. Let mj be
the number of patterns already in the partial solution at stage j. Then the local search procedure
considers the insertion of pattern PISj before all existing patterns in positions l = 1, . . . , j − 1 and
after the pattern in position j − 1. The insertion position l∗

j , corresponding to the smallest value of
MOSP, is selected as the insertion position. Pattern PISj is inserted at position l∗

j and the process
is repeated until all the patterns are inserted.

Chromosome adjustment
Solutions produced by the local search procedure usually disagree with the genes initially supplied
to the decoder to obtain the PIS. Changes in the order of the patterns made by the local search
phase of the decoder need to be taken into account in the chromosome. The heuristic adjusts
the chromosome to reflect these changes. To make the chromosome supplied by the GA agree
with the solution produced by local search, the heuristic adjusts the order of the genes according to
the position of each pattern in the final solution. This chromosome adjustment not only improves
the quality of the solutions but also reduces the number of generations needed to obtain the best
values.

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

8 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

Patterns

2 1 4 3

Items

A 0 1 1 1

B 1 1 1 0

C 1 1 0 0

(a) - M 1 for s = (1, 2, 3, 4) (b) - M 1 for s = (2, 1, 4, 3)

Patterns

1 2 3 4

Items

A 1 1 1 0

B 1 1 1 1

C 1 1 0 0

D 0 0 0 1

E 1 1 1 0

Op. Stacks 3 4 3 2

D 0 0 1 0

E 0 1 1 1

Op. Stacks 3 4 4 2

MMOSP = MOSP + (3+4+4+2) / (4×4)
= 4.8125

MMOSP = MOSP + (3+4+3+2) / (4×4)
= 4.75

Fig. 5. Example of the calculation of MMOSP.

Fitness function
The evolutionary process requires a measure of solution fitness, or quality measure. A natural fitness
function for the MOSP is the “maximum number of open stacks” MOSP in a solution. However,
since different solutions can have the same MOSP value, this measure does not differentiate well
the potential for improvement of solutions having the same MOSP value.

To better differentiate the potential for improvement, we propose a new measure of fitness that
we call “modified maximum number of open stacks,” or simply MMOSP. The MMOSP combines
MOSP with a measure of the potential for improvement of a solution that has values in the interval
[0, 1]. The rationale for this new measure is that if we have two solutions that have the same MOSP
value, then the one having the smallest average number of open stacks will have more potential for
improvement.

Let MOSPK be the number of open stacks when pattern k is being cut. Let

1
m

m∑

k=1

MOSPk

be the average number of open stacks. Then, the value of the MMOSP is given by

MMOSP = MOSP +

m∑

k=1

MOSPk

m × MOSP
.

The computational results in Section 3 show that this novel measure of fitness significantly improves
the quality of the solutions. Figure 5a and b exemplifies the calculation of MMOSP for two solutions

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 9

Table 2
Other approaches used for comparison

Approach Type of method Source of approach

GHP Greedy heuristic procedure Faggioli and Bentivoglio (1998)
TS Tabu search Faggioli and Bentivoglio (1998)
GLS Generalized local search Faggioli and Bentivoglio (1998)
YUEN-3 and YUEN-5 Heuristics Yuen (1995)
DP1 Dynamic programming Banda and Stuckey (2007)
DP2 Dynamic programming Chu and Stuckey (2009)
CGA Constructive genetic algorithm Oliveira and Lorena (2002)
PMA Parallel memetic algorithm Mendes and Linhares (2004)
ECS Evolutionary clustering search Oliveira and Lorena (2006)
GRACS Greedy randomized adaptive clustering search Oliveira and Lorena (2006)
AS Low-order polynomial time heuristic Ashikaga and Soma (2009)
AGA Adaptive genetic algorithm De Giovanni et al. (2010, 2013)

having an MOSP value equal to 4. The first solution (Fig. 5a) has an MMOSP equal to 4.8125 and
the second solution (Fig. 5b) has an MMOSP value of 4.75.

3. Experimental results

In this section, we report the results obtained on a set of experiments conducted to evaluate the
performance of the BRKGA for MOSP proposed in this paper.

3.1. Benchmark algorithms

We compare BRKGA with the literature approaches listed in Table 2.

3.2. Test problem instances

In the computational tests, we used three sets of instances described in Table 3.

3.3. GA configuration

The configuration of GAs is oftentimes more an art form than a science. In our past experience with
GAs based on the same evolutionary strategy (see Gonçalves et al., 2005, 2009, 2011; Gonçalves
and Resende, 2012, 2014), we obtained good results with values of TOP, BOT , and “crossover
probability” (CProb) in the intervals shown in Table 4.

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

10 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

Table 3
Benchmark instances used in the computational tests

Set Class Description Source

Harvey 2130 random instances by Harvey. Three
benchmarks are proposed (denoted
“wbo,” “wbop,” and “wbp”), each
containing 10 classes

Smith and Gent
(2005)

Simonis 3630 random instances by Simonis, grouped
in 10 classes

Smith and Gent
(2005)

Shaw One class of 25 random instances by Shaw,
with 20 patterns and item types

Smith and Gent
(2005)

Literature
instances

Miller and
Wilson

21 individual instances, one provided by
Miller and 20 by Wilson (denoted GP
1–8, NWRS 1–8, SP 1–4)

Smith and Gent
(2005)

Faggioli and
Bentivoglio

300 random instances with
n = 10, 20, 30, 40, 50 and
m = 10, 15, 20, 25, 30, 40. Each of the
n × m combinations was replicated
10 times

Faggioli and
Bentivoglio (1998)

VLSI 11 individual instances from the VLSI
industry

Hu and Chen (1990)

SCOOP 24 real instances from two woodcutting
companies (denoted “A” and “B”)

Available from
http://www.scoop-
project.net

Harder
instances

Harder150 150 harder instances generated using the
procedure detailed in (Chu and Stuckey,
2009)

De Giovanni et al.
(2013)

Becceneri
instances

Becceneri Set of instances that covers the most
common practical industrial scenario
applications

Becceneri (1999)

