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Abstract 

 
In this paper, a new methodology for computing relative-robust portfolios based on minimax 

regret is proposed. Regret is defined as the utility loss for the investor resulting from choosing a 

given portfolio instead of choosing the optimal portfolio of the realized scenario. The absolute 

robust strategy was also considered and, in this case, the minimum investor’s expected utility in 

the worst-case scenario is maximized. Several subsamples are gathered from the in-sample data 

and for each subsample a minimax regret and a maximin solution are computed, to avoid the risk 

of overfitting. Robust portfolios are computed using a genetic algorithm, allowing the 

transformation of a 3-level optimization problem in a 2-level problem. Results show that the 

proposed relative-robust portfolio generally outperforms (other) relative-robust and non-robust 

portfolios, except for the global minimum variance portfolio. Furthermore, the relative-robust 

portfolio generally outperforms the absolute-robust portfolio, even considering higher risk 

aversion levels. 
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1. Introduction 

Deciding how to optimally allocate the investor’s wealth among all possible investment 

alternatives requires the consideration of the tradeoff between expected return and risk, and this 

is a difficult problem. Actually, the investor has to decide what to do today, without knowing 

what the future will bring regarding the different investment alternatives. In this context, the 

concept of optimal solution is not well defined. We can think of representing the inherent 

uncertainty by using a set of parameters that are, most of the times, calculated by observing past 

data. However, as it is not possible to foresee all potential realizations of the uncertain values, it 

is also not possible to assume that these parameters are a truthful representation of future 

uncertainty. A given portfolio can be optimal considering a given set of problem parameters and 

still present a poor performance as the uncertainty is resolved. If the uncertainty that arises from 

the impossibility to know the future values of the parameters at the decision-making moment is 

ignored, then the calculated optimal portfolio will be extremely sensitive to small variations in 

the problem parameters and may thus show a poor performance when applied to new data (Best 

and Grauer, 1991a, 1991b; Chopra and Ziemba, 1993; Jagannathan and Ma, 2003).  

In this regard, some methodologies that explicitly incorporate uncertainty into the optimization 

model can be applied in order to mitigate the impact of the estimation errors in the classical mean-

variance optimization problems. An example is the robust optimization methodology, whose roots 

can be found in the field of robust control theory. 

Robust optimization has emerged as a computationally attractive alternative to other 

methodologies, like stochastic programming or dynamic programming, since it requires relatively 

general and simple assumptions about the probability distributions of the uncertain parameters 

(Fabozzi et al., 2007). The robust formulation of an optimization problem considers not only the 

nominal values of the uncertain parameters but also the deviations from these nominal values. 

Uncertainty in the parameters can be described by uncertainty sets that contain all possible values 

or only the most likely values of the uncertain parameters, with their sizes defining the level of 

uncertainty admitted or, equivalently, the desired level of robustness.  

The first to apply this idea was Soyster (1973), who presented a linear optimization model to 

compute a solution that was feasible for all possible values of an uncertain parameter belonging 

to a convex set (Ben-Tal, El Ghaoui and Nemirovski, 2009). While Soyster’s approach achieved 

the desired outcome of immunizing the optimal solution against parameter uncertainty, it was 

widely considered too conservative for practical implementation (Bertsimas and Thiele, 2006). 

More than twenty years later, other authors addressed the overconservatism within Soyster’s 

approach and robust optimization began to establish itself as a methodology with applications in 

many fields of knowledge, including portfolio theory.  

Two main approaches are considered in the robust portfolio optimization literature. The most 

prevalent is the absolute robust optimization approach where the optimal solution is computed 

assuming the worst possible realization within the uncertainty set for the uncertain parameters. 

Since assuming that the worst scenario will happen might result in too conservative decisions, 

one could analyze robustness in a relative manner. In the relative robust optimization approach 

the objective is to guarantee that the maximum difference between the optimal objective function 

value for each scenario (considering the optimal solution for that scenario) and the objective 

function value obtained for the same scenario by the robust solution (that is not scenario 

dependent) is minimized.  

In this paper, a new methodology for computing relative-robust portfolios is presented, based on 

the optimization of the investor’s expected utility. Since empirical applications of the relative 

robust models are lacking within the portfolio optimization theory, an analysis of the real benefits 

of the relative robust methodology is performed. For that purpose, an empirical application is 

conducted in order to assess and compare the performance of the proposed relative-robust 

portfolio to (other) relative-robust and non-robust portfolios already described in the portfolio 

theory literature. A comparison of the performance of relative-robust and absolute-robust 
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portfolios is also presented and conclusions are drawn regarding the real benefits of the proposed 

methodology from the investors’ perspective. 

This paper contributes for this field of research in several ways. First, a new methodology for 

computing relative-robust portfolios based on minimax regret is presented. Second, a 3-level 

optimization problem is transformed into a 2-level problem by using an evolutionary algorithm 

to solve the relative-robust portfolio optimization problem and find the relative-robust solution. 

Third, the real benefits of applying the relative robustness approach in portfolio selection are 

analyzed by comparing in-sample and out-of-sample performances of relative-robust and non-

robust portfolios, which highlight the main strengths of the proposed methodology. Fourth, the 

effect of considering long-term past data over short-term past data in the definition of the 

uncertainty set is investigated by using in-sample sets of different lengths in the empirical 

analysis. Finally, the relevance of the proposed robust models is analysed for different levels of 

risk aversion and the performances of relative robust and absolute robust approaches are 

compared. 

For the empirical analysis, historical daily data from January 1992 to December 2016 (25 years) 

of the stocks of the DAX index were collected from Thompson Reuters Datastream. Different 

methodological approaches are implemented and the corresponding optimal portfolios are 

computed, in particular the proposed relative-robust (RR) portfolio, the absolute-robust (AR) 

portfolio, the classical Mean-Variance (MV) portfolio, the Global Minimum Variance (GMV) 

portfolio, the Equally Weighted (EW) portfolio and the relative-robust (WS) portfolio presented 

by Xidonas et al. (2017). The latter is, to the best of the authors’ knowledge, the only known 

contribution with empirical applications within the relative-robust portfolio optimization 

approach. The performances of the different computed portfolios are compared considering both 

in-sample and out-of-sample data, for return, risk, modified Sharpe ratio and regret. 

The results of this study suggest that reducing the in-sample period length increases the exposure 

of the computed portfolios to individual stocks while it seems to improve the overall out-of-

sample performance of the AR, the RR and the GMV portfolios and substantially deteriorates the 

out-of-sample performance of the MV portfolio. Regardless of the in-sample period length, it can 

be observed that the RR portfolio is highly diversified, assigning non-zero weights to the majority 

of the assets.  

The overall results support previous findings concerning the sensitivity of the MV portfolio to the 

estimation error and the effects of the input uncertainty in the optimization process (Best and 

Grauer, 1991b; Chopra and Ziemba, 1993; Jagannathan and Ma, 2003; DeMiguel, Garlappi and 

Uppal, 2009), as well as the outperformance of the GMV portfolio (Chan, Karceski and 

Lakonishok, 1999; Jagannathan and Ma, 2003). 

Furthermore, the results of this study suggest that the proposed relative robust model generates 

optimal portfolios that consistently present low risk, and (non-negative) attractive returns, 

standing out as one of the very few optimal portfolios with no poor performances. In fact, the RR 

portfolio outperforms the MV portfolio and the EW portfolio in many of the windows under 

analysis, even outperforming the GMV portfolio in some windows, which enhance the relevance 

of the proposed methodology among non-robust portfolio optimization methodologies. When 

compared to the minimax regret model presented by Xidonas et al. (2017), the proposed relative 

robust approach seems to provide more consistent results concerning the out-of-sample 

performance of the generated portfolios. 

Finally, the comparison of the proposed relative robust and absolute robust models leads to 

important conclusions concerning the real benefits of the proposed methodology from the 

investors’ perspective. The findings suggest that the proposed RR portfolio generally outperforms 

the proposed AR portfolio, even when higher levels of risk aversion are considered.  

The remainder of the paper proceeds as follows. A brief literature review is presented in Section 

2. In Section 3, the proposed model is presented and the process for computing the relative-robust 

solution is described. The results of the empirical analysis are presented in Section 4. Finally, in 

Section 5, main conclusions and suggestions for future research are highlighted. 
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2. Literature review 

2.1 Portfolio selection problem 

The formulation of the decision-making problem concerning the optimal allocation of an 

investor’s wealth among the possible investment choices was formally presented, for the first 

time, by Harry Markowitz (1952, 1959). He established two essential concepts that became the 

basis of the modern portfolio theory. The first one was the joint quantitative assessment of return 

and risk by considering the expected return and covariance of the securities, which laid the 

foundations for the diversification principle. The second one was the formulation of the portfolio 

selection problem as an optimization problem: the selection of the securities must guarantee the 

maximization of the expected return of the portfolio while holding constant the risk of the 

portfolio or, equivalently, guarantee the minimization of the portfolio risk while holding constant 

its expected return. 

As pointed out by Constantinides and Malliaris (1995), the description of asset returns in terms 

of a probability distribution made by Fisher (1906), the definition of investment preferences as 

indifference curves in the mean-variance space presented by Marschak (1938), the axiomatic 

theory of choice under uncertainty developed by Von Neumann and Morgenstern (1947), and the 

risk measurement framework presented by Bernoulli (1954), were decisive contributions for the 

development of Markowitz’s portfolio selection theory. 

Markowitz supported his mean–variance analysis of the investment decision problem on mean–

variance approximations to the investor’s expected utility, which he described as the ‘‘MV-

approximate’’ approach: after generating the mean-variance efficient frontier, one must choose 

the efficient portfolio that maximizes the mean-variance function which approximates the 

expected value of the investor’s utility (Markowitz, 2014). Although the empirical support of the 

“MV-approximate” approach, presented by Markowitz (1959), assumed a quadratic utility 

function and expected returns and covariance matrix of returns as estimators of the input 

parameters, neither normal probability distribution of asset returns nor quadratic utility functions 

are necessary conditions for the applicability of modern portfolio theory. In fact Levy and 

Markowitz (1979) proved that expected utility can be approximated by a function of mean and 

variance for various utility functions and historical distributions of returns.  

While the investment decision problem can be generalized into a much wider class of problems 

(the expected utility maximization problems), Markowitz’s mean-variance framework presented 

itself as a simpler approach and served as a starting point for the numerous contributions that 

appeared in the following decades. These contributions involved, but were not limited to, the 

following research areas: return-generating functions, index models and asset pricing models 

(Sharpe, 1964; Ross, 1976; Ingersoll, 1987; Elton and Gruber, 1992; Fama and French, 1992; 

Roll and Ross, 1994; Fama, 1996), risk measures (Hendricks, 1997; Artzner et al., 1999; 

Rockafellar and Uryasev, 2000; Szegö, 2005), incorporating constraints in the portfolio selection 

model (Clarke, De Silva and Thorley, 2002; Jagannathan and Ma, 2003; Scherer and Xu, 2007) 

and multi-criteria portfolio optimization (Zopounidis and Doumpos, 2002; Doerner et al., 2004; 

Steuer, Qi and Hirschberger, 2008; Deb, 2011). 

