On star and biclique edge-colorings

Simone Dantas ${ }^{\text {a }}$, Marina Groshaus ${ }^{\text {b }}$, André Guedes ${ }^{\text {c }}$, Raphael C. S. Machado ${ }^{\text {d }}$, Bernard Ries ${ }^{\mathrm{e}}$ and Diana Sasakif,g
${ }^{\text {a }}$ Departamento de Análise, Instituto de Matemática e Estatistica, Universidade Federal Fluminense, Brazil
${ }^{\mathrm{b}}$ Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
${ }^{\text {c Setor de Ciências Exatas, Departamento de Informática, Universidade Federal do Paraná, Brazil }}$
${ }^{\mathrm{d}}$ Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Brazil
${ }^{\text {e }}$ Department of Informatics, University of Fribourg, Switzerland
${ }^{\mathrm{f}}$ LAMSADE - CNRS UMR 7243 - Université Paris Dauphine, France
${ }^{\mathrm{g}}$ Departamento de Matemática Aplicada, Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Brazil
E-mail: sdantas@im.uff.br [Dantas]; marinagroshaus@yahoo.es [Groshaus]; alpguedes@gmail.com [Guedes]; machado.work@gmail.com [Machado]; bernard.ries@unifr.ch [Ries]; diana.sasaki@ime.uerj.br [Sasaki]

Received 27 May 2015; received in revised form 11 March 2016; accepted 18 April 2016

Abstract

A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph $K_{p, q}$ of G with at least one edge, and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph $K_{1, q}$. A biclique (resp. star) edge-coloring is a coloring of the edges of a graph with no monochromatic bicliques (resp. stars). We prove that the problem of determining whether a graph G has a biclique (resp. star) edgecoloring using two colors is NP-hard. Furthermore, we describe polynomial time algorithms for the problem in restricted classes: K_{3}-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles.

Keywords: star edge-coloring; biclique edge-coloring; NP-hard

1. Introduction

Bicliques have been studied in several contexts such as telecommunications (Gualandi et al., 2013; Faure et al., 2014) and bioinformatics (Zhang et al., 2014). In the graph theory, the biclique vertexcoloring problem was proposed by Groshaus et al. (2014) and it is attracting much attention in recent works (Macêdo Filho et al., 2012, 2015). In the present work, we address the edge-coloring version of the biclique coloring problem, that is, we investigate how to color the edges of a graph in such a way that no biclique is monochromatic. We also address a variant of the problem in which the stars cannot be monochromatic, the so-called star edge-coloring problem. We prove that the problem of determining whether a graph has a biclique (resp. star) edge-coloring using two colors
is NP-hard. Observe that the NP-hardness of biclique (resp. star) edge-coloring using two colors does not imply that the problem remains NP-hard if three or more colors are allowed. Indeed, for the analogous problem of clique vertex-coloring, the classical NP-hardness result of Kratochvíl and Tuza (2002) refers to clique vertex-coloring using precisely two colors; only almost a decade later, Marx (2011) proved the $\Sigma_{2} P$-completeness of clique k-vertex-coloring for any $k \geq 2$. The NP-hardness of biclique (resp. star) edge-coloring using two colors motivates the study of these two problems in restricted graph classes. The present work proposes some techniques that allow us to obtain biclique edge-colorings and star edge-colorings of graphs in the following classes: K_{3}-free graphs, chordal bipartite graphs, powers of paths, and powers of cycles. Coloring problems have been largely studied in these classes, see, for example, Cerioli and Posner (2012), Dabrowski et al. (2012), Campos and de Mello (2007), Luiz et al. (2015), and Macêdo Filho et al. (2015).

Let $G=(V, E)$ be a simple graph with order $n=|V|$ vertices and $m=|E|$ edges. A biclique of G is a maximal set of vertices that induces a complete bipartite subgraph $K_{p, q}$ of G with at least one edge; and a star of a graph G is a maximal set of vertices that induces a complete bipartite graph $K_{1, q}$ of G. A biclique edge-coloring of G is a function C_{b}^{\prime} that associates a color to each edge of G such that no biclique with at least two edges is monochromatic. If the function C_{b}^{\prime} uses at most c colors, we say that C_{b}^{\prime} is a biclique c-edge-coloring. The biclique chromatic index of G is the least c for which G has a biclique c-edge-coloring. Similarly, a star edge-coloring of G is a function C_{s}^{\prime} that associates a color to each edge of G such that no star with at least two edges is monochromatic. If the function C_{s}^{\prime} uses at most c colors, we say that C_{s}^{\prime} is a star c-edge-coloring. The star chromatic index of G is the least c for which G has a star c-edge-coloring.