Table 4
Range of parameters in past implementations

Parameter Interval

TOP 0.10–0.25
BOT 0.15–0.30
Crossover probability (CProb) 0.70–0.80

Table 5
Configuration parameters for the BRKGA algorithm

Parameter Value

p 10 × m
pe min(0.25 × p, 50)
pm 0.20 × p
ρe 0.70
Fitness MMOSP = modified MOSP (to minimize)
Stopping riterion 100 generations

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 11

Table 6
Computational results: Harvey, Simonis, and Shaw benchmarks (aggregate results)

I P BRKGA AGA DP1

n m Elements MOSP T (seconds) MOSP T (seconds) MOSP T (seconds)

Simonis 10 10 550 8.0 0.00 8.0 0.00 8.0 0.00
10 20 550 8.9 0.00 8.9 0.01 8.9 0.00
15 15 550 12.9 0.00 12.9 0.02 12.9 0.00
15 30 550 14.0 0.00 14.0 0.10 14.0 0.00
20 10 220 15.9 0.00 15.9 0.03 15.9 0.00
20 20 550 18.0 0.00 18.0 0.11 18.0 0.01
30 10 220 24.0 0.00 24.0 0.05 24.0 0.00
30 15 110 26.0 0.00 26.0 0.11 26.0 0.01
30 30 220 28.3 1.30 28.3 0.61 28.3 0.72
40 20 110 36.4 0.43 36.4 0.33 36.4 0.10

Shaw 20 20 25 13.7 0.00 13.7 0.34 13.7 0.01
wbo 10 10 40 5.9 0.00 5.9 0.00 5.9 0.00

10 20 40 7.4 0.00 7.4 0.02 7.4 0.00
10 30 40 8.2 0.00 8.2 0.08 8.2 0.00
15 15 60 9.4 0.00 9.4 0.06 9.4 0.00
15 30 60 11.6 0.00 11.6 0.39 11.6 0.03
20 10 70 12.9 0.00 12.9 0.04 12.9 0.00
20 20 90 13.7 0.00 13.7 0.22 13.7 0.01
30 10 100 20.1 0.00 20.1 0.08 20.1 0.00
30 15 120 21.0 0.00 21 0.18 21.0 0.01
30 30 140 22.6 1.08 22.6 1.11 22.6 1.11

wbop 10 10 40 6.8 0.00 6.8 0.00 6.8 0.00
10 20 40 8.1 0.00 8.1 0.04 8.1 0.00
10 30 40 8.6 0.00 8.6 0.06 8.6 0.00
15 15 60 10.4 0.00 10.4 0.05 10.4 0.00
15 30 60 12.2 0.00 12.2 0.34 12.2 0.02
20 10 40 14.3 0.00 14.3 0.02 14.3 0.00
20 20 90 14.9 0.00 14.9 0.15 14.9 0.01
30 10 40 22.5 0.00 22.5 0.05 22.5 0.00
30 15 60 22.4 0.00 22.4 0.13 22.4 0.01
30 30 140 23.8 0.00 23.9 0.95 23.8 0.99

wbp 10 10 40 7.3 0.00 7.3 0.00 7.3 0.00
10 20 70 8.7 0.00 8.7 0.02 8.7 0.00
10 30 100 9.3 0.00 9.3 0.03 9.3 0.00
15 15 60 11.1 0.00 11.1 0.04 11.1 0.00
15 30 120 13.1 0.00 13.1 0.18 13.1 0.01
20 10 40 15.1 0.00 15.1 0.03 15.1 0.00
20 20 90 15.4 0.00 15.4 0.13 15.4 0.01
30 10 40 23.2 0.08 23.2 0.06 23.2 0.00
30 15 60 23.0 0.19 23.0 0.14 23.0 0.01
30 30 140 24.5 0.98 24.5 0.74 24.5 1.20

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

12 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

Table 7
Computational results: Miller and Wilson benchmarks (individual instances)

BRKGA DP1 DP2 AGA

Instance I P MOSP T (seconds) MOSP T (seconds) MOSP T (seconds) MOSP T (seconds)

Miller 20 40 13 0.0 13 0.6 – – 13 2.68
GP1 50 50 45 0.0 45 0.0 – – 45 0.02
GP2 50 50 40 0.0 40 0.0 – – 40 0.04
GP3 50 50 40 0.0 40 0.0 – – 40 0.24
GP4 50 50 30 0.0 30 0.0 – – 30 0.02
GP5 100 100 95 0.5 95 0.1 – – 95 0.44
GP6 100 100 75 0.7 75 0.1 – – 75 0.62
GP7 100 100 75 0.7 75 0.1 – – 75 0.58
GP8 100 100 60 0.7 60 0.2 – – 60 0.58
NWRS1 10 20 3 0.0 3 0.0 – – 3 0
NWRS2 10 20 4 0.0 4 0.0 – – 4 0
NWRS3 15 25 7 0.0 7 0.0 – – 7 0
NWRS4 15 25 7 0.0 7 0.0 – – 7 0
NWRS5 20 30 12 0.0 12 0.0 – – 12 0
NWRS6 20 30 12 0.0 12 0.0 – – 12 0
NWRS7 25 60 10 0.0 10 0.0 – – 10 0
NWRS8 25 60 16 0.0 16 2.1 – – 16 6
SP1 25 25 9 0.0 9 0.0 – – 9 0.45
SP2 50 50 19 0.0 19 1650.0 19 0.0 19 10.9
SP3 75 75 34 0.2 36 �3600 34 0.4 34 36.7
SP4 100 100 53 0.6 56 �14400 53 9.1 53 81.0

For the population size, we obtained good results by indexing it to the dimension of the prob-
lem, that is, we used small-sized populations for small problems and larger populations for larger
problems. The configuration presented in Table 5 was held constant for all experiments and all
problem instances. The computational results presented in the next section demonstrate that this
configuration not only provides excellent results in terms of solution quality but is also very robust.