With the development of computer tools, the computational complexity of the expected utility 

maximization problems is no longer an inconvenience and the use of this wider class of problems 

becomes more frequent in the portfolio theory literature (Jean, 1971; de Athayde and Flôres, 2004; 

Harvey et al., 2010; Biagini and Pınar, 2017).  

Following the maximization of the investor’s utility approach, the portfolio selection problem can 

be formulated as the maximization of the investor’s wealth utility function. A wealth utility 

function shows how much utility (or how much happiness) a person derives from different levels 

of wealth or, equivalently, from different levels of return. Since a person’s wealth is a function of 

the rate of return measuring the rate at which wealth is accumulated, the investor’s utility of 

wealth and utility of return functions yield identical preference orderings (Francis and Kim, 2013).  

General assumptions are frequently used concerning investor’s preferences, namely that an 

investor always prefers more to less utility, but that marginal utility decreases with increasing 

wealth (Fabozzi et al., 2007). The marginal utility of wealth is defined as the additional utility a 
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person gets from a small change in her wealth. Thus, the marginal utility of wealth of every 

rational investor will always be positive. Additionally, rational investors are assumed to be risk-

averse since, when faced with choosing between two investments with the same expected return 

but two different levels of risk, they prefer the one with the lower risk. Thus, positive but 

diminishing marginal utility is one of the characteristics economists expect to find in a realistic 

economic model (Francis and Kim, 2013). 

Further assumptions for describing the behaviour of rational risk-averse investors include 

decreasing absolute risk aversion (DARA) and constant relative risk aversion (CRRA): “Although 

there is much less consensus regarding relative risk aversion than absolute risk aversion, it is often 

assumed that constant relative risk aversion is consistent with most investors’ behaviour (…)” 

while “(…) there is general consensus that most investors exhibit decreasing absolute risk 

aversion” (Francis and Kim, 2013). The absolute risk aversion is a measure of how the investor’s 

preference for risk changes with a change in wealth. If the investor wants to put more wealth in 

risky investments as his or her wealth increases, it is said that the investor exhibits DARA. So, as 

the investor gets richer, he or she becomes less risk averse. The relative risk aversion is a measure 

of how the percentage of wealth invested in risky assets changes with a change in wealth. An 

investor exhibiting CRRA maintains the same percentage in the risky investments when his or 

her wealth changes.  

2.2 Robust portfolio optimization 

The classical portfolio selection problem, as presented by Markowitz, completely disregards the 

uncertainty of the expected asset’s returns and the covariance matrix of assets’ returns. It is 

assumed that these parameters are capable of representing the inherent uncertainty associated with 

the investment returns. Actually, as these parameters are, most of the times, calculated from past 

data, they are themselves subject to uncertainty. Not acknowledging the uncertainty in the models’ 

parameters substantially degrades the performance of the optimal solution calculated using these 

models (Best and Grauer, 1991a, 1991b; Chopra and Ziemba, 1993).   

As previously mentioned, the robust optimization methodology allows the incorporation of 

uncertainty into the optimization model, mitigating the impact of the estimation errors in the 

portfolio selection problem. According to Hauser, Krishnamurthy, and Tütüncü (2013, p. 1), the 

robust optimization methodology aims to “(…) mitigate the effects of uncertainty and obtain a 

solution that is guaranteed to perform reasonably well for all, or at least most, possible realizations 

of the uncertain input parameters”.  

One may be interested in guaranteeing that the solution will perform reasonably well relatively to 

its feasibility, or its optimality, or both its feasibility and its optimality. Therefore, different 

concepts of robust solution emerged in the literature (Gabrel, Murat and Thiele, 2014). When the 

uncertainty affects the feasibility of a solution, which happens when the uncertain parameter is 

included in the constraints of the optimization model, the robust optimization methodology aims 

to ensure that the solution will be feasible for all, or at least most, realizations of the uncertain 

parameters. When the uncertain parameter is included in the objective function of the optimization 

model, affecting the optimality of a solution, the robust optimization methodology aims to ensure 

that the feasible solution achieves exactly or approximately the optimum value of the objective 

function, regardless of the realizations of the uncertain parameters. 

Most of the studies in the robust portfolio optimization field seek to optimize the worst-case 

realization of the objective function, where the worst-case is computed over the uncertainty set. 

This constitutes the absolute robust optimization approach (Hauser, Krishnamurthy and Tütüncü, 

2013). Initial contributions, under the absolute robust design, focused on the formulation of the 

robust counterparts of classic portfolio optimization problems or the development of deterministic 

algorithms in order to solve them (El Ghaoui and Lebret, 1997; Ben-Tal and Nemirovski, 1998; 

Goldfarb and Iyengar, 2003; Halldórsson and Tütüncü, 2003). More recent contributions explored 

the close relationship between the structure of the uncertainty set and the risk measure selected 

(Natarajan, Pachamanova and Sim, 2009; Ben-Tal, Bertsimas and Brown, 2010; Paç and Pınar, 

2014), analyzed the effects of the uncertainty sets’ structure and scale (Lu, 2006, 2011; Roy, 2010; 

Gregory, Darby-Dowman and Mitra, 2011; Kaläı, Lamboray and Vanderpooten, 2012; Fabretti, 
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Herzel and Pınar, 2014), and compared the characteristics of absolute-robust portfolios to classic 

portfolios (Kim et al., 2013; Kim, Kim and Fabozzi, 2013; Kim et al., 2014b).  

Concerning the characteristics of absolute-robust portfolios, Kim, Kim and Fabozzi (2013) 

presented a robust approach for the maximization of the risk-adjusted expected return problem, 

in which the uncertainty was admitted only in the expected assets’ return. Based on a factor model 

for defining the vector of asset returns and considering box and ellipsoidal uncertainty sets, the 

authors analyzed the characteristics of their robust portfolio and classical mean–variance and 

global minimum-variance portfolios, computed assuming short-sales constraints and specific 

values for the risk-averse coefficient. In particular, they analyzed the level of diversification of 

portfolios by comparing the number of assets with non-zero weights contained in the portfolios, 

the exposure of the portfolios to individual stocks by comparing the absolute value of the assets’ 

weight, the volatility of the portfolios in relation to the market portfolio by comparing portfolio 

betas, and the correlation between weight and beta of the assets composing the portfolio. Their 

results revealed that the robust portfolio is less diversified than the non-robust portfolio since it 

contains fewer stocks with non-zero weights, shows lower exposure to individual stocks since it 

reveals assets’ weights with lower maximum absolute values, it is more exposed to the systematic 

risk since it has higher portfolio beta and it shows low correlation between weight and beta of the 

stocks composing the portfolio. The authors have also found that the robust solution based on box 

uncertainty set has a lower beta and fewer assets with non-zero weights than the robust portfolio 

based on ellipsoidal uncertainty set, revealing itself as a portfolio less sensitive to systematic risk 

but less diversified and, thus, more exposed to the individual risk of each asset. On the other hand, 

the robust portfolio based on an ellipsoidal uncertainty set has higher positive portfolio beta and 

stronger negative correlation between weight and beta of the stocks composing the portfolio. 

Based on the same optimization framework, Kim et al. (2013) showed that, comparatively to the 

mean-variance portfolio, absolute-robust portfolios consistently show stronger correlation with 

the three fundamental factors used in the Fama-French factor model2 and that the intensity of the 

correlation increases as the robustness of the portfolio is increased3. Furthermore, the authors 

found that the absolute-robust portfolio based on ellipsoidal uncertainty set revealed stronger 

correlation with the three fundamental Fama-French factors comparatively to the robust portfolio 

based on box uncertainty set.  

The absolute robust approach might not be adequate for all investors. One example is when 

decision makers’ performances are judged relative to their peers’ performance. They might prefer 

to make decisions that avoid falling severely behind their competitors under all scenarios, rather 

than protecting themselves against the worst-case scenarios. Following this idea, Kouvelis and 

Yu (1997) explored the concept of relative robustness by analyzing the worst-case in a relative 

manner, considering the best possible solution under each scenario.  

The notion of relative robustness can be explained resorting to a generic portfolio optimization 

model which includes the uncertain parameters in the objective function (Cornuejols and Tütüncü, 

2006). Let 𝑥 ∈ ℝ𝑁 be the weight combination vector defining the investor’s portfolio, 𝑝 the vector 

defining the input parameters and 𝑋 the set of feasible solutions. Then it is possible to define the 

following optimization model: 

 

max
𝑥∈ℝ𝑁

𝑓(𝑥, 𝑝) 𝑠. 𝑡.  𝑥 ∈ 𝑋 ,                                                                                                              (1) 

 

where 𝑓 represents a generic objective function that depends on 𝑥 and 𝑝. 

For a given 𝑝, let 𝑧∗(𝑝) and 𝑥∗(𝑝) denote, respectively, the optimal objective function value and 

the vector of optimal decision variables values of problem (1). If 𝑥 is chosen as the decision vector 

                                                      
2 The three Fama-French factors are: the market risk premium corresponding to the difference between the expected 

return of the market portfolio and the risk-free rate; the small minus big (SMB) corresponding to the difference between 

the return on a portfolio of small stocks and the return on a portfolio of large stocks; and the high minus low (HML) 

corresponding to the difference between the return on a portfolio of high-book-to-market stocks and the return on a 

portfolio of low-book-to-market stocks (Fama and French, 1996). 
3 The level of robustness was adjusted through the value of the parameter that defines the scale of the uncertainty set, 

i.e. that allows expanding or reducing the uncertainty set. 
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when 𝑝 is the vector of realized parameter values, then the regret associated with having chosen 

𝑥  rather than 𝑥∗(𝑝) is defined as follows: 

 

𝑅𝑝(𝑥) ≔ 𝑧∗(𝑝) − 𝑓(𝑥, 𝑝) = 𝑓(𝑥∗(𝑝), 𝑝) − 𝑓(𝑥, 𝑝).                                                                  (2) 

 

Since regret cannot be measured before the realization of vector 𝑝, it is possible to consider the 

maximum regret function instead, which provides an upper bound on the true regret: 

 

𝑅(𝑥) ≔ max
𝑝∈𝑈

𝑅𝑝(𝑥) ≔ max
𝑝∈𝑈

(𝑧∗(𝑝) − 𝑓(𝑥, 𝑝))                                                                          (3) 

 

where 𝑈 represents the uncertainty set, i.e. the set of possible scenarios/realizations for the vector 

of realized parameters 𝑝. 

Thus, a relative-robust solution  𝑥 corresponds to the weight combination vector that minimizes 

the maximum regret function and therefore solves the relative robust optimization model: 

 

min
𝑥∈𝑋

max
𝑝∈𝑈

( 𝑧∗(𝑝) − 𝑓(𝑥, 𝑝)).                                                                                                        (4) 

 

Hence, the relative robust optimization approach leads to three-level optimization problems, in 

contrast with the absolute robust optimization framework which leads to two-level optimization 

problems (Cornuejols and Tütüncü, 2006; Hauser, Krishnamurthy and Tütüncü, 2013).  

Kouvelis and Yu (1997, p. xi) have described a collection of discrete optimization problems based 

on the relative robustness framework. This framework considers a minimax regret criterion, and 

can be applied to models with discrete decision variables that allow the use of convex and 

combinatorial optimization techniques. There are also works considering continuous portfolio 

optimization problems, as the work of Hauser, Krishnamurthy, and Tütüncü (2013), that assume 

ellipsoidal uncertainty.  The cited works show that it is possible to reduce the relative robust 

formulation resulting from many optimization problems to one or a series of single-level 

deterministic optimization problems that can be solved using deterministic algorithms. These 

observations can drive the development of specialized algorithms for relative robust optimization 

applications.    

