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Abstract 

This paper focuses on iterated local search heuristics for the maximum cut-clique (or 

clique neighborhood) problem. Given an undirected graph G=(V, E) and a clique C of G, 

the cut-clique is the set of edges running between C and V \C, establishing the cut (C,V \C). 

The maximum cut-clique in G is to find a clique with the largest number of edges in the 

neighborhood of the clique, also known as the maximum edge-neighborhood clique. This 

problem has been recently introduced in the literature together with a number of 

applications, namely in cell biology instances. However, it has only been addressed so far 

by exact methods. 

In this paper, we introduce the first approximate algorithms for tackling the maximum cut-

clique problem, compare the results with the exact methodologies and explore a new 

application within marketing analysis, providing a new alternative perspective for mining 

market basket problems. 

 
Keywords: Cut-cliques, clique’s edge neighborhood, iterated local search heuristics, 

discretized formulations, market basket analysis, data mining. 

 

 

 

1. Introduction 

Searching for dense components in a network has long been attracting many researchers 

from different areas. Among those structures, there is the concept of a clique, in which all 
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elements are pairwise adjacent. This structure is expected to reveal a strongly related set of 

elements. 

A large number of applications involving cliques have been discussed in the literature 

since long. Some of those applications can be found in coding theory, fault diagnosis, 

computer vision, pattern recognition (Bomze, Budinich, Pardalos & Pelillo, 1999), 

telecommunications, marketing, e-commerce (Cavique, 2007; Raeder & Chawla, 2011), 

financial markets, social networks and in molecular and biological networks (Bull, 

Muldoon & Doig, 2013; Strickland, Barnes & Sokol, 2005; Spirin & Mirny, 2003). 

To formalize the problem, let G=(V,E) be an undirected graph, where V={1,…,n} is the 

set of nodes and E⊆V×V the set of edges. A clique of G is a subset of nodes C⊆V whose 

elements are pairwise adjacent, that is, (i,j)∈E for all pairs i,j∈C. Finding the maximum 

cardinality clique in G is known as the Maximum Clique (MC) problem. The cardinality of 

the maximum clique is the clique number of the graph, being denoted by ω(G). A maximal 

clique is a clique that is not a proper subset of any other clique. 

A very extensive survey addressing the MC problem, up to 1999, can be found in Bomze, 

et al. (1999). For more recent results we can find contributions on bounding methods for 

the clique number of G (Gendron, Hertz & St-Louis, 2008; Luz & Schrijver, 2005) on 

exact enumerative algorithms (Östergard, 2002; Tomita & Kameda, 2007), on heuristics 

(Grosso, Locatelli & Pullan, 2008; Solnon & Fenet, 2006; Pullan & Hoos, 2006), and on 

formulations discussions (Martins, 2010). 

The MC problem belongs to the NP-hard class (Karp, 1972). Furthermore, there is no 

polynomial-time approximation algorithm for it, unless P=NP, (Crescenzi, Fiorini & 

Silvestri, 1991). In fact, the problem is not approximable within n1/4−ε, for any ε > 0, 

(Bellare, Goldreich & Sudan, 1998).  

In the present paper we consider a different clique’s related problem. Instead of searching 

for the largest size clique in the graph, we want a clique (of any size) with the largest 

number of edges incident to the nodes in the clique, excluding those within the clique. This 

problem has been recently introduced in Martins (2012), where formulations were 

proposed and showed their applicability to some real world problems. In formal terms, 

given a clique C of a graph G=(V,E), the edge neighborhood (or cut-clique) of C is the set 

of all edges in the cutset (C,V \C), that is, E´(C)={(i,j)∈E : i∈C and j∈V \C}. When C is a 

singleton, namely when C={i}, we denote E´(C) by E´(i). Similarly, we denote by N(i) the 

set of nodes adjacent to node i in G, that is, N(i)={ j∈V:(i,j)∈E}. Note that the edges that 
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link the nodes in N(i) with i are exactly those in E´(i), thus, |E´(i)|= |N(i)|. We also denote 

by Γ the set of all cliques in G. Searching for a clique C∈Γ with largest E´(C) is known as 

the maximum edge neighborhood clique (MENC) problem, or maximum cut-clique (MCC) 

problem. In what follows, we use the second designation (MCC) when mentioning this 

problem, and use indistinctly the two terms: edge neighborhood clique and cut-clique, 

meaning the same. Figure 1 shows the maximum clique and the maximum cut-clique in a 

14 nodes graph. The maximum clique solution includes 4 nodes (C1 = {1, 2, 3, 4}), while 

the maximum cut-clique has only 3 nodes (C2 = {6, 7, 9}). On the other hand, the total 

number of edges in the neighborhood of C1 (cutset E´(C1) = 2) is much smaller than the 

edge neighborhood of C2 (cutset E´(C2) = 9). In effect, the smaller sized clique (C2) is 

much more engaged in the network than the largest size clique (C1), which may suggest 

that the smaller sized clique can be more interactive within the whole network. Actually, in 

some cases, the maximum clique solution can lead us to an isolated component of the 

graph, being displaced from the “crowdie” zone. 

 

 
Figure 1: A maximum clique and a maximum cut-clique in a 14 nodes graph. 

 

We describe known exact formulations from the literature and propose Iterated Local 

Search (ILS) methods based on the heuristic proposed in Grosso, et al. (2008), including 

specific properties of the MCC problem to accelerate the search. These heuristics were 

shown to be very fast and accurate when addressing the maximum clique problem, 

obtaining outstanding results for known benchmark instances. Another relevant feature of 

the ILS heuristics is their low dependency on parameterization, which is an important 

practical concern when handling real-world applications. 

One motivation to focus on the Maximum Cut-Clique Problem comes from the application 

to Market Basket Analysis (MBA). In marketing, the field of Market Basket Analysis 

consists of identifying meaningful associations in a customer transaction dataset. The area 

is becoming increasingly relevant due to the amount of data that the stores and 
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supermarkets have available today, for example from the loyalty card. The main objective 

of this field is to analyze large datasets of store transactions and obtain relevant insights to 

do a better planning of the marketing strategies and operations. The information obtained 

from the analysis of this data can have an important impact in the business strategy and 

operations, for example product placement, optimal product-line offering, personalized 

marketing campaigns and product promotions. Some of the common methodologies and 

techniques in MBA are: Association Rules, Detecting Communities, Association Rules 

Networks, Hyperclique Pattern Discovery and Center Piece sub-graphs. For a survey on 

Market Basket Analysis see (Hipp, Günther & Nakhaeizadeh, 2000; Raeder & Chawla, 

2011; Zaki, 1999; Aguinis, 2013). The traditional and oldest interdependence approach for 

analyzing market basket data is the detection and estimation of conditioned purchase 

probabilities for pairs of products purchased in the same basket, known as association 

rules. However, consumer datasets frequently contain hundreds of association rules, so 

filtering and selecting the relevant subsets of interdependence patterns is not a trivial or 

easy task (Klemettinen, et al., 1994). In the last few years researchers have developed 

several techniques to address this important limitation of the traditional approach (see 

Raeder & Chawla (2011) for a detailed description). Among these methodologies, the 

analysis of network-based rules, as the cut-clique approach, can find relevant and 

meaningful relationships across sets of products in large consumer purchase datasets.  

Some examples of network-based methodologies for MBA can be found on the following 

works. Videla-Cavieres & Ríos (2014) present a novel approach based on graph mining 

techniques to the MBA and applied it to a large example of a wholesale supermarket chain. 

Kim et al. (2012) propose a product network analysis for MBA using a bipartite graph, 

meanwhile Raeder & Chawla (2009) use a more general network. Keshavamurthy et al. 

(2013) presents an association rule mining Genetic Algorithm and an application to MBA. 

Kamakura (2012) compares and contrasts traditional MBA with a sequential extension and 

exemplifies it with a real application. 

In a different approach, Cavique (2007) proposes the search for large products-set patterns 

within market basket analysis using maximum weighted cliques. To the best of our 

knowledge, this the most similar work to the one discussed in the present paper. 

In this case, each edge (i,j)∈E has an associated weight wij , representing the number of 

times that products i and j were bought together, during the entire time range, and the cost 

of a clique is the sum of the weights of all its edges. Thus, the maximum edge-weight 

clique (MEWC) problem looks for a clique with maximum total cost in G, which should 
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reveal the most frequent set of products commonly sharing (in pairs) the same basket. In 

effect, the MEWC can be seen as the edge-weighted version of the MC problem; and the 

same way, we can define the maximum edge-weight neighborhood clique (MEWNC) 

problem, in which we look for a clique with maximum edge-weight in its neighboring 

edges, representing the weighted version of the MCC problem. Formulations for both 

MEWC and MEWNC problems on sparse graphs are discussed in Gouveia & Martins 

(2013).   

If we consider again the example in Figure 1, and set w11,12 = 100 and wij ≤ 10 for all the 

remaining edges (E\{(11,12)}), then the maximum edge-weight clique in the graph is C3 = 

{11, 12, 14} with cost at most 120; while the maximum edge-weight  neighborhood clique 

is C4 = {9, 11} with cost at most 150. In effect, compared to the MCC optimum solution C2 

= {6, 7, 9}, the two cliques C3 and C4 have only 2 and 5 links in their neighborhoods, 

respectively, being less related to the remaining nodes in the graph than C2. As a result, we 

may expect a stronger interaction between C2 and the remaining nodes in G than from C3 

or C4. 

Considering this motivation, we use an inter-relationship network among the products and 

conduct our search sustaining that the linkage from one set of items (those in the clique) to 

all others is more relevant for finding dependencies among the products than the number of 

times they are selected. This is the reason for concentrating the discussion on unweighted 

graphs instead of doing it on their weighted counterparts, in order to avoid that strongly 

weighted edges may capture the search, and moving it into heavily purchased products, 

while missing the intended items dependencies. These dependencies can potentially 

concentrate interesting consumer habits, to be explored in future marketing campaigns. 

 

The main contribution of this work is an efficient ILS based heuristic for the Cut-Clique 

Problem and a new alternative technique for mining information on Market Basket 

networks. Raeder & Chawla (2011) say “... no techniques currently available in the 

literature sufficiently addresses the problem of finding meaningful relationships in a large 

transaction databases.”. We propose the use of cut-cliques models and an ILS 

metaheuristic that also contributes to a new and innovative approach to obtain insights and 

relevant association rules from a market network. The techniques proposed here can be 

complementary to the ones based on data mining, since both provide relevant insights 

about the market basket. One of the main advantages is that the proposed ILS 

metaheuristic can solve very large scale datasets, and so we can apply it to individual 
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products, not only to brands of products.  Finally we present an application of the cut-

clique approach to a database from the British ice cream market containing information 

over a 2½-year period (January 2006 to June 2008) among 142 households to obtain 

relevant information on the household purchase behavior. 

 

In the next section we discuss the ILS based heuristics, while exact methods for the MCC 

problem are described in section 3 using known formulations. Computational tests on 

benchmark instances are performed in section 4, and the application of these 

methodologies to a real-world market network is discussed in section 5. The paper ends 

with a section for conclusions. 

 

 

2. Iterated local search algorithms 

In this section we describe iterated local search (ILS) based heuristics for the maximum 

cut-clique problem, following the ILS algorithms proposed in Grosso, et al. (2008) for the 

maximum clique version. These algorithms are derived from the Dynamic Local Search 

methods described in Pullan & Hoos (2006). Considering the computational results 

reported in Grosso, et al. (2008), we detach the following reasons to sustain our choice: the 

accuracy of the algorithms, their speed, and low dependency on parameterization. For a 

survey on ILS algorithms and applications see (Lourenço, Martin & Stützle, 2003; 

Lourenço, Martin & Stützle, 2010). 

The ILS algorithm comprises two main operations: add/aspiration moves and swap moves. 

The add/aspiration moves correspond to an incremental constructive process. When failing, 

the algorithm tries to modify this solution to a neighboring clique of equal size, if existing, 

by appropriately switching two nodes, one from the clique and the other one coming from 

its complementary set. The entering node is selected among a set of candidates that are 

linked to all nodes in the clique except one, called one-missing nodes. This process is the 

so called plateau search procedure (also considered in Battiti & Protasi (2001)), credited as 

one of the key elements of the algorithm’s success (Grosso, et al., 2008). Restart 

procedures are applied when add or swap moves are no longer possible to be carried out. 

The restarting solution is a perturbed version of the best clique returned by the previous 

stage. This is a different technique from random multistart, where a completely random 

independent solution is generated for starting a new stage. 
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For describing the ILS we consider three disjunctive subsets of V: 

• C is the set of nodes in the clique under construction; 

• K0(C) is the set of candidate nodes for increasing the size of the clique in C, that is, 

i∈K0(C) if (i,j)∈E for all j∈C; 

• K1(C) is the set of one-missing nodes to C, that is, i∈K1(C) if (i,j)∈E for all j∈C \{r} 

and (i,r)∉E. 

We also consider the set U of tabu nodes. These are the dropped nodes from C, as a 

consequence of the swap moves. 

Compared with the MC problem, there is an important observation that should be stressed 

before handling the MCC version. 

Observation: The MC problem verifies the inclusionwise property, that is, any subset S of 

a clique C∈Γ (with |C|>1) is still a clique and |S|≤ |C|. However, when considering 

the cut-clique function to optimize in the MCC problem, the inclusion-wise property 

does not hold. In fact, it is not hard to find an example to which, for a given clique 

C∈Γ (with |C|>1) and a subset S⊆C, the cut-set of S is larger than the cut-set of C, 

that is, |E´(S)|>|E´(C)|, indicating that a clique may contain a subset with larger edge 

neighborhood. 

This observation suggests that orienting the search for a systematic increase of the size of 

the current clique may not lead to the right direction. Thus, the constructive scheme in the 

original ILS algorithm, based on a sequence of add moves, should be oriented by the 

cardinality of the cut-set of the putative cliques (C∪{i}), for all i∈K0(C). Otherwise, the 

incremental process may deteriorate the cut-set cardinality value. 

Concerning the previous observation, it is important to compare the growth of |E´(C)| after 

adding node i to C, that is, comparing |E´(C)| with |E´(C∪{i})|, for i∈K0(C). In effect, after 

including node i in C, its edge neighborhood loses |C| edges. In addition, the number of 

edges brought by the neighborhood of i to the newly set C∪{i} are no more than 

|E´(i)|−|C|, because |C| of those edges will be kept in the interior of C∪{i}. Thus,  

|E´(C∪{i})| = |E´(C)|− |C|+|E´(i)|−|C| = |E´(C)|+ |E´(i)|−2|C| 

So, compared with |E´(C)|, the inclusion of node i into C is profitable only if 

|E´(C∪{i})| > |E´(C)|, that is, only if |E´(i)|> 2|C|. 

In fact, if the inclusion of node i into a |C|-sized clique is unprofitable, then its inclusion 

still remains unprofitable in any clique of larger cardinality. Hence, we say that C is a 
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maximal cut-clique if there is no other clique in G, containing C, with larger cut-clique 

cardinality. These results prove the following proposition. 

