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ABSTRACT 

We present a modeling and optimization approach for the planning of primary 

healthcare services in order to efficiently direct patient admissions to general 

practitioners (GP) and to leverage the capacity of the healthcare system. We propose a 

multi-period multi-criteria districting model for the problem of designing GP districts 

in the presence of six criteria: workload balance, capacity, accessibility, compactness, 

income equity and district similarity. We combine the last three criteria into a single 

objective function and formulate the problem as a mixed integer program with binary 

location decision variables and relaxed allocation decision variables for gradual 

assignments. To assess the usefulness of the model, we test it on real-case scenarios of 

Istanbul, Turkey. 

KEYWORDS: Health service, integer programming, multi-criteria, multi-period, 

location, districting 

 

1. INTRODUCTION 

The role of primary care that is provided by General Practitioners (GP) is the first level 

in a healthcare system where many patient needs can already be treated and the 

admission of patients to secondary care healthcare facilities (e.g., hospitals) is not 

required. As the demand for healthcare services is rapidly increasing due to factors such 

as aging societies, increasing life standards and expectations for healthy-living, an 

effective general practitioner scheme plays a crucial role in leveraging the capacity of 

the healthcare system (Buja et al., 2015). 

The main premise of the GP scheme is to direct the admissions of patients to 

GPs instead of hospitals. While some countries enforce patients to visit a GP first, it is 



the ease of access to a GP that mainly determines the effectiveness of the scheme (Buja 

et al., 2015; Yiannakoulias et al., 2013). Either enforced or volunteered, the patient is 

motivated and more satisfied to visit a GP if the GP is easily reachable. On the other 

hand, doctors are also selective in locating their practices since their income is typically 

proportional to the number of patient visits as well as their age distributions. 

 In practice, the GP scheme is usually planned by traditional, judgmental and 

heuristic methods. Systematic approaches based on Operations Research techniques 

using the available data rather than the traditional regulatory approaches may result in 

significant efficiency improvements in a healthcare system. In a well-planned scheme, 

the primary care service should be consistently available and easily accessible over a 

geographical region with different population densities and characteristics, and should 

also respect equity for the patients and the doctors. Thus, the design of a GP scheme is 

closely related to location-based organizational planning and decision problems. There 

are two fundamentally different types of GP schemes. In the first, inhabitants are 

assigned to a GP in advance by a public healthcare administration unit. In the second, 

patients choose by themselves which GP to visit. Two examples for the first are Turkey 

and the United Kingdom. Although patients have in principle the freedom to visit a GP 

they are not assigned to, they have to ask the administration for permission to do that 

in Turkey (HMT 2010) or the non-designated GP in the UK may refuse to register an 

inhabitant on the grounds that the inhabitant is living outside their district (NHS 

Choices 2016). For these countries, the GP scheme design can be defined as a districting 

problem related to planning services and operations over a geographical region subject 

to various requirements. A solution to this problem will identify districts with 

inhabitants that are (expected) to visit a doctor’s practice positioned at the center of the 

corresponding district. An example for a free of choice scheme is Germany. See Haase 

and Müller (2015) and Carello and Lanzarone (2014) for more details on the ensuing 

models and problems.  

 In this study, we focus on the first type of GP schemes where inhabitants are 

assigned to districts by the administration. We formulate the problem of designing a 

GP scheme first as a multi criteria districting model in the presence of the workload 

balance, capacity, accessibility, compactness, income equity requirements; of which 

the last two are combined into a single objective function. In this weighted sum 

objective function, “compactness” ensures the ease of travel for the patients by 



minimizing the distances to GP locations, as previously done by Steiner et al. (2015) 

and Datta et al. (2013), and “income equity” equalizes the attractiveness of each district 

for the doctors by balancing the income generated in all districts, which is a concept 

commonly used in the sales territory design applications (Lei et al., 2015; Zoltners and 

Sinha, 2005). Then, we extend this model into a multi-period model, which searches 

effective district plans for multiple periods considering the future values of the 

parameters. This model includes a third criterion, “district similarity”, into the weighted 

sum objective function aiming to generate similar district plans between periods for 

achieving the continuity of care of patients with the same GP. 

 One issue in district planning for the GP scheme in Turkey and the UK is to 

incorporate to some extent the possibility that patients do not want to visit their 

designated GP. Nevertheless, one of the most influential factors affecting the patient’s 

choice is the distance between the location of the patient and the doctor’s practice. If 

all other factors are almost the same, it is very likely that a patient will still want to 

patronize a doctor’s practice located very close to his/her own location. Hence, typically 

only patients located close to the border of a district may be inclined to visit neighboring 

doctors, as the marginal utility from patronizing the closest doctor diminishes. For this 

reason, we introduce in this paper the concept of gradual assignment where the demand 

may be partially split amongst a number of neighboring districts, and we incorporate 

this concept in our districting model. We also introduce a population-weighted distance 

limit for gradual assignment to ensure acceptable level of accessibility on foot and 

variable capacities for districts measured in terms of the number of GPs assigned to the 

GP centers. We formulate the problem as a multi-criteria mixed integer program with 

binary location decision variables and continuous allocation decision variables for the 

gradual assignment. Then we extend the problem formulation into a multi-period 

model. To assess the usefulness of the models, we test them on real-case scenarios of 

Istanbul, Turkey. The main contribution of our study is thus the multi-criteria as well 

as multi-period formulation with variable district capacities and the concept of gradual 

assignment. 

