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Abstract

In this paper, we present a dynamic uncapacitated facility location prob-

lem that considers uncertainty in �xed and assignment costs as well as in

the sets of potential facility locations and possible customers. Uncertainty

is represented via a set of scenarios. Our aim is to minimize the expected

total cost, explicitly considering regret. Regret is understood as a mea-

sure, for each scenario, of the loss incurred for not choosing that scenario's

optimal solution if that scenario indeed occurred. We guarantee that the

regret for each scenario is always upper bounded. We present a mixed

integer programming model for the problem and we propose a solution ap-

proach based on Lagrangean relaxation integrating a local neighborhood

search and a subgradient algorithm to update Lagrangean multipliers. The

problem and the solutions obtained are �rst analyzed through the use of

illustrative examples. Computational results over sets of randomly gener-

ated test problems are also provided.

keywords: dynamic location problems, uncertainty, scenarios, heuristics,

Lagrangean relaxation

1 Introduction

The strategic nature of most location decision problems associated with the lim-
ited knowledge about problem parameters at the time of decision making, makes
facility location problems under uncertainty an active area of research within
the location research �eld. Models and solution methods that deal explicitly
with uncertainties are even more complex than deterministic versions and with
higher computational di�culties to achieve optimal or near�optimal solutions.
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During the last decades there has been considerable interest in location prob-
lems under uncertainty and a large volume of work is now available in specialized
papers and monographs. Among the vast collection of works concerning facil-
ity location problems under uncertainty, we can �nd static (single�period) or
dynamic (multi-period) approaches. Within the �rst class, we can include the
following works, from earlier to most recent ones, re�ecting the richness of the
contributions to the �eld. We stress that this brief review has no pretensions
of completeness. Louveaux (1986) presents a stochastic version of the classical
uncapacitated facility location problem (UFLP) in which demands, variable pro-
duction and transportation costs, and selling prices (incorporated in the model)
can be random. The problem is formulated as a two�stage stochastic program,
where the �rst�stage decisions are the location and the size (capacity) of the
facilities to be established, and the second�stage decisions are the allocation of
the available production to the most pro�table demands. In that work also a
stochastic version of the p�median, de�ned as a two�stage stochastic program,
is presented, and relations between the stochastic versions of the p�median and
the UFLP are discussed. Solution methods are later presented by Louveaux and
Peeters (1992). The authors propose a heuristic dual�based procedure, inspired
on the approach developed in (Bilde and Krarup, 1977; Erlenkotter, 1978) for
the classical (static and deterministic) UFLP. Laporte et al. (1994) consider a
capacitated facility location problem (CFLP) in which customer demands are
stochastic. The problem consists of optimally determining the location and size
of facilities given that future customer demand is uncertain. The objective func-
tion minimizes the di�erence between the sum of �xed facility costs and average
cost of operating transportation services between facilities and customers (as-
signment costs), and the expected net revenue from supplying customers. The
problem can also be viewed as a two�stage stochastic integer program. Current
et al. (1997) address location problems in which the total number of facilities
to be sited is uncertain. Two decision criteria are considered in p-median based
formulations: the minimization of the maximum regret and the minimization of
expected opportunity loss. Under the decision criteria, each problem locates an
initial number of facilities when the total number is unknown. The approaches
are illustrated with a sample problem. Serra and Marianov (1998) consider a
p�median based model in which travel times between nodes and/or demand at
nodes are uncertain, described by scenarios. Two p�median formulations are pre-
sented, the min�max and the regret approaches. The authors propose a heuristic
method for both formulations, and a real application to the location of �re sta-
tions in Barcelona is presented. More recently, Berman and Drezner (2008) also
consider the p�median problem when the total number of facilities to be sited
in the future is uncertain. The problem seeks the location for p facilities that
minimize the expected weighted distance when up to q new facilities are added
to the system in the future. The probability of adding 0 ≤ r ≤ q new facili-
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ties (possible scenarios) is given. Heuristic algorithms are suggested to solve the
problem (focusing in the case q = 1). A similar integer programming model and
a decomposition algorithm to solve it is presented by Sonmez and Lim (2012).
As opposed to the previous work, in this paper the problem allows the closing
of some of the facilities that were opened initially, due to future demand change,
and considers also budget restrictions for the opening and closing of facilities.
Ravi and Sinha (2004) propose a two-stage stochastic version of the UFLP and
an 8�approximation algorithm to solve it. Here, demand and �xed costs are both
random, and facilities may be opened in either the �rst or second stage. A related
two-stage stochastic program is proposed by Wang et al. (2011) in which service
installation costs are also considered (services must be installed at the open facil-
ities and each customer must be assigned to an open facility at which the service
requested by the customer is installed). The authors propose a primal-dual ap-
proximation algorithm to solve the optimization problem. Lin (2009) proposes
a stochastic version of the single�source capacitated facility location problem in
which the demand is uncertain. The objective function is to minimize the total
system costs including �xed facility costs and costs of servicing each demand
point by its assigned facility. Simultaneously, recognizing that facilities should
provide an adequate level of service, the model also incorporates facility service
level requirements. These requirements are formulated as chance constraints, be-
ing the probability that each open facility can cope with the stochastic demand
assigned.

Dynamic models are mainly concerned with planning the location and/or
size of facilities over time such that the time dimension is explicitly represented
through the use of time dependent decision variables. A dynamic location prob-
lem approach is usually necessary whenever the assignment costs change signif-
icantly during the planning horizon or there are signi�cant costs for relocating
facilities (Erlenkotter, 1981). This class of models are enriched with the answer
to questions such as �when� to locate (Jacobsen, 1990). The reader is referred,
for instance, to Ahmed and Garcia (2004), Romauch and Hartl (2005), Marques
and Matos Dias (2013b), where explicitly dynamic location problems under un-
certainty are proposed which can be viewed as two�stage stochastic approaches.
Recent multi�stage stochastic approaches (in which uncertainty is resolved in
more than one stage along the time horizon) are proposed by Hernández et al.
(2012), Albareda-Sambola et al. (2013) and the references therein.