The paper is organized as follows. In Section 2, we prove that the biclique 2-EDGe-coloring and the STAR 2-EDGE-COLORING problems are NP-hard. We observe that the construction of the particular instance in this last proof has a polynomial amount of bicliques, so the STAR 2-EDGECOLORING problem is NP-complete for the class of graphs in which each vertex belongs to at most one K_{3}, have degree at most 3 , and are C_{4}-free, case in which we can define the precise complexity of the problems. In Section 3, we investigate the problems in the class of K_{3}-free graphs and determine its star chromatic index in polynomial time. Finally, in Section 4, we construct biclique edge-colorings and star edge-colorings for chordal bipartite graphs, powers of cycles, and powers of paths.

2. Star and biclique 2-edge-colorings are NP-hard

In this section, we prove that both BICLIQUE 2-EDGE-COLORING (2-BEC) and STAR 2-EDGE-COLORING (2-SEC) problems are NP-hard by reducing the NP-hard problem not-all-equal 3-satisfiability (Schaefer, 1978) to 2-BEC problem (Fig. 1).

These two decision problems are defined as follows:
NOT-ALL-EQUAL 3-SATISFIABILITY (NAE 3-SAT). Instance: Set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of Boolean variables, collection $C=\left\{c_{1}, \ldots, c_{m}\right\}$ of clauses over X such that each clause $c_{i} \in C$ has $\left|c_{i}\right|=3$. Question: Is there a truth assignment for X such that each clause in C has at least one true literal and at least one false literal?
biclique 2-Edge-coloring (2-bec). Instance: Graph $G=(V, E)$. Question: Does G admits a 2-BEC?

Fig. 1. Gadget X_{1} corresponding to a variable x_{1} that occurs in exactly three clauses of C with a unique biclique 2-EDGE-COLORING determined by color 2 in $v^{1} v^{\prime}$.

Theorem 1. The 2-BEC problem is NP-hard.
Proof. In order to reduce the not-all-EQUAL 3-satisfiability to the 2-bec problem, we need to construct, in polynomial time, a particular instance $G=(V, E)$ of 2-bec problem from a generic instance (X, C) of not-all-EQUAL 3-satisfiability, such that C is satisfiable if, and only if, $G=$ (V, E) admits a biclique 2-edge-coloring. First, we construct a particular instance $G=(V, E)$ of 2-BEC described next; second, we prove that every graph G that admits a biclique 2-edge-coloring defines a not-all-equal truth assignment for (X, C) (Lemma 1); third, we prove that every not-allequal truth assignment for (X, C) defines biclique 2-edge-coloring for graph G (Lemma 2).

Construction of particular instance. Let (X, C) be a generic instance of naE 3-SAT such that $X=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ is the variable set and $C=\left\{c_{1}, \ldots, c_{m}\right\}$ is a collection of clauses, where $c^{j}=\left(l_{1}^{j}, l_{2}^{j}, l_{3}^{j}\right)$ and $\left|c_{j}\right|=3$.

For each variable x_{i}, we have a gadget X_{i} such that $V\left(X_{i}\right)=\bigcup_{t=1}^{k}\left\{y_{t}^{i}, z_{t}^{i}, x_{t}^{i}\right\} \cup\left\{v^{i}, v^{i}\right\}$ and $E\left(X_{i}\right)=\bigcup_{t=1}^{k-1}\left\{y_{t}^{i} z_{t}^{i}, z_{t}^{i} x_{t}^{i}, x_{t}^{i} y_{t}^{i}, z_{t}^{i} y_{t+1}^{i}\right\} \cup\left\{y_{k}^{i} z_{k}^{i}, z_{k}^{i} x_{k}^{i}, x_{k}^{i} y_{k}^{i}, z_{k}^{i} v^{i}, v^{i} v^{i}, v^{i} y_{1}^{1}\right\}$, where k is the number of occurrences of literal corresponding to x_{i} or \bar{x}_{i} in C. We note that for each $1 \leq i \leq n$, the number of vertices of X_{i} is $3 k+2$ (e.g., see Fig. 2).