Proposition 1. Given a clique C of G and a node i∈V\C. If |E´(i)|< 2|C|, then node i will 

not belong to any optimum solution to the MCC problem involving a clique 

with cardinality |C|+1 or larger. Furthermore, if |E´(i)|= 2|C|, the inclusion of 

node i will not improve clique’s C cut-set cardinality. 

As a result of Proposition 1, for a given clique C, any node i∈V\C with |E´(i)|≤ 2|C| will 

not increase the clique’s C cut-set (|E’(C)|), thus node i should not belong to K0(C). 

Following similar arguments, we can also establish an analogous condition for one-missing 

nodes to a given clique C. Thus, if i∈K1(C) and j is the associated missing node in C, that 

is, { j}=C \N(i), then 

|E´(C \{ j}∪{i})| =  |E´(C)|− |E´(j)|+2(|C|−1)+|E´(i)|−2(|C|−1) =  |E´(C)|− |E´(j)|+ |E´(i)| 

So, this time, the inclusion of node i into C is profitable only if |E´(C \{ j}∪{i})| > |E´(C)|, 

that is, only if |E´(i)| > |E´(j)|.  

Using the previous observations, for a given clique C∈Γ, the set of candidate nodes K0(C) 

and one-missing nodes K1(C) are defined as 

  K0(C) = { i∈V\C: |C∩N(i)|=|C| and |E´(i)|>2|C|}     (1) 

 K1(C) = { i∈V\C: |C∩N(i)|=|C|−1 and |E´(i)| > |E´( j)|, for { j}=C \N(i)}  (2) 

Following the description in (Grosso, et al., 2008) and considering the new 

characterizations for sets K0(C) and K1(C) established in (1) and (2), respectively, we 

present the basic ILS algorithm for the MCC problem (adapted from Algorithm 1 in 

Grosso, et al. (2008)). The input data are graph G and an integer value for setting 

parameter max_sel. This is the only parameter needed in the algorithm, and it controls the 

maximum number of modifications of set C (local/plateau search iterations), which 

influences the running time of the algorithm: 

ILS Algorithm for the MCC problem 

1.     Set C* ← ∅ ,  C ← ∅ ,  sel ← 0; 

2.     while (sel < max_sel) do 

3.          Randomly select a node i∈V \C;        /* Perturbation/restart */ 

4.          Set C ← [C∩N(i)]∪{i}; 

5.          Set U ← ∅ and C’ ← C;                   /* Local/plateau search */ ↓ 

6.          while (K0(C) ≠ ∅ or K1(C) \U ≠ ∅) and (C∩C’ ≠ ∅) and (sel < max_sel) do 
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7.               if (K0(C) \U ≠ ∅) then                  /* add move */ 

8.                    Select a node i∈K0(C) \U; 

9.                    Set C ← C∪{i}; 

10.                  if (U = ∅) then C’ ← C; 

11.             else-if (K1(C) \U ≠ ∅) then          /* swap move */ 

12.                  Select a node i∈K1(C) \U; 

13.                  Set C ← [C∪{i}] \{j}, U ← U∪{j}, where {j} = C \N(i); 

14.             else-if (K0(C)∩U ≠ ∅) then        /* aspiration */ 

15.                  Select a node i∈K0(C)∩U; 

16.                  Set C ← C∪{i}; 

17.             end-if; 

18.             sel ← sel + 1; 

19.        end-while; 

20.        if ( |E´(C)| > | E´(C*)|) then 

21.             Set C* ← C; 

22.        end-if; 

23.   end-while; 

24.   return C*. 

 
When C=∅ we set E´(C)=∅ and |E´(C)|=0. A complete execution of the inner while cycle 

(lines 6-19), up to exiting the while loop, is called a stage. This corresponds to a complete 

local search phase. A stage is ended when K0(C)=∅ and K1(C)\U=∅, that is, when C is a 

maximal cut-clique and there are no more candidates for swap moves (excluding the nodes 

in U); or when C∩C’=∅, that is, when the current clique has no node in common with the 

first maximal cut-clique found at this stage; or when the maximum number of selections 

(max_sel) is attained. Set C’ represents the first maximal cut-clique found during a stage. It 

is updated when the current clique C is perturbed (lines 4-5), or during the initial growing 

process at the beginning of a stage (line 10), before any swap move, leading to the first 

maximal cut-clique in the current stage. Thus, condition (C∩C’≠∅) acts as an anchor to 

C’, guaranteeing that the search will be kept local. Otherwise, when C∩C’=∅, the 

solution (C) is forced to be perturbed (in line 4), because it is totally apart from C’.  

During a stage, the algorithm performs a sequence of add and swap moves, giving priority 

to the constructive process (add moves), until it reaches a maximal cut-clique. Then, a 

swap move is performed, changing the current clique to an equal size neighboring clique, 

performing a plateau search procedure. From that point, the constructive process is tried 

again. All nodes that were removed from C during a stage are kept tabu in set U. These 

nodes are forbidden to re-enter C during the whole stage, unless they are shown to be 

Page 9 of 46 International Transactions in Operational Research



 

10 
 

profitable in a last-chance add move (those in K0(C)∩U), considered only after the failure 

of both add or swap moves. This last-chance device can be seen as an aspiration procedure. 

At the end of a stage, the current clique C is perturbed by inserting a randomly generated 

node. This apparently minimal perturbation can cause a significant damage in C, 

depending on the outcome of C∩N(i). Nevertheless, the new forthcoming set (C) can 

preserve most of the structure of its ancestor, which is an important difference from other 

techniques, namely the shaking process in Variable Neighborhood Search algorithms. 

Contrarily to the algorithm described in Grosso, et al. (2008), we opted to randomly select 

a node i∈V\C instead of selecting the node from the whole set V, in line 3 of the algorithm. 

This option is to avoid forcing the forthcoming stage to repeat the same set C. 

When the selection of a node for the add, swap or aspiration moves is made randomly, then 

we have the totally random version of the ILS algorithm, and we denote it by R-ILS, 

corresponding to Algorithm 1 in Grosso, et al. (2008). This version is not based on node 

evaluation but on completely random selection. 

Alternatively, Grosso, et al. (2008) also proposed the selection of nodes for leaving sets 

K0(C) and K1(C) based on a maximum node degree criterion (ties broken randomly). The 

node degree here considered is defined on the entire graph G, that is, defined by function 

|N(i)|, and not the node “residual degree” |K0(C)∩N(i)| for i∈K0(C) (or, |K1(C)∩N(i)| for 

i∈K1(C)) as regarded in the notable Reactive Local Search (RLS) algorithm (Battiti & 

Protasi, 2001). An important advantage for using graph’s G nodes degrees is that they can 

be computed and sorted before running the algorithm. This way, the computational effort 

of the algorithm is not damaged when compared with the version that involves random 

choices all over, because the computational effort for selecting a node is basically the same 

in both cases. We denote by D-ILS the ILS algorithm that resorts to the mentioned degree 

nodes sorting for selecting nodes in the add, swap or aspiration moves, performed in lines 

8, 12, and 15, respectively. The computational experiments conducted in Grosso, et al. 

(2008) report, however, that the totally random version (R-ILS) performs better than the 

version that includes the mentioned deterministic selection rules (D-ILS), when addressing 

the MC problem. 

Grosso, et al. (2008) also propose a version that incorporates penalties on the nodes of G, 

as a device for promoting diversification (their Algorithm 2). They also discuss alternative 

restart rules, involving different strategies for perturbing set C in each restarting stage. 
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More detailed features and computational performance concerning the ILS algorithm for 

the MC problem are depicted in Grosso, et al. (2008). 

 

 

3. Exact methods for the maximum cut-clique problem 

In this section we present exact methods based on mathematical formulation for the 

Maximum Cut-Clique Problem. We also propose a stronger variable elimination test and a 

sequential algorithm for assisting a discretized model. 

 

3.1 Known formulations 

Characterizing the set of all cliques in a graph G=(V,E) is an important step for modeling 

clique’s related problems. Due to its combinatorial nature, this set has been characterized 

within integer programming, using the following decision variables, 





∈∀= Vi
i

xi     , 
otherwise   0

clique in the is  node if   1
 

This is the simplest variables space for modeling cliques, leading to the following natural 

formulation (see, (Bomze, et al., 1999)) 

     Ejixx ji ∈∀≤+ ),(   ,  1    (3) 

      Vixi ∈∀∈    ,  {0,1}     (4) 

where E  represents the complementary set of edges in G, that is, 

{ }jiEjiVVjiE ≠∧∉×∈=   ),(  : ),( , and ),( EVG =  represents the complementary 

graph. 

A more compact formulation was proposed in Della Croce & Tadei (1994). Instead of 

constraints (3), the authors considered the following set of inequalities 

     VixiNx i

iNj

j ∈∀−≤∑
∈

   ,  )1()(
)(

   (5) 

with )(iN  representing the set of nodes adjacent to node i in G , that is, 

{ }EjiVjiN ∈∈= ),(  : )( . Inequalities (5) can be shown to be an aggregated version of 

constraints (3). In spite of being more compact, this representation can be weaker than the 

former, from a linear programming (LP) relaxation standpoint. 

More recently, an extended and discretized formulation for characterizing cliques was 

proposed in Martins (2010). It uses the following sets of decision variables 
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Qq
q

w
q ∈∀





=    , 
otherwise   0

  toequal is size clique  theif   1

 

QqVi
iq

v
q

i ∈∀∈∀




=   ,    , 
otherwise   0

clique  the tobelongs  node and   toequal is size clique  theif   1
 

with Q={qmin,…,qmax} a set of consecutive clique’s sizes. When addressing the MC 

problem, this range includes ω(G), that is, 1≤qmin≤ω(G)≤qmax . The mentioned 

formulation can be described by  

    QqVivqv q

i

iNj

q

j ∈∀∈∀−≥∑
∈

  ,    , )1(
)(

   (6) 

     Qqqwv q

Vi

q

i ∈∀=∑
∈

   ,     (7) 

     1=∑
∈Qq

qw       (8) 

    QqViv q

i ∈∀∈∀∈   ,    ,  {0,1}    (9) 

    Qqwq ∈∀∈    , }1,0{      (10) 

Considering the computational experiments conducted in Martins (2010) for the MC 

problem, the three characterizations should be used according to the density of G. Hence, 

(3) should be the appropriate model for addressing very dense graphs, and (6)-(8) should 

be the right choice for very sparse graphs. The in-between instances should be handled by 

model (5). 

Formulations for the MCC problem were discussed in Martins (2012). Most of those 

formulations use the previously mentioned clique’s characterizations. This problem 

involves finding a clique in G with maximum edge neighborhood (or cutset), that is, 

( ) ( ){ }1)´(max −⋅−∑ ∈Γ∈ CCiE
CiC , which forces the models to know the size of the 

clique (|C|). This can be accomplished using the set of variables {wq (q∈Q)}, leading to the 

following three formulations for the MCC problem 

FMCC1: 








∈−⋅− +

∈∈
∑∑ ||

),(
}1,0{),(  and  (8) ),(7' (3),  : )1()´(max Qn

Qq

q
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i
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wxwqqxiE  

FMCC2: 








∈−⋅− +

∈∈
∑∑ ||

),(
}1,0{),(  and  (8) ),(7' (5),  : )1()´(max Qn

Qq

q
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Equality (7’) is defined by ∑∑ ∈∈
=

Qq

q

Vi i qwx , being the {x} variables version of 

equalities (7). 
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FMCC3: 






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2211
q
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q

n

qqqq
vvvvvvv KKKK= . 

Remember that the set of edges incident to i and the set of nodes adjacent to i have the 

same cardinality, |E´(i)|= |N(i)|. 

Considering again the computational experiments reported in Martins (2010, 2012), the 

three models should be considered according to the density of the graph, using model 

FMCC1 for very dense graphs and model FMCC3 for very sparse graphs. 

 

 

3.1 Variable elimination test 

In order to reduce the size of the models, we propose a new variable elimination test, 

arising from the following corollary taken from Proposition 1. 

Corollary 2. Given a node i∈V and a clique size q∈Q, if |E´(i)|≤ 2(q−1)  (or 

|N(i)|≤ 2(q−1)), then variable q

iv can be removed from model FMCC3. 

The new test is denoted by Test 2, while a former test proposed in Martins (2012), based 

on condition |N(i)|< (q−1) is denoted by Test 1. As 2(|C|−1)>|C|−1 for any C∈Γ  with 

|C|>1, then it is easy to show that Test 2 is stronger than Test 1. Table 1 provides a 

comparison of the two tests for eliminating variables q

iv  in model FMCC3. The table only 

includes the instances in which reductions were observed. 

In the range Q={1,…,qmax}, Test 1 is only effective on the very sparse instances, while 

Test 2 can reinforce the variables elimination on the same instances and still promote 

reductions on the c-fat class. As expected, the tests have no efficacy on the more dense 

graphs. 
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Table 1: Variables elimination tests effectiveness involving model FMCC3. 

 

The variables’ elimination test performed in Martins (2010), and addressing the MC 

problem, took into account the entire range Q={1,…,n}. For that reason, the results 

described in Martins (2010) are significantly different from those here reported. 

 

 

3.2 Sequential algorithm for solving the FMCC3 model 

We also propose a sequential approach for solving model FMCC3 that profits from the 

modular structure of the formulation. This is motivated by the fact that if we remove the 

single constraint (8) from formulation FMCC3 we get a separable model, with a separate 

formulation for each q-sized clique subproblem, for q∈Q. Considering this fact, and 

instead of solving each of the individual subproblems, we consider a partition of set Q into 

smaller subsets, each one characterizing a restricted MCC subproblem. Thus, suppose we 

have the following partition Q=Q1∪Q
2∪…∪Q

k and let FMCC3(Qi) denote the FMCC3 

model restricted to the range Qi of clique’s sizes, for i=1,…,k. We also denote by z(Qi) the 

optimum solution value of FMCC3(Qi), while qi is the cardinality of the associated clique. 

Then, we propose the following algorithm. 