 The rest of the paper is organized as follows: in Section 2, we provide a 

literature review of districting problems. In Section 3, we describe the regional settings 

in Turkey that lead to the model we propose in this paper. In Section 4, we formally 



present our models, followed by a computational study in Section 5. Finally, we provide 

concluding remarks in Section 6. 

 

2. LITERATURE REVIEW 

The studies on district planning comprise an extensive literature under several titles for 

the problem such as districting, re-districting, territory design, territory alignment, zone 

design or sector design. Any of these terms refer to the problem of dividing a 

geographical area into districts to allocate demand in the region to the services offered 

within each district. The problem arises in various application domains with different 

requirements as in political districting, sales territory design, and districting for 

different kinds of services such as healthcare, schooling, police, etc. Since the literature 

is vast, in this section we would like to highlight some of the most recent and relevant 

studies. 

 A key component for districting that appears in almost all application domains 

is the balancing criterion, which is also relevant in our model. In political districting, 

the balancing criterion guarantees that all districts contain approximately the same 

number of voters. Two recent reviews on political districting by Ricca et al. (2011) and 

Webster (2013) as well as other studies including Ricca and Simone (2008), Bozkaya 

et al. (2011) consider this and other criteria in various districting models. In this context, 

the models are typically multi-objective and heuristic solution approaches such as tabu 

search, simulated annealing, old bachelor acceptance are implemented (Ricca and 

Simone, 2008; Bozkaya et al., 2011). 

 In sales territory design, the task is to assign a given set of (prospective) 

customer accounts, each with a fixed market potential, to the individual members of the 

sales force such that each customer is matched with a unique representative. The 

balancing criterion appears in this context as well in the form of equitable workload 

and travel time for each sales person to allow equal income opportunities in terms of 

incentive pay (Zoltners and Sinha, 2005). Sometimes, more than one performance 

measure such as workload, number of customers, product demand is used to balance 

sales territories. Rios-Mercado and Lopez-Perez (2013) present a mixed-integer linear 

programming model with disjoint assignment requirements and similarity with an 

existing plan, which is then solved by an iterative cut generation strategy within a 



branch-and-bound framework. Salazar-Aguilar et al. (2011) use the -constraint 

method for generating the optimal Pareto front and Salazar-Aguilar et al. (2013) use the 

GRASP methodology with and without the connectivity requirement for a bi-objective 

model incorporating compactness and balancing criteria. 

 Service districting encompasses many different contexts. In electrical power 

districting, one goal is to partition the power grid into economically viable districts to 

be assigned to different distribution companies. In this context, Bergey et al. (2003) 

propose a multi-criteria model that minimizes the compactness and the deviation of 

income potential from a target value to obtain non-overlapping and contiguous districts. 

Other applications include providing service to streets such as postal delivery, solid 

waste disposal or salt spreading (Lin and Kao, 2008; Butsch et al., 2014). The main 

concern here is not to exceed the working time of the service delivery person and to 

obtain non-overlapping and compact districts. School districting deal with assigning 

residential areas to schools while adhering to the capacity limitations and equal 

utilization of schools, maximal or average travel distances for students, and a good 

accessibility (Teixeira and Antunes, 2008). 

 Districting for the social services that include healthcare facilities and services 

is another application domain. The purpose of healthcare service districting is to 

identify for the inhabitants which facility to visit for a particular healthcare service (e.g. 

medical examinations), or to determine areas of responsibility of home-care visits by 

healthcare personnel, like nurses or physiotherapists. The design requirements are 

typically to obtain districts with good accessibility, equal workloads of service and 

travel time, and high capacity utilization of the social facility. Blais et al. (2003) solve 

a bi-objective home-care districting problem using tabu search. The districting criteria 

respected are the indivisibility of basic units, respect for borough boundaries, 

connectivity, visiting personnel mobility, and workload equilibrium. Benzarti et al. 

(2013) formulate mixed-integer programming models for balancing the personnel care 

workload and minimizing the travel distance to reach the patients in home healthcare 

domain. 

 In the specialized literature of healthcare districting, we can find only two 

studies where the districting problem of the healthcare system is formulated as a multi-

objective model, each proposing their own version of a genetic algorithm as a heuristic 

solution approach. Datta et al. (2013) provide a multi-objective optimization model to 



reorganize geographical entities that they name as health authorities. The objectives are 

defined as follows: compactness, size homogeneity requiring that districts should be 

neither too big nor too small, and co-extensiveness ensuring that districts have common 

boundaries with a limited number of local authorities. The model is solved using a 

genetic algorithm. Steiner et al. (2015) aim to reduce the number of inter-district trips 

and the distances to be traveled by patients to design a decentralized healthcare system 

using three objectives: a) maximization of the homogeneity of population in the 

districts, b) maximization of the variety of medical procedures offered within a district, 

and c) minimization of the distances to be traveled by patients. They present a heuristic 

solution methodology that also uses a genetic algorithm. 

 All of the studies above consider districting settings with hard district 

boundaries where the demand (customers, patients, voters, etc.) is assigned to a single 

district. The model presented in our paper relaxes this assumption by implementing the 

gradual assignment concept in the healthcare domain to account for the real-world 

situation where patients might be indifferent between two or more GP practices if they 

are more or less the same distance from them. Furthermore, we introduce a multi-

criteria model formulation for the overall design of the GP scheme with compactness 

and income balance for doctors, two criteria that have not been considered together in 

the healthcare districting literature before. 