For each clause $c^{j}=\left(l_{1}^{j}, l_{2}^{j}, l_{3}^{j}\right)$ we have one clause vertex c_{j}. For each $1 \leq j \leq m$ and $d \in\{1,2,3\}$, if l_{d}^{j} is equal to variable x_{i} then we have edge $c_{j} x_{t}^{i}$, where t is one of the k vertices x_{t}^{i} in X_{i} with no edge to some clause vertex c. Otherwise, if l_{d}^{j} is equal to \bar{x}_{i} then we add vertex $x_{t}^{\prime i}$ and edges $\left\{x_{t}^{i} x_{t}^{\prime}, c_{j} x_{t}^{\prime i}\right\}$, again t is one of the k vertices x_{t}^{i} in X_{i} with no edge to some clause vertex c. Note that the constructed graph is C_{4}-free, so that any biclique edge-coloring is a star edge-coloring and vice versa.

Lemma 1. If the particular instance $G=(V, E)$ of 2-BEC admits a biclique 2-edge-coloring, then there exists an NAE truth assignment that satisfies (X, C).

Fig. 2. Instance $G=(V, E)$ of 2-BEC obtained from the satisfiable instance of 3-sAT:

$$
I=(X ; C)=\left(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{\left(x_{1} \vee x_{2} \vee x_{3}\right),\left(x_{1} \vee \bar{x}_{2} \vee x_{4}\right)\right\}\right) .
$$

Proof. The truth assignment is defined based on the following property (we refer to Fig. 2): Each gadget X_{i} contains a unique hole H_{i}, which is odd. Moreover, X_{i} has the property that all P_{3} s are bicliques, except for $\left\{v^{i}, y_{1}^{i}, z_{k}^{i}\right\}$, which is included in the biclique $\left\{v^{i}, v^{\prime i}, y_{1}^{i}, z_{k}^{i}\right\}$. It follows that if in some biclique 2 -edge-coloring (with colors 1,2) the edge $v^{i} y_{1}^{i}$ has color $\lambda \in\{1,2\}$, then every second edge along the hole H_{i} must have color λ too, up to edge $v^{i} z_{k}^{i}$, and consequently $v^{i} v^{\prime}$ must have color $3-\lambda$; moreover, all other edges of X_{i} must have color $3-\lambda$.

Assume that G admits a biclique 2 -edge-coloring. Define a truth assignment as follows: the value of variable x_{i} is True if the edge $v^{i} v^{\prime i}$ is colored 1 and is False if the edge $v^{i} v^{\prime i}$ is colored 2. The truth assignment is valid because each clause is the center of a star that is a biclique, hence not all incident edges have the same color and, equivalently, not all literals have the same truth value.

The converse of Lemma 1 is given next by Lemma 2.
Lemma 2. If there exists a not-all-equal truth assignment that satisfies (X, C), then the particular instance $G=(V, E)$ of 2-BEC admits a biclique 2-edge-coloring.

Proof. Assume that (X, C) has a not-all-equal truth assignment. We color each pendant edge incident to X_{i} with color 1 if x_{i} is True; and with color 2 if x_{i} is False. Thus, we extend the coloring to each X_{i} as in Fig. 2. Finally, we color each edge incident to x_{i}^{j} with the color distinct from the color of the pendant edge incident to X_{j}, and each remaining edge-corresponding to negative literals-receives the unique available color. The coloring is valid because it corresponds to a not-all-equal truth assignment, so that not all colors incident to a clause are equal, and the stars centered in the clause vertices are bicolored.

Since the particular instance of 2-BEC does not contain $C_{4} \mathrm{~s}$, we obtain the following result.
Corollary 1. The 2-sEC problem is NP-hard.
Furthermore, since a graph G resulting from the construction above is such that each vertex belongs to at most one K_{3}, G is C_{4}-free and has degree at most 3 ; we obtain one more result.
Corollary 2. The 2-BEC and 2-SEC problems are NP-complete for the class of graphs G such that each vertex belongs to at most one K_{3}, G is C_{4}-free and has degree at most 3 .