The only contribution with empirical applications considering the relative-robust portfolio 

optimization approach that the authors are aware of was developed by Xidonas et al. (2017). 

Considering a two-objective optimization problem, and seeking to minimize the mean absolute 

deviation (𝑓1) and to maximize the expected portfolio return (𝑓2), the authors applied the 

weighting method in order to calculate the Pareto optimal solution. Assuming that there are 𝑔 

weight combinations, each one characterized by the weight vector (𝑤1
𝑔

, 𝑤2
𝑔

), with 𝑤1
𝑔

 and 𝑤2
𝑔

 

representing the weights of the objective functions 𝑓1 and 𝑓2, respectively, and 𝑤1
𝑔

+ 𝑤2
𝑔

= 1, ∀𝑔. 

The optimization model corresponding to the maximization of the weighted sum of the two 

individual objective functions 𝑓1 and 𝑓2, is given by 

 
𝑀𝑀𝑅(𝑔) = min 𝑦𝑔

𝑠. 𝑡.  𝑤1
𝑔 𝑓1,𝑚𝑎𝑥

𝑐 −𝑓1
𝑐(𝑥)

𝑓1,𝑚𝑎𝑥
𝑐 −𝑓1,𝑚𝑖𝑛

𝑐 + 𝑤2
𝑔 𝑓2

𝑐(𝑥)−𝑓2,𝑚𝑖𝑛
𝑐

𝑓2,𝑚𝑎𝑥
𝑐 −𝑓2,𝑚𝑖𝑛

𝑐 ≥ (1 − 𝑦𝑔)𝑧𝑐
𝑔

,   𝑐 ∈ 𝐶
 
         𝑥 ∈ 𝐹

 ,                                                

 

where 𝑓1,𝑚𝑎𝑥
𝑐 , 𝑓1,𝑚𝑖𝑛

𝑐 , 𝑓2,𝑚𝑎𝑥
𝑐  and 𝑓2,𝑚𝑖𝑛

𝑐  are the maximum and the minimum values of the objective 

functions 𝑓1 and 𝑓2, respectively, for a given scenario 𝑐 ∈ 𝐶,  and 𝑧𝑐
𝑔

 is the optimal value of the 

weighted sum of the objective functions for scenario 𝑐 and weight combination 𝑔. The empirical 

test performed by Xidonas et al. (2017) considered eleven different weight combinations for the 

discretization of the weight space and an uncertainty set with 5 scenarios of return and risk 

evolution. The results show that the minimax regret portfolio includes more stocks than the 

optimal portfolios of the individual scenarios, in all the weight combinations, representing a more 

disperse allocation of the total investment universe. Furthermore, the in-sample performance 
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analysis revealed that the area of the Pareto front that corresponds to minimizing risk against 

maximizing return (i.e. when minimizing risk is weighted more than maximizing return) provides 

more robust solutions in terms of the minimax regret criterion, thus lower minimax regret values, 

where the minimax regret expresses how far one is from the individual optima of each scenario 

in the worst-case. No out-of-sample performance analysis was presented in this study. For further 

details see Xidonas et al. (2017). 

3. Computing relative-robust and absolute-robust solutions 

3.1 The robust optimization models 

Let 𝑊 represent the wealth invested in a set of 𝑁 stocks, 𝑥 ∈ ℝ𝑁 be the weight combination vector 

defining the investor’s portfolio, 𝑟𝑡+1
𝑝

 be the portfolio return at time period 𝑡 + 1 and 𝑢(. ) be the 

investor’s utility function. The expected utility portfolio maximization problem can be defined as 

 

max 𝐸 [𝑢 (𝑊(1 + 𝑟𝑡+1
𝑝

))]

𝑠. 𝑡.  𝑥 ∈ 𝑋
,                                                                                                        (6) 

 

where X  represents the set of feasible solutions. Since utility preference orderings are invariant 

under a positive linear transformation of the utility function and as pointed out in section 2.1, 

maximizing the expected utility of the wealth function yields identical preference orderings as 

maximizing the expected utility of the rate of return at which wealth is accumulated. 

For describing the investor’s preferences, consider the power utility function of the investor with 

constant relative risk aversion (CRRA) preferences over wealth and constant relative risk aversion 

parameter (𝛾 ∈ ℝ+ ∖ {1}), defined as: 

 

𝑢(1 + 𝑟𝑡+1
𝑝

) =
(1+𝑟𝑡+1

𝑝
)

1−𝛾

1−𝛾
.                                                                                                      (7) 

 

As an approximation to the expected utility of the portfolio, 𝐸[𝑢(1 + 𝑟𝑡+1
𝑝

)], consider the second 

order Taylor expansion of the expected utility function around the expected return of the portfolio, 

𝐸[𝑟𝑡+1
𝑝

], given by: 

 

𝐸[𝑢(1 + 𝑟𝑡+1
𝑝

)] =
(1+𝐸[𝑟𝑡+1

𝑝
])

1−𝛾

1−𝛾
−

𝛾

2
(1 + 𝐸[𝑟𝑡+1

𝑝
])

−𝛾−1
𝑉[𝑟𝑡+1

𝑝
],                                            (8) 

 

where 𝑉[𝑟𝑡+1
𝑝

] is the portfolio expected variance. This study does not extend to moments higher 

than the second moment (variance), as the applications of the expected utility maximization 

problems usually do, since previous works have shown that the logarithmic and power utility 

functions are fairly insensitive to higher moments (Cremers, Kritzman and Page, 2003, 2005). 

For the empirical application, CRRA preferences and the utility power function previously 

presented were assumed. Uncertainty was considered both in the vector of assets’ returns and in 

the covariance matrix of returns. A joint uncertainty set was defined for both uncertain parameters 

as in Kim et al. (2014a).  

Consider a universe of 𝑁 assets for which 𝑃 observations regarding consecutive trading days are 

known and let 𝑟𝑗𝑛 be the return of asset n at time j. Each scenario, represented by s, will be built 

considering the observations associated with different sampling periods of length 𝐽. Let 𝑧(𝑠) 

represent a random value such that 𝑧(𝑠) ∈ {1, … , 𝑃 − 𝐽 + 1}. All the observations between 𝑧(𝑠), 

which defines the first time period, and 𝑧(𝑠) + 𝐽 − 1 , which defines the last time period, will be 

used for building scenario 𝑠. The sample returns of the N assets during this randomly generated 

time window of length J will be represented by matrix 𝑀𝑠 ∈ ℝ𝐽×𝑁. The vector with the returns 

of the different assets at time 𝑗 will be represented by 𝑟𝑗
𝑠. Let 𝜇𝑠 and Σ𝑠 be the sample mean vector 

and the sample covariance matrix for the sample set used for building the scenario 𝑠, respectively. 

Then, the joint uncertainty set 𝑈, corresponding to a finite set of scenarios, is defined by 
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𝑈 = { 𝑠1, 𝑠2, … , 𝑠𝑆},                                                                                                                      (9) 

 

where each 𝑠𝑖 is defined in the following way (to avoid cluttering the notation, we drop the index 

𝑖 from 𝑠𝑖 in this definition): 

 

𝑠 = (𝜇𝑠, Σ𝑠),                                                                                                                               (9a) 

 

𝜇𝑠 = [

1

𝐽
∑ 𝑟𝑗1

𝑧(𝑠)+𝐽−1
𝑗=𝑧(𝑠)

⋮
1

𝐽
∑ 𝑟𝑗𝑁

𝑧(𝑠)+𝐽−1
𝑗=𝑧(𝑠)

],                                                                                                                    (9b) 

 

and 

 

Σ𝑠 =
1

𝐽−1
∑ (𝑟𝑗

𝑠 − 𝜇𝑠)(𝑟𝑗
𝑠 − 𝜇𝑠)

𝑇𝑧(𝑠)+𝐽−1
𝑗=𝑧(𝑠) .                                                                                    (9c) 

 

The proposed relative robust minimax regret approach defines regret as the utility loss for the 

investor resulting from choosing a portfolio characterized by the weight combination vector 𝑥 

instead of choosing 𝑥𝑠∗ which corresponds to the optimal solution under scenario 𝑠.  

Let 𝑟𝑡+1
𝑝 ∗

  be the realized return of the optimal portfolio 𝑥𝑠∗ given by 𝑟𝑡+1
𝑝 ∗

= ∑ 𝑥𝑛
∗ 𝑟𝑡+1,𝑛

𝑁
𝑛=1 , where 

𝑥𝑛
∗  represents the optimal weight of asset 𝑛. Equivalently, 𝑟𝑡+1

𝑝 (𝑥) corresponds to the expected 

return of the portfolio characterized by the weight combination vector 𝑥, which is given by 

𝑟𝑡+1
𝑝 (𝑥) = ∑ 𝑥𝑛𝑟𝑡+1,𝑛

𝑁
𝑛=1 , where 𝑥𝑛 represents the weight of asset 𝑛. The regret associated to 

scenario 𝑠, 𝑅𝑠, is defined by 

 

𝑅𝑠(𝑥) ≔ 𝐸[𝑢𝑠(1 + 𝑟𝑡+1
𝑝 ∗

)] − 𝐸 [𝑢𝑠 (1 + 𝑟𝑡+1
𝑝 (𝑥))],                                                                         (10) 

 

and the maximum regret function, ( )xR , is defined by 

 

𝑅(𝑥) ≔ max
𝑠∈𝑈

𝐸[𝑢𝑠(1 + 𝑟𝑡+1
𝑝 ∗

)] − 𝐸 [𝑢𝑠 (1 + 𝑟𝑡+1
𝑝 (𝑥))].                                                                          (11) 

 

The minimax regret solution 𝑥 corresponds to the weight combination vector that solves the 

relative robust optimization model: 

 

min
𝑥∈𝑋

max
𝑠∈𝑈

𝐸[𝑢𝑠(1 + 𝑟𝑡+1
𝑝 ∗

)] − 𝐸 [𝑢𝑠 (1 + 𝑟𝑡+1
𝑝 (𝑥))],                                                             (12) 

 

where the set of feasible solutions is defined as 𝑋 = {𝑥 ∈ ℝ𝑁: ∑ 𝑥𝑛 = 1𝑁
𝑛=1 ∧ 𝑥𝑛 ≥ 0, ∀𝑛 =

1, … , 𝑁}. 

Hence, assuming CRRA preferences, the optimization problem (12) can be defined by 

 

min
𝑥∈𝑋

max
𝑠∈𝑈

[(
(1+𝑥𝑠∗𝑇

𝜇𝑠)
1−𝛾

1−𝛾
−

𝛾

2
(1 + 𝑥𝑠∗𝑇𝜇𝑠)

−𝛾−1
𝑥𝑠∗𝑇Σ𝑠𝑥𝑠∗) − (

(1+𝑥𝑇𝜇𝑠)
1−𝛾

1−𝛾
−

𝛾

2
(1 +

𝑥𝑇𝜇𝑠)−𝛾−1𝑥𝑇Σ𝑠𝑥)]                                                                                                                    (13) 

 

Note that problem (13) is a 3-level optimization problem. The computation of 𝑥𝑠∗, which is the 

optimal portfolio for scenario 𝑠, constitutes the first optimization level. The inner maximization 

problem in (13) constitutes the second optimization level and allows the computation of the 

maximum regret for each 𝑠 ∈ 𝑈, providing an upper bound on the true utility loss for the investor. 
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Finally, the third optimization level corresponds to the outer minimization problem in (13), which 

gives the optimal solution that minimizes the maximum regret for all 𝑠 ∈ 𝑈.  