 
Sequential algorithm for solving the FMCC3 model 

1.     Set i ← 1  and  z(Q0 ) ← 0; 

2.     Solve model FMCC3(Qi), returning a clique with cardinality qi ; 

Total
Instances n density q max number of nº of variables nº of variables

variable after elimination after elimination

c-fat200-1 200 0.077 12 2400 2400 0.00 1578 34.25

c-fat200-2 200 0.163 24 4800 4800 0.00 3246 32.38

c-fat200-5 200 0.426 58 11600 11600 0.00 8516 26.59

c-fat500-1 500 0.036 14 7000 7000 0.00 4640 33.71

c-fat500-2 500 0.073 26 13000 13000 0.00 9260 28.77

c-fat500-5 500 0.186 64 32000 32000 0.00 23254 27.33

c-fat500-10 500 0.374 126 63000 63000 0.00 46752 25.79

p_hat700-1 700 0.249 16 28000 28000 0.00 27994 0.02

p_hat700-2 700 0.498 60 59500 59500 0.00 59486 0.02

d1-RTN 2418 0.0032 10 24180 13675 43.44 7725 68.05

d3-RTN 4755 0.0024 18 85590 36281 57.61 21128 75.31

d7-RTN 6511 0.0021 18 117198 51664 55.92 31091 73.47

d15-RTN 7965 0.0020 22 175230 69769 60.18 42390 75.81

d30-RTN 10101 0.0018 27 272727 98362 63.93 60291 77.89

d66-RTN 13308 0.0017 36 479088 151839 68.31 94362 80.30

Test 1 Test 2

% eliminated % eliminated
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3.     while (FMCC3(Qi) is feasible  and  i < k) do 

4.          i ← i + 1; 

5.          Set z(Qi− 1 ) as a lower bound; 

6.          Solve model FMCC3(Qi), returning a clique with cardinality qi (if existing); 

7.     end-while; 

8.     if (FMCC3(Qi) is infeasible)  

9.     then  return z(Qi− 1 ) and qi−1. 

10.   else   return z(Qi ) and qi. 

 
The algorithm exits the while loop when FMCC3(Qi) is infeasible, for a given iteration i, 

which usually happens before reaching the last set Qk. However, it may go into set Qk if 

FMCC3(Qk-1) is still a feasible problem.  

We can strengthen each subproblem FMCC3(Qi) branch-and-bound process by supplying a 

given lower bound to the global optimum value. This can be done by using the previous 

iteration optimum solution value, given by z(Qi−1). 

Based on some empirical experiments, model FCCM3(Qi) is easier when Qi includes 

smaller cardinality values, becoming harder for the last subsets in the partition. For this 

reason, we chose to partition Q into decreasing sized subsets, that is, |Q1|≥ |Q2|≥…≥ |Qk |. In 

fact, we have observed that the last FCCM3(Qi) subproblems require much more time than 

the former. For these reasons, we have considered the following methodology for 

constructing each instance partition, using a given partition factor r, with r ≤ 1. Each subset 

is represented by { }iii qqQ maxmin K= . 

 
Procedure for constructing the partition Q

1∪∪∪∪Q2∪∪∪∪…∪∪∪∪Qk, for a given factor r 

1.     Set 00
max ←q q

0
max ← 0;  

3.     for i = 1,…,k do 

4.          i ← i + 1; 

5.          Set  11
maxmin +← −ii qq   and  ( ) rqqqq iii 1

maxmax
1

maxmax
−− −+←  ; 

6.     end-for; 

 

Due to the decreasing factor r, the last subsets usually include a single element. 

 

 

4. Computational tests addressing the MCC problem 

In order to test the computational performance of the algorithms and before addressing the 

practical case on Market Basket Analysis, we provide some computational experiments 

using DIMACS benchmark instances. 
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All tests were conducted on an Intel Core i7-2600 with 3.40 GHz and 8 GB RAM. The 

experiments made on the heuristics were performed on Linux operating system. The 

algorithms were compiled with gfortran with flag –O2. User times for DIMACS machine 

benchmark instances are 0.00, 0.02, 0.14, 0.93 and 3.55 seconds, for instances r100.5, 

r200.5, r300.5, r400.5 and r500.5, respectively (Johnson & Trick, 1996). 

The tests conducted on the models reported in Section 2 were run on the same machine but 

under Windows 7 operating system. The formulations were solved using the 

IBM/ILOG/CPLEX 11.2 package. We used most default settings, which involve an 

automatic procedure that uses the best rule for variable selection and the best-bound search 

strategy for node selection in the branch-and-bound tree. The automatic generation of 

additional global cuts was closed, because in most cases it revealed to be more time 

demanding. We have set an upper time limit of 10800 seconds in all tests. 

The selected instances from the DIMACS benchmark database were taken from the c-fat, 

p_hat, keller, C and MANN families. We also included strongly sparse graphs, using the 

Reuters terror news (RTN) instances proposed in Corman, Kuhn, McPhee & Dooney 

(2002) and made available in Pajek’s data base (Batagelj & Mrvar). In our tests we 

considered the same subgraphs described in Martins (2012), addressing the observations 

collected during 1, 3, 7, 15, 30 and 66 days, corresponding to instances d1-RTN, d3-RTN, 

d7-RTN, d15-RTN, d30-RTN and d66-RTN, respectively. 

 

 

4.1 Tests with the exact methods for the MCC problem 

We start analyzing the results produced by the exact methods, described in Section 2.  

Table 2 reports the results obtained with models FMCC1 and FMCC2, while Table 3 

presents the results from model FMCC3. We considered two strategies for testing model 

FMCC3: i) in a full range version, using the full range set Q={1,…,qmax}; and ii) using the 

Sequential algorithm proposed in Subsection 3.2, considering three partitions for Q:  

- Partition 1: is a full partition version, with Q=Q1∪Q
2∪…∪Q

k = {1}∪{2}∪…∪{qmax} 

and k = qmax , involving a partition factor r = 1/qmax , being full granular; 

- Partitions 2 and 3: are characterized by partition factors strictly greater than 1/qmax , being 

less granular. We tested a number of factors, ranging from r = 1/200 to r = 3/4, and chose 

the two partitions with the best results (time and solution quality). Partition 3 is the less 

granular, having the largest partition factor.  
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Next we describe the notation used in Tables 2 and 3. Columns with labels “opt” and 

“time”, under “LP relaxation” give the linear programming (LP) relaxation optimum and 

the time to reach it, respectively.  Columns “opt / ≥ best lb” under “Branch and bound” 

provide the integer optimum values or the best lower bounds to the optimums when the 

optimum is not attained within the given time limit (10800 seconds) or when CPLEX stops 

due to memory limitations (being denoted by “o-m” in the time’s column). In this case, the 

lower bound value is preceded by “≥”. Bold values in columns “opt / ≥ best lb” indicate the 

best solutions attained among all the models under discussion. Columns with label “time” 

under “Branch and bound” give the CPU times to reach the reported optimum/best solution 

values. In both tables, the two last columns, under “Best solution”, give the best solution 

value among all the models under discussion and the associated clique size, respectively. 

The upper bounds for the clique size (qmax values in Q) are given in column 5. These values 

were taken from (Gendron, et al., 2008) and (Martins, 2012). Times are reported in CPU 

seconds in all tables. Cells with no value (“---“) indicate that CPLEX was not able to read 

and preprocess the model. 

In Table 3, we also include information concerning the partitions used within the 

Sequential algorithm, namely, the partition factor (r), the number of subsets in the partition 

(k) and the iteration in which the Sequential algorithm stopped (i). This information is 

given in the triplet (r, k, i), under the columns with label “(r, k, i)”.  

 

(Please, include Table 2 about here) 

Table 2: Computational results with the FMCC1 and FMCC2 models for the MCC problem. 

 

(Please, include Table 3 about here) 

Table 3: Computational results with the model FMCC3 for the MCC problem, with and without the 
Sequential algorithm. 

 

As expected, the results reported in Tables 2 and 3 indicate that, in general, model FMCC3 

is better suited for very sparse graphs (see the RTN class and some c-fat instances), while 

model FMCC1 performs better for very dense graphs (see the MANN class and some 

smaller sized p_hat instances). Model FMCC2 behaves better for the large sized mid-

density graphs (see the larger density c-fat instances, the largest size p_hat instances, 

keller6, c1000_9 and c2000_9 instances). Furthermore, the full range version of FMCC3 

has not been able to handle very dense graphs, although it reaches the optimums in the 

very large RTN class, to which the FMCC1 and FMCC2 models were only able to solve 

Page 17 of 46 International Transactions in Operational Research



 

18 
 

the smallest instance (d1-RTN). On the opposite side, model FMCC1 was the only one to 

solve most MANN class instances. Yet, when using the Sequential algorithm for handling 

model FMCC3, its performance is much improved, competing in a larger extent with 

formulations FMCC1 and FMCC2. This performance is more effective for the more 

granular partitions, namely Partition 1. In fact, these versions of model FMCC3 are truly 

much faster to reach the RTN optimums, and also faster to reach the p-hat and keller4 

instances’ optimums, when compared with the other formulations. It is also worth to note 

the efficacy of the versions involving Partitions 1 and 2 among a number of mid-density 

and large sized instances, namely among the p_hat700, p_hat1000, p_hat1500-1, c2000_5 

and c4000_5  instances. 

We also would like to stress the relevancy of using the previous iteration optimum value as 

a lower bound for the current iteration branch-and-bound execution, within the Sequential 

algorithm. This aspect is particularly relevant when solving the last subset, namely when it 

characterizes an infeasible problem. To exemplify this aspect, we have solved instance 

d66-RTN using model FMCC3 with the Sequential algorithm and Partition 1, but ignoring 

the mentioned use of the previous iteration optimum value. In this case, the algorithm took 

4486.49 seconds to reach the optimum, where most of this time was consumed for solving 

the last iteration infeasible subproblem, requiring 4467.38 seconds.   

Table 4 summarizes the performance of the models discussed in the present section, 

considering the number of instances to which each model found the best solution and the 

optimums. The total number of instances is 42, among which we have found 24 optimums. 

 
 

FMCC1 FMCC2 
FMCC3 

 Full range Partition 1 Partition 2 Partition 3 

number of best solutions 22 24 16 29 28 23 

number of optimums 16 14 15 21 21 19 

Table 4: Number of best solutions and optimums. 

 
The records in Table 4 confirm the advantage of model FMCC3 with the Sequential 

algorithm and using the full granular partition (Partition 1). This performance degrades 

when the partition becomes less granular, leading to poor results in the Full range version.  

 

 

4.2 Tests with the heuristics for the MCC problem 

Tables 5 and 6 report the computational results obtained with the R-ILS and D-ILS 

algorithms for the MCC problem. Table 5 experiments involve the original versions of the 
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two algorithms, as described in (Grosso, et al., 2008) and designed for the MC problem. 

The results of the versions adapted for the MCC problem that use Proposition 1 for 

characterizing the sets K0(C) and K1(C), as described in conditions (1) and (2) in Section 2, 

are reported in Table 6. We set the maximum number of iterations parameter max_sel = 

105 for all c-fat, p_hat, C, keller and MANN instances and set max_sel = 103 for the RTN 

class. Both algorithms were tested using 100 runs on each instance. Times are reported in 

CPU seconds. 

We used the following notation in the tables: “best_sol” represents the best solution cut-

clique cardinality, “|C|” is the best solution clique’s cardinality, “sol_avg” represents the 

average cut-clique size over the 100 runs, “time_avg” is the average CPU time (in seconds) 

for a run, “#best” represents the number of best solutions during the 100 runs, 

“best_sel_avg” is the average number of iterations (selections) to reach the best solution 

(only among best solutions). Values in bold in columns “best_sol” indicate the best 

solutions found among the four algorithms.  

 

(Please, include Table 5 about here) 

Table 5: Results of the algorithms R-ILS and D-ILS without Proposition 1, for the MCC problem. 

 

 (Please, include Table 6 about here) 

Table 6: Results of the algorithms R-ILS and D-ILS with Proposition 1, for the MCC problem. 

 

Comparing the results in the two tables, we can state that Proposition 1 is only effective in 

the more rational degree based method (D-ILS). In effect, the two strategies together 

(Proposition 1 and degree based methodology) produce a more powerful scheme for 

addressing the MCC problem. We also note that the random based method (R-ILS) 

performs better without the limitations imposed by Proposition 1. Also, the computational 

effort for handling Proposition 1 imposes a slight increase on CPU time.  

Some of these aspects are summarizes in Table 7, considering the results reported in 

Tables 5 and 6, namely the number of best solutions and the average time per run (average 

of the time_avg values) for the four algorithms under discussion. 

 
 without Proposition 1  with Proposition 1 
 R-ILS D-ILS  R-ILS D-ILS 

number of best solutions 36 37  34 41 

average time per run 1.1623 1.4842  1.1830 1.4779 

Table 7: Number of best solutions and average time per run, for the entire set of 42 instances. 
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Now, considering just the results that incorporate Proposition 1, reported in Table 6, and 

the summarized figures in Table 7, we can credit algorithm D-ILS as being more 

advantageous than R-ILS, because it was more assertive (see column #best in Table 6 and 

the number of best solutions in Table 7). In fact, the D-ILS only missed one best solution 

(keller6) among the entire set of instances, within the given max-sel=105 iterations limit. 

However, algorithm D-ILS usually took more time than R-ILS to solve each run (see 

“time_avg” columns in Table 6 and the average time per run in Table 7), although it 

reached the best solutions much sooner than algorithm R-ILS, in general (see 

“best_sel_avg” columns in Table 6), so could possibly require a smaller number of 

iterations than R-ILS. While the random based methodologies performed better in the 

experiments conducted in Grosso, et al. (2008) addressing the MC problem, when 

compared with those based on degree choices, our results indicate the contrary. In fact, this 

is not surprising, because the objective function of the MCC problem is strongly dependent 

on nodes’ degrees conditions, which influence the strategy when searching the entire 

cliques’ feasibility space. Actually, we also noticed that the random based algorithm was 

faster; however, and as mentioned above, the choice of nodes based on degree information 

is a crucial issue for conducting the search within the MCC problem feasibility space. 

It is also worth to observe that most optimums obtained by the exact methods were also 

attained by the heuristics in all the 100 runs, namely by the D-ILS algorithm with 

Proposition 1. The only exceptions are the very dense MANN_a27 and MANN_a45 

instances. In addition, and considering the non-optimum best solutions attained by the 

exact methods, the heuristics produced better results for more than 28% of the graphs (12 

instances). However, for the very dense graphs MANN_a45 and MANN_a81, the heuristics’ 

results were defeated by the best feasible solution values obtained with model FMCC1. As 

usual, the heuristics required much less CPU time, in general.  

Considering the results reported in Table 6, involving the ILS algorithms that incorporate 

Proposition 1, and in order to improve the results of the keller, C and MANN instances that 

have failed reaching the best solution in all 100 runs, we increased the total number of 

iterations, considering max-sel=107, leading to the results reported in Table 8. As 

expected, these longer executions were more time demanding, but the number of 

successful solutions increased and the quality of the best solution value in keller6, c2000_9 

and c4000_9 was also improved. Yet, the best solution values attained by model FMCC1 

for the MANN_a45 and MANN_a81 instances were still unbeaten. 
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 R-ILS       D-ILS      

 
best_ 
sol 

|C| sol_avg 
time_ 
avg 

#best 
best_ 

sel_avg 
 

best_ 
sol 

|C| sol_avg 
time_ 
avg 

#best 
best_ 

sel_avg 

keller5 15184 27 15184 88.042 100 6397.3  15184 27 15184 115.072 100 35577.1 

keller6 159608 59 157898.20 383.806 5 4093735.1  159608 59 152436.41 513.088 2 4654674.5 

c500_9 22691 57 22691 33.644 100 46322.8  22691 57 22691 49.137 100 116825.0 

c1000_9 57149 68 57148.61 117.952 87 2532921.3  57149 68 57148.73 166.388 91 3700439.2 

c2000_5 16097 16 16081.48 403.816 5 4574118.0  16106 16 16105.10 463.515 93 2143196.9 

c2000_9 135060 78 133289.35 257.996 3 5192927.5  136769 79 135490.18 352.743 1 5197927.4 

c4000_5 36101 18 35777.92 936.199 1 3638990.7  36174 18 35935.71 1101.315 22 5697591.6 

MANN_a27 31284 126 31284 11.205 100 88284.2  31284 126 31284 29.021 100 100615.7 

MANN_a45 235422 341 235036.36 93.572 10 3478494.9  236406 344 235832.16 169.821 3 55377.1 

MANN_a81 2427048 1089 2424869.3 353.782 8 3631875.4  2436894 1098 2434963.5 693.297 5 1939.5 

Table 8: Heuristic results with max-sel=107, considering the R-ILS and D-ILS algorithms with Proposition 1. 