A related and important issue addressed in the literature is robustness, spe-
cially when faced with scenario-based models. A pioneer work about the use
of the robustness concept in strategic management is presented in (Rosenhead
et al., 1972). The criterion robustness is �a measure of the �exibility which an
initial decision of a plan maintains for achieving near-optimal states in conditions
of uncertainty�. The proposed concept is developed through the case study of
a factory location problem over time, and here the robustness concept refers to
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individual facilities, the ones that should be opened �rst, when considering a
time horizon under uncertainty. The concept of robustness may have di�erent
meanings and interpretations though, being treated in the literature as a multi-
faceted issue (Roy, 2010). Dembo (1991) presents general coordinating models
to achieve a reasonable (and feasible) solution to the stochastic programs, be-
ing as close as possible to the individual scenario solutions in a weighted norm
sense. As emphasised by Dembo (1991), it might be very di�cult to �nd a single
solution de�ned as the best one considering all possible future scenarios. Under
uncertainty, the concept of best solution strongly depends on the attitude towards
risk of the Decision Maker. For instance, rather than the �optimal� solution for
a speci�c scenario or even for the most likely scenario, a risk averse decision
maker wants a robust decision, de�ned as the one that performs well across all
scenarios and hedges against the worst of all possible scenarios (Kouvelis and Yu,
1997). Di�erent criteria can be used to select among robust solutions, such as
min-max and min-max regret criteria (Aissi et al., 2009). A di�erent robustness
approach is given in (Mulvey et al., 1995). The authors consider both solution
robust and model robust concepts: a solution is robust if it remains close to
optimal for any scenario, and is model robust if it remains almost feasible for
any scenario. As it is unlikely that a given solution will remain both feasible and
optimal for all scenarios, the authors propose a multicriteria objective form that
allows to measure the tradeo� between solution and model robustness. Snyder
and Daskin (2006) introduces a new robustness measure for optimization under
uncertainty, the stochastic k�robustness. In that work, the classical (static) p�
median and UFL problems with uncertain demands and transportation costs,
described by probabilistic scenarios, are considered. The models minimize ex-
pected costs while making sure that the relative regret for each scenario is no
greater than a pre-speci�ed value k. The relative regret of a solution associated
with a given scenario is calculated by the di�erence between the value of the so-
lution under that scenario and the optimal value of the scenario divided by this
latter value. The authors incorporate regret into the problems's formulations by
considering constraints that guarantee that the relative regret associated with
each solution, for each of the possible future scenarios, is upper bounded. They
also propose a Lagrangian decomposition algorithm to solve the corresponding
optimization problems. In a recent work (Lim and Sonmez, 2013) the same ro-
bustness measure is considered in a static facility p�median relocation problem.
Several di�erent robustness measures have been proposed in the literature that
are able to generate solutions with di�erent features to the problems. The reader
is referred to (Dembo, 1991; Escudero et al., 1993; Ben-Tal and Nemirovski, 2000;
Bertsimas and Sim, 2004; Snyder, 2006; Snyder and Daskin, 2006; Aissi et al.,
2009; Bertsimas and Goyal, 2010; Roy, 2010) wherein the above and other robust-
ness approaches are applied, discussed and compared, re�ecting the importance
of the subject.
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Inspired by these and other related works, in the present paper the dynamic
uncapacitated facility location problem (DUFLP) under uncertainty described in
(Marques and Matos Dias, 2013b) is revisited and a new version of the model
is proposed as well as a solution approach to solve it. In this dynamic model,
�xed and assignment costs are scenario dependent as well as the set of possible
customers and the set of potential locations for facilities. The decisions to be
made are where and when to locate the facilities, and how to assign the existing
customers over the whole planning horizon and under each scenario, in order to
minimize the expected total costs. At the same time, the relative regret for each
scenario is constrained to be no greater than a pre-speci�ed value α, α ≥ 0. As
far as the authors know, this measure is explicitly included in a dynamic location
problem for the �rst time. The problem is formulated as an integer linear program
and a solution approach based on Lagrangean relaxation is proposed.

The problem tackled in this paper can be applied in di�erent real-world ap-
plications. It mainly describes any situation in which a company has to do the
planning of strategic location investments over a given planning horizon with un-
certainty. The main sources of uncertainty, here represented by possible future
scenarios, come from the existence or lack of customers, as well as costs associated
with the opening of facilities and satisfying the clients' demand. Costs for open-
ing facilities can change due to the economic environment, behavior of the real
estate market, changes in interest rates. Such costs can even hinder the opening
of a facility. Assignment costs can change due to changes in road infrastruc-
tures, new roads can be built while others may become inaccessible, government
policies, price of fuel, tolls, for instance. In such an uncertain environment, con-
sidering only those solutions that guarantee a bounded value for regret is indeed
a possible way of making a robust decision. One possible application is in lo-
cating emergency facilities to deal with disaster management situations. Several
di�erent scenarios can be designed, considering the possibility of having several
roads inaccessible, and having di�erent levels of demand. The decision where to
locate these services will consider a maximum regret value.

The remainder of this paper is organized as follows. In the following section,
the notation used in this paper is introduced and the problem is described. In
section 3 illustrative examples of the problem are discussed. In section 4 the
solution approach is described. In section 5 computational experiments are de-
scribed and results are discussed. Section 6 concludes this paper with some notes
on future work.

2 Problem description

Consider a planning horizon represented by a discrete set of time periods T =
{1, ..., t, ..., T}. The future will be one of a �nite set of possibilities, represented by
a discrete set of scenarios S = {1, ..., s, ..., S}, where each scenario characterizes
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the value of all uncertain elements. Suppose that each s ∈ S will occur with
probability ps such that

∑
s∈S ps = 1.

Let the set of potential facility sites be denoted by J = {1, ..., j, ...,M} and
the set of possible customer locations (or demand points) by I = {1, ..., i, ..., N}.
These sets include all the potential facility locations and all the potential cus-
tomers for all possible scenarios, despite the fact that for each scenario in par-
ticular possibly only a subset of potential locations and a subset of customers
is considered given the uncertainty associated with the existence of customers
and the future existence of potential locations. Let us de�ne δsit as equal to 1 if
customer i has a demand that has to be ful�lled during period t for scenario s,
and 0 otherwise. Then we have to guarantee that all customers such that δsit = 1
are assigned to an open facility, for all (t, s) ∈ T × S.