3.4. Computational results

Algorithm BRKGA was implemented in C++ and the experiments were carried out on a computer
with Intel Core i7-2630QM @2.0 GHZ CPU running the Linux operating system with Fedora release
16. Before running the BRKGA, we applied a preprocessing step to each instance as described in
Becceneri et al. (2004).

Literature instances
Due to the nondeterministic nature of BRKGA, 10 runs have been considered for each instance, and
the best results are used for comparison. Tables 6–11 present the results obtained by the BRKGA
and some of the other approaches for the various instance classes (6141 instances) included in the

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 13

Table 8
Computational results: Faggioli and Bentivoglio’s (1998) instances

I P

n m OPT BRKGA GHP TS GLS YUEN3 YUEN5

10 10 5.5 5.5 5.5 513.5 5.5 5.8 5.7
15 6.6 6.6 6.6 6.6 6.6 7.0 7.0
20 7.5 7.5 7.7 7.7 7.5 7.5 7.8
25 8.0 8.0 8.0 8.0 8.0 8.2 8.0
30 7.8 7.8 7.8 7.8 7.8 8.2 7.9
40 8.4 8.4 8.4 8.4 8.4 8.6 8.4

20 10 6.2 6.2 6.6 6.2 6.2 6.8 6.7
15 7.2 7.2 7.5 7.2 7.5 8.4 8.3
20 8.5 8.5 8.8 8.7 8.6 10.1 9.5
25 9.8 9.8 9.9 9.8 9.9 11.4 10.9
30 11.1 11.1 11.4 11.2 11.2 12.7 12.1
40 13,0 13.0 13.1 13.1 13.1 14.8 13.7

30 10 6.1 6.1 6.4 6.1 6.2 7.0 7.0
15 7.4 7.3 8.0 7.4 7.6 9.1 8.6
20 8.8 8.8 9.8 9.2 8.9 10.8 10.2
25 10.5 10.5 11.1 10.7 10.6 12.8 12.2
30 12,2 12.2 13.0 12.6 12.2 14.7 13.6
40 14,5 14.5 15.0 14.7 14.6 17.3 15.9

40 10 7.7 7.7 7.9 7.7 7.7 8.0 7.9
15 7.3 7.2 8.2 7.3 7.4 8.4 8.1
20 8.5 8.5 9.5 8.6 8.7 10.4 9.9
25 10.3 10.3 11.6 10.7 10.6 13.1 11.6
30 12.1 12.1 13.4 12.6 12.4 15.1 14.6
40 15.0 14.9 15.8 15.3 15.3 18.5 16.9

50 10 8.2 8.2 8.4 8.2 8.2 8.5 8.4
15 7.4 7.4 8.4 7.6 7.6 8.4 8.1
20 7.9 7.9 9.2 8.0 8.2 9.7 9.2
25 10.0 10.0 11.2 10.1 10.2 12.3 12.0
30 11.2 11.2 12.4 12.0 11.8 14.9 13.5
40 14.6 14.6 16.8 15.3 14.9 18.5 17.5

set “Literature instances.” In the tables, each row is associated with a class of aggregated instances
or an individual instance. The first columns define instance name and size, optimal values, etc. The
columns denoted by MOSP represent the best MOSP found by the corresponding approach. In
terms of computational times, we cannot make any fair and meaningful comment since all the other
approaches were implemented with different programming languages and tested on computers with
different computing power. Hence, to avoid discussion about the different computer speed used
in the tests, we limit ourselves to reporting the average running times per run for BRKGA, while
for each of the other algorithms we only report, when available, the reported running times. When
available, the columns with header T (seconds) represent the running time of the corresponding
approaches, in seconds.

BRKGA dominates all other approaches with respect to the quality of the solution and is very
competitive in terms of running time. BRKGA always finds the optimal or best-known solution of

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

14 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

T
ab

le
9

C
om

pu
ta

ti
on

al
re

su
lt

s:
V

L
SI

in
st

an
ce

s

I
P

B
R

K
G

A
A

G
A

P
M

A
C

G
A

E
C

S
G

R
A

C
S

T
T

T
T

T
T

n
m

B
K

S
M

O
SP

(s
ec

on
ds

)
M

O
SP

(s
ec

on
ds

)
M

O
SP

(s
ec

on
ds

)
M

O
SP

(s
ec

on
ds

)
M

O
SP

(s
ec

on
ds

)
M

O
SP

(s
ec

on
ds

)

v4
47

0
37

47
9

9
2.

8
9

5.
3

9
10

9
66

.5
9

–
9

–
x0

40
48

11
11

2.
3

11
6.

6
11

30
11

75
.6

11
–

11
–

W
2

48
33

14
14

0.
7

14
0

14
30

14
18

.5
14

–
14

–
W

3
84

70
18

18
8.

4
18

18
.9

18
90

18
30

6.
3

18
–

18
–

W
4

20
2

14
1

27
27

47
.3

27
67

,2
27

24
00

27
52

24
.7

27
–

27
–

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 15

Table 10
Computational results: real instances from company “A”

I P

n m OPT BRKGA T (seconds) AGA T (seconds)

A_AP-9.d_10 20 13 6 6 0.05 6 0.12
A_AP-9.d_3 20 16 6 6 0.05 6 0.17
A_FA+AA-_15 68 18 9 9 0.23 9 0.63
A_FA+AA-_2 75 19 11 11 0.15 11 0.68
A_AP-9.d_6 31 20 5 5 0.15 5 0.40
A_FA+AA-_12 75 20 9 9 0.23 9 0.77
A_AP-9.d_11 27 21 6 6 0.15 6 0.42
A_FA+AA-_6 79 21 13 13 0.28 13 1.20
A_FA+AA-_8 82 28 11 11 0.60 12 2.65
A_FA+AA-_11 99 28 11 11 0.65 11 2.92
A_FA+AA-_1 107 37 12 12 1.38 12 7.58
A_FA+AA-_13 134 37 – 17 1.45 17 11.82

Table 11
Computational results: real instances from company “B”

I P

n m OPT BRKGA T (seconds) AGA T (seconds)