For the absolute-robust portfolio optimization approach, the absolute-robust portfolio (maximin 

solution) corresponds to the weight combination vector that solves the absolute robust 

optimization model defined by: 

 

max
 𝑥∈𝑋

min
𝑠∈𝑈

𝐸 [𝑢𝑠 (1 + 𝑟𝑡+1
𝑝 (𝑥))].                                                                                                  (14) 

 

3.2 Computing the robust portfolios  

First, the computation of the relative-robust portfolio is explained. To avoid reaching a solution 

strongly dependent on the underlying in-sample data, two disjoint subsamples are randomly 

gathered from the in-sample data: an estimation subsample used to estimate the inputs of the 

model and a validation subsample used to evaluate its performance.  

From the estimation subsample, an uncertainty set 𝑈 is constructed by calculating the S scenarios. 

For that purpose, an estimation window is randomly selected from the estimation subsample and 

the sample mean and the sample covariance matrix are computed. Then, for each scenario 𝑠 ∈ 𝑈 

the following problem is solved 

 

max
𝑥∈𝑋

(
(1+𝑥𝑇𝜇𝑠)

1−𝛾

1−𝛾
−

𝛾

2
(1 + 𝑥𝑇𝜇𝑠)−𝛾−1𝑥𝑇Σ𝑠𝑥),                                                                         (15) 

 

in order to determine the optimal solution 𝑥𝑠∗, which represents the portfolio on the Markowitz’s 

efficient frontier that maximizes the investor’s expected utility. This constitutes the first 

optimization process of the proposed 3-level optimization problem and was performed using 

CPLEX solver. 

After computing the optimal solutions for each scenario 𝑠 ∈ 𝑈, the relative robust optimization 

problem (13) is solved using the Genetic Algorithm (GA) toolbox from Matlab R2018a. For this 

purpose, a fitness function that maximizes the regret as presented in (11) and corresponding to 

the utility loss for the investor resulting from choosing a portfolio characterized by the weight 

combination vector 𝑥 instead of choosing the optimal solution for the estimation subsample 

period, was defined. An initial population composed of feasible solutions randomly generated 

was used. Further GA options used in this application include uniform mutation (with probability 

rate 0.15), tournament selection and a tolerance of 1e-16 for the average relative change in the 

best fitness function value.  

There are several deterministic methods available in the literature for solving similar minimax 

optimization problems (Yaman, Karasan and Pinar, 2007; Pınar and Burak Paç, 2014; Pınar, 2016; 

Paç and Pınar, 2018). In this work, a different path was taken. The proposed models are solved 

by a GA. Evolutionary algorithms, such as GA, allow researchers to solve more complex and 

combinatorial problems in a reasonable time (Soleimani, Golmakani and Salimi, 2009). Their 

application to optimization problems with non-linear or non-convex objective functions, in order 

to reduce the computational effort of finding the (near) optimal solution, is increasing in the 

portfolio theory literature (Streichert, Ulmer and Zell, 2004; Chang, Yang and Yhang, 2009; 

Soleimani, Golmakani and Salimi, 2009; Zhu et al., 2011; Kalayci et al., 2017). In this study, the 

use of GA allowed the second and third optimization levels to be solved simultaneously, reducing 

the computational effort to find the robust solutions. Furthermore, the efficiency of the GA as a 

tool to overcome the difficulties raised by computational complexity when solving (portfolio) 

optimization problems that address future uncertainty has also been reported by some authors (Jin 

and Branke, 2005; Yang, 2006). Gen and Cheng (2000) state that the multiple directional and 

global search performed by the GA where a population of potential solutions is maintained from 

population to population, is useful when exploring Pareto solutions, which is relevant for the 

investment decision problem since it is, in nature, a multi-objective optimization problem with 
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(multiple) conflicting objectives. According to Shoaf and Foster (1998, p. 358), the “(…) GA can 

simultaneously minimize risk and maximize expected return (…) This flexibility allows the GA 

to discover portfolio opportunities which the more traditional [programming] approach misses”. 

Finally, by applying both deterministic (when computing the optimal solution for each scenario) 

and evolutionary algorithms we are conducting a more efficient implementation of an algorithm 

capable of solving our problem, as highlighted by Gen and Cheng (2000, p. 107): “Because GAs, 

as a kind of meta-heuristics, provide us with great flexibility to incorporate conventional methods 

into the main framework, we can exploit the advantages of both GAs and conventional methods 

to establish much more efficient implementations to problems”.  

The random generation of both estimation and validation subsamples and the GA optimization is 

repeated several times, producing sets of different minimax regret solutions and different 

validation subsamples. Although the estimation and validation subsamples are gathered at the 

same time, the validation subsamples are used later in order to assess each one of the minimax 

regret solutions computed using the GA. By gathering both simultaneously, and defining them as 

disjoint sets, we guarantee that each minimax regret solution is tested at least in one validation 

subsample that does not overlap with its estimation subsample.   

For testing each minimax regret solution in each one of the validation subsamples, regret was 

defined as the difference between the utility of the optimal portfolio (solution on the Markowitz’s 

efficient frontier that maximizes the investor’s expected utility) in the validation subsample period 

and the utility of the minimax regret solution. Then, the corresponding maximum regret is found. 

By considering the worst-case for each minimax regret solution, all possible bias, deriving from 

testing these solutions in validation subsamples that could overlap with their corresponding 

estimation subsamples, is avoided. Finally, the relative-robust portfolio defined as the minimax 

regret solution presenting the best performance in the worst-case is identified.  

Figure 1 illustrates the flowchart of the proposed methodology for computing the relative-robust 

portfolio.  
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Figure 1: The flowchart of the method for computing the relative-robust solution. At the beginning of the process, the 

number of estimation subsamples (es), the number of validating subsamples (vs) and the number of scenarios (k) are 

set to zero. 

Concerning the computation of the absolute-robust portfolio, a similar process was applied. From 

each estimation subsample, an uncertainty set 𝑈 is constructed as previously described. After 

computing the 𝑆 scenarios, the maximin solution is calculated by solving problem (14) using the 

GA. In this case, the fitness function was defined as the minimum portfolio’s expected utility for 

all the scenarios considered in 𝑈 (inner maximization problem in (14)). Hence, the optimization 

is performed assuming the worst-case performance over the whole uncertainty set. The initial 

population was composed by feasible randomly generated solutions. The GA options used were 

the same as the ones defined in the relative robust approach. Then, each maximin solution is tested 

in each one of the validation subsamples. For that purpose, the expected utility of the maximin 

solution in each of the validation subsample is calculated and the minimum expected utility is 

considered. Finally, the absolute-robust portfolio defined as the maximin solution presenting the 

best performance in the worst-case (highest minimum expected utility) is identified.  

4. Empirical analysis 

4.1 Data and parameter settings 

For the empirical analysis, historical daily data from January 1992 to December 2016 (25 years) 

of the stocks of the DAX index was collected from Thompson Reuters Datastream.  

The empirical strategy was performed using rolling windows of two different lengths. The first 

approach considered a rolling window with a constant length of 16-years: 15-years data to 

perform in-sample estimations and an out-of-sample evaluation period of 1-year. Thus, for this 

approach, the first window ranges from January 1992 to December 2007 (in-sample period from 

1992 to 2006 and out-of-sample consisting of 2007) while the last window ranges from January 

2001 to December 2016 (in-sample period from 2001 to 2015 and out-of-sample consisting of 

2016). The second approach considered a rolling window with a constant length of 5-years: 4-

years data to perform in-sample estimations and an out-of-sample evaluation period of 1-year. In 

this case, the first window ranges from January 2003 to December 2007 (in-sample period from 

2003 to 2006 and out-of-sample consisting of 2007) while the last window ranges from January 

2012 to December 2016 (in-sample period from 2012 to 2015 and out-of-sample consisting of 

2016).  

The application of historical windows of different lengths allows the observation of the effect of 

considering long-term past data over short-term past data in the definition of the uncertainty set 

and, therefore, it allows the investigation of whether the use of long-term past data affects the 

predictive accuracy of the model. Previous studies have shown that long-term past returns 

(measured over long-term periods) are negatively correlated with future returns, a phenomenon 

referred to as the long-term reversal effect (Bondt and Thaler, 1985), while short-term past returns 

(measured over the last year) are positively correlated with future returns, a phenomenon referred 

to as the momentum effect (Jegadeesh and Titman, 1993). 

To explore the sensitivity of the results to the variation of the relative risk aversion parameter, 

different values (𝛾 ∈ {0.5,2,5}) were explored and the absolute and relative robust models as well 

as the classical mean-variance model were solved for each one of these values. It is important to 

notice that, while the different values of 𝛾 define different AR, RR and MV portfolios, they do 

not influence the GMV, EW and WS portfolios (only the corresponding measure of regret). 

Adjusted closing prices of the stocks in the constituent list of the DAX index at the end of the in-

sample period were collected and daily continuous returns were calculated.  

The steps for computing the absolute and relative-robust solutions, described in the previous 

section, are iteratively repeated for each of the time windows defined. For each of the time 

windows under analysis, the random generation of the estimation and validation subsamples and 

the GA optimization are repeated 100 times (R=100). A constant length of 1-year observations 

was defined for each subsample; hence, the estimation and validation subsamples correspond to 

a 2-years in-sample period of consecutive daily returns. A total of 100 scenarios (𝑆 = 100) are 

computed for each estimation subsample. Each scenario, defined by the sample mean and the 
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sample covariance matrix, is computed considering an estimation window length of 120 

consecutive daily returns. Estimations of the model inputs are performed in R. 

Once the robust and non-robust portfolios are computed for each of the time windows under 

analysis, in-sample and out-of-sample performances are analyzed. 

4.2 Portfolio performance analysis 

In order to investigate the real contribution of relative robust models within the portfolio 

optimization field of study, the performance of the proposed relative robust strategy was analyzed 

and compared to classical non-robust optimization strategies, considering both in-sample and out-

of-sample data. A comparison to the relative robust strategy presented by Xidonas et al. (2017) 

was also made which allowed the assessment of the current contribution within the field of relative 

robustness approaches. Additionally, and since there is a lack of empirical studies that compare 

the performance of relative-robust and absolute-robust portfolios, the performance of the 

proposed relative-robust and absolute-robust portfolios is analysed.  