 

3. GENERAL PRACTITIONER SCHEME IN TURKEY 

Over the last decade, Turkey, with its dynamic population and market, has transformed 

its healthcare system significantly. The adoption of a GP scheme that has been placed 

as the first level of care in the organization of the health system was one of the most 

important changes recently implemented. The second level of the system comprises 

services provided by the public and private hospitals. More complex services using 

advanced skills and equipment are provided by the third level, i.e. university hospitals. 

 Despite the increasing number of doctors in recent years, Turkey still has the 

lowest total healthcare spending and the number of physicians per capita among OECD 

countries, resulting in very large patient loads. In 2008, Turkey had 1.5 physicians per 

1000 inhabitants whereas the average of the OECD was 3.1 physicians per 1000 

inhabitants (PM Group, 2011). The recent establishment of the GP scheme is expected 



to provide personal healthcare support while controlling costs and maintaining lower 

patient loads for hospital-based specialists. Another important goal is to improve the 

coverage of the healthcare services and the equity of healthcare access among the 

regions. 

 The first initiative of the GP scheme has started in 2004 as a pilot study. The 

training of 5360 physicians was completed between 2006 and 2010 (IAH, 2015). Since 

2011, the GP scheme has been introduced in every city of Turkey. Each city has a public 

health administration unit, which assigns the inhabitants to a GP center and a particular 

GP to that center. To maintain the freedom of choice, the patients can request a GP 

change by applying to the public health administration unit (HMT, 2010). 

 In Istanbul, the GP scheme began at the end of 2010. Istanbul is the biggest city 

of Turkey with respect to population. It has over 14 million inhabitants (18.5% of 

Turkey’s total population) with a total area of 5.343 km² divided into 39 administrative 

districts (Wikipedia, 2015). The city is separated into two parts by a waterway, the 

Bosporus. The west side of the Bosporus belongs to the European continent with 25 

districts and the east side to Asia with 14 districts as shown in Figure 1. 

 

FIGURE 1: The map of Istanbul and its administrative districts. 

As shown in Table 1, the GP services are provided in 762 GP centers by 3125 GPs in 

Istanbul since 2010 (IAH, 2015). 

TABLE 1: The change of the capacity of the GP scheme in Istanbul 



Before October 31, 2010 December 31, 2010 

604 Primary healthcare centers 762 GP centers 

2.412 Policlinic Rooms  3.125 GP units 

2.100 Physicians 3.125 GPs 

2.934 Nurses 3.090 GP center personnel 

 

 The public health administration unit’s target in Istanbul is to increase the 

capacity and to partition the population so that a ratio of 1 GP per 3643 inhabitants is 

achieved. This would result in a daily workload of 40–45 patients per doctor. The 

partitioning of the population not only defines the workload of the GP but also the 

income of the doctors because their payments are based on the number of assigned 

inhabitants and their characteristics such as age and gender (HMT, 2010). An equal 

financial attractiveness of each GP center for the doctors will dissuade doctors from 

asking for more popular locations with higher income potential. It will also maintain 

equity among the doctors and avoid contention. Moreover, the assignments of 

inhabitants to centers will define the accessibility of the patients to GP services. So, it 

will also determine the quality level of the GP healthcare services provided to the 

population. 

This study has been conducted in coordination with the Istanbul Public Health 

Unit, which is the planning and execution authority of the GP system in Istanbul. They 

provided us with data related to the current situation in Istanbul and the future 

projections of the GP system. They are currently using the GP centers from the old 

infrastructure of Public Health Centers and made the assignments of patients based on 

their place of residence in the subdistrict level. The two main problems of the current 

system are the following: (1) GPs are not accepting to work at certain GP centers due 

to a lower income potential and (2) the need to increase the number of GPs in the next 

5-10 years to reach the desired target number of patients per GP. 

In this study, we develop an advanced planning tool using an optimization 

model as presented in the following sections. Since the change of the infrastructure and 

constructing new centers require a high cost and time, changes in the GP scheme will 

be made gradually. 

 An effective assignment of the population to the GP healthcare centers will lead 

to equity among doctors and to higher level of service. As a final goal, a well-



established efficient GP scheme will help to close the performance gap between the 

OECD countries in order to increase broad access to better medical services while 

decreasing the overall costs with Turkey’s growing population. Thus, Turkey needs to 

focus on sustainable and efficient healthcare services, which will enable efficient use 

of resources and better coordination of healthcare services.  

 

4. MODELING THE GENERAL PRACTITIONERS SCHEME DISTRICTING 

PROBLEM 

The GP scheme districting problem comprises the set 1,… ,  of basic units 

which represent polygonal neighborhood areas with demand for GP services. The 

centroid of each basic unit, with coordinates ( , , represents the aggregate demand 

(i.e. population) to be assigned as well as a potential location for a GP center (i.e. district 

center). Each such location has a capacity  for the maximum number of GPs to work 

in the same center. We represent the number of GPs assigned to the GP center located 

in basic unit j by a decision variable. The Euclidean distance between two centroids i 

and j is denoted as . 

 The number of inhabitants, , in each basic unit j as well as the distribution 

with respect to the specified population characteristics, ∈ , that are based on age 

groups and gender, are inputs of the problem. The target number of inhabitants to be 

assigned to a GP is known in advance and determined by the Public Health 

Management Unit (PHMU). Also the number of districts to design, p, is predetermined 

by the PHMU. Our goal is to search for the best district plan by grouping the basic units 

into p districts with respect to the specified criteria. A districting plan  is represented 

as , … , , where ⋃  and the set is comprised of the basic units 

assigned to district . One basic unit centroid in each district  is identified as the 

district center among all other basic units assigned to that district. 