B_39Q18_82 14 10 5 5 0.00 5 0.00
B_ 42F22_93 18 10 5 5 0.05 5 0.04
B_22X18_50 14 11 10 10 0.03 10 0.05
B_18AB1_32 15 11 6 6 0.03 6 0.05
B_CARLET_137 14 12 5 5 0.03 5 0.00
B_12F18_11 21 15 6 6 0.08 6 0.16
B_18CR1_33 20 18 4 4 0.03 4 0.17
B_GTM18A_139 24 20 5 5 0.10 5 0.30
B_ 23B25_52 29 21 5 5 0.10 5 0.39
B_ 12M18_12 31 22 6 6 0.15 6 0.00
B_ CUC28A_138 37 26 6 6 0.10 6 0.00
B_ REVAL_145 60 49 7 7 1.28 7 9.37

MOSP in reasonable running time (often negligible), while the computational effort as well as the
quality of the solutions of DP1 degrade with large-sized instances SP3 and SP4. DP2 overcomes this
issue and solves instances SP2, SP3, and SP4 very quickly. For most of the instances, the BRKGA
obtains the best solution before the 10th generation.

Harder instances
In this section, we use a total of 150 harder instances to evaluate the performance of BRKGA. These
instances were generated by De Giovanni et al. (2013) using the same random generator as Chu and
Stuckey (2009). For each triplet defined by the number of patterns chosen in the set {50, 100, 150},

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

16 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

T
ab

le
12

C
om

pu
ta

ti
on

al
re

su
lt

s:
ha

rd
er

in
st

an
ce

s

I
P

D
A

G
A

ti
m

e
(s

ec
on

ds
)

B
R

K
G

A

n
m

/1
/2

/3
/4

A
G

A
P

M
A

D
P

2
2

33
.8

13
.2

13
.2

13
.2

13
.2

13
.4

14
.2

13
.8

4
42

.7
29

.6
29

.6
29

.6
29

.6
30

.4
29

.8
29

.8
20

0
50

6
53

.2
48

.0
48

.0
48

.0
48

.0
49

.0
48

.2
49

.0
8

56
.1

62
.8

62
.8

62
.8

62
.8

63
.0

62
.4

63
.4

10
56

.8
78

.6
78

.6
78

.6
78

.6
79

.0
79

.0
80

.4
2

10
6.

7
19

.4
19

.6
19

.6
19

.6
20

.8
22

.4
19

.4
4

14
0.

6
49

.4
49

.6
49

.6
50

.0
51

.6
51

.4
51

.2
20

0
10

0
6

16
4.

8
82

.8
82

.8
82

.8
83

.0
85

.6
85

.6
84

.8
8

20
0.

3
10

9.
0

10
9.

0
10

9.
0

10
9.

0
11

0.
0

11
0.

0
11

0.
2

10
21

6.
1

13
2.

0
13

2.
0

13
2.

0
13

2.
0

13
5.

0
13

2.
2

13
2.

2
2

15
9.

6
26

.8
26

.8
27

.0
27

.0
29

.4
30

.8
27

.0
4

20
0.

3
67

.4
67

.6
67

.8
67

.8
71

.4
72

.2
69

.0
20

0
15

0
6

24
6.

0
10

7.
0

10
7.

0
10

7.
0

10
7.

0
11

0.
2

10
8.

4
10

8.
0

8
27

8.
3

13
3.

6
13

3.
6

13
3.

6
13

3.
6

13
8.

4
13

7.
2

13
4.

0
10

29
4.

0
15

2.
6

15
3.

0
15

3.
0

15
3.

2
15

4.
0

15
5.

6
15

1.
8

2
48

.0
14

.6
14

.6
14

.6
14

.6
15

.0
15

.0
15

.2
4

53
.3

25
.8

25
.8

25
.8

25
.8

26
.6

26
.4

27
.2

25
0

50
6

62
.8

44
.2

44
.2

44
.2

44
.2

45
.2

44
.6

45
.4

8
62

.9
64

.8
64

.8
64

.8
64

.8
66

.4
66

.0
67

.8
10

68
.5

82
.8

82
.8

82
.8

82
.8

84
.0

82
.6

85
.4

2
99

.3
18

.0
18

.0
18

.0
18

.0
19

.0
21

.0
18

.0
4

13
5.

9
43

.4
43

.6
43

.6
43

.6
46

.2
46

.2
45

.6
25

0
10

0
6

17
0.

5
79

.4
79

.4
79

.6
79

.6
81

.4
80

.8
81

.2
8

18
8.

3
11

1.
4

11
1.

4
11

1.
4

11
1.

4
11

2.
4

11
1.

4
11

4.
2

10
24

0.
1

14
1.

8
14

1.
8

14
1.

8
14

1.
8

14
3.

6
14

2.
2

14
4.

4
2

18
6.

7
26

.6
26

.8
27

.0
27

.0
29

.6
32

.0
28

.2
4

22
1.

2
65

.2
65

.4
65

.6
65

.6
68

.8
71

.2
68

.4
25

0
15

0
6

26
8.

3
10

9.
2

10
9.

2
10

9.
2

10
9.

2
11

0.
4

11
2.

4
11

2.
6

8
30

0.
2

14
7.

6
14

7.
6

14
7.

8
14

7.
8

15
0.

8
15

1.
0

14
9.

2
10

34
7.

5
17

4.
4

17
4.

6
17

4.
8

17
4.

8
17

7.
2

17
6.

0
17

5.
2

To
ta

l
22

61
.4

22
63

.2
22

64
.6

22
65

.4
23

17
.8

23
18

.2
23

02
.0

N
º

of
be

st
va

lu
es

27
27

27
27

0
3

3

B
es

t
va

lu
es

ar
e

in
bo

ld
.