The non-robust optimization problems applied were the minimization of the variance subject to a 

lower limit on the expected return, defined by 

 

min 𝑥𝑇Σ𝑥

𝑠. 𝑡.  𝑥𝑇𝜇 ≥ 𝜇0

𝑥 ∈ 𝑋

                                                                                                                            (15) 

 

and the global minimum variance problem, defined by 

 

min 𝑥𝑇Σ𝑥

𝑠. 𝑡. 𝑥 ∈ 𝑋
 .                                                                                                                                   (16) 

 

Problems (15) and (16) were solved and the MV and GMV portfolios were identified. For solving 

problem (15), first the Markowitz’s efficient frontier was constructed considering (all) possible 

values for 𝜇0 (lower limit on the expected return); then, the MV portfolio was identified by 

selecting the efficient portfolio that maximizes the investor’s expected utility according to the 

different values of the relative risk aversion parameter. Inputs for the classic models were 

estimated within the entire in-sample window, namely the in-sample mean and the in-sample 

covariance matrix were calculated considering 15-years data or 4-years data, according to the 

approach under consideration. Optimal solutions were computed using CPLEX. The EW 

portfolio, which equally allocates the wealth by the assets that were included in each of the 

windows under analysis, was also created. 

To replicate the relative robust strategy presented by Xidonas et al. (2017), 5 scenarios 

corresponding to the average return and mean absolute deviation from 80, 60, 40, 20 and 10-

weeks historical data were computed. Eleven different weight combinations were also used, 

namely (0,1), (0.1,0.9), ..., (0.9,0.1), (1,0),  and, for each window under analysis, eleven 

relative-robust portfolios were computed using CPLEX. These portfolios will be hereby 

designated by WS1, WS2, ..., WS10 and WS11, respectively.  

After determining RR, MV, GMV, EW and WS1 to WS11 portfolios, in-sample4 and out-of-

sample performances were compared by analyzing the portfolios annualized return, risk and 

(modified) Sharpe ratio.  The Israelsen’s modified Sharpe ratio (Israelsen, 2005) defined by  

𝑆𝐼 =
𝑥𝑇𝜇−𝑟𝑓

√𝑑𝑥𝑇Σ𝑥
((𝑥𝑇𝜇−𝑟𝑓)/𝑎𝑏𝑠(𝑥𝑇𝜇−𝑟𝑓))

, 

where 𝑥𝑇𝜇 − 𝑟𝑓 represents the annualized excess return of the portfolio comparatively to the 

return of the risk-free asset (𝑟𝑓), 𝑑 corresponds to the number of observations (trading days) in a 

year and 𝑎𝑏𝑠(. ) is the absolute value function, was used. The risk-free asset selected for the 

                                                      
4 In the in-sample analysis the overall in-sample period was used in order to compute estimators 

for the models. 
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computation of the modified Sharpe ratio was the 1-year maturity government triple A bond for 

the Euro area accessible at_ 

https://www.ecb.europa.eu/stats/financial_markets_and_interest_rates/euro_area_yield_curves/h

tml/index.en.html. This indicator was only computed for the out-of-sample analysis since data on 

the risk-free asset is only available from January 2006 onwards. The Israelsen’s modified Sharpe 

ratio ( IS ) is equal to the standard Sharpe ratio when excess return is positive while providing 

correct rankings regardless of the excess return being positive or negative. 

In addition, the regret, defined by 

𝑅 = (
(1+𝑥𝑠∗𝑇

𝜇𝑠)
1−𝛾

1−𝛾
−

𝛾

2
(1 + 𝑥𝑠∗𝑇𝜇𝑠)

−𝛾−1
𝑥𝑠∗𝑇Σ𝑠𝑥𝑠∗) − (

(1+𝑥𝑇𝜇𝑠)
1−𝛾

1−𝛾
−

𝛾

2
(1 + 𝑥𝑇𝜇𝑠)−𝛾−1𝑥𝑇Σ𝑠𝑥)  

where *x  represents the optimal portfolio (feasible solution with maximum utility) within the 

sample period under consideration, was calculated and compared for the in-sample and out-of-

sample periods. 

 

4.3 Results 

The effect of the variation of both the in-sample period length and the relative risk aversion 

parameter is analyzed. For that purpose, the composition and the performance of the RR, the MV 

and the GMV portfolios, are investigated and compared. In particular, the composition of the 

portfolios concerning the maximum weight of an asset (Max%), the sum of the 3 maximum 

weights in the portfolio (Sum3Max%) and the number of assets with non-zero weights in each 

computed portfolio (Cardinality) are identified. Mean values obtained over the 10 windows are 

presented. Since the optimal portfolios have some assets with very small but not necessarily zero 

weights, we measure cardinality as the number of assets with weights higher than 0.1%. 

Acknowledging the limitations of using the average return as the sole comparison measure, the 

portfolios’ performances are analyzed, both in-sample and out-of-sample, by comparing the mean 

of the portfolios’ returns (mean return) and the mean of the portfolios’ variances (mean risk), 

obtained over the 10 windows. Additionally, the mean of the portfolios’ regrets (mean regret) and 

the mean of the portfolios’ (out-of-sample) modified Sharpe ratio (𝑆𝐼), obtained over the 10 

windows, are also analyzed for all the computed portfolios. The consistency of the portfolios in 

terms of the proximity to their expected performance is assessed by comparing the in-sample and 

out-of-sample results. The portfolios’ regrets reflect the robustness of the optimal solutions in 

terms of the utility loss for the investor resulting from choosing a given portfolio instead of 

choosing the optimal portfolio of the realized scenario for the uncertain parameters. 

Then, the composition and the in-sample and out-of-sample performances of relative-robust and 

non-robust portfolios are compared for each of the 10 windows. Finally, the performances of the 

RR and the AR portfolios are compared in each one of the out-of-sample years. Results are 

presented for the in-sample period length and the values of the risk aversion parameter associated 

with the best (mean) performances for both in-sample and out-of-sample datasets. 

4.3.1 Effect of the variation of the in-sample period length and the risk aversion parameter 

Table 1 presents the composition of the RR, MV and GMV portfolios by length of the in-sample 

period and/or the value of the risk aversion parameter considered for their computation. It can be 

observed that for higher levels of risk aversion and regardless of the in-sample period length, the 

exposure of the RR and MV portfolios to individual stocks decreases since the mean of the 

maximum values of the assets’ weights (Max% and Sum3Max%) decreases and the mean number 

of assets with non-zero weights (Cardinality) increases. 

 
Table 1: Composition of the RR, MV and GMV portfolios by length of the in-sample period considered for their 

computation. 

Portfolio Max% Sum3Max% Cardinality 

RR40.5 0.323 0.723 18 

RR42 0.215 0.519 19 
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RR45 0.144 0.353 22 

RR150.5 0.500 0.794 19 

RR152 0.168 0.422 21 

RR155 0.113 0.278 23 

MV40.5 0.893 1.000 2 

MV42 0.625 0.925 4 

MV45 0.462 0.881 5 

MV150.5 0.733 0.956 3 

MV152 0.393 0.797 6 

MV155 0.251 0.611 8 

GMV4 0.263 0.600 10 

GMV15 0.175 0.470 13 

 
This table presents the characteristics of the optimal portfolios that are influenced by the length of the in-sample period 

and/or the value of the risk aversion parameter considered for their computation. Here, the composition of the 

portfolios regarding the maximum weight of an asset (Max%), the sum of the 3 maximum weights in the portfolio 

(Sum3Max%), and the number of assets with non-zero weights in each computed portfolio (Cardinality) are described. 

As explained before, for measuring the cardinality, only the number of assets with weights higher than 0.1% is 

considered. The optimal portfolios were represented according to the length of the in-sample period and the value of 

the risk aversion parameter used in their computation. For instance, ‘RR155’, ‘MV155’ and ‘GMV15’ corresponds, 

respectively, to the RR, MV and GMV portfolios computed using 15-years data to perform in-sample estimations and, 

in the case of the RR and the MV portfolios, using a value of 5 for the risk aversion parameter. 

 

Furthermore, when the length of the in-sample period is reduced (from 15 to 4 years), the exposure 

of the portfolios to individual stocks increases in the three optimal portfolios, since the mean of 

the maximum values of the assets’ weights (Max% and Sum3Max%) increases and the mean 

number of assets with non-zero weights (Cardinality) decreases. This result is verified regardless 

of the risk aversion parameter’s value, except for the RR portfolio computed using a value of 0.5 

for the risk aversion parameter; although the cardinality slightly decreases for this portfolio, the 

mean of the maximum values of the assets’ weights decreases when the in-sample length is 

reduced. 

It is also possible to observe that, regardless of the in-sample period length, the MV portfolio is 

the less diversified portfolio while the RR portfolio is the most diversified one. 

The in-sample and the out-of-sample mean risk and mean return of the RR, MV and GMV 

portfolios are presented in Figure 2. The optimal portfolios were represented according to the 

length of the in-sample and/or the value of the risk aversion parameter considered in their 

computation. This means that RR155 represents the relative-robust portfolio computed using an 

in-sample period of 15 years and a value of 5 for the risk aversion parameter while GMV4 

represents the global minimum variance portfolio based on an in-sample period of 4 years, for 

instance. 

Analysing the effect of the length of the in-sample period in the portfolios’ performance, it can 

be observed that when reducing the length of the in-sample period (from 15 years to 4 years), the 

in-sample mean return and mean risk of the MV portfolio increase. Notice that, while the mean 

return suffers a substantial increase despite the value of the risk aversion parameter, the increment 

of the mean risk is more accentuated for lower risk aversion. A similar trend is observed among 

the RR portfolios. First, reducing the length of the in-sample period (from 15 years to 4 years), 

increases both the in-sample mean return and mean risk of the RR portfolios. Second, it is quite 

evident that the length seems to have more substantial effect in the in-sample mean return of the 

RR portfolio, since the mean risk is very similar when the risk aversion parameter is 5 or 2; for a 

value of the risk aversion parameter of 0.5, the overall in-sample performance of the RR portfolio 

is improved when reducing the length of the in-sample period since the RR40.5 portfolio presents 

higher mean return and lower mean risk comparatively to the RR150.5 portfolio. Regarding the 

GMV portfolio, its overall in-sample performance is improved when reducing the length of the 

in-sample period as the in-sample mean return substantially increases while the in-sample mean 

risk decreases.  
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Except for the parametrization described by an in-sample period of 15 years and a value of 5 for 

the risk aversion parameter, it can be confirmed that the RR always reveals lower in-sample mean 

risk comparatively to the corresponding MV portfolio (for a given parametrization). Additionally, 

the MV portfolio presents the best (highest) in-sample mean return and the GMV portfolio 

presents the best (lowest) in-sample mean risk.  

Concerning the effect of the in-sample period length in the out-of-sample performance of the 

optimal solutions, it can be observed that, when the length is reduced, the out-of-sample mean 

return of the RR portfolio is improved, regardless the value of the risk aversion parameter. On the 

other hand, reducing the length of the in-sample period seems to improve the out-of-sample mean 

risk when the risk aversion parameter is 5 or 0.5; for a value of 2, the mean risk slightly worsens 

(from 0.054 to 0.061, approximately) when the in-sample period length is reduced. It is also 

important to highlight that the RR152 is the only RR portfolio that presents negative (-0,010%, 

very close to 0%) out-of-sample mean return. 

Analyzing the MV portfolio, its general out-of-sample performance deteriorates when reducing 

the in-sample period length since the mean return decreases while its mean risk increases, 

regardless of the value of the risk aversion parameter. It is also quite clear that the overall out-of-

sample performance of the MV portfolio is improved when the value of the risk aversion 

parameter is increased, regardless of the in-sample period length used in its computation. The 

worst performances are presented by the MV42, MV40.5 and MV150.5 portfolios, which present 

the lowest (negative) out-of-sample mean returns and the highest out-of-sample mean risks.  