In terms of costs, the model considers not only �xed costs (opening and
operating), but also variable costs associated with the assignment of customers
to the facilities. For (j, t, s) ∈ J × T × S, let fs

jt be the �xed cost of establishing
(opening) facility j at the beginning of period t plus the operating and subsequent
costs in period t, under scenario s; for (i, j, t, s) ∈ I × J × T × S, csijt represents
the assignment cost of customer i to facility j in period t and under scenario s.
If it is not possible to open facility j at the beginning of time period t, under
scenario s, then the corresponding �xed cost will be considered equal to +∞.
Such a situation can only occur for t > 1, given the possibility that any new
service opens in that period. We assume that once a facility is opened, it stays
open until the end of the planning horizon.

The decisions to be made are where and when to locate new facilities, and
how to assign the existing customers over the whole planning horizon and under
each scenario. Thus, we de�ne the following binary decision variables: xjt equals
1 if facility j is opened at the beginning of period t, and 0 otherwise; ysijt equals
1 if customer i is assigned to facility j in period t and under scenario s, and 0
otherwise. Assignment decisions are considered to be taken a period at a time,
and so they can be changed according to the scenario that comes true; on the
other hand, location decisions are hard to revert, so we have to live with the
decision taken whatever the scenario that came to occur. The objective will be
the minimization of expected total cost, considering the uncertainty associated
with the future.

For ease in the exposition, let us �rst formulate the problem for a given
scenario s ∈ S as follows:

(Ps) min
∑
t∈T

∑
j∈J

f s
jt xjt +

∑
t∈T

∑
i∈I

∑
j∈J

csijt y
s
ijt (2.1)

subject to∑
j∈J

ysijt = δsit ∀i ∈ I, t ∈ T , (2.2)
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t∑
τ=1

xjτ − ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , (2.3)

∑
t∈T

xjt ≤ 1 ∀j ∈ J, (2.4)

xjt ∈ {0, 1} ∀j ∈ J, t ∈ T , (2.5)

ysijt ∈ {0, 1} ∀i ∈ I, j ∈ J, t ∈ T . (2.6)

The objective function (2.1) minimizes total costs (�xed plus variable costs).
Constraints (2.2) require that in every time period, an existing customer is as-
signed to exactly one facility. Constraints (2.3) impose that an existing customer
can only be assigned to open facilities. Constraints (2.4) ensure that each facility
is opened at most once during the time horizon. Finally, (2.5)�(2.6) restrict the
decision variables to be binary.

For a given s ∈ S, let us represent the optimal objective function value of
(Ps) by ξ∗s . If we could anticipate the scenario that will occur in the future,
then the optimal solution would be easily calculated and it would be the optimal
solution for the corresponding scenario (optimal solution of (Ps)). In the presence
of uncertainty, a decision has to be made without prior knowledge of the scenario
that will occur. This means that we can consider the existence of regret. In this
context, regret can be understood as a measure of how much we will lose due
to the fact that the optimal solution of the scenario s that came to occur was
not implemented. Our aim is to minimize the expected total cost guaranteeing
that the regret for all scenarios is upper bounded: the solution to the problem
is such that the objective function value under any scenario is at most 100α%
worse than the scenario's optimal solution. The problem can be formulated as
follows:

(Pα) min
∑
t∈T

∑
j∈J

∑
s∈S

psfs
jt xjt +

∑
s∈S

∑
t∈T

∑
i∈I

∑
j∈J

pscsijt y
s
ijt (2.7)

subject to∑
t∈T

∑
j∈J

f s
jt xjt +

∑
t∈T

∑
i∈I

∑
j∈J

csijt y
s
ijt ≤ (1 + α)ξ∗s ∀s ∈ S, (2.8)

∑
j∈J

ysijt = δsit ∀i ∈ I, t ∈ T , s ∈ S, (2.9)

t∑
τ=1

xjτ − ysijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (2.10)

∑
t∈T

xjt ≤ 1 ∀j ∈ J, (2.11)
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xjt ∈ {0, 1} ∀j ∈ J, t ∈ T , (2.12)

ysijt ∈ {0, 1} ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S. (2.13)

The objective function (2.7) minimizes the expected total costs (�xed plus
variable costs). Constraints (2.8) impose that relative regret for each scenario
is no greater than α. The remaining constraints are similar to the ones de�ned
above for (Ps). However, it should be pointed out that these constraints guarantee
that a customer can be assigned to di�erent facilities at di�erent time periods
and di�erent scenarios, as the set of opened facilities is not scenario dependent.

This problem has |J | |T |+|J | |I| |T | |S| binary variables and |S|+|I| |T | |S|+
|J | |I| |T | |S|+ |J | constraints (not counting the zero-one constraints). Even for
moderate dimensions of these sets, (2.7)�(2.13) becomes a quite large integer
linear program. This problem can be seen as a generalization of the problem
presented in (Marques and Matos Dias, 2013b).

3 Expected total cost versus regret: illustrative exam-

ples

In this section, the e�ect of incorporating parameter α into the proposed dy-
namic location problem under uncertainty is illustrated. The tradeo� between
the expected total cost and α will be also analysed. Three problem instances,
randomly generated, will be considered. The problem (Pα) has been solved itera-
tively for several values of α, and the best feasible solution found in each iteration
was recorded. Initially, α was set to a large value and then it was reduced by
0.01 units at each iteration until no feasible solution could be found. Let us �rst
consider an instance with 10 time periods, 20 potential facility sites, 100 possible
customers and 5 scenarios. For this particular instance, it was possible to prove
that (Pα) is infeasible for α < 0.07. The best expected total costs achieved for
each α are plotted in Figure 1. We can see that the expected total cost has a
non decreasing pattern as α decreases. In addition, the steep curve indicates
that large reductions in regret are possible with small increases in expected total
cost. These results are in accordance with similar results already observed in
static models. Achieving a more robust solution can sometimes be accomplished
by small changes in a given solution. This is depicted in Figure 2, where two
situations are compared: considering a maximum relative regret of 19% and 7%.
For this particular example, we can see that small changes in location decisions
can lead to more robust solutions.