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 17

Table 13
Description of additional experiments

Experiment Description

GA Run plain BRKGA with chromosome adjustment
GA-M Run plain BRKGA with chromosome adjustment and with the modified MOSP
GA-LS Run plain BRKGA with chromosome adjustment and with the local search
GA-LS-M Run plain BRKGA with chromosome adjustment and the local search and modified MOSP

(i.e., BRKGA)

the number of item types chosen in the set {200, 250}, and the density (average number of item types
per pattern) chosen in the set {2, 4, 6, 8, 10}, five instances were generated. As a postcondition, any
instance where the customer graph can be divided into separate components is discarded to avoid
relatively trivial instances. We compare BRKGA against AGA, DP2, and PMA using the results
published in De Giovanni et al. (2013). DP2 and PMA were run on the same configuration as AGA
by De Giovanni et al. (2013). In order to make the comparison as fair as possible and to take into
account the nondeterministic nature of AGA and PMA (and the potentially long computational
time of DP2 as an exact approach), De Giovanni et al. (2013) tested AGA five times for each
instance and recorded the average computational time; then, DP2 and PMA were run and stopped
after the same computational time, storing the best (if not provably optimal) solution found so far
(PMA was repeated five times per instance).

Summary results are given in Table 12. Each row shows the results for each group of
five instances with the same number of item types (I), number of patterns (P), and density
(D). The columns corresponding to AGA and PMA report the minimum value of MOSP
over the five runs. The column corresponding to DP2 reports the minimum value of MOSP
obtained within the time limit. For the BRKGA, we include four columns /1, /2, /3, and /4
that correspond to the minimum value of MOSP obtained by BRKGA, over five runs, when
we use as computational time the time limit used by AGA was divided by 1, 2, 3, and 4,
respectively.

Table 12 shows that BRKGA consistently produces solutions that outperform the algorithms
AGA, PMA, and DP2 in 27 of all the 30 subgroups, even when a fourth of the computational
time limit is used. A statistical analysis of the results using the Wilcoxon test for the matched
pairs BRKGA < AGA, BRKGA < PMA, and BRKGA < DP2 shows that BRKGA is significantly
better than all the other algorithms obtaining p-values for all paired comparisons smaller than
0.001.

Becceneri instances
In this subsection, we compare BRKGA against the low-order polynomial time AS heuristic for
MOSP proposed by Ashikaga and Soma (2009). The comparison uses the Becceneri set of in-
stances generated by Becceneri (1999), which covers the most common practical industrial scenario
applications. The tests follow the notation used by Becceneri et al. (2004), that is, n × m that
stands, respectively, for the number of items and number of patterns, and C is the maximum

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

18 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22
T

ab
le

14
C

om
pu

ta
ti

on
al

re
su

lt
s:

B
ec

ce
ne

ri
in

st
an

ce
s

I
P

C
T

im
e

N
o.

of
ge

ne
ra

ti
on

s

n
m

(s
ec

on
ds

)
A

S
1

5
10

15
20

25
30

35
40

45
50

5
0.

00
1

6.
90

6.
30

6.
30

6.
30

6.
30

6.
30

6.
30

6.
30

6.
30

6.
30

6.
30

6.
30

10
10

6
0.

00
2

7.
80

7.
70

7.
70

7.
70

7.
70

7.
70

7.
70

7.
70

7.
70

7.
70

7.
70

7.
70

7
0.

00
2

8.
55

8.
50

8.
50

8.
50

8.
50

8.
50

8.
50

8.
50

8.
50

8.
50

8.
50

8.
50

8
0.

00
1

9.
10

9.
10

9.
10

9.
10

9.
10

9.
10

9.
10

9.
10

9.
10

9.
10

9.
10

9.
10

6
0.

00
3

13
.6

5
11

.5
0

11
.5

0
11

.5
0

11
.5

0
11

.5
0

11
.5

0
11

.5
0

11
.5

0
11

.5
0

11
.5

0
11

.5
0

8
0.

00
3

16
.0

0
14

.1
5

14
.1

0
14

.1
0

14
.1

0
14

.1
0

14
.1

0
14

.1
0

14
.1

0
14

.1
0

14
.1

0
14

.1
0

20
20

12
0.

00
2

18
.1

0
17

.6
5

17
.6

5
17

.6
5

17
.6

5
17

.6
5

17
.6

5
17

.6
5

17
.6

5
17

.6
5

17
.6

5
17

.6
5

14
0.

00
2

18
.8

0
18

.8
0

18
.8

0
18

.8
0

18
.8

0
18

.8
0

18
.8

0
18

.8
0

18
.8

0
18

.8
0

18
.8

0
18

.8
0

16
0.

00
2

19
.8

5
19

.8
5

19
.8

5
19

.8
5

19
.8

5
19

.8
5

19
.8

5
19

.8
5

19
.8

5
19

.8
5

19
.8

5
19

.8
5

8
0.

00
7

22
.4

0
19

.5
0

19
.2

5
19

.1
5

19
.1

5
19

.1
5

19
.1

5
19

.1
5

19
.1

5
19

.1
5

19
.1

5
19

.1
5

12
0.

00
6

26
.3

5
24

.5
0

24
.4

0
24

.4
0

24
.4

0
24

.4
0

24
.4

0
24

.4
0

24
.4

0
24

.4
0

24
.4

0
24

.4
0

30
30

16
0.

00
6

28
.0

0
27

.3
5

27
.3

0
27

.3
0

27
.3

0
27

.3
0

27
.3

0
27

.3
0

27
.3

0
27

.3
0

27
.3

0
27

.3
0

20
0.

00
5

29
.3

0
29

.2
0

29
.2

0
29

.2
0

29
.2

0
29

.2
0

29
.2

0
29

.2
0

29
.2

0
29

.2
0

29
.2

0
29

.2
0

24
0.

00
4

30
.0

0
30

.0
0

30
.0

0
30

.0
0

30
.0

0
30

.0
0

30
.0

0
30

.0
0

30
.0

0
30

.0
0

30
.0

0
30

.0
0

10
0.

01
2

32
.8

0
29

.4
0

29
.1

0
29

.0
0

29
.0

0
29

.0
0

29
.0

0
29

.0
0

29
.0

0
29

.0
0

29
.0

0
29

.0
0

15
0.