An opposite trend is observed for the GMV portfolio, since its out-of-sample mean return 

increases while its out-of-sample mean risk decreases, revealing an improvement in its overall 

out-of-sample performance. Here, an unexpected result is found regarding the GMV portfolio: 

although the exposure of the portfolio to individual stocks increased when reducing the length of 

the in-sample period, as previously verified (Table 1), both the in-sample and the out-of-sample 

mean risks of the GMV portfolio have decreased. A similar behaviour can be observed by the RR 

portfolios computed using a risk aversion parameter of 5 or 0.5; for the remaining portfolios, the 

decrease in the diversification level caused, as expected, an increase in their mean risk. 

It is important to highlight that, when reducing the length of the in-sample period, the RR becomes 

a dominant solution when compared to the corresponding MV portfolio since it presents better 

out-of-sample performance in all the performance measures considered for the analysis. 

Furthermore, regardless of the length of the in-sample period and the value of the risk aversion 

parameter, the GMV portfolio is a dominant solution when compared to the RR and the MV 

portfolio, presenting better out-of-sample performance in all the performance measures under 

consideration. This result is in accordance with previous studies (Chan, Karceski and Lakonishok, 

1999; Jagannathan and Ma, 2003) supporting the outperformance of the GMV portfolio. 
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Figure 2: In-sample and out-of-sample mean risk and mean return of the RR, MV, GMV portfolios. The optimal 

portfolios were represented according to the length of the in-sample period and the value of the risk aversion parameter 

used in their computation. For instance, ‘RR155’, ‘MV155’ and ‘GMV15’ corresponds, respectively, to the RR, MV 

and GMV portfolios computed using 15-years data to perform in-sample estimations and, in the case of the RR and the 

MV portfolios, using a value of 5 for the risk aversion parameter. 

 

The distances between in-sample and out-of-sample portfolios’ locations can be observed in 

Figure 2, allowing to draw some conclusions about the proximity to the expected performance of 

the portfolios. The portfolios that present the smallest distances between in-sample and out-of-

sample mean return and mean risk and, therefore, are more consistent concerning the proximity 

to the expected performance, are the GMV portfolio (regardless of the length of the in-sample 

period) and RR portfolio computed using the in-sample period length of 15 years (regardless of 

the risk aversion parameter). Thus, the length of the in-sample period seems to have no significant 

effect on the proximity to the expected performance of these portfolios. 

The same cannot be stated for the MV portfolio and the RR portfolio computed using an in-sample 

period length of 4 years. The proximity to the expected performance of the optimal portfolio RR 

seems to be negatively affected when the length of the in-sample period is reduced, especially 

when mean returns are considered. It is also important to highlight that the proximity to the 

expected performance of the RR portfolio computed using an in-sample period length of 4 years 

seems to be improved when higher levels of risk aversion are considered.  

Concerning the MV portfolio, it presents the largest distances between in-sample and out-of-

sample portfolio locations, with the higher distance occurring for the MV computed based on an 

in-sample period of 4 years (regardless of the risk aversion parameter). Thus, reducing the length 

of the in-sample period from 15 to 4 years seems to negatively affect the proximity to the expected 

performance of the MV solution. Also, and similar to the RR portfolio computed based on an in-

sample period of 4 years, increasing the value of the risk aversion parameter seems to positively 

affect the proximity to the expected performance of the MV solution since the distances between 

in-sample and out-of-sample mean return and mean risk decrease. 

The out-of-sample (OS) performances of the optimal relative-robust and non-robust portfolios 

concerning regret and modified Sharpe ratio (𝑆𝐼) are described in Table 2. The results are 

presented according to the in-sample period length and for a risk aversion parameter equal to 5. 

Even though the results are not presented for the remaining values of the risk aversion parameter, 

the conclusions are valid for all the parametrizations considered. Notice that, the computation of 

the EW and WS portfolios is not influenced by the variation of the in-sample period length or the 

risk aversion parameter. The values presented correspond to the mean of the portfolios’ regrets 

and mean of the portfolios 𝑆𝐼, obtained over the 10 time windows.  
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Table 2: Out-of-sample regret and modified Sharpe ratio (𝑆𝐼) of the RR, MV, GM, EW and WS portfolios by length of 

the in-sample period and considering a value of 5 for the risk aversion parameter. 

Portfolio 
OS Regret OS 𝑆𝐼  

15Years 4Years 15Years 4Years 

RR 0.25350 0.19833 0.48734 0.57761 

MV 0.20004 0.21983 0.48688 0.43926 

GMV 0.18176 0.15336 0.53089 0.54749 

EW 0.32404 0.40703 

WS1 0.40421 0.32463 

WS2 0.40888 0.32534 

WS3 0.40727 0.33024 

WS4 0.37656 0.40022 

WS5 0.29309 0.38958 

WS6 0.23415 0.32499 

WS7 0.19839 0.36022 

WS8 0.18222 0.41041 

WS9 0.17916 0.44457 

WS10 0.19039 0.48574 

WS11 0.19346 0.52163 

This table presents the out-of-sample (OS) performances of the optimal relative-robust and non-robust portfolios 

concerning regret and modified Sharpe ratio (𝑆𝐼) by length of the in-sample period and considering a value of 5 for 

the risk aversion parameter. The values presented correspond to the mean of the portfolios’ regrets and mean of the 

portfolios 𝑆𝐼, obtained over the 10 time windows. For computing the mean regret, the worst result was not considered 

since it was verified an atypical regret value (twenty to two hundred times higher than the highest of the remaining 

values) in the out-of-sample year of 2008.  

 

It can be observed that reducing the in-sample period length leads to lower levels of out-of-sample 

mean regret for the RR and GMV portfolios. In the case of the MV portfolio the mean regret has 

a slight increase. Concerning the mean 𝑆𝐼, the results confirm that reducing the in-sample period 

length seems to substantially improve the performance of the RR and GMV portfolios, while 

deteriorating the overall out-of-sample performance of the MV portfolio.  

Regarding the remaining optimal solutions, it can be verified that the EW portfolio shows the 

highest out-of-sample mean regret comparatively to the remaining non-robust portfolios. 

Furthermore, the WS portfolios corresponding to lower 𝑤1
𝑔

 weights (when maximizing return is 

weighted more than minimizing risk), namely WS1, WS2, WS3 e WS4, underperform 

comparatively to WS portfolios corresponding to higher 𝑤1
𝑔

 weights (when minimizing risk is 

weighted more than maximizing return), namely WS7, WS8, WS9, WS10 and WS11, since they 

reveal higher mean regrets and lower mean 𝑆𝐼. Moreover, out-of-sample mean regrets seem to 

support the results found by Xidonas et al. (2017), since the WS portfolios corresponding to 

higher 𝑤1
𝑔

 weights are more robust, in terms of utility loss for the investor, relative to the WS 

portfolios corresponding to lower 𝑤1
𝑔

 weights. 

Finally, it is important to outline some relevant results based on an in-sample period of 4 years. 

The RR presents itself as a more robust solution than the MV, the EW and the majority of the WS 

portfolios, in terms of utility loss for the investor, since it shows a lower out-of-sample mean 

regret. Comparing the out-of-sample mean 𝑆𝐼 of all computed portfolios, it is possible to observe 

that the RR, GMV and WS11 portfolios show similar performances, with the best performance 

achieved by the RR portfolio. On the contrary, the worst performances are from the EW portfolio 

and the WS portfolios, corresponding to lower 𝑤1
𝑔

 weights.  

The analysis of the in-sample and the out-of-sample performances of relative-robust and non-

robust portfolios, for each of the 10 windows, is presented next. Since the RR portfolio, as well 

as the GMV portfolio, generally present better performances for the in-sample period length 
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corresponding to 4 years of historical data and/or a value of 5 for the risk aversion parameter, 

results are described for this particular case. The results that will be presented in the next section 

generally prevail regardless of the length of the in-sample period and the risk aversion parameter. 

4.3.2 Performance of relative-robust and non-robust portfolios 

Before analyzing the performance of the optimal portfolios, it is important to examine their 

characteristics concerning composition in order to identify similarities as well as the main 

differences between robust and non-robust solutions. The results are shown in Table 3.  

The RR portfolio reveals a minimum cardinality of 19 and a maximum of 27, while it presents a 

maximum asset weight varying between 10% and 35%, and a maximum investors’ wealth 

allocation to 3 assets varying between 25% and 61%.  

The MV portfolio presents a low diversification level since its cardinality is between 3 and 7, it 

has a maximum asset weight varying between 23% and 68% and, for most of the windows, it 

allocates 81% or more of the investors’ wealth to only 3 assets. Comparatively to the MV 

portfolio, the GMV portfolio is more diversified, presenting a minimum cardinality of 8 and a 

maximum of 12, and a lower exposure to individual stocks, since the maximum weight of an asset 

varies between 18% and 34% while the sum of the 3 maximum weights varies between 48% and 

70%. 

Regarding WS portfolios, it can be verified that as the  𝑤1
𝑔

 weights increase, the level of portfolio 

diversification also increases, since the exposure to individual stocks decreases. These results 

were expected since the highest levels of the  𝑤1
𝑔

 weights correspond to portfolios that mainly 

aim to maximize the expected return while the lowest levels of the  𝑤1
𝑔

 weights correspond to 

portfolios that mainly aim to minimize the mean absolute deviation. Thus, the WS portfolios with 

the lowest  𝑤1
𝑔

 weights are highly concentrated (cardinality between 2 and 5), similarly to the MV 

portfolio, with exposure to a single asset higher than 50% and a cumulative exposure to three 

assets equal to 100%, in most of the windows. On the other hand, the WS portfolios with the 

highest  𝑤1
𝑔

 weights are more diversified (cardinality between 6 and 15), similarly to the GMV 

portfolio, and reveal lower exposure to individual stocks, since the maximum weight of an asset 

(sum of the 3 maximum weights) varies between 16% and 62% (45% and 86%).  

 
Table 3: Composition of the optimal portfolios regarding the maximum weight of an asset (Max%), sum of the 3 

maximum weights (Sum3Max%) and number of assets with weights higher than 0.1% (Card.) for each computed 

portfolio and by window. 