 

Some tests were also conducted using alternative restart rules, namely those suggested in 

Grosso, et al. (2008). However, in our case, instead of perturbing the clique (C) returned 

from the previous stage by inserting an additional node, we chose to directly remove 

max(2,|C|/3) nodes from C, taken at random. Yet, although this strategy performed better 

than those used in Grosso, et al. (2008), the results didn’t improve, in general, those 

reported in Table 6. For this reason, we opted not to include them in the paper. 

 

 

5. Maximum cut-cliques applied to a market network 

We have applied the proposed methods to a database of transaction data collected with 

home scanners.1 We use a household panel database for the British ice cream market 

containing information over a 2½-year period (January 2006 to June 2008) among 142 

households. The dataset includes information for a total of 4,899 items purchased during 

the period studied, chosen from a total of 691 different varieties of products (SKUs)2 

available in the British market. Considering the database, let us define a basket as the set of 

products purchased on the same day and in the same shop by a household. We form a 

basket for each group of products that have the same household (houseid), purchase date 

(purdate), and shop (shopid). For instance, the following two products constitute a basket: 
 
househid purdate shopid prod Desc 

10043 17002 770 52377 SAIN VNLLA    1LT 

10043 17002 770 628805 WLL CRT DOR GREEK YGT+HNY    900ML 

 

                                                      
1 See Brennenberg et al. (2008) for a detailed description of IRI home scanner database. 
2 Stock Keeping Unit. 
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The dataset contains a total of 2,993 baskets, averaging 1.64 ice cream products (SKUs) 

per basket. The transactions were made by individual clients, but we have not associated 

each transaction to a specific customer due to privacy concerns. The analysis has been 

conducted at the household level, regardless of the family member who made the purchase. 

The purchase frequency varies significantly across households. The one with the largest 

number of purchases is household “10918” with 324 products bought within a total of 244 

baskets. The number of purchases also varies significantly by product. The one bought 

most frequently is product Walls Magnum Stick (3-unit package). A total of 133 units of 

this product were bought by 34 households in 93 different baskets during the entire period.   

The number of products (SKUs) in the network is 691, and the number of edges is 1181. If 

two products (i and j) are found in the same basket, then the network includes edge (i,j), 

otherwise, if there is no basket with products i and j, then edge (i,j) doesn’t belong to the 

network. In addition, there are 177 isolated nodes (products) in the network, with degree 0. 

These products never share the same basket with any other product in the network. 

All computational experiments here described were run under the same machine conditions 

as those reported in Section 4. Like before, each heuristic algorithm was tested using 100 

runs on each instance. 

We have determined the maximum clique and the maximum cut-clique. We now describe 

the results, the implications for the analysis of the product interactions, and the managerial 

implications. The largest clique in the network (maximum clique) includes the following 8 

products (see Figure 3): 

 
  prod id number    prod description    # external links 

       147          FRDRKS DARK CHOC ICE VNLA 10PK    4 

       148          FRDRKS CHOC ICE NPLTN     10PK   13 

       149          FRDRKS LGHT CHOC ICE VNLA 10PK    3 

       375          CDBRY CONE DRY MLK MINT    4PK    9 

       489          DLMNT LLY RSPBRY SMOOTHIE  3PK   16 

       518          NSTL LOLLY ROLO STCK       6PK    0 

       539          FRDRKS CHOCOLATE           2LT    0 

       541          FRDRKS STWBRY              2LT    0 

 

We used one of the formulations described in Martins (2010) for the maximum clique 

problem. 
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Figure 3: Largest cardinality clique. 

 
This solution indicates that there are baskets with all possible pairings among these 8 

products. This is the largest set of products having this property. Together, these products 

have 45 links to the remaining products in the network, which means that, apart from the 

clique’s baskets, each one of the 8 products share the same basket with other products in 

45 occasions. Those other adjacent products involve 32 items.  

The maximum-clique analysis allows for the identification of the biggest set of items 

purchased in conjunction with all others at least once in a common basket. The analysis of 

the product network reveals some interesting results. As explained previously, the cliques 

constitute groups of products that have been pairwise bought together in a basket, among 

all the products in the set. As for many product categories, a significant segment of 

households buy more than one ice cream in the same basket. Identification of cliques 

allows for determining the attributes or dimensions in which multiple-purchase households 

seek variety. For instance, five out of the eight products constituting the maximum clique 

are big formats - 2 liters or 10-unit packages - of an Italian-style luxury brand, 

Fredericks’s, varying in the following five flavors: Chocolate, Strawberry, Vanilla ice 

cream with dark chocolate, Vanilla ice cream with light chocolate, and Neapolitan ice 

cream with chocolate. The remaining three products of the basket are also multiple-unit 

packages of three products from leading manufacturer brands: Del Monte, Nestlé, and 

Cadbury.  

Products in the maximum clique set have the common characteristic of being bought 

together by variety-seeking households. However, this is not a purchase pattern for all 
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products, as 26% of the products available were never bought together with any other ice 

cream in the whole network. For instance, two well known distributor-brand products, 

“Tesco’s vanilla ice cream with light chocolate” and “Sainsbury’s Morrison’s vanilla ice 

cream with raspberry”, were purchased 8 times and 13 times respectively, always in single-

product baskets. 

Noteworthy, the set of products constituting the maximum clique is not the clique with 

largest incidence to other products in the network. In fact, the set of products forming a 

clique and with the largest number of links to the remaining products in the network 

(maximum cut-clique) involves only 6 products, although it has 100 links to the remaining 

products. Those 6 products are (see Figure 4): 

 
  prod id number    prod description    # external links 

        21          WALLS BL RBN VNLLA         2LT   10 

        65          WALLS MINI MILK LOLLIES   12PK   14 

        66          MARS CHOC ICE              4PK   23 

        72          WALLS MAGNUM WHITE STCK    3PK   23 

        80          NSTL LOLLY FAB             8PK   21 

       305          WALLS MNI TWISTER STW+LMN  8PK    9 

 

 
Figure 4: Clique with maximum neighborhood. 

 

These 6 products form a clique, which means that all pairs of products in this set are found 

in householder’s baskets. They are adjacent to 75 other products in the network, involving 

100 links, which stresses their strong engagement. So, probably, most of the householders 

buying these 6 products are also strong potential buyers for the remaining products, 

especially those products involved in the 100 links.  
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This solution took 0.03 seconds to be reached, using an exact model and less than 0.005 

seconds using a heuristic. Tables 9 and 10 show the results from the heuristic and exact 

methodologies proposed in Sections 2 and 3, for the market network under discussion. We 

use the same notation considered in Tables 2, 3 and 6. Parameter qmax = 9. 

 
FMCC1     FMCC2     FMCC3    

LP relaxation 
Branch and 

bound 
 LP relaxation 

Branch and 
bound 

 LP relaxation 
Branch and 

bound 
opt time opt time  opt time opt time  opt time opt time 

136.0000 0.34 100 1.43  165.6635 0.05 100 0.70  111.4014 < 0.01 100 0.03 

Table 9: Exact formulations’ results for the market network under discussion. 

 
R-ILS       D-ILS      

best_ 
sol 

|C| sol_avg 
time_ 
avg 

#best 
best_ 

sel_avg 
 

best_ 
sol 

|C| sol_avg 
time_ 
avg 

#best 
best_ 

sel_avg 

100 6 99.51 0.0132 93 249  100 6 100 0.0048 100 45 

Table 10: Heuristic algorithms’ results for the market network under discussion. 

 
Once again, formulation FMCC3 was the fastest to reach the optimum, confirming its 

advantage on sparse networks, as observed in Subsection 4.1. Likewise, and as concluded 

in Subsection 4.2, the algorithm D-ILS was the most accurate to find the best solutions, 

and once again, it was faster than the R-ILS, as observed with the sparser RTL class 

instances (see, Table 6). 

An alternative solution, with a smaller number of links (just 93) is: 

 
  prod id number    prod description    # external links 

        21          WALLS BL RBN VNLLA         2LT   10 

        72          WALLS MAGNUM WHITE STCK    3PK   23 

        80          NSTL LOLLY FAB             8PK   21 

       190          WALLS CORNETTO STWBRY      6PK   20 

       192          WALLS CORNETTO CHOC N NUT  6PK   10 

       305          WALLS MNI TWISTER STW+LMN  8PK    9 

 
In both solutions, the maximum cut-clique returned smaller sets, compared to the 

maximum clique. However, we can also see that in both solutions the set of products 

obtained, when maximizing the external interactions is formed by the top-selling ice 

creams from leading brands: Cornettos (Walls), Magnums (Walls), Blue Ribbon (Walls), 

Lolly fabs (Nestlé) and Mars chocolate bar (Mars).  

Figure 5 compares the neighborhoods of the previously discussed cliques. 
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Figure 5: Comparing the neighborhoods of the three cliques. 

 
Noteworthy, while the maximum-clique analysis focuses on the biggest set of interacting 

products independent of the number of purchases, some items in the set may have been 

bought just a few times, or even only once. Therefore, the maximum-clique analysis may 

not be the most appropriate technique to identify and analyze representative product 

interactions in the dataset. However, the maximum cut-clique analysis identifies the set of 

products with the maximum number of links to the other products of the network, 

revealing interacting patterns from leading-sale products. A visual comparison among the 

two largest cut-cliques and the maximum clique reveals significant differences among the 

selected products in the three cliques.  

In what follows we extend the analysis by including weights on the edges of the market 

network under discussion, with wij representing the number of times that products i and j 

were bought together, for each edge (i,j)∈E, then we can think about using the weighted 

versions of the MC and the MCC problems, namely, the maximum edge-weight clique 

(MEWC) and  the maximum edge-weight neighborhood clique (MEWNC) problems, 
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respectively. Hence, using the formulations proposed in Gouveia & Martins (2013), the 

MEWC optimum solution includes 7 nodes, with no common products with the previously 

discussed solutions, while the MEWNC optimum is entirely equal to the maximum cut-

clique 1 solution. Noteworthy, while the maximum-clique solution is sensitive to the 

weighted approach, the maximum-cut-clique solution has shown to be independent on the 

weights, which brings robustness to the analysis of the basket with the maximum external 

influence. The 6 products in the MEWC optimum are: 

 
  prod id number    prod description    # external links 

 367      WAIT SORBET MANGO        750ML   11 

 393      YRKSHRE DLES DRY STCKY TFFE1LT   18 

 395      OB CHOC ICE VNLLA         10PK   23 

 399       OB CHOC STKS VNLLA         3PK   10 

 496      M+MS PRM ICE CRM         500ML    6 

 591      ST M ORGNC SORBET RSPBRY 500ML    7 

 600      TSC MMMM LOLLY WHT CHOC    3PK    4 

 

Once again, if we compare the selected products in the maximum clique solutions (from 

the MC and the MEWC problems) with those from the cut-clique versions, we can affirm 

that the products in the cut-clique solutions are more influential than those from MC and 

MEWC. 

Another relevant aspect to observe involves the average number of purchases per product 

in the various solutions under discussion. This result can be calculated considering the total 

number of purchases among the products in the clique (using the weights on the edges in 

the clique), or considering the total number of purchases among clique and non-clique 

products (using the weights on the edges in the cutset). Table 11 summarizes these results, 

including descriptive information about the cliques and their neighborhoods. 

 

Solution 

Number of   
Average number of purchases per 

product 

products 
external 

products 

external 

links 
 in the clique 

in the 

neighborhood 
       

Maximum-clique solutions       

   Maximum clique 8 32 45  4.6 7.5 

   Maximum edge-weight clique 7 47 79  6.0 13.6 
       

Maximum cut-clique solutions       

   Maximum cut-clique 1 6 75 100  5.2 26.5 

   Maximum cut-clique 2 6 63 93  5.3 24.3 

Table 11: Descriptive values for the maximum clique, the maximum cut-clique and the maximum edge-
weight clique solutions. 

 

Page 27 of 46 International Transactions in Operational Research



 

28 
 

These results show that the cut-cliques’ selections are more effective, attracting many more 

products, on average, than the other solutions. In effect, the maximum cut-clique solutions 

may possibly capture a central subset of elements that may represent key players in the 

entire environmental system. 

 

 

6. Conclusions 

In this work we consider the Maximum Cut-Clique problem, using three mathematical 

models and proposing Iterated Local Search heuristics to solve it (R-ILS and D-ILS 

algorithms). We also describe the importance of the application of cliques in market 

networks, addressing marketing related problems in the field of Market Basket Analysis. 

The Maximum Cut-Clique can identify relevant relationships among products in a market 

basket and be complementary to other MBA approaches, as exemplified with a database 

for the British ice cream market.  

We proposed a new methodology that explores the discretized property of a known 

formulation for the MCC problem. The new methodology produced very competitive 

results on most instances tested, being particularly efficient among the sparser graphs.  

We have also performed computational experiment on the R-ILS and D-ILS algorithms for 

the MCC problem, generating the first lower bounding results for some DIMACS 

benchmark instances, including the largest graphs. Most of these lower bounds were 

confirmed to be the optimums, and in some cases, the heuristics’ results outperformed the 

best solutions (non-optimums) returned by the exact methods, namely among the larger 

instances in the p_hat, keller and C classes.  

We also presented the application of the algorithms to a household panel database for the 

British ice cream market. The results revealed the importance of applying these techniques 

to obtain relevant information from consumer’s databases.  

This work opens a new line of research related with the application of Clique based models 

to evaluate market baskets and obtain a different type of information, when compared to 

the traditional approaches in marketing. Future work is oriented to the application of these 

models and techniques to larger databases on several different products and markets. An 

important extension is to consider a network with weights on the edges, and look for the 

maximum weight cut-clique.   
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Table 2: Computational results with the FMCC1 and, FMCC2 models for the MCC problem. 