 In typical cases of districting, each basic unit is assigned to exactly one district. 

In applications such as political districting and sales territory design, this requirement 

has practical necessities/advantages. However, for the districting GP scheme, we want 

to allow a patient to be possibly assigned to nearby GPs if the distances between the 

patient and these GPs are similar, which typically happens for patients close to the 

boundaries between districts. In order to represent this situation, we allow the gradual 



assignment of basic units to one or more districts by relaxing the binary assignment 

variable between basic units and district centers, leading to ∩ ∅, ,

1,2, … , . 

We use the following notation in the formulations: 

Decision variables  

percentage	of	assignment	of	basic	unit	 	to	district	center	  

1				if	basic	unit	 	is		selected	as	a	GP	center	 i. e. district	center
0				otherwise																																																																																				

 

variable	capacity	 i. e. number	of	GPs 	at	the	GP	center	 	 

expected	income	of	the	GP	center	  

Parameters 

distance	between	basic	units	 	and	  

number	of	inhabitants	in	basic	unit	  

number	of	inhabitants	in	basic	unit	 	with	age/gender	characteristics 

the	income	factor	for	age/gender	characteristic	  

maximum	number	of	GPs	at	a	GP	center	located	in	basic	unit	  

distance	limit 

number	of	districts	 

total	number	of	basic	units 

total	available	number	of	GPs	to	be	located 

4.1. MODELING 

Our first approach is to formulate the problem as a mixed integer linear program. We 

treat workload balance for GP centers as a hard constraint and the other two criteria as 

soft criteria to be minimized through a single weighted sum objective function: 

min ∗ _ ∗ _  

Where  and _  are the weights and  and _  are the values 

of the compactness and income equity criterion, respectively, for any given solution . 



Compactness strives for short distances resulting in compact shapes of districts. Income 

equity among GPs is achieved by minimizing the total deviation of income potential in 

each district from the average income value. 

 Several formulations have been developed by various authors to define the 

measurements used in the objective functions and the constraints. We now describe 

how the measures are formulated in this study: 

Compactness 

In the districting for the GP scheme, our motivation is to reduce the travel distances. 

Hence, we employ a distance-based compactness measure in the objective function to 

be optimized. We use a formulation of the sum of distances between the center of the 

district and its basic units weighted with the number of (partially) assigned inhabitants 

of the basic units. We normalize this sum by the approximate total distance, which is 

calculated by multiplying the average distance with the average 

population and the number of assignments, . Here we subtract  

assignments because the assignment distances of  basic units coinciding with the 

district centers are 0. 

∑ ∑ ∈∈

∗ ∗
 

In addition to the compactness measure in the objective function, we also 

impose a population-weighted maximal distance constraint between a basic unit and its 

district center in order to prohibit excessively large travel distances for large groups of 

inhabitants. 

Income Equity 

We measure the income equity by minimizing the total deviation of the potential 

income in each district from the average income and include this term also in the 

objective function. The income of district is calculated as ∑ ∑ ∈∈  and 

the total income as ∑ ∑ ∈∈ . The total deviation of income is then given by 

_

∑ ∗∈
 

To include this term in the objective function, we first linearize it. We introduce and 

: 



∗ 	, if	 ∗ 0

0																										otherwise
 

∗ 	, if	 ∗ 0

0																										otherwise
 

Then _  takes the following form: 

_
∑ ∈

 

subject to 

∗  

, 0 

Workload Balance 

We assume that the workload is directly proportional to the number of inhabitants 

assigned to a GP and formulate the workload balance as a typical constraint used in the 

districting literature. A new component to this formulation is the inclusion of the 

capacity levels of the districts, . The resulting equality constraint becomes: 

∈

∑ ∈ , ∀	 ∈  

One side benefit of this constraint is that the resulting district workloads can be 

perfectly balanced due to the gradual assignment variable  we have used, unlike the 

typical districting models where a tolerance factor for deviation from average must be 

used. 

Capacity 

Recently, more than one GP in one GP center has become common to provide more 

working hours for the patients and share the equipment, supporting healthcare 

personnel and fixed costs such as rents. In the GP scheme, the land costs could be quite 

high to locate a GP center, or some basic units may already have potential locations in 

place with different capacities of physicians to work together. In the former case, the 

capacity may be set to 0 and in the latter case the level of capacity (i.e. the number of 



GPs) should be specified. In order to incorporate flexible capacities, the capacity 

constraint is formulated as follows: 

	, ∀	 ∈  

 

Distance Limit 

Since we allow flexible capacities for the districts, this may result in districts with 

bigger areas than anticipated and the accessibility of the patients on foot will get worse. 

Therefore, we introduce a population-weighted assignment distance limit in order to 

avoid or limit the occurrence of excessively large distances between basic units and 

their associated GP center. The distance limit formulation is as follows: 

, ∀	 , ∈  

Note that even with this constraint, we may still incur large distances between 

basic units and their assigned GP centers due to the partial assignment variables. 

However, we observe in practice that this occurs very minimally (see Table 3) and this 

constraint further improves the overall compactness of the districts since the 

corresponding gradual assignment variable takes on a proportionally smaller value to 

satisfy this constraint. We test the significance of this constraint in our computational 

study and report improved compactness of districts. 