  RR MV EW GMV WS1 WS2 … WS5 … WS10 WS11 

2
0

0
3

-2
0
0

7
 

Max% 0.16 0.68 0.05 0.34 0.65 0.71  0.69  0.34 0.34 

Sum3Max% 0.41 1 0.15 0.70 1 1  1  0.59 0.59 

Card. 19 3 20 10 2 2  3  11 11 

2
0

0
4

-2
0
0

8
 

Max% 0.35 0.41 0.05 0.21 0.52 0.42  0.49  0.28 0.25 

Sum3Max% 0.61 0.93 0.16 0.48 1 0.87  0.82  0.66 0.67 

Card. 19 5 19 11 3 4  6  12 11 

2
0

0
5

-2
0
0

9
 

Max% 0.12 0.35 0.05 0.28 0.42 0.43  0.51  0.33 0.28 

Sum3Max% 0.31 0.81 0.15 0.60 1 1  0.99  0.76 0.73 

Card. 20 5 20 9 3 3  4  8 8 

2
0

0
6

-2
0
1

0
 

Max% 0.11 0.34 0.05 0.27 0.78 0.73  0.41  0.31 0.32 

Sum3Max% 0.31 0.75 0.14 0.55 1 1  0.79  0.71 0.73 

Card. 21 6 21 8 2 3  6  10 8 

2
0

0
7

-

2
0

1
1
 Max% 0.10 0.23 0.04 0.25 0.78 0.76  0.34  0.28 0.27 

Sum3Max% 0.27 0.63 0.13 0.57 1 1  0.75  0.63 0.56 
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Card. 22 7 23 10 2 2  6  9 10 

2
0

0
8

-2
0
1

2
 

Max% 0.13 0.64 0.04 0.27 0.78 0.82  0.64  0.32 0.31 

Sum3Max% 0.37 0.90 0.12 0.67 1 1  0.93  0.81 0.76 

Card. 26 5 26 11 2 2  4  6 7 

2
0

0
9

-2
0
1

3
 

Max% 0.12 0.35 0.04 0.27 0.59 0.60  0.35  0.26 0.28 

Sum3Max% 0.36 0.96 0.13 0.63 1 1  0.81  0.60 0.65 

Card. 22 4 24 9 3 3  5  10 8 

2
0

1
0

-2
0
1

4
 

Max% 0.12 0.55 0.04 0.26 0.73 0.76  0.37  0.20 0.26 

Sum3Max% 0.31 0.92 0.12 0.62 1 1  0.74  0.53 0.56 

Card. 23 5 26 9 2 2  6  15 13 

2
0

1
1

-2
0
1

5
 

Max% 0.12 0.51 0.04 0.31 0.95 0.97  0.66  0.29 0.27 

Sum3Max% 0.32 0.91 0.12 0.68 1 1  0.90  0.68 0.68 

Card. 20 5 26 10 2 2  6  9 9 

2
0

1
2

-2
0
1

6
 

Max% 0.11 0.57 0.04 0.18 0.69 0.67  0.23  0.60 0.62 

Sum3Max% 0.25 1 0.11 0.49 1 1  0.66  0.86 0.83 

Card. 27 3 28 12 2 2  6  7 8 

 

Therefore, and comparatively to all the optimal solutions with the exception of the EW portfolio, 

the RR portfolio has the lowest maximum asset weight and the lowest maximum wealth allocation 

to 3 assets, revealing itself as the optimal solution with lower exposure to individual stocks. 

Regarding cardinality, similar results can be observed when comparing the RR and the EW 

portfolios, suggesting that the proposed methodology tends to assign non-zero weights to the 

majority of the assets. It is important to highlight that these results are not in accordance with the 

results concerning the absolute-robust portfolios described in the literature (Kim, Kim and 

Fabozzi, 2013, 2014). 

Figure 3 shows the in-sample and out-of-sample risks and returns of all the optimal portfolios by 

time window under analysis. Out-of-sample modified Sharpe ratios (𝑆I) are presented in Table 4. 

By analyzing the results for the non-robust portfolios, it can be confirmed that the classical mean-

variance strategy reveals conflicting results since it stands out, simultaneously, as the solution 

with best in-sample performance, while it is among the portfolios with worst out-of-sample 

performances, in many of the time windows. In fact, for some windows (2009-2013; 2011-2015) 

the MV portfolio is among those with the highest 𝑆𝐼, while for others (2004-2008; 2008-2012; 

2012-2016) is among those with the lowest 𝑆𝐼. These results support previous findings concerning 

the sensitivity of the MV portfolio to the estimation error and the effects of the input uncertainty 

in the optimization process (Best and Grauer, 1991b; Chopra and Ziemba, 1993; Jagannathan and 

Ma, 2003; DeMiguel, Garlappi and Uppal, 2009). 

Regarding the EW portfolio, a similar conclusion can be drawn, since it is among the portfolios 

with the highest 𝑆𝐼 in some windows (2003-2007; 2005-2009; 2006-2010; 2008-2012) while it 

presents poor out-of-sample performance in others (2007-2011; 2010-2014; 2011-2015; 2012-

2016). It is also important to highlight that the EW portfolio outperforms the MV portfolio, in 

terms of risk and/or in terms of return, in most of the time windows under analysis. 

Concerning the GMV portfolio, although this portfolio shows worse in-sample mean return 

comparatively to the MV portfolio, a different trend can be observed when comparing out-of-

sample performances. In fact, the GMV portfolio is a dominant5 solution comparatively to the 

MV and the EW portfolios in the majority of the time windows. Its better performance, relatively 

to the MV portfolio, can be explained by the fact that its computation requires only the estimates 

of variances and covariances of the asset returns, becoming less vulnerable to estimation error. 

                                                      
5 A portfolio is considered a dominant solution when it presents, simultaneously, higher return and lower risk.   
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Furthermore, this portfolio is among the solutions with the best 𝑆𝐼 in some windows (2004-2008; 

2005-2009; 2007-2011; 2008-2012; and 2011-2015) while it is located at the left side of the 

scatter-plot in all windows, indicating low levels of risk. 

Analyzing the WS portfolios, some unexpected outcomes are observed. Although the WS 

portfolios corresponding to the lowest 𝑤1
𝑔

 weights generally present better in-sample returns 

comparatively to the WS portfolios corresponding to the highest 𝑤1
𝑔

 weights, the out-of-sample 

results show a different picture. Notice that, in the majority of the windows, the WS portfolios 

corresponding to the lowest 𝑤1
𝑔

 weights (WS1, WS2, WS3 and WS4) present lower 
IS  than the 

WS portfolios corresponding to the highest 𝑤1
𝑔

 weights (WS6, WS7, WS8, WS9, WS10 and 

WS11). Additionally, in some windows (2003-2007 and 2005-2009), the WS1, WS2, WS3, WS4 

and WS5 portfolios are the only ones that present negative out-of-sample returns. On the other 

hand, WS10 and WS11 portfolios show negative out-of-sample returns in 2006-2010 and 2012-

2016, and are the only portfolios with negative out-of-sample returns in 2006-2010. These 

findings suggest lack of consistency in the out-of-sample performance of the relative robust 

methodology presented by Xidonas et al. (2017). 

In this sense, the authors consider that the proposed relative robust approach stands out as a solid 

relative robust methodology. First of all, we notice that the RR portfolio provides negative out-

of-sample returns in time windows characterized by out-of-sample periods of high volatility (the 

variance of returns of individual assets for the out-of-sample years is shown in Figure 4) and, 

simultaneously, low mean returns (the mean return of individual assets for the out-of-sample years 

is shown in Figure 5). Specifically, the underperformance of the RR portfolio occurs in 2004-

2008, 2007-2011 and 2012-2016, where the majority of the optimal portfolios perform poorly. 
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Figure 3: In-sample and out-of-sample risks and returns of all the portfolios computed for each window and 

considering an in-sample period length of 4 years and a value of 5 for the risk aversion parameter.  



 
Figure 4: Out-of-sample risk (variance) of individual 

assets, computed from daily returns. 

 

 
Figure 5: Out-of-sample mean return of individual 

assets, computed from daily returns. 

 

Secondly, the RR portfolio is located at the left side of the scatter-plot, among the optimal 

solutions with the lowest risk and it even shows lower risk in out-of-sample data than in in-sample 

data, in many of the windows under analysis. Considering the 𝑆𝐼 measure and the out-of-sample 

results, the RR solution outperforms some of the WS portfolios in 9 of the 10 windows, and it 

always outperforms the WS portfolios in 3 of the 10 windows. It outperforms the MV portfolio 

in 7 of the 10 windows, the EW portfolio in 7 of the 10 windows and the GMV portfolio in 3 of 

the 10 windows. These results clearly reinforce the relevance of the proposed methodology, since 

previous studies confirmed the good performances of both the 1/𝑁 benchmark (DeMiguel, 

Garlappi and Uppal, 2009) and the GMV portfolio (Chan, Karceski and Lakonishok, 1999; 

Jagannathan and Ma, 2003). 

Furthermore, the out-of-sample return of the RR portfolio is higher than its in-sample return in 

several windows under analysis. In fact, the tendency of higher out-of-sample returns 

comparatively to in-sample returns can be explained by the evolution of the stock market, in 

particular of the DAX index during the out-of-sample periods. The positive evolution of the DAX 

index during the out-of-sample years is quite evident in Figure 6. Notice that, although the 

appreciation trend generally prevails during this period, it can be observed severe market drops 

in 2008 (due to the subprime mortgage crisis) and in 2011 (mainly caused by the European debt 

crisis). It is also possible to notice that 2015 was a year characterized by high volatility of the 

DAX index prices as a consequence of severe drops followed by significant recoveries.  

 

 
Figure 6: Evolution of the DAX index price during the out-of-sample periods. 

 

The MV portfolio and some of the WS portfolios corresponding to the lowest 𝑤1
𝑔

 weights do not 

reveal the propensity to higher out-of-sample returns comparatively to in-sample returns, which 

reinforces the underperformance of these portfolios even in favorable market conditions. 

Figure 3 also allows the observation of the proximity to the expected performance of the optimal 

portfolios by analyzing the distances between in-sample and out-of-sample portfolios’ location. 

Although none of the portfolios systematically reveals greater proximity to the expected 
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performance  in all the windows under analysis, it can be observed that, in many of these windows, 

the MV and the WS portfolios corresponding to the lowest 𝑤1
𝑔

 weights (WS1, WS2, WS3 and 

WS4) stand out as the solutions that exhibit the highest deviations to their expected performances 

and, thus, are the less consistent solutions. 

It can also be observed that, while the RR portfolio exhibits similar deviations to its expected 

performance comparatively to the other portfolios in many time windows, in those where the 

deviations from the expected performance are substantially larger, the RR portfolio stands out as 

one of the optimal solutions with highest out-of-sample return.  

Analyzing the robustness in terms of the utility loss for the investor (Table 5), it can be observed 

that the RR portfolio is systematically more robust than the EW and the majority of the WS 

portfolios, revealing lower regrets in most of the windows. Additionally, the RR portfolio is more 

robust than the MV and the GMV portfolios in 5 of the 10 windows. 