Table 1 depicts the solutions in detail. We report the best objective function
values found for some values of α as well as the corresponding location decisions.
In column 'Increase' we report the increase (in percentage) of the best objective
function values relative to the best one achieved with α = 0.19, given by the difer-
ence between the best objective function value for each α and the best one with
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Figure 1: Expected total cost versus α.

Table 1: Expected total cost versus α.
α Best Obj Increase Location Decisions

t=1 t=2 t=3 t=4 t=6
0.19 128127 0.0% 9;11;13;14;17 10;18 7 4 2
0.17 128151,2 0.02% 9;11;13;14;17 10;18 7 4 �
0.09 128257,8 0.09% 6;9;11;13;14;17 18 � 4;16 �
0.07 128433,4 0.24% 9;11;13;14;17 18 � 4;16 2

α = 0.19 divided by this latter value. We can see that it is possible to decrease
the relative regret from 19% to only 7% with a slightly increase of 0.24% in the
expected objective function value (illustrated in Figure 2). Furthermore, we can
gather adicional information about this particular problem, such as the discovery
of a set of 'core' facilities, the ones that stay open for all values considered for
parameter α.

We will now consider two instances of the same size (example 2): 10 periods
of time, 20 potential facility sites, 100 possible customers and 10 scenarios. The
�rst instance proved to be infeasible for α < 0.06 and the second one for α < 0.17.
The best solutions achieved for both problem instances, presented in Figure 3 and
Table 2, show a behavior similar to the one observed in the previous instance.
It is also possible to identify for both instances the corresponding set of core
facilites.

The three instances used here for illustration purposes depict the general
behavior observed in similar problems. It is also possible to see that each problem
has its own features, and there can be huge variations in the obtained results
(namely regarding the minimum relative regret value for which the problem is still
feasible) even for problems of the same dimension. Looking at these examples, we
can conclude that it is worthwhile to study the compromise that exists between
expected total cost and maximum regret. The decision-maker will be able to
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(a) Initial network (b) t=1

(c) t=2 (d) t=3

(e) t=4 (f) t=6

Figure 2: (a) Initial network. White nodes represent potential facility sites and
gray nodes possible customers. (b) � (f) Networks with best location decisions.
(•) represent facilities opened both for α = 0.19 and α = 0.07. (�) represent
facilities opened only for α = 0.19. (N) represent facilities opened for α = 0.07.
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(a) Instance 1 (b) Instance 2

Figure 3: Expected total cost versus α � example 2.

Table 2: Expected total cost versus α � example 2.
α Best Obj Increase Loc Decisions

t=1 t=2 t=3 t=4 t=5 t=6
Inst 1 0.19 118189.8 0.00% 5;7;8;14 4;12;16 18 � � �

0.18 118580.0 0.33% 5;7;8;14 12;16 18 � � �
0.1 118614.8 0.36% 5;7;8;14;20 12;16 18 � � �
0.06 118757.5 0.48% 5;7;8;14;18 12;16 � � � �

Inst 2 0.22 106920.6 0.00% 6;7;10 � � � 5 17
0.21 107088.5 0.16% 6;7;10 � 17 � 5 �
0.2 108047.1 1.05% 6;10 � 17 � 5 �
0.18 108251.6 1.24% 6;10 � 17 8 5 �
0.17 108339.1 1.33% 6;10 � 17;20 � 5 �

make a more informed decision, choosing the solution that is most �tted to his
attitude towards risk.

4 Solution approach

To be able to formulate and solve the problem, it is necessary to calculate the
optimal solution ξ∗s for each scenario s ∈ S. These |S| problems can be solved by
the branch and bound procedure proposed in (Marques and Matos Dias, 2013a)
or by a general solver (CPLEX, for instance). Assume then that ξ∗s is known and
such that ξ∗s > 0, for all s ∈ S.

Lagrangean relaxation is a well known technique that allows the calculation of
lower bounds for integer programming problems (Reeves, 1993; Guignard, 2003).
If constraints (2.8) are relaxed, the problem �rst introduced in (Marques and
Matos Dias, 2013b) is obtained, allowing the use of an e�cient primal-dual heuris-
tic to calculate good quality solutions. This motivated the use of a Lagrangean
relaxation and a subgradient algorithm, as described in the next subsection.
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4.1 Lagrangean relaxation

The Lagrangean relaxation of problem (Pα) with respect to the constraint set
(2.8) can be de�ned through the introduction of the Lagrange multipliers λs ≥
0, ∀s ∈ S. Each λs is associated with the corresponding constraint and brought
into the objective function, as follows:

(LRPα) min
∑
t∈T

∑
j∈J

∑
s∈S

psfs
jtxjt +

∑
s∈S

∑
t∈T

∑
i∈I

∑
j∈J

pscsijty
s
ijt+

∑
s∈S

λs

∑
t∈T

∑
j∈J

f s
jtxjt +

∑
t∈T

∑
i∈I

∑
j∈J

csijty
s
ijt − (1 + α)ξ∗s

 (4.1)

subject to
(2.9)�(2.13).

The algorithm has been designed considering two well known results from
Lagrangean Relaxation (e.g., Reeves (1993), Guignard (2003)) adapted for the
present problem in the following proposition.

Proposition 4.1. The optimal solution of (LRPα), for λs ≥ 0,∀s ∈ S, gives
a lower bound to the optimal solution of the original problem (Pα). In addition,

a solution of (LRPα) that satis�es also constraint set (2.8) provides an upper

bound to the optimum of (Pα).

We have decided to use a very e�cient primal�dual heuristic to solve prob-
lem (LRPα). This heuristic has already been developed and applied to a problem
that has the same structure of (LRPα) (Marques and Matos Dias, 2013b). This
dual-based heuristic is inspired on the classical approaches developed in (Bilde
and Krarup, 1977; Erlenkotter, 1978) and (Van Roy and Erlenkotter, 1982). In
order to apply the primal-dual heuristic to the present problem, it is necessary
to formulate the dual problem of (LRPα), in short (DLRPα), the so�called con-
densed dual problem, as well as the complementary slackness conditions between
dual and primal problems. We present these formulations in appendix A where a
summary of the heuristic is also given. The main idea of the approach is to obtain
good solutions from the dual problem of the corresponding linear programming
relaxation of the primal problem, more precisely from the so�called condensed
dual problem. We stress that the heuristic is able to �nd admissible primal and
dual solutions for feasible problems (LRPα). Furthermore, the heuristic's pro-
cedures (dual ascent, primal and adjustment procedures) are designed to reduce
progressively the duality gap between dual and primal objective function values.
It is able to calculate very good quality solutions in reasonable computational
times, even for large dimension instances. Even if the heuristic is unable to �nd
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the optimal solution of (LRPα), it is still able to provide a good lower bound
to the optimal objective function value of (Pα), in this case through the dual
objective function value as stated in the next proposition.