01
2

36
.8

0
34

.5
0

34
.3

0
34

.3
0

34
.3

0
34

.3
0

34
.2

0
34

.2
0

34
.2

0
34

.2
0

34
.2

0
34

.2
0

20
0.

01
2

38
.4

0
37

.6
0

37
.4

0
37

.4
0

37
.4

0
37

.4
0

37
.4

0
37

.4
0

37
.4

0
37

.4
0

37
.4

0
37

.4
0

25
0.

01
2

39
.3

0
39

.3
0

39
.3

0
39

.2
0

39
.2

0
39

.2
0

39
.2

0
39

.2
0

39
.2

0
39

.2
0

39
.2

0
39

.2
0

10
0.

02
6

39
.9

0
36

.4
0

35
.6

0
35

.4
0

35
.3

0
35

.2
0

35
.2

0
35

.2
0

35
.1

0
35

.1
0

35
.0

0
35

.0
0

50
50

15
0.

02
6

45
.2

0
42

.8
0

42
.5

0
42

.4
0

42
.3

0
42

.3
0

42
.3

0
42

.2
0

42
.1

0
42

.1
0

42
.1

0
42

.1
0

20
0.

02
2

47
.1

0
46

.1
0

45
.7

0
45

.7
0

45
.7

0
45

.7
0

45
.7

0
45

.7
0

45
.7

0
45

.7
0

45
.7

0
45

.7
0

30
0.

02
0

49
.3

0
49

.3
0

49
.3

0
49

.3
0

49
.3

0
49

.3
0

49
.3

0
49

.3
0

49
.3

0
49

.3
0

49
.3

0
49

.3
0

10
0.

05
0

47
.6

0
42

.3
0

41
.5

0
41

.3
0

41
.1

0
41

.0
0

41
.0

0
40

.9
0

40
.9

0
40

.9
0

40
.9

0
40

.9
0

60
60

15
0.

04
8

54
.2

0
50

.8
0

50
.2

0
49

.8
0

49
.8

0
49

.7
0

49
.6

0
49

.6
0

49
.6

0
49

.6
0

49
.6

0
49

.6
0

20
0.

04
8

56
.8

0
55

.7
0

55
.0

0
55

.0
0

55
.0

0
55

.0
0

55
.0

0
55

.0
0

55
.0

0
55

.0
0

55
.0

0
55

.0
0

25
0.

04
0

57
.9

0
57

.2
0

57
.0

0
57

.0
0

57
.0

0
57

.0
0

57
.0

0
57

.0
0

57
.0

0
57

.0
0

57
.0

0
57

.0
0

10
0.

30
1

77
.7

0
69

.4
5

67
.8

5
66

.5
5

65
.9

0
65

.5
5

65
.3

5
65

.2
0

65
.1

0
65

.1
0

65
.0

5
65

.0
5

15
0.

29
0

88
.6

0
83

.2
0

82
.2

0
81

.5
0

80
.5

0
80

.3
0

80
.1

0
79

.9
0

79
.7

0
79

.7
0

79
.7

0
79

.7
0

10
0

10
0

20
0.

29
6

93
.0

0
90

.1
0

89
.2

0
88

.9
0

88
.5

0
88

.4
0

88
.3

0
88

.2
0

88
.1

0
88

.0
0

88
.0

0
88

.0
0

30
0.

29
6

97
.0

0
95

.9
0

95
.7

0
95

.6
0

95
.5

0
95

.4
0

95
.4

0
95

.4
0

95
.4

0
95

.4
0

95
.4

0
95

.4
0

40
0.

27
0

98
.8

0
98

.2
0

98
.0

0
98

.0
0

98
.0

0
97

.9
0

97
.9

0
97

.9
0

97
.9

0
97

.9
0

97
.9

0
97

.9
0

10
1.

38
8

11
4.

60
10

3.
25

10
0.

45
99

.1
5

98
.0

0
96

.9
5

96
.3

5
96

.1
0

96
.0

0
95

.9
5

95
.9

5
95

.9
5

15
1.

35
2

13
1.

05
12

4.
70

12
3.

30
12

2.
50

12
1.

60
12

0.
85

12
0.

20
11

9.
70

11
9.

35
11

9.
30

11
9.

30
11

9.
25

15
0

15
0

20
1.

35
4

13
9.

20
13

4.
95

13
4.

10
13

3.
50

13
3.

05
13

2.
55

13
1.

95
13

1.
70

13
1.

55
13

1.
50

13
1.

40
13

1.
40

25
1.

32
2

14
2.

60
14

0.
75

13
9.

95
13

9.
40

13
8.

85
13

8.
40

13
8.

20
13

8.
00

13
7.

90
13

7.
90

13
7.

90
13

7.
90

30
1.

32
6

14
5.

30
14

4.
00

14
3.

30
14

2.
80

14
2.

60
14

2.
40

14
2.

30
14

2.
20

14
2.

10
14

2.
10

14
2.

00
14

2.
00

To
ta

lM
O

SP
19

28
.0

18
50

.0
18

34
.6

18
27

.3
18

21
.5

18
17

.4
18

14
.5

18
12

.6
18

11
.2

18
10

.9
18

10
.6

18
10

.5
P

er
ce

nt
ag

e
of

im
pr

ov
em

en
t

ov
er

A
S

4.
04

4.
84

5.
22

5.
52

5.
74

5.
88

5.
99

6.
06

6.
07

6.
09

6.
09

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 19

Table 15
Computational results: BRKGA component performance

I P (BRKGA)