Another modeling choice is to impose a maximum limit to the assignment 

distances as a hard constraint as follows: 

, ∀	 , ∈  

, ∀	 , ∈  

∈ 0,1 ,				∀	 , ∈  

where  is a binary assignment variable. This approach will not allow any assignment 

to exceed the distance limit U. However, we choose to incorporate the constraint 

 instead to allow a -small- portion of the population to exceed the distance 

limit, adding to the flexibility of the gradual assignment solutions that can be produced. 

Assignments 

The assignment decision variable is relaxed and defined as follows: 



0 1,				∀	 , ∈  

As a result, the model solutions will include some partial assignments. This 

indicates that patients located in some districts will be assigned to two or more district 

centers, which is an expected outcome of the gradual assignment concept. We note that 

the split assignments resulting from this approach is at the aggregate level. If it is 

required that an authority further decide which individual patients should go to which 

center, a post treatment can be applied to these split basic units. An example would be 

to split a basic unit into subsets of street segments according to the required split 

percentage. 

 Using the above formulations, we propose the following mixed integer 

mathematical programming for the GP scheme districting problem: 

min ∗
∑ ∑ ∈∈

∗ ∗ _ ∗
∑ ∈     (1) 

subject to 

∑ ∈
∑ ∈ ,			∀	 ∈       (2) 

	,			∀	 ∈         (3) 

,			∀	 , ∈         (4) 

∑ ∈          (5) 

∑ ∈          (6) 

∑ 1,				∀	 ∈∈         (7) 

∑ ∑ ∈∈ ∗ ,			∀	 ∈     (8) 

0 1,				∀	 , ∈        (9) 

∈ 0,1 ,				∀	 ∈         (10) 

, 0	,				∀	 ∈         (11) 

where, (1) is the weighted sum objective function formulated with the compactness and 

income equity measures, (2) is the work balance constraint, (3) is the capacity 

constraint, (4) imposes a population-weighted distance limit to gradual assignments for 

achieving an acceptable level of compactness, (5) and (6) set the available total number 



of GPs and the total number of districts to be generated, (7) assures that all inhabitants 

are assigned to a district, (8) is the linearization constraint for district incomes, and (9-

11) are the definitions of the domains of the decision variables. 

If the model can be solved to optimality, non-dominated solutions will be 

generated by considering various combinations of  and _ . However, this 

model represents an NP-hard multi-criteria optimization problem, so large problems 

such as real-world cases might not be solved to optimality. Therefore, we report near-

optimal solutions in the sequel. 

4.2. MULTI-PERIOD MODELING 

Our second approach is to extend our multi-criteria single-period districting model into 

a multi-period districting model. The multi-period modeling approach enhances the 

efficiency of the healthcare planning as the changes on the demand side (i.e. population 

and demographics) as well as changes on the supply side (i.e. number of GPs, targeted 

number of patients per GP) imply adjustment of the districting plan. When these 

aforementioned changes are predicted and included in a multi-period modeling 

framework not only the efficiency is increased, service quality can also be improved. 

In our modeling framework, we consider changes in the population and the 

targeted number of patients per GP between periods. As a result of these changes, the 

number of districts required to be generated as well as the population of each basic unit 

differ from one period to another. Let T be the number of periods in the planning 

horizon. In our notation, we include the time index t = 1,…,T for all related parameters 

and variables. 

When the model is extended to a multi-period horizon, an additional criterion, 

district similarity, is considered to be added in the objective function as a third criterion. 

The third criterion improves the planning efficiency and quality between periods as 

described below. 

District Similarity  

As a result of the multi-period model, district plans will differ from one period to 

another. Different district plans between periods mean that some of the patients should 

change their GPs in according to the revised district plan in each period. In a well-

planned healthcare system, one of the goals is to ensure continuity of care to improve 



the patient-GP relationship. Thus, GP changes for the patients have to be avoided if 

possible. In our weighted sum objective function, we add a dissimilarity measure, 

which minimizes the number of patients changing their GPs. In various application 

domains, similar measures have been formulated in the literature (Bozkaya et al., 2003). 

Based on our healthcare districting modeling, we formulate dissimilarity between the 

district plans of different periods as follows; 

  
∑ ∑ ∑ ∈ ∗∈

∗
     

To include this term in the objective function, we first linearize it. We introduce 

 and  : 

	, if	 0
0																										otherwise

 

	, if	 0
0																										otherwise

 

Then, the dissimilarity formulation takes the following form: 

∑ ∑ ∑ ∈ ∗∈

∗
       (12) 

Equation (12) is used to calculate the differences of number of people assigned 

from the same basic unit to the same district between different periods. Then these 

differences are summed up for all basic units, districts and periods to obtain a measure 

of change in terms of the number of people allocated to different districts between 

periods. 