3. On the star chromatic index of K_{3}-free graphs

In this section, we determine the star chromatic index of odd cycles and of all connected K_{3}-free graphs in polynomial time. The first result is an immediate consequence of the well-known result of edge-coloring of cycles.
Theorem 2. If G is a chordless cycle C_{n} with odd $n \geq 5$ vertices, then the star chromatic index of G is equal to 3. Furthermore, if G is a connected K_{3}-free graph that is not isomorphic to C_{n}, for odd $n \geq 5$, then the star chromatic index of G is equal to 2 .
Proof. Since G is K_{3}-free, every vertex with all its neighbors form an induced star. If G has a vertex with degree 1 (leaf), construct a depth-first search tree starting on a leaf of G. If G has no leaf, then G has a cycle, and let $C=\left(v_{1}, v_{2}, \ldots, v_{k}, v_{1}\right)$ be an induced cycle of G such that v_{k} has a neighbor not in C (note that such a cycle always exists). Construct a depth-first search tree on G with v_{1} as a root and choosing vertices $v_{2}, v_{3}, \ldots, v_{k}$ in that order.

Note that if there are return edges to the root (there is no leaf in G to be used as a root), then there is at least one return edge that is not from a leaf-the return edge $v_{k} v_{1}$.

Color the tree edges from level i to level $i+1$ with color $(i \bmod 2)+1$. If the root vertex is a leaf, then its star has just one edge. If the root vertex has degree greater than 1 , then choose a return edge leaving from a vertex that is not a leaf and color it with color 2.

For each leaf f with return edges, choose a return edge to color with a color different from the tree edge arriving in f. If f has no return edge, the star of f has just one edge. Therefore, every star has two colors or has only one edge.

4. On the biclique chromatic index of some graphs

In this section, we determine the biclique chromatic index of all chordal bipartite graphs and an upper bound for the biclique chromatic index of powers of cycles and powers of paths.

A graph is chordal bipartite if it is bipartite and each cycle of length at least 6 has a chord. The proof of the next result is based on the property that these graphs have a bisimplicial elimination ordering. Note that if an edge $u v$ belongs to two distinct bicliques, then $N(u) \cup N(v)$ cannot be a biclique. Hence, a bisimplicial edge of the graph belongs to precisely one biclique. The coloring is obtained by an algorithm based on induction of the number of edges.

Theorem 3. Every chordal bipartite graph has biclique chromatic index 2.

Proof. Let $G=(V, E)$ be a chordal bipartite graph. We may assume G connected. If G has two edges, color one edge with color 1 and the other edge with color 2 . Now, assume that G has more than two edges and let $u v$ be a bisimplicial edge, such that $N(u) \cup N(v)$ induces a complete bipartite graph.

Note that the bicliques of $G \backslash u v$ are the same as the bicliques of G, except for $G[N(u) \cup N(v)]$, which is a biclique of G that is not a biclique of $G \backslash u v$. By induction, graph $G \backslash u v$ has a biclique 2-edge-coloring, that is, an association of colors to the edges is in such a way that every biclique is 2-colored. We construct a biclique 2-edge-coloring of G as follows. First, color the edges of $E \backslash\{u v\}$ as in a biclique 2-edge-coloring of $G \backslash u v$ using colors 1 and 2. If this coloring results in
$G[N(u) \cup N(v)]$ monochromatic with color 1, then color $u v$ with color 2; otherwise color $u v$ with color 1.

A power of a cycle C_{n}^{k}, for $n, k \geq 1$ is a simple graph on n vertices with $V(G)=\left\{v_{0}, \ldots, v_{n-1}\right\}$ and $\left\{v_{i}, v_{j}\right\} \in E(G)$ if, and only if, $\min \{(j-i) \bmod n,(i-j) \bmod n\} \leq k$. Note that C_{n}^{1} is the induced cycle C_{n}, and C_{n}^{k} with $n \leq 2 k+1$ is the complete graph K_{n}. In a power of a cycle C_{n}^{k}, we take $\left(v_{0}, \ldots, v_{n-1}\right)$ to be a cyclic order on the vertex set and we always perform arithmetic modulo n on vertex indices. A power of a path P_{n}^{k}, for $k \geq 1$, is a simple graph on n vertices with $V(G)=$ $\left\{v_{0}, \ldots, v_{n-1}\right\}$ and $\left\{v_{i}, v_{j}\right\} \in E(G)$ if, and only if, $|i-j| \leq k$. Note that P_{n}^{1} is the induced path P_{n}, and P_{n}^{k} with $n \leq k+1$ is the complete graph K_{n}. In a power of a path P_{n}^{k}, we take $\left(v_{0}, \ldots, v_{n-1}\right)$ to be a linear order on the vertex set.