n m D GA GA-M GA-LS GA-LS-M
2 19.4 15.2 13.0 13.2
4 35.8 31.6 29.8 29.8

200 50 6 52.6 49.2 48.4 48.0
8 68.0 64.4 62.8 62.8

10 83.2 80.2 79.0 78.6
2 33.2 25.2 19.8 19.6
4 60.8 53.8 50.6 50.0

200 100 6 94.6 88.2 84.0 82.8
8 119.0 113.0 109.8 109.0

10 141.8 134.6 133.4 132.0
2 47.8 36.2 28.2 26.8
4 85.6 75.6 69.0 67.4

200 150 6 122.8 113.0 108.2 107.0
8 149.0 141.2 134.8 133.6

10 163.0 159.4 154.8 152.6
2 20.8 17.0 14.6 14.6
4 32.2 27.8 26.0 25.8

250 50 6 50.0 45.8 44.2 44.2
8 70.8 66.6 65.0 64.8

10 89.0 84.6 82.8 82.8
2 33.8 24.0 18.4 18.0
4 58.6 48.8 44.6 43.6

250 100 6 90.8 84.4 80.8 79.4
8 121.0 116.2 112.8 111.4

10 150.2 144.8 143.0 141.8
2 48.2 37.8 28.6 26.6
4 83.2 75.0 66.8 65.2

250 150 6 125.8 118.0 111.4 109.2
8 163.2 154.6 150.4 147.6

10 189.4 180.4 176.8 174.6
Total MOSP 2603.6 2406.6 2291.8 2262.8
Percentage of improvement over GA 7.57 11.98 13.09

number of items allocated to a pattern. For each group, a sample of 20 random instances was
generated.

In the test, we let BRKGA run once for 50 generations and registered the value of MOSP at the
end of the first generation and then every five generations. Summary results are given in Table 14,
where each row shows the results for the average MOSP values over the instances in the group. The
column “Time” corresponds to the time used by BRKGA for one generation while the column AS
represents the average MOSP obtained by the AS heuristic. The columns with headings 1, 5,...,50
correspond to the values of MOSP obtained by the BRKGA after the number of generations in the
corresponding heading.

After only one generation the BRKGA obtains, for all the 36 groups, MOSP values that are equal
to or better than the values obtained by the AS heuristic. The MOSP values obtained by BRKGA

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

20 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

over all the groups on the first generation correspond already to an improvement of 4.04% over the
values of the AS heuristic, and as the number of generations increase the improvement goes up to
6.09%. BRKGA always finds better values than AS in reasonable running time (often negligible).
As the size of the instance increases, the computational time increases quite slowly.

Impact of each component on the BRKGA performance
To investigate the impact of each of the components included in BRKGA (GA, local search,
and modified MOSP) on its performance, we conducted the additional experiments described in
Table 13.

Each experiment was run five times for 100 generations on the 150 harder instances presented
in Section “Harder instances.” Summary results are given in Table 15. Each row shows the results
for each group of five instances with the same number of item types (I), number of patterns (P),
and density (D). The columns corresponding to GA, GA-M, GA-LS, and GA-LS-M report the
minimum value of MOSP over the five runs.

From Table 15, it is clear that the plain BRKGA (GA) does not perform well since it produces
an overall MOSP increase of 13% with respect to the full algorithm (BRKGA). The combinations
of the plain BRKGA (GA) with the modified MOSP (GA-M) and with the local search (GA-LS)
produce better results. Nevertheless, they are 5.5% and 1.1%, respectively, above the ones produced
by the full BRKGA (GA-LS-M). Combining the plain BRKGA with both the local search and
modified MOSP into GA-LS-M results in the best values of MOSP.

4. Concluding remarks

In this paper, we addressed the MOSP that consists of determining a sequence of cutting patterns that
minimize the maximum number of open stacks during the cutting process. The approach proposed
combines a BRKGA and local search procedure for generating the sequence of cutting patterns. A
new fitness function for evaluating the quality of the solutions is also proposed. Computational
tests are presented using 6141 available instances taken from the literature. The high quality of the
solutions obtained validate the proposed approach.

The new approach is extensively tested on more than 7000 problem instances and compared with
other approaches published in the literature. The computational experiments results demonstrate
that the new approach consistently equals or outperforms the other approaches.

Acknowledgments

This work has been partially supported by projects PTDC/EGE-GES/117692/2010 and NORTE-
07-0124-FEDER-000057 funded by the North Portugal Regional Operational Programme (ON.2—
O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European
Regional Development Fund (ERDF) and the Programme COMPETE; and by national funds,
through the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT). We would
like to thank Luigi De Giovanni, Fernando Masanori Ashikaga, and Geoffrey Chu for sending us
instances for the problem.

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22 21

References

Ashikaga, F.M., Soma, N.Y., 2009. A heuristic for the minimization of open stacks problem. Pesquisa Operacional 29,
439–450.

Banda, M.G., Stuckey, P.J., 2007. Dynamic programming to minimize the maximum number of open stacks. INFORMS
Journal on Computing 19, 607–617.

Bean, J.C., 1994. Genetics and random keys for sequencing and optimization. ORSA Journal on Computing 6, 154–160.
Becceneri, J., 1999. O problema de sequenciamento de padr oes para minimizaçao do número máximo de pilhas abertas

em ambientes de corte industriais. Ph.D. thesis, Engenharia Eletrônica e Computação, ITA/CTA, São José dos
Campos.

Becceneri, J.C., Yanasse, H.H., Soma, N.Y., 2004. A method for solving the minimization of the maximum number of
open stacks problem within a cutting process. Computers & Operations Research 31, 2315–2332.

Chu, G., Stuckey, P.J., 2009. Minimizing the maximum number of open stacks by customer search. In Gent, I.P. (ed.)
Principles and Practice of Constraint Programming – CP 2009, Vol. 5732 of Lecture Notes in Computer Science,
Springer, Berlin Heidelberg, pp. 242–257.

De Giovanni, L., Massi, G., Pezzella, F., 2010. Preliminary computational experiments with a genetic algorithm for the
open stacks problem. Technical Report, Dipartimento di Matematica Pura ed Applicata Università degli studi di
Padova, Padova, Italy.

De Giovanni, L., Massi, G., Pezzella, F., 2013. An adaptive genetic algorithm for large-size open stack problems.
International Journal of Production Research 51, 682–697.

Faggioli, E., Bentivoglio, C.A., 1998. Heuristic and exact methods for the cutting sequencing problem. European Journal
of Operational Research 110, 564–575.

Fink, A., Voß, S., 1999. Applications of modern heuristic search methods to pattern sequencing problems. Computers and
Operations Research 26, 17–34.