Proposition 4.2. The best dual solution calculated by the primal�dual heuristic

applied to (LRPα) provides a lower bound to the optimal objective function value

of (Pα).

Proof: Let us represent the optimum of (Pα) by Opt(Pα) and the optimum of
(LRPα) by Opt(LRPα). In addition, let (zP , zD) be the primal and dual solu-
tions calculated by the primal�dual heuristic for (LRPα) and its dual (DLRPα),
respectively. If zP = zD, then zP = Opt(LRPα) which provides a lower bound
to Opt(Pα) (proposition 4.1). If the heuristic's solutions are such that zD < zP ,
then, from duality theory, we know that zD < Opt(LRPα) ≤ Opt(Pα), so zD is
a valid lower bound to Opt(Pα).

Let us now turn to the generation of upper bounds. Taking into account
(2.7) and the set of constraints (2.8), it is trivial to prove that the objective
function value of (Pα) is bounded above by

∑
s p

s(1 +α)ξ∗s . This value can then
be considered as a �rst upper bound to the optimum of (Pα). Furthermore, if a
lower bound calculated at any iteration is greater than this value, it means that
(Pα) is infeasible.

The primal solution calculated by the heuristic can be admissible or not for
(Pα). If it is admissible, then it represents an upper bound to the optimal solu-
tion of (Pα). After executing the primal-dual heuristic to (LRPα), a local search
procedure is performed. This local search procedure will explore the neighbor-
hood of the current solution, trying to reach feasibility or trying to improve the
objective function value (reaching better upper bounds). The neighborhood is
considered to be the set of solutions that are equal to the current one with the
exception of the opening time period of one facility. The local search procedure
tries to change the time period when a given facility is opened, or tries to not
open the facility at all. Whenever a better solution is found, it becomes the cur-
rent solution and the local search continues until it is not possible to �nd better
solutions in the neighborhood of the current solution.

A standard subgradient algorithm is used to update the Lagrange multipliers.
Let us de�ne subgradients Gs for the relaxed constraints, evaluated at the current
solution, by:

Gs =
∑
t∈T

∑
j∈J

fs
jt xjt +

∑
t∈T

∑
i∈I

∑
j∈J

csijt y
s
ijt − (1 + α)ξ∗s , ∀s ∈ S.

In addition, let π represent the step size for the Lagrange multipliers and z
the step size coe�cients for the Lagrange multipliers.

Initially, in iteration k = 0, λ
(k)
s = 0, ∀s ∈ S,
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Table 3: Dimension of the test problems.
Set |S| |T | |J | |I| num var num const

I 10 10 20 100 200200 210030
II 10 10 20 200 400200 420030
III 10 10 40 100 400400 410050
IV 10 20 20 100 400400 420030
V 20 10 20 100 400200 420040
VI 50 5 20 100 500100 525070

and in iteration k > 0,

λ
(k+1)
s = max{0, λ(k)

s + πGs}, with π = z
UB(k) − LB(k)∑

sG
2
s

,

where UB(k) and LB(k) are the most recent upper and lower bounds achieved.

During the execution of the algorithm, the best upper and lower bounds
achieved are updated and recorded, in order to calculate the solution gap, which
is one of the established stopping criteria. The stopping criteria as other details
of the algorithm will be discussed further in section 5.

5 Computational experiments

In order to analyze the model and to assess the e�ciency of the proposed algorith-
mic approach (both in terms of solution quality and computational time), several
instances were randomly generated. Even though we are dealing with strategic
decisions, where time usually is not determinant, faster algorithms permit the
consideration of larger and diverse problems, enriching the decision making pro-
cess. For this particular problem, being able to solve it for several di�erent values
of maximum regret will allow the decision�maker to get a better picture of the
compromises that exist. However, it is desirable that this process takes place
within a reasonable computational time. Six data sets were considered, with
number of scenarios, number of time periods, number of possible facility loca-
tions and number of possible customers given in Table 3. The corresponding
number of variables and constraints are also provided. For each one of these six
sets, forty instances were randomly generated following the approach described in
Appendix B. As we are in the presence of a dynamic problem under uncertainty,
data must change simultaneously over time and among the di�erent scenarios.
All instances are available from the authors upon request.

We have considered α ∈ {0.075, 0.10, 0.15, 0.20}. The stopping criteria were
established after some preliminary tests. The maximum computational time for
the execution of the algorithm is two hours for problems with 20 and 50 scenarios
and one hour for all other problems. In addition, we have also established as
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stopping criterium the quality of the best solution achieved by the algorithm,
measured by the gap between the best known upper and lower bounds: 2%
for the problems with 20 and 50 scenarios and 1.5% for all the others. We
have also imposed a maximum number of iterations which could vary from 20 to
50 (largest instances). The computational results provided in this section were
obtained considering a step size coe�cient z = 1 which gave the best results in
general. Other initial values of z as well as lowering z after a few iterations of the
algorithm were tested without signi�cant improvements in results. The algorithm
was coded in C�language and the computational experiments were carried out
on a AMD Turion(tm) X2 Dual�Core Mobile RM�70 processor at 2.00GHz with
3.00GB of RAM.

Table 4 summarizes the computational results obtained. For each data set
and for each α, column 'feas/inf/ind' reports the number of instances for which a
feasible solution was found by the algorithm, the number of instances identi�ed as
infeasible and also the number of instances for which the algorithm was unable to
achieve a feasible solution (solution indeterminate). The statistics shown in the
next columns refer only to the subsets of instances for which a feasible solution
was found (feasible instances). For each α and for each feasible instance, the
increase of the best objective function value relative to the best one achieved
for α = 0.2 was calculated. Column 'increase' depicts the average increase (in
percentage) obtained for each α. The next columns report the minimum, average
and maximum gap on the feasible instances, and the minimum, average and
maximum time (in seconds) spent by the algorithm to solve each set of feasible
instances (time results do not include the time required to read the problems'
data, only the time to solve them). Gap is given, in percentage, by the di�erence
between the best objective function value found by the algorithm and the best
known lower bound on the optimal value divided by this best known lower bound.
For each set, the last row shows the average results for gap and time.

