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Abstract

Multi- moda tation system is a combination of more environmentally friendly shared transport modes
including p ort, ride-sharing, shuttle sharing or even completely carbon-free modes like cycling to
better meet custom®r needs. Multi-modal mobility solutions are expected to contribute in mitigating traffic
congestion, ission and result in savings in costs. They are also expected to improve access to
transportation, more specifically for those in rural or low-populated communities (i.e., difficult to serve by

public trans only). Motivated by its benefits, in this study, we consider the combination of the ride-
sharing andQublic transportation services and formulate a mixed integer programming model for the multi-
modal trans planning problem. We propose a heuristic approach (i.e., Anglea-Based Clustering
Algorithm) 3 are its efficiency with the exact solution for different settings. We find that the Angle-
Based Clust ithm works well in both small and large settings. We further show that the multi-modal

transportatic with ride-sharing can yield significant benefits on travel distances and travel times.

KeywordEransportation, mobility, ride-sharing, vehicle routing

1. Introduction

Public tranLn is a form of travel provided by cities that enables affordable transportation to
Raiblic transportation systems have provided communities with a valuable means of
pveral centuries. According to the American Public Transportation Association,
ion trips taken via transit in 2017 alone (Dickens, 2018). Public transportation can
ial, economic, and environmental benefits, e.g., significant financial savings and

ckens and Neff, 2011). Despite its benefits, public transportation systems are
often UW unreliable for serving first and last-mile travel, especially in rural or low-
populated Fegions (Jennings, 2015). In fact, as much as 45% of Americans have no access to public
ens and Neff, 2011). In recent years, private companies (e.g., Uber, Lyft) have
contributed to filliig the gaps by providing more flexible ride-sharing services. However, the
relatively high prices of their services restrict the widespread use of ride-sharing services by most
residents, y living in rural areas (Cohen and Shaheen, 2018). To enable affordable and
flexible tation services to residents and to improve access to transportation, multi-modal
transportati een introduced as a new way to provide effective and consistent transportation
services.
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The multi-modal transportation system is the combination of various modes of transportation
mechanisms such as walking, cycling, buses, trains, ride/shuttle sharing systems. Multi-modal
transportation has the capability to provide more efficient and fairer transportation compared to any
single-n%ed alone (Horn, 2002; Mishra et al., 2012; Litman, 2017). Moreover, it can offer
additional efits including mitigating traffic congestions, reducing emissions, and improving
customer & W e (Yao et al., 2012; Daganzo, 2007). Demand for multi-modal transportation is
also growinguAccafding to the study of Millennials and Mobility (Parker, 2017), nearly 70% of
millennials, use multi-modal travel options several times or more per week. Similarly, people living in
rural ar8as prerer multimodal transportation increasingly (Litman, 2018). As cities aim to improve
transporta ices, many cities have committed to developing multi-modal transportation
systems to harbggtheir benefits through public-private partnerships. For example, Detroit-Michigan,
Summit-NeW Jerse}, and Arlington-Texas are among the cities that partner with private companies
such as Ub ft in implementing the combination of public transportation systems with ride-

sharing servige I, 2018). However, despite the increased usage and need for multi-modal
n
m

transporta heir observed benefits in improving mobility, the integration of different
transportat es requires effective planning and limits the largescale adoption. In this paper,
we addres ortant challenge by developing a model and solution algorithms for the
integrated planning of a multi-modal transportation system involving both a public transportation
system an haring service.

We studf{a multi-modal transportation system in which the passengers are transported to their

final destin public transportation and shared services (i.e., shuttles). Recently, many cities
are looking native ways to improve access to transportation, more specifically for those in
rural or lowlp ed communities (Boll, 2018). We consider a set of passengers who go to the
same or ne tions and who can travel together (i.e., going for grocery shopping, or the daily

For example, consider a setting where employees living in various regions of the
service to go to their work or to the public transportation station. Some of the

k at the same company or at the companies which are close to each other by
nce, some employees may have common destination locations. All employees
are picked via a shared vehicle (i.e., shuttle), and they have an option to transfer to a mode of public
transport to reach their final destination. We consider the mixed load case where the employees
traveling tagé different destination but living close to each other can also share the same shared

vehicle. W the benefits of multi-modal transportation with ride-sharing, and we develop

answers to wing operational questions:

e Givena ssengers at different initial locations and having different final destinations, what
should b imal assignment, routing, and transfer decisions of passengers using multi-modal
transpornation with ride-sharing?

e Whatmi e of multi-modal transportation with ride-sharing in terms of vehicle travel

distance‘nd ve'cle travel time?