Gonçalves, J.F., Almeida, J.R., 2002. A hybrid genetic algorithm for assembly line balancing. Journal of Heuristics 8,
629–642.

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C., 2005. A hybrid genetic algorithm for the job shop scheduling problem.
European Journal of Operational Research 167, 77–95.

Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C., 2009. A genetic algorithm for the resource constrained multi-project
scheduling problem. European Journal of Operational Research 189, 1171–1190.

Gonçalves, J.F., Resende, M.G.C., 2004. An evolutionary algorithm for manufacturing cell formation. Computers and
Industrial Engineering 47, 247–273.

Gonçalves, J.F., Resende, M.G.C., 2011. Biased random-key genetic algorithms for combinatorial optimization. Journal
of Heuristics 17, 487–525.

Gonçalves, J.F., Resende, M.G.C., 2012. A parallel multi-population biased random-key genetic algorithm for a container
loading problem. Computers & Operations Research 39, 179–190.

Gonçalves, J.F., Resende, M.G.C., 2013. A biased random key genetic algorithm for 2D and 3D bin packing problems.
International Journal of Production Economics 145, 500–510.

Gonçalves, J.F., Resende, M.G.C., 2014. An extended Akers graphical with a biased random-key genetic algorithm for
job-shop scheduling. International Transactions in Operational Research 21, 215–246.

Gonçalves, J.F., Resende, M.G.C., Mendes, J.J.M., 2011. A biased random-key genetic algorithm with forward-backward
improvement for the resource constrained project scheduling problem. Journal of Heuristics 17, 467–486.

Gonçalves, J.F., Sousa, P.S.A., 2011. A genetic algorithm for lot sizing and scheduling under capacity constraints and
allowing backorders. International Journal of Production Research 49, 2683–2703.

Hu, Y.H., Chen, S.J., 1990. Gm plan: a gate matrix layout algorithm based on artificial intelligence planning techniques.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 9, 836–845.

Limeira, M., 1998. Desenvolvimento de um algoritmo exato para a solução de um problema de sequenciamento de
padrões de corte. 1998. Ph.D. thesis, Dissertação (Mestrado em Computação Aplicada), Instituto Nacional de
Pesquisas Espaciais, São José dos Campos.

Linhares, A., Yanasse, H.H., 2002. Connections between cutting-pattern sequencing, VLSI design, and flexible machines.
Computers & Operations Research 29, 1759–1772.

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

22 J.F. Gonçalves et al. / Intl. Trans. in Op. Res. 00 (2014) 1–22

Linhares, A., Yanasse, H.H., Torreao, J.R., 1999. Linear gate assignment: a fast statistical mechanics approach. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 18, 1750–1758.

Lins, S., 1989. Traversing trees and scheduling tasks for duplex corrugator machines. Pesquisa Operacional 9, 40–54.
Mendes, A., Linhares, A., 2004. A multiple-population evolutionary approach to gate matrix layout. International Journal

of Systems Science 35, 13–23.
Möhring, R.H., 1990. Graph problems related to gate matrix layout and PLA folding. In Tinhofer, G., Mayr, E.,

Noltemeier, H., Syslo, M.M. (eds) Computational Graph Theory. Springer, Vienna, pp. 17–51.
Morán-Mirabal, L.F., González-Velarde, J.L., Resende, M.G.C., 2014. Randomized heuristics for the family traveling

salesperson problem. International Transactions in Operational Research 21, 41–57.
Oliveira, A.C.M., Lorena, L.A.N., 2002. A constructive genetic algorithm for gate matrix layout problems. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems 21, 969–974.
Oliveira, A.C.M., Lorena, L.A.N., 2006. Pattern sequencing problems by clustering search. In Sichman, J.S., Coelho,

H., Rezende, S.O. (eds) Advances in Artificial Intelligence – IBERAMIA-SBIA 2006, Vol. 4140 of Lecture Notes in
Computer Science. Springer, Berlin, Heidelberg, pp. 218–227.

Smith, B., Gent, I., 2005. Constraint modelling challenge 2005. IJCAI 2005 Fifth Workshop on Modelling and Solving
Problems with Constraints, Edinburgh, pp. 1–8.

Spears, W.M., Dejong, K.A., 1991. On the virtues of parameterized uniform crossover. Proceedings of the Fourth
International Conference on Genetic Algorithms, San Diego, CA, pp. 230–236.

Yanasse, H., 1996. Minimization of open orders-polynomial algorithms for some special cases. Pesquisa Operacional 16,
1–26.

Yanasse, H., 1997a. A transformation for solving a pattern sequencing problem in the wood cut industry. Pesquisa
Operacional 17, 57–70.

Yanasse, H.H., 1997b. On a pattern sequencing problem to minimize the maximum number of open stacks. European
Journal of Operational Research 100, 454–463.

Yanasse, H., Becceneri, J., Soma, N., 1999. Bounds for a problem of sequencing patterns. Pesquisa Operacional 19,
249–277.

Yanasse, H.H., Becceneri, J.C., Soma, N.Y., 2007. Um algoritmo exato com ordenamento parcial para solução de um
problema de programação da produção: experimentos computacionais. Gestão & Produção 14, 353–361.

Yanasse, H., Limeira, M., 2004. Refinements on an enumeration scheme for solving a pattern sequencing problem.
International Transactions in Operational Research 11, 277–292.

Yanasse, H.H., Senne, E.L.F., 2010. The minimization of open stacks problem: a review of some properties and their use
in pre-processing operations. European Journal of Operational Research 203, 559–567.

Yuen, B.J., 1991. Heuristics for sequencing cutting patterns. European Journal of Operational Research 55, 183–190.
Yuen, B.J., 1995. Improved heuristics for sequencing cutting patterns. European Journal of Operational Research 87, 57–64.
Yuen, B.J., Richardson, K.V., 1995. Establishing the optimality of sequencing heuristics for cutting stock problems.

European Journal of Operational Research 84, 590–598.

C© 2014 The Authors.
International Transactions in Operational Research C© 2014 International Federation of Operational Research Societies