We can see that the number of feasible instances decreases as α decreases
in all sets, due to infeasibility of some instances or due to the algorithm being
unable to achieve a feasible solution. The algorithm stopped with indeterminate
solutions in only 7.6% of all 960 problems, due to the time limit established a
priori, remaining the doubt about the feasibility of those instances. As expected,
the objective function values increase as regret decreases. In terms of solution
quality, the larger gaps were observed in sets V and VI, sets with larger number
of scenarios, but the quality of the solutions is still very good. The worst gap
equals 1.72% and was observed for instances with 50 scenarios. Apparently, the
decrease of parameter α does not seem to cause a deterioration in the quality
of the solutions in terms of gap, noticing however that the dimensions of the
samples with problems for smaller values of α are very small. The computational
time spent by the algorithm can vary a lot, even for problems within the same
set (same size) and same α. The higher execution times were observed in set III,
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with larger number of potential facility locations, and sets V and VI with larger
number of scenarios.

We have solved the same sets of problems using an exact algorithm, CPLEX
MIP optimizer, v12.4, with the same stopping criteria. The results are reported
in Table 5. CPLEX stopped with indeterminate solutions in 10% of all 960
problems, due to lack of memory. Considering only set VI, CPLEX was unable to
�nd a feasible solution in 19.4% of those 160 problems as Lagrangean relaxation
approach stopped with indeterminate solutions in only 8%. We noticed that
within sets I to V the indeterminate instances of CPLEX were almost the same for
which our algorithm was also unable to �nd a feasible solution, except 11 instances
for which only our algorithm was able to �nd a feasible solution and 6 feasible
instances only achieved by CPLEX. The results for these sets are very similar,
re�ecting that some instances are the hardest for both optimization algorithms.
In terms of solution quality, CPLEX provides smaller average gaps than the
Lagrangean relaxation approach, although less feasible instances were found by
CPLEX, in particular in set VI with larger number of scenarios. In addition,
CPLEX's maximum gap 1.97% is greater than the worst gap 1.72% achieved by
the algorithm (achieved in sets V and VI, respectively, both for α = 0.2). In
terms of computational time, CPLEX can also vary a lot. We can see that for
all problems, the minimum computational time was obtained by the algorithm,
in same cases clearly outperforming CPLEX. In terms of average computational
times, CPLEX is better than the algorithm on sets III and VI, thought less
feasible solutions were achieved by the solver.

In order to gather more information about the set of indeterminate instances,
the computational time of one hour was increased to two hours in some of the
sets. However, the algorithms were only able to �nd more infeasible instances,
though very few.

In brief, the computational results show that the Lagragean relaxation ap-
proach is capable of �nding very good quality solutions in reasonable computa-
tional times. It should be noted that CPLEX has better average gaps and compu-
tational times for some of the problems considered. However, for problems with
larger number of scenarios the solver shows more di�culties to generate feasible
solutions.

6 Conclusions and future work

In this paper we have described an uncapacitated discrete dynamic location prob-
lem that considers uncertainty in many of the problems' parameters through
scenarios and explicitly considers regret. By the analysis of some illustrative
examples, it was possible to obtain a deeper knowledge about the problem and
its possible solutions: the possibility of achieving more robust solutions from
small changes in a given and less robust solution, or the discovery of the core
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Table 4: Computational results.
increase gap time

Set feas/inf/ind (%) (%) (sec.)
α mean min mean max min mean max

I 0.2 40/0/0 0.00 0.00 0.23 1.05 9.95 119.13 873.9
0.15 39/0/1 0.17 0.00 0.30 1.32 9.20 130.02 1621.2
0.1 32/8/0 0.23 0.00 0.09 0.55 21.07 211.38 1567.9
0.075 14/26/0 0.29 0.00 0.04 0.39 28.23 222.41 1031.7

0.00 0.17 0.83 17.12 170.74 1273.7

II 0.2 40/0/0 0.00 0.00 0.09 0.51 1.2 327.2 1117.4
0.15 40/0/0 0.19 0.00 0.25 1.14 1.3 352.7 1126.5
0.1 38/0/2 0.25 0.00 0.19 0.99 1.3 449.2 1602.9
0.075 18/11/11 0.26 0.00 0.12 0.90 30.2 585.9 3029.4

0.00 0.17 0.89 8.47 428.77 1719.1

III 0.2 40/0/0 0.00 0.00 0.39 1.37 52.7 944.4 3609.0
0.15 40/0/0 0.06 0.00 0.35 1.10 52.9 1008.3 3691.9
0.1 25/9/6 0.14 0.00 0.25 0.83 98.2 789.1 3706.5
0.075 8/26/6 0.18 0.00 0.17 0.64 97.9 807.6 3528.9

0.00 0.29 0.99 75.42 887.33 3634.1

IV 0.2 40/0/0 0.00 0.00 0.29 1.46 5.5 303.2 2486.5
0.15 40/0/0 0.24 0.00 0.45 1.46 5.5 367.2 1753.8
0.1 23/1/16 0.28 0.00 0.33 1.33 5.5 586.4 3111.0
0.075 8/21/11 0.29 0.00 0.12 0.68 5.6 289.5 742.2

0.00 0.30 1.23 5.53 386.6 2023.4

V 0.2 40/0/0 0.00 0.00 0.31 1.59 88.4 480.3 2718.8
0.15 36/0/4 0.37 0.00 0.32 1.51 88.6 630.7 1951.6
0.1 18/20/2 0.44 0.00 0.28 1.05 127.0 769.9 3415.6
0.075 5/34/1 0.48 0.00 0.14 0.52 128.6 505.4 1449.7

0.00 0.26 1.17 108.2 596.6 2383.9

VI 0.2 40/0/0 0.00 0.00 0.24 1.72 59.4 929.8 3883.9
0.15 40/0/0 0.03 0.00 0.19 1.24 57.6 1058.5 6631.6
0.1 33/3/4 0.14 0.00 0.11 0.99 58.3 857.4 3124.8
0.075 17/14/9 0.44 0.00 0.04 0.33 165.6 781.2 1608.7

0.00 0.15 1.07 85.2 906.7 3812.3
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Table 5: Computational results using CPLEX.
Set feas/inf/ind gap (%) time (sec.)