In the following, we obtain an upper bound for the biclique chromatic index of both classes by analyzing the cases according to the number of vertices of the graph, as described next.

The bicliques of a power of a path $P_{n}^{k}, n>k+1$, are precisely (Macêdo Filho et al., 2015):

- K_{2} and P_{3} bicliques, if $k+2 \leq n \leq 2 k$; and
- P_{3} bicliques, if $n \geq 2 k+1$.

The bicliques of a power of a cycle $C_{n}^{k}, n>2 k+1$, are precisely (Macêdo Filho et al., 2015):

- C_{4} bicliques, if $2 k+2 \leq n \leq 3 k+1$;
- P_{3} and C_{4} bicliques, if $3 k+2 \leq n \leq 4 k$; and
- P_{3} bicliques, if $n \geq 4 k+1$.

Theorem 4. Every noncomplete power of a cycle has a biclique edge-coloring using at most four colors.
Proof. Let $G=C_{n}^{k}$ be a power of a cycle with $n \geq 2 k+2$. We show how to color G in such a way that no induced P_{3} is monochromatic, hence, no biclique of G is monochromatic.

First define $\lceil n / k\rceil$ sets of vertices, each set having k consecutive vertices of G, as follows:

- $B_{1}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$
- $B_{2}=\left\{v_{k+1}, v_{k+2}, \ldots, v_{k+k}\right\}$
- ...
- $B_{i}=\left\{v_{(i-1) k+1}, v_{(i-1) k+2}, \ldots, v_{(i-1) k+k}\right\}$
- ...
- $B_{\lfloor n / k\rfloor}=\left\{v_{(\lfloor n / k\rfloor-1) k+1}, v_{(\lfloor n / k\rfloor-1) k+2}, \ldots, v_{(\lfloor n / k\rfloor-1) k+k}\right\}$
- if $n \neq 0 \bmod k$, that is, if $\lceil n / k\rceil=\lfloor n / k\rfloor+1$, then $B_{\lfloor n / k\rfloor+1}=V(G) \backslash\left(B_{1} \cup B_{2} \cup \ldots \cup B_{\lfloor n / k\rfloor}\right)$ (note that this vertex set has size less than k).

Consider an auxiliary graph G_{B} with vertices $b_{1}, \ldots, b_{\lceil n / k\rceil}$ corresponding, respectively, to the blocks $B_{1}, \ldots, B_{\lceil n / k\rceil}$ of G, in a such way that two vertices, b_{i} and b_{j}, are adjacent in G_{B}, if there exists an edge in G from a vertex of B_{i} to a vertex of B_{j}. If vertex $b_{\lfloor n / k\rfloor+1}$ exists, then G_{B} is composed by a cycle $b_{1}, \ldots, b_{\lfloor n / k\rfloor+1}$ having vertex $b_{\lfloor n / k\rfloor}$ adjacent to both $b_{\lfloor n / k\rfloor+1}$ and b_{1}. Note that if $n=0 \bmod k$, then G_{B} is a cycle, and so it has maximum degree 2 . If $n \neq 0 \bmod k$, then G_{B} has maximum degree 3. In what follows, we present how to construct a biclique 4-edge-coloring of G from a 4-total-coloring of G_{B}. A k-total-coloring of a graph G is an assignment of k colors to
the elements (vertices and edges) of a graph, such that adjacent or incident elements have different colors, and a k-total-coloring of a graph with maximum degree Δ, uses at least $\Delta+1$ colors.

First, we prove that G_{B} has a 4-total-coloring. If $n \leq 3 k$ then G_{B} is a C_{3}, which has a 4-totalcoloring by coloring elements $b_{1}, b_{1} b_{2}, b_{2}, b_{2} b_{3}, b_{3}, b_{3} b_{1}$ with colors $1,2,3,1,4,3$, respectively. Hence, we consider the case $n>3 k$. If $n=0 \bmod k$, then G_{B} is a cycle $b_{1}, b_{2}, \ldots, b_{\lfloor n / k\rfloor}$ and so it is easily 4-total-colorable. If $n \neq 0 \bmod k$, then we color elements $b_{\lfloor n / k\rfloor+1} b_{\lfloor n / k\rfloor}, b_{\lfloor n / k\rfloor}, b_{\lfloor n / k\rfloor} b_{1}, b_{1}, b_{1} b_{2}$ with colors $1,2,3,4,1$, and extend the total coloring to the remaining elements using four colors.