To address®hese questions, we develop a mixed integer linear programming model (MILP) by
considerin objectives to find an optimal assignment, routing, and transfer decisions. The
objective of the pr@blem is to minimize a weighted sum of the following four sub-goals: (i) the sum
of the distance traveled by the vehicles, (ii) the maximum difference between vehicle driving time
and self-drivi ne, (iii) the average vehicle travel time, and (iv) the number of transfers made by
e our problem is NP-hard, finding an optimal policy for large problem instances is
difficult. Th adevelop a heuristic (i.e., Angle-Based Clustering Algorithm) to solve the MILP
model efficiently. Then, we compare the MILP model with the proposed heuristic. We find that the
Angle-Based Clustering Algorithm works well in both small and large settings. Finally, we analyze the
benefits of the multi-modal transportation system by using the generated instances and show that
the combination of ride-sharing and public transportation system can result in a decrease in total
vehicle travel distance by 7%, and 8% in vehicle travel time.
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The remainder of the paper is structured as follows: In Section 2, we review the relevant
literature. In Section 3, we describe the multi-modal transportation model with ride-sharing. In
Section 4, we propose an Angle-Based Clustering Algorithm. In Section 5, we perform numerical

analysesw the proposed heuristic approaches with the optimal policy and evaluate the
f .

benefits o E!fr-modal transportation model with ride-sharing. Finally, our conclusions are outlined
in Section

H
2. Literatur@ Review

Multi-modaigtrari§gortation has been extensively studied in the context of freight transportation
(Ishfag andiSox, 2Q41; Gelareh and Nickel, 2011; Alumur et al., 2012; SteadieSeifi et al., 2014).
Studies in th of freight transportation focus mostly on the combination of fixed routes, and
they do no r routing decisions. Contrary to these studies, we investigate the first- and last-
mile travel\@f passgngers as well by considering the ride-sharing. In the area of urban passenger
mobility, some studies investigate the multi-modal transportation planning problem. However, these
studies eit t take the transportation efficiency into consideration and formulated the multi-
modal tran n routing problem as one without time constraints (Zhang et al., 2006; Qingbin
and Zengxia, 2010) or did not include ridesharing and consider the combination of fixed routes
(Ambrosingrand Sclomachen, 2014; Zhang et al., 2015; Sun and Lang, 2015). In our study, we
integrate rifes ing with the public transportation system by considering time constraints.
Different from these studies, we further evaluate the benefits of the multi-modal transportation
system in ravel time and travel distance. More relevant to our study, Maheo et al. (2017)
study the ¢ on of shared shuttles and bus routes to improve the transportation system.
However, their focus is the design of the transit structure (i.e., station locations). Different from
them, e the planning of the first/last mile travel of passengers using ride-sharing to and
from transit s

How ign vehicles to different customers and decide on their routes is a well-studied
problem in vehicle routing literature. More specifically, our problem is a special case of the pickup
and delivery problem, which has been studied extensively in the operations research literature
(Savelsberml, 1995; Ropke and Pisinger, 2006; Agatz et al., 2012). However, current studies
in this area lack of the consideration of mixed loads and multiple modes. Moreover, the shared

special case of the pickup and delivery problem that focuses on the
@ Aassengers (Berbeglia et al., 2007). Thus, it is important to consider the
convenience of the passengers as well. Our study differs from this literature since we measure the
passenger Ice quality, for example, in terms of the difference between the actual drive time and
direct dri vel time, and the number of transfers made.

Anotth literature that is relevant to our study is on school bus routing. Generally, the

school bus i roblems consider the collection of the students at their bus stops and returning
to the school wherg the students are dropped off (Bektas and Elmastas, 2007; Riera-Ledesma and
Salazar-Go 12; Schittekat et al., 2013). Similar to our model, some of the studies in this area

allow mixed loa .e., the transportation of students attending different schools with the same bus)
7; Park et al., 2012; Kim et al., 2012), but these studies do not consider transfers
des. Bus routing models which model transfers of students either consider
predefined tran points (Cortes et al., 2010) or the transfers between the same modes (i.e.,
between busses) (Fugenschuh, 2009; Bogl et al., 2015; Bouros et al., 2011). To the best of our
knowledge, none of these studies in this area explicitly considers the overall problem of shared

vehicle routing, assignment, and passenger transfer decisions by considering multiple modes.
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In the literature, clustering-based algorithms are widely used, and the pick-up nodes have been
clustered according to different features, such as vehicle information, road information, depot
location, and pick-up locations. The sweep algorithm is one of the first clustering-based algorithms
which WW by Gillett and Miller (1974). The sweep algorithm forms clusters based on the
angle betw€en the stops and the depot by considering one destination. Liu and Shen (1999) improve
the angle- @ eep clustering heuristic by considering the problem with time windows, and
Renaud andiBoctaf’(2002) extend the algorithm by considering mixed size vehicles. Besides the
sweep alforithm other clustering methods are also used in vehicle routing problems. As an example,
some studigs group the passengers into the clusters according to the main road grid system (Qu et
al., 2004), ine discrete zone by using a combination of spatial partitioning techniques
(Ouyang, 2007), and some forms clusters according to the assigned weights of passengers (Ester et
al., 1996). Differenfifrom the above literature, we extend the angle-based sweep clustering heuristic

by conside ifféErent destination locations, which requires to generate angles for each different
destination o consider a mixed load in each vehicle by combining passengers having different
destinationlogatiofis. To ensure the mixed load, we improve the angle-based sweep clustering
heuristic by ig a second stage, which combines the clusters. This step involves a simple
optimizati:that minimizes the distances between the combined clusters.