Finally, the dissimilarity criterion is included in the multi-period model as the 

third criterion. The resulting multi-period model is as follows: 

	

min ∗ ∑
∑ ∑ ∈∈

∗ ∗	∈ ∗ ∑
∑ ∈

∈ ∗

∑ ∑ ∑ ∈ ∗∈

∗
	 	 	 	 	 	 	 (13)	

subject	to	

∑ ∈
∑ ∈ , ∀	 ∈ , ∈ 	 													 	 	 	 (14)	

	,			∀	 ∈ , ∈        (15) 



,			∀	 , ∈ , ∈       (16) 

∑ ∈ 	,			∀	 ∈        (17) 

∑ ∈ 	∀	 ∈ , ∈ 	 	 	 	 	 	 	 (18)	

∑ 1, ∀	 ∈∈ , ∈ 	 	 	 	 	 	 	 (19)	

	∑ ∑ ∈∈ , ∀	 ∈ , ∈ 																						 	 (20)	

,	∀	 ∈ , ∈ , ∈ 	 	 	 	 (21)	

0 1, ∀	 ∈ , ∈ , ∈ 	 	 	 	 	 	 (22)	

∈ 0,1 , ∀	 ∈ , ∈ 	 	 	 	 	 	 	 (23)	

, 0	,				∀	 ∈ , ∈  	 	 	 	 	 	 (24)	

, 0, ∀	 ∈ , ∈ , ∈ 	 	 	 	 	 	 (25)	

	

where, (13) is the weighted multi-period multi-criteria objective function defined with 

the compactness, income equity and dissimilarity measures, (14) is the work balance 

constraint in each period, (15) is the capacity constraint for each period, (16) imposes 

a population-weighted limit on the distance between the basic units and district centers, 

(17) and (18) set the available total number of GPs and the total number of districts to 

be generated in each period, (19) assures that all inhabitants are assigned to a district, 

(20) is the linearization constraint for district incomes, (21) is the linearization 

constraint for dissimilarity between assignments of successive periods, and (22-25) are 

the definitions of the domains of the decision variables. 

With the multi-period model, we further note that the percent assignment ( ) changes 

from one period to the next may render solutions undesirable from an implementation 

point of view. Even when  remains unchanged between periods, authorities may 

choose to re-assign groups of residents between districts. We view the latter case an 

operational issue that needs to be handled by the authorities to the best public interest, 

hence leave it outside the scope of our model. The former case is already handled in the 

third objective term that quantifies total district dissimilarity, but it can be handled in 

an alternative way in the form of a hard constraint that limits the amount of change in 

assignment from one period to the next: 

| , | 												∀ 1, … , 1 



We have chosen the objective term approach to stay within the realm of multi-criteria 

optimization and not to impose further hard constraints on a problem that we think 

should be handled in a flexible way. 

 

5. CASE STUDY: GP DISTRICTING IN ISTANBUL  

We have generated the input data for our GP scheme districting problem using ArcGIS 

v10.2 and solved the corresponding mixed integer programming model using ILOG 

OPL Studio v12.6.In this section, we first present the data preparation steps for the case 

of GP scheme districting in Istanbul, Turkey. Then, we present the results for two 

scenarios in urban and rural parts of the city of Istanbul, and compare them under 

managerial viewpoints. 

5.1 DATA PREPARATION AND VISUALIZATION 

ArcGIS is a commercial off-the-shelf software system that allows storing and 

customizing a database of a region with its geographical features. We used its 

environment to manipulate the map of Istanbul with its database and to extract the 

required datasets for our optimization process. We used the same platform to visualize 

the obtained solutions we present. In what follows, we provide further details on the 

underlying GIS framework in terms of the input layers of the geographic data used, the 

manipulation of the data for optimization purposes, and the visualization of 

optimization results. 

 For our optimization, we started out with an input polygon data layer of the set 

of administrative regions that are stored in ArcGIS’ File Geodatabase format. Stored in 

this input data layer are various data characteristics that are needed for solving the 

districting problem such as population distribution and urban/rural characteristic of the 

administrative regions. However, we found that the resolution of the available 

administrative polygons was not high enough to be defined as the basic units of our 

districting problem. This was due to the fact that the number of the inhabitants living 

in the administrative regions is much higher than the requested number of inhabitants 

to be assigned to GP districts. Therefore, we applied the grid feature of ArcGIS to 

subdivide each region into smaller areas, and obtained a final set of basic units for our 

problem with higher resolution. Then, we generated the population distribution of the 

basic units proportional to the area of the basic units after clipping out the non-



residential areas such as woods, parks, etc. Finally, we extracted the centroid points of 

the resulting basic units and calculated the distances between them. 

 The results of the optimization include the district centers and the assignments 

of all basic units to these centers. Since we allow a gradual assignment of a basic unit 

to more than one district, we also need the tools available in the ArcGIS platform for 

the visualization of the districts. In our visualizations, we represent a fixed number of 

inhabitants of a basic unit with a dot that is colored based on the GP center the dot is 

assigned to. This gives us dot density maps of the resulting district plans with dots 

showing the color of the assigned GP districts. 

5.2 COMPUTATIONAL RESULTS FOR THE SINGLE-PERIOD MODEL 

We have chosen two administrative regions in Istanbul to generate the GP districts 

using our proposed mathematical program. One of the regions, Kadikoy, is centrally 

located where the population is densely distributed all over the area. The other region, 

Tuzla, is a peripheral one that consists of high and low density population areas. 

Scenario 1: Kadikoy, a Central Region 

After splitting the area by grids, we have obtained 747 basic units in Kadikoy with a 

total of 482,562 inhabitants. We have set the number of GP districts to create as 100 

and the total number of GPs to assign to the districts as 150. Accordingly, the number 

of inhabitants per GP is 3,217. 