FMCC1 FMCC2

Instances n density ω(G ) q max clique

opt time opt / ≥ best lb time opt time opt / ≥ best lb time size

c-fat200-1 200 0.077 12 12 81.000 0.05 81 0.05 81.000 0.02 81 0.05 81 9

c-fat200-2 200 0.163 24 24 306.000 0.06 306 0.09 306.000 0.02 306 0.03 306 17

c-fat200-5 200 0.426 58 58 1892.000 0.05 1892 0.05 1892.000 0.00 1892 0.02 1892 43

c-fat500-1 500 0.036 14 14 110.000 0.66 110 0.76 110.000 0.05 110 0.23 110 10

c-fat500-2 500 0.073 26 26 380.000 0.64 380 0.80 380.000 0.03 380 0.23 380 19

c-fat500-5 500 0.186 64 64 2304.000 0.75 2304 0.83 2304.000 0.03 2304 0.16 2304 48

c-fat500-10 500 0.374 126 126 8930.000 0.52 8930 0.58 8930.000 0.03 8930 0.12 8930 94

p_hat300-1 300 0.244 8 9 954.000 0.11 789 34.73 984.077 0.01 789 4.99 789 8

p_hat300-2 300 0.489 25 29 5218.500 0.08 4637 255.67 5398.621 0.02 4637 4050.29 4637 25

p_hat300-3 300 0.744 36 51 10035.800 0.01 ≥≥≥≥  7740 10800 10379.354 0.02 ≥ 7438 o-m 7740 36

p_hat500-1 500 0.253 9 13 2347.500 0.47 1621 3227.64 2403.868 0.03 1621 251.16 1621 9

p_hat500-2 500 0.505 36 46 14204.500 0.30 ≥ 11333 o-m 14688.375 0.03 ≥≥≥≥  11539 o-m 11539 36

p_hat500-3 500 0.752 50 78 26675.000 0.34 ≥  ≥  ≥  ≥  18859 10800 27415.492 0.03 ≥ 18305 o-m 18859 50

p_hat700-1 700 0.249 11 16 8794.000 2.01 ≥ 2304 o-m 9084.689 0.08 2606 2950.82 2606 11

p_hat700-2 700 0.498 44 60 34082.500 1.12 ≥ 19757 o-m 35913.813 0.05 ≥ 19359 o-m 20078 43

p_hat700-3 700 0.748 62 102 61088.333 0.92 ≥ 32675 10800 64239.966 0.05 ≥ 32228 o-m 33057 61

p_hat1000-1 1000 0.245 ≥ 10 20 16065.000 7.99 ≥ 3278 o-m 16562.753 0.16 ≥ 3385 10800 3556 10

p_hat1000-2 1000 0.490 ≥ 46 76 62869.500 5.23 ≥ 28893 o-m 66070.766 0.11 ≥≥≥≥  30657 o-m 30657 45

p_hat1000-3 1000 0.744 ≥ 68 134 118907.000 3.09 ≥ 40814 10800 123340.573 0.08 ≥≥≥≥  48894 o-m 48894 61

p_hat1500-1 1500 0.253 12 28 35502.500 33.21 ≥ 4946 o-m 36363.071 0.36 ≥ 5923 10800 6018 11

p_hat1500-2 1500 0.506 ≥ 65 113 141600.500 15.18 ≥ 49205 o-m 147468.755 0.28 ≥≥≥≥  67486 10800 67486 65

p_hat1500-3 1500 0.754 ≥ 94 195 264945.000 10.76 ≥ 80610 10800 273833.158 0.20 ≥≥≥≥  111983 10800 111983 93

keller4 171 0.649 11 17 1812.000 0.05 1140 17.05 1836.000 0.00 1140 95.57 1140 11

keller5 776 0.752 27 49 28046.000 0.08 ≥≥≥≥  14760 10800 28832.179 0.03 ≥ 13288 o-m 14760 26

keller6 3361 0.818 ≥ 59 122 336256.000 114.68 ≥ 105984 o-m 339940.917 0.34 ≥≥≥≥  136946 10800 136946 50

c125_9 125 0.899 34 44 3094.500 0.00 2766 1.69 3150.306 0.00 ≥≥≥≥  2766 o-m 2766 34

c250_9 250 0.899 44 78 11680.000 0.02 ≥≥≥≥  8123 10800 11801.196 0.02 ≥≥≥≥  8123 o-m 8123 44

c500_9 500 0.901 ≥ 57 144 44777.500 0.03 ≥≥≥≥  22023 10800 45094.729 0.03 ≥ 20728 o-m 22023 55

c1000_9 1000 0.901 ≥ 68 266 170838.000 0.22 ≥ 46055 10800 171616.779 0.14 ≥≥≥≥  47098 o-m 47098 55

c2000_5 2000 0.500 ≥ 16 110 102128.000 53.74 ≥ 12191 o-m 102811.647 0.44 ≥ 14180 10800 14344 14

c2000_9 2000 0.900 ≥ 80 492 649108.500 9.39 ≥ 91790 10800 651142.036 0.91 ≥≥≥≥  110318 10800 110318 63

c4000_5 4000 0.500 ≥ 18 200 371095.000 497.83  ---  --- 372789.891 2.31 ≥ 26437 o-m 28642 14

MANN_a9 45 0.927 16 18 426.000 0.00 412 0.00 426 0.00 412 0.25 412 16

MANN_a27 378 0.990 126 137 32220.000 0.01 31284 1.34 32606.000 0.00 ≥ 31054 o-m 31284 126

MANN_a45 1035 0.996 345 367 241350.000 0.05 236730 106.07 244055.000 0.02 ≥ 232362 o-m 236730 345

MANN_a81 3321 0.999 ≥ 1100 1146 2474658.000 0.25 ≥≥≥≥  2437978 10800 2489112.000 0.03 ≥ 2417040 o-m 2437978 1099

d1-RTN 2418 0.0032 10 10 1374.000 150.70 1273 162.87 1517.848 1.22 1273 15.58 1273 8

d3-RTN 4755 0.0024 18 18  ---  ---  ---  --- 4785.465 5.13 ≥ 3460 o-m 3526 12

d7-RTN 6511 0.0021 18 18  ---  ---  ---  ---  ---  ---  ---  --- 5656 15

d15-RTN 7965 0.0020 18 22  ---  ---  ---  ---  ---  ---  ---  --- 7772 16

d30-RTN 10101 0.0018 21 27  ---  ---  ---  ---  ---  ---  ---  --- 13099 21

d66-RTN 13308 0.0017 28 36  ---  ---  ---  ---  ---  ---  ---  --- 22379 28

Best solution

LP relaxation Branch and bound LP relaxation Branch and bound
value
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Table 3: Computational results with the model FMCC3 for the MCC problem, with and without the Sequential algorithm. 

FMCC3 Without the Sequential algorithm (full range)

Instances n density ω(G ) q max
Partition 1: Partition 2: Partition 3: clique

opt time opt / ≥ best lb time (r , k , i ) opt / ≥ best lb time (r , k , i ) opt / ≥ best lb time (r , k , i ) opt / ≥ best lb time size

c-fat200-1 200 0.077 12 12 81.000 0.00 81 0.02 (1/q max
, 12, 10) 81 0.02 (1/10, 11, 9) 81 0.02 (3/4, 2, 2) 81 0.01 81 9

c-fat200-2 200 0.163 24 24 306.000 0.03 306 0.09 (1/q max
, 24, 18) 306 0.05 (1/20, 22, 16) 306 0.05 (1/2, 5, 3) 306 0.07 306 17

c-fat200-5 200 0.426 58 58 1892.000 0.22 1892 0.61 (1/q max
, 58, 44) 1892 0.37 (1/50, 54, 40) 1892 0.32 (1/10, 23, 12) 1892 0.50 1892 43

c-fat500-1 500 0.036 14 14 110.000 0.02 110 0.08 (1/q max
, 14, 11) 110 0.03 (1/2, 4, 3) 110 0.08 (3/4, 2, 2) 110 0.08 110 10

c-fat500-2 500 0.073 26 26 380.000 0.11 380 0.30 (1/q max
, 26, 20) 380 0.17 (1/10, 17, 11) 380 0.37 (1/5, 11, 6) 380 0.30 380 19

c-fat500-5 500 0.186 64 64 2304.000 0.67 2304 1.90 (1/q max
, 64, 49) 2304 0.99 (1/20, 39, 22) 2304 1.69 (2/3, 3, 3) 2304 1.76 2304 48

c-fat500-10 500 0.374 126 126 8930.000 3.84 8930 9.03 (1/q max
, 126, 95) 8930 4.45 (1/50, 83, 52) 8930 6.03 (1/20, 49, 25) 8930 6.44 8930 94

p_hat300-1 300 0.244 8 9 967.165 0.03 789 32.39 (1/q max
, 9, 9) 789 2.27 (1/5, 7, 7) 789 2.32 (1/2, 4, 4) 789 2.41 789 8

p_hat300-2 300 0.489 25 29 5390.571 0.36 ≥ 229 o-m (1/q max
, 29, 26) 4637 128.55 (1/10, 18, 15) 4637 128.76 (1/5, 11, 8) 4637 147.76 4637 25

p_hat300-3 300 0.744 36 51 10388.059 1.14 ≥ 267 o-m (1/q max
, 51, 36) ≥ 7587 o-m (1/20, 33, 18) ≥ 7587 o-m (1/10, 22, 10) ≥ 7438 o-m 7740 36

p_hat500-1 500 0.253 9 13 2365.519 0.17 1621 3796.91 (1/q max
, 13, 10) 1621 7.22 (1/5, 8, 5) 1621 7.40 (1/2, 4, 3) 1621 267.07 1621 9

p_hat500-2 500 0.505 36 46 14675.660 1.84 ≥ 389 o-m (1/q max
, 46, 37) ≥≥≥≥  11539 10800 (1/20, 32, 23) ≥≥≥≥  11539 10800 (1/10, 21, 12) ≥ 11333 10800 11539 36

p_hat500-3 500 0.752 50 78 27424.555 6.04 ≥ 452 o-m (1/q max
, 78, 49) ≥ 18305 10800 (1/50, 64, 35) ≥ 18305 10800 (1/20, 41, 17) ≥ 18305 10800 18859 50

p_hat700-1 700 0.249 11 16 8819.206 1.50 ≥ 426 o-m (1/q max , 16, 12) 2606 126.14 (1/5, 9, 5) 2606 126.31 (1/2, 5, 3) 2606 2066.05 2606 11

p_hat700-2 700 0.498 44 60 35869.464 9.16 ≥ 539 o-m (1/q max
, 60, 44) ≥≥≥≥  20078 10800 (1/20, 36, 20) ≥≥≥≥  20078 10800 (1/10, 24, 11) ≥ 19757 10800 20078 43

p_hat700-3 700 0.748 62 102  ---  ---  ---  --- (1/q max , 102, 61) ≥≥≥≥  33057 10800 (1/50, 75, 35) ≥≥≥≥  33057 10800 (1/20, 45, 15) ≥ 31308 10800 33057 61

p_hat1000-1 1000 0.245 ≥ 10 20 16082.792 4.68 ≥ 408 o-m (1/q max
, 20, 11) 3556 279.83 (1/10, 16, 6) 3556 279.83 (1/5, 10, 4) ≥≥≥≥  3556 10800 3556 10

p_hat1000-2 1000 0.490 ≥ 46 76  ---  ---  ---  --- (1/q max , 76, 46) ≥≥≥≥  30657 10800 (1/50, 63, 33) ≥≥≥≥  30657 10800 (1/20, 40, 15) ≥≥≥≥  30657 10800 30657 45

p_hat1000-3 1000 0.744 ≥ 68 134  ---  ---  ---  --- (1/q max
, 134, 62) ≥≥≥≥  48894 10800 (1/100, 117, 45) ≥≥≥≥  48894 10800 (1/50, 86, 25) ≥ 48184 10800 48894 61

p_hat1500-1 1500 0.253 12 28  ---  ---  ---  --- (1/q max
, 28, 12) 6018 7014.07 (1/20, 24, 8) 6018 7015.08 (1/10, 17, 5) ≥≥≥≥  6018 10800 6018 11

p_hat1500-2 1500 0.506 ≥ 65 113  ---  ---  ---  --- (1/q max
, 113, 59) ≥ 62108 10800 (1/50, 79, 27) ≥ 60206 10800 (1/20, 48, 13) ≥ 62108 10800 67486 65

p_hat1500-3 1500 0.754 ≥ 94 195  ---  ---  ---  --- (1/q max
, 195, 73) ≥ 90095 10800 (1/100, 147, 36) ≥ 88955 10800 (1/50, 102, 20) ≥ 88955 10800 111983 93

keller4 171 0.649 11 17 1836.000 0.06 1140 383.64 (1/q max
, 17, 12) 1140 9.67 (1/10, 14, 8) 1140 10.04 (1/5, 10, 5) 1140 24.07 1140 11

keller5 776 0.752 27 49 28646.982 6.82 ≥ 638 o-m (1/q max
, 49, 19) ≥ 11236 10800 (1/20, 15, 8) ≥ 11236 10800 (1/10, 7, 4) ≥ 10706 10800 14760 26

keller6 3361 0.818 ≥ 59 122  ---  ---  ---  --- (1/q max
, 122, 19) ≥ 54944 o-m (1/100, 111, 6) ≥ 29430 o-m (1/50, 82, 4) ≥ 26496 o-m 136946 50

c125_9 125 0.899 34 44 3176.765 0.14 ≥ 119 o-m (1/q max
, 44, 35) ≥≥≥≥  2766 o-m (1/20, 31, 22) ≥≥≥≥  2766 o-m (1/10, 21, 12) ≥≥≥≥  2766 o-m 2766 34

c250_9 250 0.899 44 78 11853.275 1.09 ≥ 236 o-m (1/q max
, 78, 41) ≥ 7603 o-m (1/50, 64, 27) ≥ 7603 o-m (1/20, 41, 13) ≥ 7603 o-m 8123 44

c500_9 500 0.901 ≥ 57 144  ---  ---  ---  --- (1/q max
, 144, 45) ≥ 18669 10800 (1/100, 122, 23) ≥ 18669 10800 (1/50, 89, 15) ≥ 18669 10800 22023 55

c1000_9 1000 0.901 ≥ 68 266  ---  ---  ---  --- (1/q max
, 266, 41) ≥ 35934 10800 (1/100, 172, 14) ≥ 36760 10800 (1/50, 116, 8) ≥ 37578 10800 47098 55

c2000_5 2000 0.500 ≥ 16 110  ---  ---  ---  --- (1/q max
, 110, 15) ≥≥≥≥  14344 10800 (1/50, 102, 7) ≥≥≥≥  14334 10800 (1/20, 46, 2) ≥ 6304 o-m 14344 14

c2000_9 2000 0.900 ≥ 80 492  ---  ---  ---  --- (1/q max
, 492, 41) ≥ 73262 10800 (1/200, 330, 12) ≥ 59299 o-m (1/100, 226, 3) ≥ 18281 o-m 110318 63

c4000_5 4000 0.500 ≥ 18 200  ---  ---  ---  --- (1/q max
, 200, 14) ≥≥≥≥  28642 10800 (1/100, 150, 5) ≥ 20693 o-m (1/50, 103, 2) ≥ 8395 o-m 28642 14