α min mean max min mean max

I 0.2 40/0/0 0.00 0.15 1.26 54.40 130.48 1071.06
0.15 39/0/1 0.00 0.21 1.46 54.41 150.48 475.98
0.1 32/8/0 0.00 0.17 1.40 69.94 341.02 1711.57
0.075 14/26/0 0.00 0.01 0.13 61.04 177.86 488.88

0.00 0.13 1 59.95 199.96 936.87

II 0.2 40/0/0 0.00 0.04 0.91 160.4 232.8 404.9
0.15 40/0/0 0.00 0.05 0.91 159.9 292.7 947.4
0.1 38/0/2 0.00 0.10 0.77 158.9 567.3 3582.2
0.075 18/11/11 0.00 0.04 0.38 167.2 685.7 2206.7

0.00 0.06 0.74 161.61 444.62 1785.28

III 0.2 40/0/0 0.00 0.29 1.37 138.3 404.5 1193.1
0.15 38/0/2 0.00 0.27 1.42 137.7 568.8 2218.1
0.1 25/9/6 0.00 0.17 1.08 144.6 877.0 3502.1
0.075 8/26/6 0.00 0.10 0.34 145.8 520.1 1596.8

0.00 0.21 1.05 141.59 592.62 2127.51

IV 0.2 37/0/3 0.00 0.10 0.95 139.7 268.2 917.8
0.15 36/0/4 0.00 0.16 1.30 149.0 425.9 1999.4
0.1 23/1/16 0.00 0.15 0.65 161.4 793.4 3600.5
0.075 12/21/7 0.00 0.15 0.58 200.2 1116.5 3268.7

0.00 0.14 0.87 162.60 651.02 2446.59

V 0.2 40/0/0 0.00 0.22 1.97 181.1 424.2 1861.5
0.15 38/0/2 0.00 0.32 1.51 201.7 934.7 4122.6
0.1 16/20/4 0.00 0.18 0.73 196.6 896.2 3567.0
0.075 5/34/1 0.00 0.00 0.00 198.8 409.3 784.4

0.00 0.18 1.05 194.6 666.1 2583.8

VI 0.2 37/0/3 0.00 0.2 1.77 287.2 504.2 1106.1
0.15 37/0/3 0.00 0.11 1.72 293.9 520.7 1092.9
0.1 25/3/12 0.00 0.00 0.01 288.1 416.9 975.6
0.075 13/14/13 0.00 0.00 0.00 294.3 384.9 590.9

0.00 0.08 0.88 290.9 456.7 941.4
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facilities, those that remain open even if the robustness parameter varies. An
e�cient Lagrangean relaxation technique was also developed to cope with this
di�cult problem, that is able to calculate very good quality solutions in reason-
able computational times. In this model, an objective function that considers the
minimization of the expected cost is being considered. We also intend to consider
other objective functions, that can better represent the attitude towards risk of
di�erent decision-makers. In addition, capacity constraints, as well as the pos-
sibility of closing already opened facilities, should be considered to increase the
range of applicability of the models.
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A Summary of the primal�dual heuristic

In order to apply the primal�dual heuristic to (LRPα), the dual problem of
(LRPα), the condensed dual problem, and the complementary slackness condi-
tions between dual and primal problems must be formulated.

In what follows, consider the objective function (4.1) of (LRPα) rewritten as
follows: ∑

t∈T

∑
j∈J

∑
s∈S

(ps + λs)f
s
jtxjt +

∑
s∈S

∑
t∈T

∑
i∈I

∑
j∈J

(ps + λs)c
s
ijty

s
ijt. (A.1)

Notice that constant −
∑

s∈S λs(1+α)ξ∗s is not considered in (A.1), being added
to the �nal objective function value. In addition, consider restrictions (2.11)
rewritten as

∑
t∈T (−xjt) ≥ −1, ∀j ∈ J .

Consider the linear programming relaxation of the primal problem (LRPα)
where restrictions (2.12) and (2.13) are replaced by nonnegativity constraints.
De�ning in (A.1) Fs

jt = (ps + λs)f
s
jt and Cs

ijt = (ps + λs)c
s
ijt , and considering

dual variables vsit , w
s
ijt and uj associated with the restrictions (2.9), (2.10) and

(2.11), respectively, the dual problem of (LRPα) is given by:

(DLRPα) max
∑
i∈I

∑
t∈T

∑
s∈S

δsit v
s
it −

∑
j∈J

uj (A.2)

subject to

vsit − ws
ijt ≤ Cs

ijt ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (A.3)

∑
i∈I

∑
s∈S

T∑
τ=t

ws
ijτ − uj ≤

∑
s∈S

Fs
jt ∀j ∈ J, t ∈ T , (A.4)

ws
ijt ≥ 0 ∀i ∈ I, j ∈ J, t ∈ T , s ∈ S, (A.5)

uj ≥ 0 ∀j ∈ J. (A.6)

For feasible variables vsit, by constraints (A.3) and (A.5), we may set

ws
ijt = max{0, vsit − Cs

ijt} ∀i, j, t, s, (A.7)

to obtain the condensed dual problem:

(CDLRPα) max
∑
i∈I

∑
t∈T

∑
s∈S

δsit v
s
it −

∑
j∈J

uj (A.8)
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subject to

∑
i∈I

∑
s∈S

T∑
τ=t

max{0, vsiτ − Cs
ijτ} − uj ≤

∑
s∈S

Fs
jt ∀j, t, (A.9)

uj ≥ 0 ∀j. (A.10)

The corresponding slack variables πjt for constraints (A.9) are given by:

πjt =
∑
s∈S

Fs
jt −

∑
i∈I

∑
s∈S

T∑
τ=t

max{0, vsiτ − Cs
ijτ} + uj ∀j, t. (A.11)

Then, the complementary slackness conditions are:

πjt xjt = 0 ∀j, t, (A.12)

vsit

∑
j

ysijt − δsit

 = 0 ∀i, t, s, (A.13)

ws
ijt

(
t∑

τ=1

xjτ − ysijt

)
= 0 ∀i, j, t, s, (A.14)

uj

(
1−

∑
t

xjt

)
= 0 ∀j, (A.15)

ysijt
(
vsit − Cs

ijt − ws
ijt

)
= 0 ∀i, j, t, s. (A.16)

The main steps of the heuristic are as follows:

1. Set vsit = minj∈J{Cs
ijt}, ∀ (i, t, s), and uj = 0, ∀ j.

Set I+ = {(i, t, s) ∈ I × T × S : δsit = 1}.