 To consider scenarios with different weights on compactness versus income 

equity, we varied the coefficients of the objective function with a step size of 0.1. We 

set the distance limit to1.25 km, since Kadikoy is a densely populated area where GP 

services are typically accessible within a walking distance. Then, we solved the model 

using the CPLEX solver of ILOG OPL optimization studio on an Intel Core i3 4150 

3.5GHz computer with 8 GB RAM. The values of the two criteria of the weighted sum 

objective function and diagram obtained with these values are given in Table 2 and 

Figure 2, respectively. The columns Gap and Runtime specify the remaining CPLEX 

gap and the computation time upon termination, respectively. 

Note that some of the solutions are dominated by others. This is due to the fact 

that we could not find a proven optimal solution within the designated time limit for 

any of the weight combinations, and only optimal solutions are guaranteed to be non-

dominated. We have marked the solution ID’s with an asterisk (*) that are non-



dominated with respect to our solution set. We also show these points in the diagram 

as a square. 

TABLE 2: Computational Results for the Kadikoy Dataset 

Sol. 

ID 

Coefficient of 

Compactness 

Coefficient 

of Income 

Equity Compactness 

 Income 

Equity Gap 

Runtime 

(seconds) 

1* 0.1 0.9 0.07189 0.00016 3.41 % 20000 

2* 0.2 0.8 0.07093 0.00020 2.58 % 20000 

3 0.3 0.7 0.07058 0.00025 2.31 % 20000 

4* 0.4 0.6 0.07055 0.00024 2.28 % 20000 

5 0.5 0.5 0.07047 0.00030 2.20 % 60000 

6* 0.6 0.4 0.07037 0.00034 2.15 % 20000 

7 0.7 0.3 0.07039 0.00030 2.13 % 50000 

8* 0.8 0.2 0.07039 0.00033 2.12 % 50000 

10 0.9 0.1 0.07043 0.00034 2.13 % 50000 
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FIGURE 2: Diagram of the near-optimal solutions for the Kadikoy Dataset. 

Looking at Figure 2, we observe that an improvement on income equity can be 

obtained quite “cheaply” – i.e. with virtually no cost in compactness up to a certain 

point, but thereafter getting more gains in income equity is quite expensive. A solution 

to suggest to a decision maker therefore would beat the elbow point of the curve. 

Income equity will ensure the equity among doctors, which will provide the work 

satisfaction of doctors, and it will also prevent doctors from competing for some “high-

income” providing areas. On the other hand, the income equity will also implicitly 

ensure the satisfaction of patients. The income equity depends on the number of patients 

at each segment based on the age groups. Each patient segment has a different earning 

factor for the doctors identified with respect to the average required service time for 

that segment. Thus, the total service time of the doctors are also balanced indirectly, 

which will result in similar workloads for the doctors and similar waiting times for the 

patients at each GP. 

The Significance of the Distance Limit 

Since we already have the compactness criterion in the weighted sum objective 

function, we may rely on this measure for geographical tightness of the resulting 

districts, and thus can test if it really benefits to use a population-weighted distance 

limit. As seen in Table 3, the distance limit constraint provides significant 

improvements. Therefore, the accessibility of the patients to the GP centers is improved 

when a distance limit is used. 

TABLE 3: The results with and without the distance limit 

 

Distance 

limit 

Assignments 

exceeding distance 

limit 

Nr. of people 

exceeding 

distance limit 

Maximum 

distance of 

assignments 

Average 

distance of 

assignments 

No 61 519 people 9.53 km 0.53 km 

Yes 22 30 people 3.97 km 0.32 km 

 

 Out of 747 assignments, 22 still exceed the distance limit even though a distance 

limit constraint of 1.25 km is incorporated into the model. This is because of the way 

the gradual assignment variables 0 1 are used in constraint (4) of the model. 



We could avoid these assignments by setting the corresponding variables to 0 for which 

the distance is greater than 1.25. However, we have chosen to leave these variables 

unchanged since the distance limit has been exceeded only for 30 people out of 482,562. 

 Finally, the district plan for the Kadikoy dataset with the (0.4-0.6) coefficients 

for compactness and income equity, respectively is visualized by ArcGIS in Figure 3. 

Each color on the map represents a dot density visualization of the associated GP 

district and each GP center features the number of GPs assigned to the center. 

 

FIGURE 3: The district plan for the Kadikoy dataset. 

Scenario 2: Tuzla, a Peripheral Region 

Tuzla is a peripheral region that consists of large areas with very low density of 

population in contrast to the high density of population all over the region of Kadikoy. 

In order to observe the effect of different population distributions on the districting 

plan, we present both regions in our case study. 

After splitting the area of Tuzla by grids, we have obtained 472 basic units with 

a total of 442,264 inhabitants. We have set the number of GP districts to create as 50 

and the total number of GPs to assign to the districts as 75. Accordingly, the number of 

inhabitants per GP is 2,955. 

 We have varied the coefficients of the weighted sum objective function with a 

step size of 0.2, resulting in the coefficients of (0.2-0.8), (0.4-0.6), (0.6-0.4) and (0.8-

0.2). Since Tuzla is not a very central district of Istanbul and has many suburban parts, 



patients in this area may accept to travel longer distances. In order to decrease the gap, 

this time we have chosen to relax the distance limit and changed it to 2.5 km. We solved 

the problem using the CPLEX solver of ILOG OPL optimization studio on an Intel 

Core i3 4150 computer with 8 GB RAM with the maximum computing time of 5,000 

seconds. The values of the two terms in the objective function and the Pareto curve 

obtained with these values are given in Table 4 and Figure 4. 

 

 

TABLE 4: Computational Results for the Tuzla Dataset with Distance Limit=2.5 km. 