MANN_a9 45 0.927 16 18 432.000 0.02 412 56.28 (1/q max
, 18, 17) 412 11.64 (1/10, 14, 13) 412 11.67 (1/5, 9, 8) 412 11.76 412 16

MANN_a27 378 0.990 126 137 32606.000 9.73 ≥ 374 o-m (1/q max
, 137, 88) ≥ 25056 10800 (1/20, 50, 31) ≥ 30316 10800 (1/5, 18, 9) ≥ 30570 10800 31284 126

MANN_a45 1035 0.996 345 367  ---  ---  ---  --- (1/q max
, 367, 314) ≥ 225452 10800 (1/100, 200, 148) ≥ 225452 10800 (1/50, 130, 95) ≥ 232362 10800 236730 345

MANN_a81 3321 0.999 ≥ 1100 1146  ---  ---  ---  --- (1/q max
, 1146, 13) ≥ 39524 o-m (1/200, 480, 0)  ---  --- (1/100, 296, 0)  ---  --- 2437978 1099

d1-RTN 2418 0.0032 10 10 1481.587 0.05 1273 0.97 (1/q max
, 10, 9) 1273 0.13 (1/5, 7, 6) 1273 0.18 (1/2, 4, 3) 1273 0.12 1273 8

d3-RTN 4755 0.0024 18 18 4612.926 0.25 3526 53.46 (1/q max
, 18, 13) 3526 0.54 (1/10, 14, 9) 3526 0.57 (1/5, 9, 5) 3526 0.81 3526 12

d7-RTN 6511 0.0021 18 18 6945.462 0.50 5656 113.05 (1/q max
, 18, 16) 5656 1.60 (1/10, 14, 12) 5656 1.69 (1/5, 9, 7) 5656 1.97 5656 15

d15-RTN 7965 0.0020 18 22 10135.553 0.92 7772 557.24 (1/q max
, 22, 17) 7772 2.37 (1/10, 15, 10) 7772 2.93 (1/5, 7, 6) 7772 11.86 7772 16

d30-RTN 10101 0.0018 21 27 16116.109 1.79 ≥≥≥≥  13099 o-m (1/q max
, 27, 22) 13099 3.94 (1/20, 23, 18) 13099 4.03 (1/10, 17, 12) 13099 4.47 13099 21

d66-RTN 13308 0.0017 28 36 28044.977 2.53 ≥ 2265 o-m (1/q max
, 36, 29) 22379 19.18 (1/20, 28, 21) 22379 19.86 (1/10, 19, 12) 22379 26.16 22379 28

Best solution

LP relaxation Branch and bound
value

With the Sequential algorithm

Branch and bound Branch and bound Branch and bound
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Table 5: Results of the algorithms R-ILS and D-ILS without Proposition 1, for the MCC problem.  

without Proposition 1 R-ILS D-ILS

Instances n density ω(G ) q max best_sol |C | sol_avg time_avg #best best_sel_avg best_sol |C | sol_avg time_avg #best best_sel_avg

c-fat200-1 200 0.077 12 12 81 9 81 0.1275 100 32.1 81 9 81 0.1102 100 28.2

c-fat200-2 200 0.163 24 24 306 17 306 0.0738 100 207.0 306 17 306 0.1070 100 173.1

c-fat200-5 200 0.426 58 58 1892 43 1892 0.0577 100 181.3 1892 43 1892 0.1448 100 297.7

c-fat500-1 500 0.036 14 14 110 10 110 0.5335 100 30.3 110 10 110 0.3823 100 32.5

c-fat500-2 500 0.073 26 26 380 19 380 0.3351 100 41.8 380 19 380 0.3839 100 40.7

c-fat500-5 500 0.186 64 64 2304 48 2304 0.2168 100 792.6 2304 48 2304 0.3943 100 551.0

c-fat500-10 500 0.374 126 126 8930 94 8930 0.1873 100 742.5 8930 94 8930 0.4771 100 683.9

p_hat300-1 300 0.244 8 9 789 8 789 0.3255 100 1541.5 789 8 789 0.3755 100 309.8

p_hat300-2 300 0.489 25 29 4637 25 4637 0.3079 100 353.0 4637 25 4637 0.3443 100 98.1

p_hat300-3 300 0.744 36 51 7740 36 7740 0.2218 100 591.8 7740 36 7740 0.2901 100 410.4

p_hat500-1 500 0.253 9 13 1621 9 1621 0.6083 100 4631.5 1621 9 1621 0.6988 100 143.6

p_hat500-2 500 0.505 36 46 11539 36 11539 0.5291 100 420.9 11539 36 11539 0.6362 100 731.4

p_hat500-3 500 0.752 50 78 18859 50 18859 0.3975 100 2141.2 18859 50 18859 0.5242 100 718.2

p_hat700-1 700 0.249 11 16 2606 11 2606 1.1253 100 2015.0 2606 11 2606 1.4806 100 1193.2

p_hat700-2 700 0.498 44 60 20425 44 20425 0.9902 100 1895.5 20425 44 20425 1.3961 100 683.9

p_hat700-3 700 0.748 62 102 33480 62 33480 0.8325 100 6383.7 33480 62 33480 1.1968 100 1755.2

p_hat1000-1 1000 0.245 ≥ 10 20 3556 10 3556 1.6477 100 28035.6 3556 10 3556 2.1789 100 694.0

p_hat1000-2 1000 0.490 ≥ 46 76 31174 46 31174 1.5009 100 9373.8 31174 46 31174 2.0654 100 471.7

p_hat1000-3 1000 0.744 ≥ 68 134 53259 68 53259 1.2383 100 1441.8 53259 68 53259 1.7756 100 2360.5

p_hat1500-1 1500 0.253 12 28 6018 11 5988.10 2.5673 59 44547.6 6018 11 6018 3.2721 100 2517.2

p_hat1500-2 1500 0.506 ≥ 65 113 67486 65 67485.90 2.2242 99 17326.0 67486 65 67486 3.0754 100 3672.8

p_hat1500-3 1500 0.754 ≥ 94 195 112873 94 112872.68 1.8889 92 29083.9 112873 94 112873 2.6955 100 7154.2

keller4 171 0.649 11 17 1140 11 1140 0.1518 100 70.5 1140 11 1140 0.2084 100 59.3

keller5 776 0.752 27 49 15184 27 15184 0.8580 100 6104.9 15184 27 15116.16 1.1552 84 30780.2

keller6 3361 0.818 ≥ 59 122 155060 57 150742.44 3.9152 1 49958.3 149804 55 144873.02 5.0795 5 47112.0

c125_9 125 0.899 34 44 2766 34 2766 0.0710 100 763.5 2766 34 2766 0.1445 100 129.2

c250_9 250 0.899 44 78 8123 44 8123 0.1422 100 8283.9 8123 44 8117.57 0.2388 97 2902.9

c500_9 500 0.901 ≥ 57 144 22691 57 22677.00 0.3399 86 32221.8 22691 57 22582.96 0.5032 63 40655.3

c1000_9 1000 0.901 ≥ 68 266 57149 68 56533.27 1.1472 2 49338.3 57149 68 56729.74 1.6825 4 51901.3

c2000_5 2000 0.500 ≥ 16 110 16093 16 15768.20 3.9440 1 49294.5 16106 16 15951.80 5.0772 1 53890.3

c2000_9 2000 0.900 ≥ 80 492 133481 77 130396.18 2.5060 1 54127.2 131843 76 131640.71 3.6068 7 47927.5

c4000_5 4000 0.500 ≥ 18 200 36005 18 33825.50 9.2860 1 53924.2 34326 17 34183.54 10.8634 5 48992.4

MANN_a9 45 0.927 16 18 412 16 412 0.0298 100 23.1 412 16 412 0.0830 100 21.2

MANN_a27 378 0.990 126 137 31284 126 31238.40 0.1106 60 29024.5 31284 126 30955.24 0.2884 54 28431.0

MANN_a45 1035 0.996 345 367 235090 340 234165.64 0.9317 2 44162.9 236080 343 234738.70 1.6491 5 753.8

MANN_a81 3321 0.999 ≥ 1100 1146 2424838 1087 2420749.50 3.5372 5 25549.5 2435808 1097 2434174.50 6.6509 5 1841.7

d1-RTN 2418 0.0032 10 10 1273 8 1272.88 0.1543 94 139.2 1273 8 1273 0.0515 100 29.7

d3-RTN 4755 0.0024 18 18 3526 12 3525.84 0.3882 98 165.8 3526 12 3526 0.1139 100 38.0

d7-RTN 6511 0.0021 18 18 5656 15 5644.59 0.5351 87 240.9 5656 15 5656 0.1535 100 162.2

d15-RTN 7965 0.0020 18 22 7772 16 7734.39 0.7217 72 302.4 7772 16 7772 0.1932 100 188.5

d30-RTN 10101 0.0018 21 27 13099 21 13075.40 0.9527 90 257.1 13099 21 13094.48 0.2521 98 151.1

d66-RTN 13308 0.0017 28 36 22379 28 22332.61 1.1589 53 361.0 22379 28 22368.92 0.3372 91 160.5
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Table 6: Results of the algorithms R-ILS and D-ILS with Proposition 1, for the MCC problem.  

with Proposition 1 R-ILS D-ILS

Instances n density ω(G ) q max best_sol |C | sol_avg time_avg #best best_sel_avg best_sol |C | sol_avg time_avg #best best_sel_avg

c-fat200-1 200 0.077 12 12 81 9 81 0.1303 100 34.3 81 9 81 0.1105 100 23.4

c-fat200-2 200 0.163 24 24 306 17 306 0.0806 100 225.1 306 17 306 0.1078 100 146.5

c-fat200-5 200 0.426 58 58 1892 43 1892 0.0614 100 193.0 1892 43 1892 0.1456 100 211.6

c-fat500-1 500 0.036 14 14 110 10 110 0.5407 100 32.8 110 10 110 0.3831 100 27.9

c-fat500-2 500 0.073 26 26 380 19 380 0.3419 100 45.4 380 19 380 0.3847 100 32.7

c-fat500-5 500 0.186 64 64 2304 48 2304 0.2243 100 847.1 2304 48 2304 0.3955 100 453.2

c-fat500-10 500 0.374 126 126 8930 94 8930 0.1929 100 757.9 8930 94 8930 0.4782 100 591.0

p_hat300-1 300 0.244 8 9 789 8 789 0.3311 100 1572.1 789 8 789 0.3765 100 234.3

p_hat300-2 300 0.489 25 29 4637 25 4637 0.3138 100 370.6 4637 25 4637 0.3451 100 86.3

p_hat300-3 300 0.744 36 51 7740 36 7740 0.2270 100 605.5 7740 36 7740 0.2908 100 290.0

p_hat500-1 500 0.253 9 13 1621 9 1621 0.6175 100 4907.3 1621 9 1621 0.7000 100 103.8

p_hat500-2 500 0.505 36 46 11539 36 11539 0.5330 100 432.9 11539 36 11539 0.6373 100 596.5

p_hat500-3 500 0.752 50 78 18859 50 18859 0.4011 100 2259.4 18859 50 18859 0.5251 100 585.2

p_hat700-1 700 0.249 11 16 2606 11 2606 1.1316 100 2092.4 2606 11 2606 1.4819 100 1012.4

p_hat700-2 700 0.498 44 60 20425 44 20425 0.9968 100 1926.1 20425 44 20425 1.3979 100 490.1

p_hat700-3 700 0.748 62 102 33480 62 33480 0.8381 100 6470.7 33480 62 33480 1.1981 100 1417.5

p_hat1000-1 1000 0.245 ≥ 10 20 3556 10 3556 1.6602 100 28192.8 3556 10 3556 2.1808 100 524.4

p_hat1000-2 1000 0.490 ≥ 46 76 31174 46 31174 1.5119 100 9425.5 31174 46 31174 2.0671 100 361.7

p_hat1000-3 1000 0.744 ≥ 68 134 53259 68 53259 1.2405 100 1479.1 53259 68 53259 1.7770 100 1960.9

p_hat1500-1 1500 0.253 12 28 6018 11 5978.62 2.6407 47 49768.6 6018 11 6018 3.2743 100 2067.5

p_hat1500-2 1500 0.506 ≥ 65 113 67486 65 67486 2.3156 100 19484.0 67486 65 67486 3.0778 100 3082.0

p_hat1500-3 1500 0.754 ≥ 94 195 112873 94 112872.68 1.8897 92 30202.3 112873 94 112873 2.6975 100 6232.4

keller4 171 0.649 11 17 1140 11 1140 0.1596 100 49.1 1140 11 1140 0.2047 100 40.2

keller5 776 0.752 27 49 15184 27 15184 0.8849 100 6546.4 15184 27 15178.36 1.1555 92 29743.7

keller6 3361 0.818 ≥ 59 122 159130 59 150411.64 3.8407 1 55274.3 152104 56 145616.06 5.1558 1 48633.1

c125_9 125 0.899 34 44 2766 34 2766 0.0734 100 1199.3 2766 34 2766 0.1541 100 101.1

c250_9 250 0.899 44 78 8123 44 8123 0.1475 100 9201.8 8123 44 8123 0.2470 100 2761.5

c500_9 500 0.901 ≥ 57 144 22691 57 22666.39 0.3418 85 36984.5 22691 57 22644.91 0.4971 70 37282.4

c1000_9 1000 0.901 ≥ 68 266 57149 68 56507.88 1.1918 2 50617.0 57149 68 56788.82 1.6683 6 49424.0

c2000_5 2000 0.500 ≥ 16 110 16072 16 15751.25 4.2478 1 51356.3 16106 16 16009.09 4.6174 1 52111.5

c2000_9 2000 0.900 ≥ 80 492 133579 77 130177.36 2.5967 1 48642.4 133635 77 132003.97 3.4724 1 48212.7

c4000_5 4000 0.500 ≥ 18 200 35861 18 33782.70 9.3830 1 53080.3 36137 18 34306.36 10.9307 1 49180.3

MANN_a9 45 0.927 16 18 412 16 412 0.0309 100 22.1 412 16 412 0.0834 100 19.4

MANN_a27 378 0.990 126 137 31284 126 31240.68 0.1133 62 28246.5 31284 126 31245.24 0.2905 66 28020.1

MANN_a45 1035 0.996 345 367 235090 340 234189.55 0.9363 1 50853.4 236406 344 235715.63 1.6832 1 995.7