 
Table 4: Out-of-sample modified Sharpe ratio (𝑆𝐼) of the computed portfolios (by out-of-sample year) 

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RR 0.825 -0.275 0.594 0.712 -0.033 1.474 1.572 0.212 0.508 0.188 

MV 0.306 -0.279 0.432 0.636 -0.020 0.447 1.482 0.468 0.940 -0.019 

EW 0.571 -0.244 0.465 0.910 -0.067 1.079 1.073 0.053 0.206 0.024 

GMV 0.245 -0.179 0.800 0.484 -0.003 1.517 1.269 0.322 0.872 0.148 

WS1 -0.030 -0.259 -0.008 1.294 -0.067 1.331 0.214 0.076 0.136 0.559 

WS2 -0.033 -0.252 -0.008 1.303 -0.067 1.317 0.220 0.096 0.121 0.557 

WS3 -0.035 -0.239 -0.007 1.090 -0.067 1.341 0.240 0.137 0.119 0.724 

WS4 -0.036 -0.237 -0.005 1.095 -0.065 1.304 0.505 0.245 0.293 0.905 

WS5 -0.018 -0.235 -0.004 0.823 -0.050 1.197 0.700 0.305 0.435 0.743 

WS6 0.000 -0.232 -0.001 0.526 -0.032 0.880 0.781 0.319 0.461 0.548 

WS7 0.181 -0.210 0.180 0.189 -0.017 0.987 0.884 0.531 0.490 0.388 

WS8 0.410 -0.195 0.256 0.000 -0.010 1.064 1.216 0.594 0.514 0.255 

WS9 0.310 -0.189 0.300 -0.004 -0.003 1.170 1.518 0.723 0.567 0.054 

WS10 0.383 -0.178 0.479 -0.007 -0.009 1.193 1.644 0.831 0.527 -0.005 

WS11 0.418 -0.165 0.524 -0.007 -0.013 1.146 1.652 1.115 0.551 -0.005 

 
Table 5: Out-of-sample regret of the computed portfolios (by out-of-sample year) 

Portfolio 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

RR 0.108 132.315 0.126 0.159 0.599 0.066 0.109 0.204 0.168 0.247 

MV 0.190 103.397 0.155 0.167 0.383 0.166 0.104 0.171 0.091 0.552 

EW 0.136 51.794 0.162 0.133 1.476 0.088 0.135 0.238 0.236 0.313 

GMV 0.183 10.449 0.093 0.186 0.174 0.069 0.129 0.188 0.106 0.253 

WS1 0.567 52.260 0.357 0.091 1.510 0.060 0.244 0.306 0.325 0.179 

WS2 0.605 49.858 0.350 0.092 1.517 0.060 0.242 0.298 0.337 0.179 

WS3 0.636 36.598 0.340 0.114 1.519 0.061 0.237 0.278 0.337 0.144 

WS4 0.655 33.841 0.320 0.114 1.451 0.065 0.192 0.232 0.243 0.117 

WS5 0.419 32.160 0.314 0.145 0.975 0.078 0.169 0.203 0.191 0.144 

WS6 0.241 31.699 0.283 0.181 0.574 0.112 0.161 0.197 0.182 0.176 

WS7 0.195 20.804 0.213 0.228 0.351 0.104 0.152 0.162 0.174 0.206 

WS8 0.159 14.707 0.193 0.258 0.243 0.100 0.130 0.155 0.167 0.235 

WS9 0.179 12.848 0.181 0.298 0.163 0.092 0.113 0.142 0.155 0.288 

WS10 0.167 9.241 0.143 0.321 0.240 0.090 0.106 0.133 0.163 0.350 

WS11 0.161 5.984 0.135 0.333 0.289 0.094 0.105 0.111 0.158 0.355 
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Regarding the WS portfolios, it can be observed that out-of-sample results do not corroborate the 

conclusion presented by Xidonas et al. (2017), which stated that the area of the Pareto front that 

corresponds to minimizing risk against maximizing return (portfolios with highest 𝑤1
𝑔

 weights), 

provides more robust solutions. In fact, the WS portfolios with lowest 𝑤1
𝑔

 weights are more robust 

(presenting the lowest regrets) in the sample periods 2006-2010, 2008-2012 and 2012-2016, while 

the WS portfolios with highest 𝑤1
𝑔

 weights reveal the lowest regrets in the remaining time 

windows. This underlines the relevance of the out-of-sample performance analysis of new 

portfolio optimization models. 

To conclude, is also important to highlight that the GMV and the RR portfolios are among the 

portfolios with the lowest regrets in the majority of the time windows under analysis, which, in 

our opinion, validates the proposed relative robust methodology, supporting its robustness. 

4.3.3 Performance of relative-robust and absolute-robust portfolios 

As previously mentioned, there is lack of empirical studies that compare the performance of 

relative-robust and absolute-robust portfolio models. For that reason, the performance of the 

proposed RR and AR portfolios were also compared in each of the out-of-sample years and the 

main results are now presented for the same parametrization (in-sample period length of 4 years 

and a value of 5 for the risk aversion parameter).  

Figure 7 shows the out-of-sample risks and returns of the RR and AR portfolios by out-of-sample 

year under analysis. The proximity between the RR and AR portfolios’ location in the risk/return 

space makes quite clear that the RR and AR portfolios reveal similar performances in the majority 

of the out-of-sample years. Although similar, outstanding differences can be observed. 

 

 

Figure 7: Out-of-sample risks and returns of RR and AR portfolios computed by out-of-sample year and considering 

an in-sample period length of 4 years and a and a value of 5 for the risk aversion parameter.   

 

First, the AR portfolio is a dominant solution comparatively to the RR portfolio only in the out-

of-sample years where all the optimal portfolios, presented in the empirical application, revealed 

poor performances, namely in the out-of-sample years 2008 and 2011, previously described as 

periods of high volatility and, simultaneously, low mean returns. Second, and for the remaining 

out-of-sample years, the RR portfolio generally presents identical risks levels (except in 2009 and 

2015) while it always presents higher returns, comparatively to the AR portfolio.  
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Out-of-sample regret and 𝑆𝐼 support the previous outcome. In fact, the RR solution outperforms 

the AR portfolio when the 𝑆𝐼 measure is considered (see Table 4 and Table 6) while it is 

systematically more robust, revealing lower regrets than the AR portfolio, in most of the windows 

(see Table 5 and Table 6).  

 
Table 6: Out-of-sample regret and Sharpe ratio (𝑆𝐼) of the AR portfolio (by out-of-sample year and 

considering an in-sample period length of 4 years and a value of 5 for the risk aversion parameter) 

Measure 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 

𝑺𝑰 0.782 -0.210 0.579 0.732 -0.029 1.402 1.564 0.177 0.544 0.160 

Regret 0.113 26.045 0.127 0.157 0.517 0.075 0.111 0.208 0.159 0.253 

 

Although results are not presented for the rest of the parameter combinations, the previous 

findings generally prevail regardless of the in-sample period length and the value of the risk 

aversion parameter. Moreover, it was also observed that, although reducing the in-sample period 

length has an improving effect in the overall performance of both the AR and RR portfolios, this 

effect is more substantial in the RR portfolio. Finally, an important fact concerning the investor’s 

risk preferences was also observed. Since the absolute robust approach is described in the robust 

optimization theory as a more conservative methodology, it would be expected a better 

performance of the AR portfolio for higher levels of the risk aversion parameter. While, on the 

one hand the AR portfolio always presents lower (mean) risk comparatively to the RR portfolio 

(0.058 versus 0.065, when 𝛾 = 0.5; and 0.044 versus 0.051, when 𝛾 = 5), on the other hand, it 

reveals worst (mean) risk-adjusted return, measured by the 𝑆I (0.528 versus 0.529 when 𝛾 = 0.5, 

and 0.570 versus 0.578 when 𝛾 = 5). The values previously presented were verified for an in-

sample period of 4 years. These results clearly reinforce the relevance of the relative robust 

methodology within the robust portfolio theory. 

5. Conclusions and future research 

In this paper, a new methodology for computing relative-robust portfolios based on the 

optimization of the investor’s expected utility is presented. In this approach, regret is defined as 

the utility loss for the investor resulting from choosing a given portfolio instead of choosing the 

optimal portfolio of the realized scenario for the uncertain parameters. This approach was 

compared to the absolute robust approach, which seeks to maximize the minimum investor’s 

expected utility. These approaches were implemented assuming that the investor’s preferences 

are described by a power utility function.  

To avoid reaching a solution strongly dependent on the underlying in-sample data, several 

estimation subsamples were gathered from the in-sample data and for each subsample a minimax 

regret and a maximin solutions are computed. The robust portfolios are defined as the ones 

presenting the best performance in the worst-case, and are then tested in the out-of-sample set and 

compared with non-robust and robust portfolios described in the literature. A genetic algorithm 

is applied for the computation of the proposed robust portfolios; for the minimax regret solutions, 

it allowed the transformation of a 3-level optimization problem in a 2-level problem. Results are 

analyzed assuming different in-sample period lengths and values of the risk aversion parameter, 

and relevant conclusions are drawn regarding the real benefits of the proposed methodology from 

the investors’ perspective. 

The results suggest that reducing the in-sample period length for the estimation of the model 

parameters increases the exposure of the portfolios to individual stocks, since the diversification 

level of the computed portfolios decreases. Regardless of the in-sample period length, it can be 

observed that the RR portfolio is highly diversified, assigning non-zero weights to the majority 

of the assets.  

Analyzing the effect of the in-sample period length in the portfolios’ out-of-sample performance, 

it is quite evident that reducing the in-sample period length seems to generally improve the overall 

performance of both the AR and RR portfolios; also, this effect is more substantial in the RR 

portfolio. Concerning the out-of-sample performance of the non-robust portfolios, reducing the 
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in-sample period length seems to improve the overall performance of the GMV while 

substantially deteriorating the out-of-sample performance of the MV portfolio.  

The overall results regarding the performance of the computed portfolios support previous 

findings concerning the sensitivity of the MV portfolio to estimation error and the effects of the 

input uncertainty in the optimization process (Best and Grauer, 1991b; Chopra and Ziemba, 1993; 

Jagannathan and Ma, 2003; DeMiguel, Garlappi and Uppal, 2009), as well as the good 

performance of the GMV portfolio (Chan, Karceski and Lakonishok, 1999; Jagannathan and Ma, 

2003). 

Regarding the proposed relative robust methodology, it generates optimal portfolios that 

consistently present low risk, and (non-negative) attractive returns. In fact, the RR portfolio 

outperforms the MV portfolio and the EW portfolio, in many of the windows under analysis, 

which enhances the relevance of the proposed methodology among non-robust portfolio 

optimization methodologies. When compared to the minimax regret model presented by (Xidonas 

et al., 2017), the proposed relative robust approach seems to provide more consistent results 

concerning the out-of-sample performance of the generated portfolios. Standing out as one of the 

very few optimal portfolios with no poor performances, the robustness and the consistency 

between in-sample and out-of-sample performance of the proposed relative-robust portfolio was 

confirmed, concerning utility loss for the investor (regret) and, although not so outstanding, 

concerning the proximity to its expected performance. Furthermore, the underperformance of the 

RR portfolio occurs in time windows characterized by out-of-sample periods of high volatility 

and, simultaneously, low assets mean returns, where the majority of the optimal portfolios 

perform poorly.  

The comparison of the out-of-sample performances of the RR and AR portfolios allowed to draw 

important conclusions concerning the real benefits of the proposed methodology from the 

investors’ perspective. The findings suggest that the proposed RR portfolio generally outperforms 

the proposed AR portfolio, even when higher levels of risk aversion are considered. In this sense, 

the authors consider that the considered relative robust and absolute robust methodologies 

contribute to reinforce the relevance of robust optimization methodologies, in particular of 

relative robust models, within the field of portfolio selection under uncertainty. 

Future research will include the application of the proposed methodology to different datasets as 

well as the analysis of the performance of the AR and RR portfolios for other levels of the relative 

risk aversion parameter.  

Since the out-of-sample performance of relative-robust portfolios has been little explored, further 

empirical applications are needed in order to find the real benefits for the investors of using robust 

methodologies, particularly the relative robust approach, when making investment decisions.  
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