We need some additional notations. An edge of G whose endvertices belong to the same block B_{i} is called an internal- B_{i} edge. An edge of G whose endvertices belong to distinct blocks B_{i} and B_{j} is called an external- $B_{i} B_{j}$ edge.

Now, we construct a biclique 4-edge-coloring of G from a 4-total-coloring of G_{B} : For each block B_{i} of G, each internal- B_{i} edge of G receives the same color as b_{i} received in the 4-total-coloring of G_{B}; for each block B_{i} of G, each external- $B_{i} B_{j}$ edge of G receives the same color as $b_{i} b_{j}$ received in the 4-total-coloring of G_{B}.

It remains to prove that there is no edge-monochromatic P_{3} in G. Consider a set $\left\{v_{1}, v_{2}, v_{3}\right\}$ of vertices that induces a P_{3} such that $v_{1} v_{2}$ and $v_{2} v_{3}$ are edges of G and $v_{1} v_{3}$ is a nonedge of G. Note that v_{1} and v_{3} are not in the same block, for otherwise, they would be adjacent. There are three possible cases.

1. Vertices v_{1}, v_{2}, and v_{3} belong to distinct blocks B_{i}, B_{j}, and B_{k}, respectively, of G-which implies that b_{i} and b_{j}, resp. b_{j} and b_{k}, are adjacent in G_{B}. In this case, edges $v_{1} v_{2}$ and $v_{2} v_{3}$ receive, resp., the color of $b_{i} b_{j}$ and $b_{j} b_{k}$ in G_{B}, which are distinct because $b_{i} b_{j}$ and $b_{j} b_{k}$ are adjacent edges of G_{B}.
2. Vertices v_{1} and v_{2} belong to the same block B_{i}-which implies that v_{3} belongs to a block B_{j} that is adjacent to B_{i}. In this case, edges $v_{1} v_{2}$ and $v_{2} v_{3}$ receive, resp., the color of b_{i} and $b_{i} b_{j}$ in G_{B}, which are distinct because $b_{i} b_{j}$ is incident to b_{i} in G_{B}.
3. Vertices v_{2} and v_{3} belong to the same block B_{i}. This case is analogous to the previous case.

The above result provides an upper bound for the biclique chromatic index of powers of cycles. It is important to note that this upper bound is tight. Indeed, we could find a power of a cycle ${ }^{1}$ whose biclique chromatic index is 4 , namely, C_{56}^{10}. In addition, there exist powers of cycles with biclique chromatic index equal to 2 and 3 . An example of a power of a cycle with biclique chromatic index equal to 2 is any graph C_{n}^{k} with $2 k+2 \leq n \leq 3 k+1$. A valid coloring is constructed by defining set B_{1} with $n-k$ consecutive vertices and set B_{2} with the remaining k consecutive vertices. In B_{1}, we color the edges, having both endvertices, with color 1 and the remaining edges with color 2 (we invite the reader to check that each C_{4} contains at least one vertex from each color class and all bicliques are $C_{4} \mathrm{~s}$).

An example of a power of a cycle with biclique chromatic index equal to 3 is the graph C_{9}^{2} with vertices $\left\{v_{0}, v_{1}, v_{2} \ldots, v_{8}\right\}$. In fact, suppose that there exists a biclique 2-edge-coloring of C_{9}^{2}. Without loss of generality, start by assigning color 1 to edge $v_{0} v_{1}$, and so both edges $v_{1} v_{3}$ and $v_{0} v_{7}$ must be colored with color 2 . This implies that edges $v_{5} v_{7}$ and $v_{3} v_{5}$ must have color 1 , but