MANN_a81 3321 0.999 ≥ 1100 1146 2424838 1087 2420749.00 3.5514 4 31213.9 2436894 1098 2434828.75 6.7707 3 1824.0

d1-RTN 2418 0.0032 10 10 1273 8 1272.98 0.1596 99 157.0 1273 8 1273 0.0518 100 24.3

d3-RTN 4755 0.0024 18 18 3526 12 3526 0.3927 100 173.8 3526 12 3526 0.1145 100 32.5

d7-RTN 6511 0.0021 18 18 5656 15 5651.00 0.5525 94 252.6 5656 15 5656 0.1548 100 137.2

d15-RTN 7965 0.0020 18 22 7772 16 7744.83 0.7292 80 316.5 7772 16 7772 0.1948 100 150.3

d30-RTN 10101 0.0018 21 27 13099 21 13094.28 0.9660 98 266.2 13099 21 13099 0.2535 100 126.8

d66-RTN 13308 0.0017 28 36 22379 28 22344.69 1.1674 66 385.3 22379 28 22379 0.3397 100 147.1
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Total

Instances n density q max number of nº of variables nº of variables

variable after elimination after elimination

c-fat200-1 200 0.077 12 2400 2400 0.00 1578 34.25

c-fat200-2 200 0.163 24 4800 4800 0.00 3246 32.38

c-fat200-5 200 0.426 58 11600 11600 0.00 8516 26.59

c-fat500-1 500 0.036 14 7000 7000 0.00 4640 33.71

c-fat500-2 500 0.073 26 13000 13000 0.00 9260 28.77

c-fat500-5 500 0.186 64 32000 32000 0.00 23254 27.33

c-fat500-10 500 0.374 126 63000 63000 0.00 46752 25.79

p_hat700-1 700 0.249 16 28000 28000 0.00 27994 0.02

p_hat700-2 700 0.498 60 59500 59500 0.00 59486 0.02

d1-RTN 2418 0.0032 10 24180 13675 43.44 7725 68.05

d3-RTN 4755 0.0024 18 85590 36281 57.61 21128 75.31

d7-RTN 6511 0.0021 18 117198 51664 55.92 31091 73.47

d15-RTN 7965 0.0020 22 175230 69769 60.18 42390 75.81

d30-RTN 10101 0.0018 27 272727 98362 63.93 60291 77.89

d66-RTN 13308 0.0017 36 479088 151839 68.31 94362 80.30

Test 1 Test 2

% eliminated % eliminated
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FMCC1 FMCC2

Instances n density w (G ) q max clique

opt time opt /  best lb time opt time opt /  best lb time size

c-fat200-1 200 0.077 12 12 81.000 0.05 81 0.05 81.000 0.02 81 0.05 81 9

c-fat200-2 200 0.163 24 24 306.000 0.06 306 0.09 306.000 0.02 306 0.03 306 17

c-fat200-5 200 0.426 58 58 1892.000 0.05 1892 0.05 1892.000 0.00 1892 0.02 1892 43

c-fat500-1 500 0.036 14 14 110.000 0.66 110 0.76 110.000 0.05 110 0.23 110 10

c-fat500-2 500 0.073 26 26 380.000 0.64 380 0.80 380.000 0.03 380 0.23 380 19

c-fat500-5 500 0.186 64 64 2304.000 0.75 2304 0.83 2304.000 0.03 2304 0.16 2304 48

c-fat500-10 500 0.374 126 126 8930.000 0.52 8930 0.58 8930.000 0.03 8930 0.12 8930 94

p_hat300-1 300 0.244 8 9 954.000 0.11 789 34.73 984.077 0.01 789 4.99 789 8

p_hat300-2 300 0.489 25 29 5218.500 0.08 4637 255.67 5398.621 0.02 4637 4050.29 4637 25

p_hat300-3 300 0.744 36 51 10035.800 0.01  7740 10800 10379.354 0.02  7438 o-m 7740 36

p_hat500-1 500 0.253 9 13 2347.500 0.47 1621 3227.64 2403.868 0.03 1621 251.16 1621 9

p_hat500-2 500 0.505 36 46 14204.500 0.30  11333 o-m 14688.375 0.03  11539 o-m 11539 36

p_hat500-3 500 0.752 50 78 26675.000 0.34 18859 10800 27415.492 0.03  18305 o-m 18859 50

p_hat700-1 700 0.249 11 16 8794.000 2.01  2304 o-m 9084.689 0.08 2606 2950.82 2606 11

p_hat700-2 700 0.498 44 60 34082.500 1.12  19757 o-m 35913.813 0.05  19359 o-m 20078 43

p_hat700-3 700 0.748 62 102 61088.333 0.92  32675 10800 64239.966 0.05  32228 o-m 33057 61

p_hat1000-1 1000 0.245  10 20 16065.000 7.99  3278 o-m 16562.753 0.16  3385 10800 3556 10

p_hat1000-2 1000 0.490  46 76 62869.500 5.23  28893 o-m 66070.766 0.11  30657 o-m 30657 45

p_hat1000-3 1000 0.744  68 134 118907.000 3.09  40814 10800 123340.573 0.08  48894 o-m 48894 61

p_hat1500-1 1500 0.253 12 28 35502.500 33.21  4946 o-m 36363.071 0.36  5923 10800 6018 11

p_hat1500-2 1500 0.506  65 113 141600.500 15.18  49205 o-m 147468.755 0.28  67486 10800 67486 65

p_hat1500-3 1500 0.754  94 195 264945.000 10.76  80610 10800 273833.158 0.20  111983 10800 111983 93

keller4 171 0.649 11 17 1812.000 0.05 1140 17.05 1836.000 0.00 1140 95.57 1140 11

keller5 776 0.752 27 49 28046.000 0.08  14760 10800 28832.179 0.03  13288 o-m 14760 26

keller6 3361 0.818  59 122 336256.000 114.68  105984 o-m 339940.917 0.34  136946 10800 136946 50

c125_9 125 0.899 34 44 3094.500 0.00 2766 1.69 3150.306 0.00  2766 o-m 2766 34

c250_9 250 0.899 44 78 11680.000 0.02  8123 10800 11801.196 0.02  8123 o-m 8123 44

c500_9 500 0.901  57 144 44777.500 0.03  22023 10800 45094.729 0.03  20728 o-m 22023 55

c1000_9 1000 0.901  68 266 170838.000 0.22  46055 10800 171616.779 0.14  47098 o-m 47098 55

c2000_5 2000 0.500  16 110 102128.000 53.74  12191 o-m 102811.647 0.44  14180 10800 14344 14

c2000_9 2000 0.900  80 492 649108.500 9.39  91790 10800 651142.036 0.91  110318 10800 110318 63

c4000_5 4000 0.500  18 200 371095.000 497.83  ---  --- 372789.891 2.31  26437 o-m 28642 14

MANN_a9 45 0.927 16 18 426.000 0.00 412 0.00 426 0.00 412 0.25 412 16

MANN_a27 378 0.990 126 137 32220.000 0.01 31284 1.34 32606.000 0.00  31054 o-m 31284 126

MANN_a45 1035 0.996 345 367 241350.000 0.05 236730 106.07 244055.000 0.02  232362 o-m 236730 345

MANN_a81 3321 0.999  1100 1146 2474658.000 0.25  2437978 10800 2489112.000 0.03  2417040 o-m 2437978 1099

d1-RTN 2418 0.0032 10 10 1374.000 150.70 1273 162.87 1517.848 1.22 1273 15.58 1273 8

d3-RTN 4755 0.0024 18 18  ---  ---  ---  --- 4785.465 5.13  3460 o-m 3526 12

d7-RTN 6511 0.0021 18 18  ---  ---  ---  ---  ---  ---  ---  --- 5656 15

d15-RTN 7965 0.0020 18 22  ---  ---  ---  ---  ---  ---  ---  --- 7772 16

d30-RTN 10101 0.0018 21 27  ---  ---  ---  ---  ---  ---  ---  --- 13099 21

d66-RTN 13308 0.0017 28 36  ---  ---  ---  ---  ---  ---  ---  --- 22379 28

Best solution

LP relaxation Branch and bound LP relaxation Branch and bound
value
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FMCC3 Without the Sequential algorithm (full range)

Instances n density w (G ) q max Partition 1: Partition 2: Partition 3: clique

opt time opt /  best lb time (r , k , i ) opt /  best lb time (r , k , i ) opt /  best lb time (r , k , i ) opt /  best lb time size

c-fat200-1 200 0.077 12 12 81.000 0.00 81 0.02 (1/q max , 12, 10) 81 0.02 (1/10, 11, 9) 81 0.02 (3/4, 2, 2) 81 0.01 81 9

c-fat200-2 200 0.163 24 24 306.000 0.03 306 0.09 (1/q max , 24, 18) 306 0.05 (1/20, 22, 16) 306 0.05 (1/2, 5, 3) 306 0.07 306 17

c-fat200-5 200 0.426 58 58 1892.000 0.22 1892 0.61 (1/q max , 58, 44) 1892 0.37 (1/50, 54, 40) 1892 0.32 (1/10, 23, 12) 1892 0.50 1892 43

c-fat500-1 500 0.036 14 14 110.000 0.02 110 0.08 (1/q max , 14, 11) 110 0.03 (1/2, 4, 3) 110 0.08 (3/4, 2, 2) 110 0.08 110 10

c-fat500-2 500 0.073 26 26 380.000 0.11 380 0.30 (1/q max , 26, 20) 380 0.17 (1/10, 17, 11) 380 0.37 (1/5, 11, 6) 380 0.30 380 19

c-fat500-5 500 0.186 64 64 2304.000 0.67 2304 1.90 (1/q max , 64, 49) 2304 0.99 (1/20, 39, 22) 2304 1.69 (2/3, 3, 3) 2304 1.76 2304 48

c-fat500-10 500 0.374 126 126 8930.000 3.84 8930 9.03 (1/q max , 126, 95) 8930 4.45 (1/50, 83, 52) 8930 6.03 (1/20, 49, 25) 8930 6.44 8930 94

p_hat300-1 300 0.244 8 9 967.165 0.03 789 32.39 (1/q max , 9, 9) 789 2.27 (1/5, 7, 7) 789 2.32 (1/2, 4, 4) 789 2.41 789 8

p_hat300-2 300 0.489 25 29 5390.571 0.36  229 o-m (1/q max , 29, 26) 4637 128.55 (1/10, 18, 15) 4637 128.76 (1/5, 11, 8) 4637 147.76 4637 25

p_hat300-3 300 0.744 36 51 10388.059 1.14  267 o-m (1/q max , 51, 36)  7587 o-m (1/20, 33, 18)  7587 o-m (1/10, 22, 10)  7438 o-m 7740 36

p_hat500-1 500 0.253 9 13 2365.519 0.17 1621 3796.91 (1/q max , 13, 10) 1621 7.22 (1/5, 8, 5) 1621 7.40 (1/2, 4, 3) 1621 267.07 1621 9

p_hat500-2 500 0.505 36 46 14675.660 1.84  389 o-m (1/q max , 46, 37)  11539 10800 (1/20, 32, 23)  11539 10800 (1/10, 21, 12)  11333 10800 11539 36

p_hat500-3 500 0.752 50 78 27424.555 6.04  452 o-m (1/q max , 78, 49)  18305 10800 (1/50, 64, 35)  18305 10800 (1/20, 41, 17)  18305 10800 18859 50

p_hat700-1 700 0.249 11 16 8819.206 1.50  426 o-m (1/q max , 16, 12) 2606 126.14 (1/5, 9, 5) 2606 126.31 (1/2, 5, 3) 2606 2066.05 2606 11

p_hat700-2 700 0.498 44 60 35869.464 9.16  539 o-m (1/q max , 60, 44)  20078 10800 (1/20, 36, 20)  20078 10800 (1/10, 24, 11)  19757 10800 20078 43

p_hat700-3 700 0.748 62 102  ---  ---  ---  --- (1/q max , 102, 61)  33057 10800 (1/50, 75, 35)  33057 10800 (1/20, 45, 15)  31308 10800 33057 61

p_hat1000-1 1000 0.245  10 20 16082.792 4.68  408 o-m (1/q max , 20, 11) 3556 279.83 (1/10, 16, 6) 3556 279.83 (1/5, 10, 4)  3556 10800 3556 10

p_hat1000-2 1000 0.490  46 76  ---  ---  ---  --- (1/q max , 76, 46)  30657 10800 (1/50, 63, 33)  30657 10800 (1/20, 40, 15)  30657 10800 30657 45

p_hat1000-3 1000 0.744  68 134  ---  ---  ---  --- (1/q max , 134, 62)  48894 10800 (1/100, 117, 45)  48894 10800 (1/50, 86, 25)  48184 10800 48894 61

p_hat1500-1 1500 0.253 12 28  ---  ---  ---  --- (1/q max , 28, 12) 6018 7014.07 (1/20, 24, 8) 6018 7015.08 (1/10, 17, 5)  6018 10800 6018 11

p_hat1500-2 1500 0.506  65 113  ---  ---  ---  --- (1/q max , 113, 59)  62108 10800 (1/50, 79, 27)  60206 10800 (1/20, 48, 13)  62108 10800 67486 65

p_hat1500-3 1500 0.754  94 195  ---  ---  ---  --- (1/q max , 195, 73)  90095 10800 (1/100, 147, 36)  88955 10800 (1/50, 102, 20)  88955 10800 111983 93

keller4 171 0.649 11 17 1836.000 0.06 1140 383.64 (1/q max , 17, 12) 1140 9.67 (1/10, 14, 8) 1140 10.04 (1/5, 10, 5) 1140 24.07 1140 11

keller5 776 0.752 27 49 28646.982 6.82  638 o-m (1/q max , 49, 19)  11236 10800 (1/20, 15, 8)  11236 10800 (1/10, 7, 4)  10706 10800 14760 26

keller6 3361 0.818  59 122  ---  ---  ---  --- (1/q max , 122, 19)  54944 o-m (1/100, 111, 6)  29430 o-m (1/50, 82, 4)  26496 o-m 136946 50

c125_9 125 0.899 34 44 3176.765 0.14  119 o-m (1/q max , 44, 35)  2766 o-m (1/20, 31, 22)  2766 o-m (1/10, 21, 12)  2766 o-m 2766 34

c250_9 250 0.899 44 78 11853.275 1.09  236 o-m (1/q max , 78, 41)  7603 o-m (1/50, 64, 27)  7603 o-m (1/20, 41, 13)  7603 o-m 8123 44

c500_9 500 0.901  57 144  ---  ---  ---  --- (1/q max , 144, 45)  18669 10800 (1/100, 122, 23)  18669 10800 (1/50, 89, 15)  18669 10800 22023 55

c1000_9 1000 0.901  68 266  ---  ---  ---  --- (1/q max , 266, 41)  35934 10800 (1/100, 172, 14)  36760 10800 (1/50, 116, 8)  37578 10800 47098 55

c2000_5 2000 0.500  16 110  ---  ---  ---  --- (1/q max , 110, 15)  14344 10800 (1/50, 102, 7)  14334 10800 (1/20, 46, 2)  6304 o-m 14344 14

c2000_9 2000 0.900  80 492  ---  ---  ---  --- (1/q max , 492, 41)  73262 10800 (1/200, 330, 12)  59299 o-m (1/100, 226, 3)  18281 o-m 110318 63

c4000_5 4000 0.500  18 200  ---  ---  ---  --- (1/q max , 200, 14)  28642 10800 (1/100, 150, 5)  20693 o-m (1/50, 103, 2)  8395 o-m 28642 14