2. Execute the dual ascent procedure.

3. Execute the primal procedure. If an optimal solution is found, then stop.

4. Execute the primal�dual adjustment procedure.

The heuristic stops when the optimal solution is found or when there are
no primal or dual improvements after a given number of trials within the
adjustment procedure.

24



A formal and detailed description of this heuristic is given in (Marques and
Matos Dias, 2013b). We can summarize it as follows. The ascent procedure
starts with a dual feasible solution and tries to increase iteratively the values of
dual variables associated with restrictions (2.9). This will lead to an increase of
the dual objective function value and, simultaneously, to the decrease of some
slacks' values. It stops when all dual variables are blocked from increasing by at
least one slack, and thus no further improvements of the dual objective function
value are possible. The output of this procedure is a dual feasible solution and an
associated set of candidate facility locations de�ned by the slacks that are equal
to zero. A corresponding candidate primal feasible solution will be constructed
within the primal procedure. The facilities that are opened �rst, belonging to the
set of candidate facilities that can be opened without violating complementary
slackness conditions, are the ones that at a given time t should be assigned
to a given customer i under some scenario s, the so�called essential facilities.
Other facilities are only opened if strictly necessary, that is if exists a customer
that cannot be assigned to an essential facility. Finally, as we are considering
uncapacitated facilities, for each scenario s and period t, each customer i will
be assigned to the facility operating in t with the lowest assignment cost. If the
dual and primal solutions satisfy all complementary slackness conditions, then
the solutions are optimal and the heuristic stops. If not, the heuristic continues
with adjustments in order to improve these solutions. Basically, it will try to
enforce some complementary conditions that can still be violated. If this is the
case, then at least one dual variable is decreased which causes the increase of at
least two slacks, associated with distinct facilities, so some dual variables may
be increased improving the dual objective value. As stated above, the heuristic
stops when the optimal solution is found or when there are no primal or dual
improvements after a given number of trials within the adjustment procedure.
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Table 6: Input values.
MaxX 1000
MaxY 1000
parc 0.75
d 50
parcc 0.80
psf 0.50 for s = 1 and 0.7 ∀s ̸= 1

psc 0.60 ∀s
pc 0.10
psa 0.70
pscf 0.90

B Generation of test problems

Below we provide the approach used in the generation of all test problems (in
general). As far as scenario probabilities (ps) are concerned, these were randomly
generated such that the sum of all probabilities is equal to 1. Table 6 presents
some input values that were considered and that must be known before the
generation procedure.

For ease in the exposition, let us �rst consider the following additional nota-
tion:

Js
t : Set of potencial facility locations that can be selected (opened) at the

beginning of time period t ∈ T for scenario s ∈ S,
Ist : Set of customer locations with demand during period t ∈ T for scenario

s ∈ S,
where Js

t ⊆ J and Ist ⊆ I.

1. Random generation of (x, y)−coordinates in a rectangular area of size
MaxX ×MaxY corresponding to the location of |J |+ |I| nodes (potencial
facility sites plus possible customer locations).

2. Random generation of arcs between the network nodes with probability
parc; afterwards, if there isn't an arc between two nodes �close� (the Eu-
clidean distance between them is less than d), an arc is created between
them with probability parcc > parc.

3. For s = 1 (basic scenario):

3.1 for t = 1: random generation of costs associated with arcs, according
to a Uniform distribution U [lc, uc];
for each t ≥ 2, each arc cost is equal to the cost in period t− 1 plus a
changing factor randomly generated.
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3.2 for each t ≥ 1:

i. calculation of the shortest path between each possible customer
location and each potential facility location�assignment costs�
using the Floyd-Warshall algorithm.

ii. random generation of set J1
t , with J1

1 ̸= ∅, and �xed costs:
each location j is included in J1

t with probability p1f ;

− if j ∈ J1
t , then the �xed cost at j is randomly generated from

a Uniform distribution U [lf, uf ], and for each τ > t the �xed
cost is increased by a changing factor randomly generated;

− if j /∈ J1
t , then the �xed cost at j is set to +∞.

iii. random generation of set I1t : each customer i is included in I1t
with probability p1c ; in addition, for t ≥ 3, if i was included in I1t−2

and excluded from I1t−1, then i is included in I1t with probability
pc < 0.5.

4. For s ̸= 1 (other scenarios):

4.1 for t = 1, consider the data generated for the basic scenario and t = 1.

4.1 for each t ≥ 2:

i. each arc cost that was generated for time period t of the basic
scenario (basic cost) changes in time period t of scenario s with
probability psa; if a variation occurs, then the arc cost is equal to
the basic cost plus a changing factor Θa randomly generated.

ii. calculation of the shortest path between each possible customer
location and each potential facility location.

iii. random generation of set Js
t and �xed costs:

each location j is included in Js
t with probability psf ;

− if j ∈ Js
t ∩ J1

t , then the �xed cost at j that was generated
for time period t of the basic scenario (basic cost) changes in
time period t of scenario s with probability pscf ; if a variation
occurs, then the �xed cost is equal to the basic cost plus a
changing factor Θf randomly generated;

− if j ∈ Js
t but j /∈ J1

t , then the �xed cost at j is randomly
generated from a Uniform distribution U [lf, uf ], and for each
τ > t the �xed cost is increased by a changing factor randomly
generated;

− if j /∈ Js
t , then �xed cost at j is set to +∞.

iv. random generation of set Ist : the demand state of customer i that
was generated for time period t of the basic scenario changes in
time period t of scenario s with probability psc.
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