Coefficient of 

Compactness 

Coefficient of 

Income Equity Compactness 

 Income 

Equity Gap 

0.2 0.8 0.03284 0.00033 7.46% 

0.4 0.6 0.03253 0.00038 6.75% 

0.6 0.4 0.03223 0.00044 5.77% 

0.8 0.2 0.03206 0.00052 5.37% 

	

	

FIGURE 4: Diagram of the near-optimal solutions for the Tuzla Dataset. 
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 For the case of Tuzla, we do not get a similar “elbow” on the curve that would 

be a natural solution for the decision maker. This means that when the area is not 

densely populated, there exists a sharp trade-off between the compactness and balance 

criteria. However, this trade-off can be by-passed when the area is densely populated 

as observed in Kadikoy region. 

The district plan for the Tuzla dataset with the (0.6-0.4) coefficients for 

compactness and income equity is visualized by ArcGIS in Figure 5. As before, each 

color on the map represents a dot density visualization of the associated GP district and 

each GP center features the number of GPs assigned to the center. 

 

FIGURE 5: The district plan for the Tuzla dataset. 

Note that, as the dot-density views and the model solutions indicate, patients 

located in some districts will have split assignments between two or more district 

centers, which is an expected outcome of the gradual assignment concept. As we 

discussed previously, from an implementation aspect, an authority could apply a post 

treatment (e.g. splitting basic units on the basis of street segments) to decide which 

particular patients should be (re-)assigned to which center. This would have a positive 

impact on the applicability, hence the overall acceptability, of the resulting solutions.  

5.3 COMPUTATIONAL RESULTS FOR THE MULTI-PERIOD MODEL 



We set the number of periods as two for the dataset of Kadikoy, where each period is 3 

years. Parameter projections for this two-period problem are given in Table 5. 

TABLE 5: Future Parameter Projections for a Two-Period Problem. 

 Number of GPs 

(districts) 

Total Population Population per GP 

1st Period 100 482,562 4826 

2nd Period 130 508,707 3913 

 

It was not possible to solve the capacitated multi-period districting model with 

the capacity of our workstation due to high memory load. So, we simplified the model 

by excluding the idea of assigning multiple GPs to each district (constraints 15 and 17) 

and the distance limit constraint (16). As a result, each GP center in each district has 

only one GP as result of this model. We believe the increased complexity in the multi-

period model with constraints (15)-(17) is due to the addition of new  decision 

variables over multiple periods and the associated inter-linking constraints, as the 

exclusion of these variables and constraints allow us to generate solutions in allocated 

computational times. Allowing more than one GP per center considerably increases the 

solution space and, thus, also the combinatorial complexity of the problem. 

When we solve this multi-period model with two criteria namely compactness 

and the income equity combined into a single weighted objective function with a gap 

of 0.31% within a computational time of 1000 seconds, the two component values of 

the objective function are as follows: 

 Compactness = 0.127718 

 Income equity = 6.71637 

Then we add the district similarity criterion into the objective function seeking 

for similar districts in different periods. When this model is solved, we obtain the three 

component values of the objective function as follows (with a gap of 13.65%, runtime: 

50.000 seconds): 

 Compactness = 0.161115 

 Income equity = 5.71600 



 Similarity of districts= 1.00033 

As seen, there is loss of compactness when we add the district similarity 

criterion. To assess whether there is an improvement in the similarity of the districts 

when the third criterion is added in the model, we checked the number of people 

assigned to different districts in different periods. The number of people assigned to 

different districts in different periods without adding the dissimilarity criterion to the 

objective function is 346,251 whereas the same number with the addition of the 

dissimilarity criterion is 119,724. So we can see that there is a significant improvement 

in the similarity of the districts when we add the third district similarity criterion into 

the objective function. The districts obtained for the two periods of the multi-period 

multi-criteria model are given in Figure 6(a) and (b). 

 

 

(a) 1st period’s district plan  (b) 2nd period’s district plan 

FIGURE 6: The multi-period district plan for the Kadikoy dataset. 

 

6. CONCLUSION 

In this paper, we have developed and proposed a planning tool including an 

optimization model for the design of the General Practitioner districts. This tool is 

helpful for making the location and territorial decisions for GP practices and hence 

providing efficient services to potential patients in practice. In our modeling approach, 

we consider the access of patients to the GP centers and the income equity and workload 

balance of the GPs. 



 We proposed a multi-period multi-criteria mixed integer programming model 

and we obtained near-optimal solutions with reasonable gaps. The main contribution of 

our model is to eliminate hard boundaries for districts imposed by the borders of basic 

units, and allow partial assignment while at the same time keeping compactness at an 

acceptable level. To facilitate this approach, we have subdivided an area into smaller 

basic units to ensure we can use high resolution basic units for districting. We have then 

tested the model on two regions of the city of Istanbul, Turkey. The results show that 

an improvement on income equity can be obtained quite “cheaply”  – i.e. with virtually 

no cost in compactness up to a certain point in the efficient frontier. Besides, the results 

confirm that the multi-period model with an additional district similarity criterion and 

anticipating on the future conditions will improve the continuity of care principle of the 

healthcare system ensuring a better patient-service. As for future work, we aim to 

decrease the gap and the runtime of the optimization process by searching via more 

efficient formulations and also to deal with bigger cases. We also plan to develop a 

heuristic solution approach that may help with solving the complete multi-period model 

and generating near-optimal solutions. 
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