[^0]in this case, the biclique $v_{3} v_{5} v_{7}$ would be monochromatic, which is a contradiction. A biclique 3 -edge-coloring is obtained by coloring edges $v_{0} v_{1}, v_{5} v_{6}, v_{1} v_{8}, v_{0} v_{2}, v_{4} v_{6}, v_{5} v_{7}$ with color 1 , edges $v_{2} v_{3}, v_{7} v_{8}, v_{1} v_{3}, v_{2} v_{4}, v_{6} v_{8}, v_{0} v_{7}$ with color 2 , and edges $v_{1} v_{2}, v_{3} v_{4}, v_{4} v_{5}, v_{6} v_{7}, v_{0} v_{8}, v_{3} v_{5}$ with color 3 .
Theorem 5. Every noncomplete power of path has a biclique edge-coloring using at most four colors.
Proof. Every noncomplete power of a path G is an induced subgraph of a power of a cycle H. By the proof of Theorem 4, H has a 4-coloring of its edges in such a way that no induced P_{3} is monochromatic. We claim that the restriction of this coloring to the edges of G is a biclique 4-edge-coloring of G, because each induced P_{3} of G is an induced P_{3} of H-therefore, it cannot be monochromatic by the coloring given to H.

Acknowledgments

This work was partially supported by CNPq, Faperj, and CAPES/MathAmSud 021/14.

References

Campos, C.N., de Mello, C.P., 2007. A result on the total coloring of powers of cycles. Discrete Applied Mathematics 155, 585-597.
Cerioli, M.R., Posner, D.F.D., 2012. On L(2, 1)-coloring split, chordal bipartite, and weakly chordal graphs. Discrete Applied Mathematics 160, 18, 2655-2661.
Culberson, J., 2000. Overview of the smallk graph coloring program. Available at http://webdocs.cs.ualberta.ca/~joe/ Coloring/Colorsrc/smallk.html (accessed May 10, 2016).
Dabrowski, K.K., Lozin, V., Raman, R., Ries, B., 2012. Colouring vertices of triangle-free graphs without forests. Discrete Mathematics 312, 7, 1372-1385.
Faure, N., Chrétienne, P., Gourdin, E., Sourd, F., 2014. Biclique completion problems for multicast network design. Discrete Optimization 4, 3-4, 360-377.
Groshaus, M., Soulignac, F.J., Terlisky, P., 2014. Star and biclique coloring and choosability. Journal of Graph Algorithms and Applications 18, 3, 347-383.
Gualandi, S., Maffioli, F., Magni, C., 2013. A branch-and-price approach to k-clustering minimum biclique completion problem. International Transactions in Operational Research 20, 101-117.
Kratochvíl, J., Tuza, Z., 2002. On the complexity of bicoloring clique hypergraphs of graphs. Journal of Algorithms 45, 1, 40-54.
Luiz, A.G., Campos, C.N., Dantas, S., Sasaki, D., 2015. The 1,2-conjecture for powers of cycles. Proceedings of LAGOS 2015. Electronic Notes in Discrete Mathematics 50, 83-88.

Macêdo Filho, H.B., Dantas, S., Machado, R.C.S., Figueiredo, C.M.H., 2015. Biclique-colouring verification complexity and biclique-colouring power graphs. Discrete Applied Mathematics 192, 65-76.
Macêdo Filho, H.B., Machado, R.C.S., Figueiredo, C.M.H., 2012. Clique-colouring and biclique-colouring unichord-free graphs. Proceedings of LATIN 2012 Lecture Notes in Computer Science 7256, 530-541.
Marx, D., 2011. Complexity of clique coloring and related problems. Theoretical Computer Science 412, 29, 3487-3500.
Schaefer, T.J., 1978. The complexity of satisfiability problems. Proceedings of the 10th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, pp. 216-226.
Zhang, Y., Phillips, C.A., Rogers, G.L., Baker, E.J., Chesler, E.J., Langston, M.A., 2014. On finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types. BMC Bioinformatics $15,110,1-18$.
© 2016 The Authors.
International Transactions in Operational Research © 2016 International Federation of Operational Research Societies

[^0]: ${ }^{1}$ We run the smallk vertex coloring software (Culberson, 2000) over the graph H whose vertices are the edges of C_{56}^{10}, such that two vertices are adjacent if the corresponding edges of C_{56}^{10} are the edges of an induced P_{3}. The conversion is valid because all bicliques of C_{56}^{10} are P_{3}. The software could not find any valid 3-coloring of H.