MANN_a9 45 0.927 16 18 432.000 0.02 412 56.28 (1/q max , 18, 17) 412 11.64 (1/10, 14, 13) 412 11.67 (1/5, 9, 8) 412 11.76 412 16

MANN_a27 378 0.990 126 137 32606.000 9.73  374 o-m (1/q max , 137, 88)  25056 10800 (1/20, 50, 31)  30316 10800 (1/5, 18, 9)  30570 10800 31284 126

MANN_a45 1035 0.996 345 367  ---  ---  ---  --- (1/q max , 367, 314)  225452 10800 (1/100, 200, 148)  225452 10800 (1/50, 130, 95)  232362 10800 236730 345

MANN_a81 3321 0.999  1100 1146  ---  ---  ---  --- (1/q max , 1146, 13)  39524 o-m (1/200, 480, 0)  ---  --- (1/100, 296, 0)  ---  --- 2437978 1099

d1-RTN 2418 0.0032 10 10 1481.587 0.05 1273 0.97 (1/q max , 10, 9) 1273 0.13 (1/5, 7, 6) 1273 0.18 (1/2, 4, 3) 1273 0.12 1273 8

d3-RTN 4755 0.0024 18 18 4612.926 0.25 3526 53.46 (1/q max , 18, 13) 3526 0.54 (1/10, 14, 9) 3526 0.57 (1/5, 9, 5) 3526 0.81 3526 12

d7-RTN 6511 0.0021 18 18 6945.462 0.50 5656 113.05 (1/q max , 18, 16) 5656 1.60 (1/10, 14, 12) 5656 1.69 (1/5, 9, 7) 5656 1.97 5656 15

d15-RTN 7965 0.0020 18 22 10135.553 0.92 7772 557.24 (1/q max , 22, 17) 7772 2.37 (1/10, 15, 10) 7772 2.93 (1/5, 7, 6) 7772 11.86 7772 16

d30-RTN 10101 0.0018 21 27 16116.109 1.79  13099 o-m (1/q max , 27, 22) 13099 3.94 (1/20, 23, 18) 13099 4.03 (1/10, 17, 12) 13099 4.47 13099 21

d66-RTN 13308 0.0017 28 36 28044.977 2.53  2265 o-m (1/q max , 36, 29) 22379 19.18 (1/20, 28, 21) 22379 19.86 (1/10, 19, 12) 22379 26.16 22379 28

Best solution

LP relaxation Branch and bound
value

With the Sequential algorithm

Branch and bound Branch and bound Branch and bound
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without Proposition 1 R-ILS D-ILS

Instances n density w (G ) q max best_sol |C | sol_avg time_avg #best best_sel_avg best_sol |C | sol_avg time_avg #best best_sel_avg

c-fat200-1 200 0.077 12 12 81 9 81 0.1275 100 32.1 81 9 81 0.1102 100 28.2

c-fat200-2 200 0.163 24 24 306 17 306 0.0738 100 207.0 306 17 306 0.1070 100 173.1

c-fat200-5 200 0.426 58 58 1892 43 1892 0.0577 100 181.3 1892 43 1892 0.1448 100 297.7

c-fat500-1 500 0.036 14 14 110 10 110 0.5335 100 30.3 110 10 110 0.3823 100 32.5

c-fat500-2 500 0.073 26 26 380 19 380 0.3351 100 41.8 380 19 380 0.3839 100 40.7

c-fat500-5 500 0.186 64 64 2304 48 2304 0.2168 100 792.6 2304 48 2304 0.3943 100 551.0

c-fat500-10 500 0.374 126 126 8930 94 8930 0.1873 100 742.5 8930 94 8930 0.4771 100 683.9

p_hat300-1 300 0.244 8 9 789 8 789 0.3255 100 1541.5 789 8 789 0.3755 100 309.8

p_hat300-2 300 0.489 25 29 4637 25 4637 0.3079 100 353.0 4637 25 4637 0.3443 100 98.1

p_hat300-3 300 0.744 36 51 7740 36 7740 0.2218 100 591.8 7740 36 7740 0.2901 100 410.4

p_hat500-1 500 0.253 9 13 1621 9 1621 0.6083 100 4631.5 1621 9 1621 0.6988 100 143.6

p_hat500-2 500 0.505 36 46 11539 36 11539 0.5291 100 420.9 11539 36 11539 0.6362 100 731.4

p_hat500-3 500 0.752 50 78 18859 50 18859 0.3975 100 2141.2 18859 50 18859 0.5242 100 718.2

p_hat700-1 700 0.249 11 16 2606 11 2606 1.1253 100 2015.0 2606 11 2606 1.4806 100 1193.2

p_hat700-2 700 0.498 44 60 20425 44 20425 0.9902 100 1895.5 20425 44 20425 1.3961 100 683.9

p_hat700-3 700 0.748 62 102 33480 62 33480 0.8325 100 6383.7 33480 62 33480 1.1968 100 1755.2

p_hat1000-1 1000 0.245  10 20 3556 10 3556 1.6477 100 28035.6 3556 10 3556 2.1789 100 694.0

p_hat1000-2 1000 0.490  46 76 31174 46 31174 1.5009 100 9373.8 31174 46 31174 2.0654 100 471.7

p_hat1000-3 1000 0.744  68 134 53259 68 53259 1.2383 100 1441.8 53259 68 53259 1.7756 100 2360.5

p_hat1500-1 1500 0.253 12 28 6018 11 5988.10 2.5673 59 44547.6 6018 11 6018 3.2721 100 2517.2

p_hat1500-2 1500 0.506  65 113 67486 65 67485.90 2.2242 99 17326.0 67486 65 67486 3.0754 100 3672.8

p_hat1500-3 1500 0.754  94 195 112873 94 112872.68 1.8889 92 29083.9 112873 94 112873 2.6955 100 7154.2

keller4 171 0.649 11 17 1140 11 1140 0.1518 100 70.5 1140 11 1140 0.2084 100 59.3

keller5 776 0.752 27 49 15184 27 15184 0.8580 100 6104.9 15184 27 15116.16 1.1552 84 30780.2

keller6 3361 0.818  59 122 155060 57 150742.44 3.9152 1 49958.3 149804 55 144873.02 5.0795 5 47112.0

c125_9 125 0.899 34 44 2766 34 2766 0.0710 100 763.5 2766 34 2766 0.1445 100 129.2

c250_9 250 0.899 44 78 8123 44 8123 0.1422 100 8283.9 8123 44 8117.57 0.2388 97 2902.9

c500_9 500 0.901  57 144 22691 57 22677.00 0.3399 86 32221.8 22691 57 22582.96 0.5032 63 40655.3

c1000_9 1000 0.901  68 266 57149 68 56533.27 1.1472 2 49338.3 57149 68 56729.74 1.6825 4 51901.3

c2000_5 2000 0.500  16 110 16093 16 15768.20 3.9440 1 49294.5 16106 16 15951.80 5.0772 1 53890.3

c2000_9 2000 0.900  80 492 133481 77 130396.18 2.5060 1 54127.2 131843 76 131640.71 3.6068 7 47927.5

c4000_5 4000 0.500  18 200 36005 18 33825.50 9.2860 1 53924.2 34326 17 34183.54 10.8634 5 48992.4

MANN_a9 45 0.927 16 18 412 16 412 0.0298 100 23.1 412 16 412 0.0830 100 21.2

MANN_a27 378 0.990 126 137 31284 126 31238.40 0.1106 60 29024.5 31284 126 30955.24 0.2884 54 28431.0

MANN_a45 1035 0.996 345 367 235090 340 234165.64 0.9317 2 44162.9 236080 343 234738.70 1.6491 5 753.8

MANN_a81 3321 0.999  1100 1146 2424838 1087 2420749.50 3.5372 5 25549.5 2435808 1097 2434174.50 6.6509 5 1841.7

d1-RTN 2418 0.0032 10 10 1273 8 1272.88 0.1543 94 139.2 1273 8 1273 0.0515 100 29.7

d3-RTN 4755 0.0024 18 18 3526 12 3525.84 0.3882 98 165.8 3526 12 3526 0.1139 100 38.0

d7-RTN 6511 0.0021 18 18 5656 15 5644.59 0.5351 87 240.9 5656 15 5656 0.1535 100 162.2

d15-RTN 7965 0.0020 18 22 7772 16 7734.39 0.7217 72 302.4 7772 16 7772 0.1932 100 188.5

d30-RTN 10101 0.0018 21 27 13099 21 13075.40 0.9527 90 257.1 13099 21 13094.48 0.2521 98 151.1

d66-RTN 13308 0.0017 28 36 22379 28 22332.61 1.1589 53 361.0 22379 28 22368.92 0.3372 91 160.5
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with Proposition 1 R-ILS D-ILS

Instances n density w (G ) q max best_sol |C | sol_avg time_avg #best best_sel_avg best_sol |C | sol_avg time_avg #best best_sel_avg

c-fat200-1 200 0.077 12 12 81 9 81 0.1303 100 34.3 81 9 81 0.1105 100 23.4

c-fat200-2 200 0.163 24 24 306 17 306 0.0806 100 225.1 306 17 306 0.1078 100 146.5

c-fat200-5 200 0.426 58 58 1892 43 1892 0.0614 100 193.0 1892 43 1892 0.1456 100 211.6

c-fat500-1 500 0.036 14 14 110 10 110 0.5407 100 32.8 110 10 110 0.3831 100 27.9

c-fat500-2 500 0.073 26 26 380 19 380 0.3419 100 45.4 380 19 380 0.3847 100 32.7

c-fat500-5 500 0.186 64 64 2304 48 2304 0.2243 100 847.1 2304 48 2304 0.3955 100 453.2

c-fat500-10 500 0.374 126 126 8930 94 8930 0.1929 100 757.9 8930 94 8930 0.4782 100 591.0

p_hat300-1 300 0.244 8 9 789 8 789 0.3311 100 1572.1 789 8 789 0.3765 100 234.3

p_hat300-2 300 0.489 25 29 4637 25 4637 0.3138 100 370.6 4637 25 4637 0.3451 100 86.3

p_hat300-3 300 0.744 36 51 7740 36 7740 0.2270 100 605.5 7740 36 7740 0.2908 100 290.0

p_hat500-1 500 0.253 9 13 1621 9 1621 0.6175 100 4907.3 1621 9 1621 0.7000 100 103.8

p_hat500-2 500 0.505 36 46 11539 36 11539 0.5330 100 432.9 11539 36 11539 0.6373 100 596.5

p_hat500-3 500 0.752 50 78 18859 50 18859 0.4011 100 2259.4 18859 50 18859 0.5251 100 585.2

p_hat700-1 700 0.249 11 16 2606 11 2606 1.1316 100 2092.4 2606 11 2606 1.4819 100 1012.4

p_hat700-2 700 0.498 44 60 20425 44 20425 0.9968 100 1926.1 20425 44 20425 1.3979 100 490.1

p_hat700-3 700 0.748 62 102 33480 62 33480 0.8381 100 6470.7 33480 62 33480 1.1981 100 1417.5

p_hat1000-1 1000 0.245  10 20 3556 10 3556 1.6602 100 28192.8 3556 10 3556 2.1808 100 524.4

p_hat1000-2 1000 0.490  46 76 31174 46 31174 1.5119 100 9425.5 31174 46 31174 2.0671 100 361.7

p_hat1000-3 1000 0.744  68 134 53259 68 53259 1.2405 100 1479.1 53259 68 53259 1.7770 100 1960.9

p_hat1500-1 1500 0.253 12 28 6018 11 5978.62 2.6407 47 49768.6 6018 11 6018 3.2743 100 2067.5

p_hat1500-2 1500 0.506  65 113 67486 65 67486 2.3156 100 19484.0 67486 65 67486 3.0778 100 3082.0

p_hat1500-3 1500 0.754  94 195 112873 94 112872.68 1.8897 92 30202.3 112873 94 112873 2.6975 100 6232.4

keller4 171 0.649 11 17 1140 11 1140 0.1596 100 49.1 1140 11 1140 0.2047 100 40.2

keller5 776 0.752 27 49 15184 27 15184 0.8849 100 6546.4 15184 27 15178.36 1.1555 92 29743.7

keller6 3361 0.818  59 122 159130 59 150411.64 3.8407 1 55274.3 152104 56 145616.06 5.1558 1 48633.1

c125_9 125 0.899 34 44 2766 34 2766 0.0734 100 1199.3 2766 34 2766 0.1541 100 101.1

c250_9 250 0.899 44 78 8123 44 8123 0.1475 100 9201.8 8123 44 8123 0.2470 100 2761.5

c500_9 500 0.901  57 144 22691 57 22666.39 0.3418 85 36984.5 22691 57 22644.91 0.4971 70 37282.4

c1000_9 1000 0.901  68 266 57149 68 56507.88 1.1918 2 50617.0 57149 68 56788.82 1.6683 6 49424.0

c2000_5 2000 0.500  16 110 16072 16 15751.25 4.2478 1 51356.3 16106 16 16009.09 4.6174 1 52111.5

c2000_9 2000 0.900  80 492 133579 77 130177.36 2.5967 1 48642.4 133635 77 132003.97 3.4724 1 48212.7

c4000_5 4000 0.500  18 200 35861 18 33782.70 9.3830 1 53080.3 36137 18 34306.36 10.9307 1 49180.3

MANN_a9 45 0.927 16 18 412 16 412 0.0309 100 22.1 412 16 412 0.0834 100 19.4

MANN_a27 378 0.990 126 137 31284 126 31240.68 0.1133 62 28246.5 31284 126 31245.24 0.2905 66 28020.1

MANN_a45 1035 0.996 345 367 235090 340 234189.55 0.9363 1 50853.4 236406 344 235715.63 1.6832 1 995.7

MANN_a81 3321 0.999  1100 1146 2424838 1087 2420749.00 3.5514 4 31213.9 2436894 1098 2434828.75 6.7707 3 1824.0

d1-RTN 2418 0.0032 10 10 1273 8 1272.98 0.1596 99 157.0 1273 8 1273 0.0518 100 24.3

d3-RTN 4755 0.0024 18 18 3526 12 3526 0.3927 100 173.8 3526 12 3526 0.1145 100 32.5

d7-RTN 6511 0.0021 18 18 5656 15 5651.00 0.5525 94 252.6 5656 15 5656 0.1548 100 137.2

d15-RTN 7965 0.0020 18 22 7772 16 7744.83 0.7292 80 316.5 7772 16 7772 0.1948 100 150.3

d30-RTN 10101 0.0018 21 27 13099 21 13094.28 0.9660 98 266.2 13099 21 13099 0.2535 100 126.8

d66-RTN 13308 0.0017 28 36 22379 28 22344.69 1.1674 66 385.3 22379 28 22379 0.3397 100 147.1
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