3. A Multi- ansportation Model with Ride-Sharing

In our study, ven a set of vehicles, we consider assignment, routing, and transfer decisions of
passenger 8lifrulti-modal transportation with ride-sharing to reach their final destinations. We
consider t % ation of two transportation systems, e.g., shared vehicles and a public

transportatiC Vice with a fixed route. As a public transportation mode, we consider a more direct

and fas n the shared vehicles (i.e., subway, train, etc.). We build on a pick-up and
delivery pro opke and Pisinger, 2006), which considers only vehicle routing decisions, by
adding the bi ransferring decisions of passengers. We develop a mixed integer linear
progra | (MILP), and we aim to find the optimal routing, assighnment and transfer

decisions that minimize the weighted sum of the following four sub-goals: (i) sum of the distance
traveled by the vehicles, (ii) the maximum difference between vehicle driving time and self-driving
time, (iii) tWe vehicle travel time, and (iv) the number of passenger transfers.

We consi
ridesharing

mber of passenger locations using the multi-modal transportation system with
{P1,P,,..., Py} represent the set of passenger locationsand D =

{D1,D,,... epresent the set of passenger destinations where Dy refers to the destination of
passenger rther define F = P U D to represent the set of all passenger locations and
destination§, Each passenger has an individual destination, but some passengers may share the same
destination. re |V| number of vehicles with capacity C, where V is the set of all shared
vehicles“e starts its tour from the initial location O (i.e., depot) and ends its tour at the
end termin ion E. We define W = {1,2,...,|W|} as the set of transfer locations and
R=FUWUO as the set of all nodes in the transportation system. Passengers are picked by
shared vehij they can either transfer to the public transportation system or go to their

destination via s
destinati

d vehicles. We allow mixed loads where the passengers traveling to different
share the same vehicle. If a passenger is transported to her/his destination via
shared we assume that there is no additional walking time. On the other hand, if a
passenger cho o transfer at the transfer station, s/he gets out of the shared vehicle and uses
the public transportation system. Thus, there occurs a time delay when passengers are transferring
to the public transportation system (i.e., waiting time). We assume that s/he travels to the next
transfer station which is closest to her/his destination. Different from traveling via shared vehicles,
the passenger also needs to walk to their destination once s/he reaches to her/his final station. To
represent both the passenger walking time and the passenger waiting time due to the transfer, we
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define t¥ as the delay time of passenger i € P due to the transfer. The distance and travel time
between node i € R and node j € R are defined as d;jand t;;, respectively. If passenger at location
i € P drives to his destination directly without stopping at any other node, it takes t;p unit time to
reach hiM. A certain time is required during the passenger pick-up and drop-off. We

define t,,, t; and t,, to denote the pick-up/drop-off times needed at passengers’ initial locations, at
their desti @ ations and at the transfer stations, respectively. At each passenger pick-up/drop-
off locatio giregthaigone passenger can be picked up/dropped off, and we define [; to denote the

numberﬂfmrs picked/dropped at passenger location i € F (i.e., [; can take both positive and
negative values). Here we have two assumptions: one is that the number of passengers at each
pickup nod 1 , is less than the vehicle capacity, C. Another one is that the passengers at each

pickup nodeghould be picked up at the same time by the same shared vehicle. We further define the
following dgcision Mariables:

x}’j= A binary variable which equals 1 if the shared vehicle v travels from location i € R to location
J € R, alild gguals 0 otherwise.

Yin=A riable which equals 1 if passengers at initial location i € P are transported to
the tra ion w € W by vehicle v € V to use the public transportation service, and
equals to 0 oth@kwise.

s{ : The en vehicle v € V arrives at location i € R.

Spw - T hen passengers at location i arrive at destination location D; by walking from
transfengtation w.

q{:Nu ssengers on vehicle v € V after serving location i € R.

ariable that defines the difference between the multi-modal system travel

ing time.

summarize all notations in Appendix A. By using the above setting, we present

a
the ma odel as follows:
. d v + + Zvevsg_l_ Z Z Z v
mna, i,))ERxR Aij Xjj T U T A3 vl A4 Liwew Livev Liepr Yiw
(1)

subject to:

Yvev stuW x?' =1 Vie

p (2)

J
ZWEW <1 Vi €
P (3
Lwew Yjer x?j — Xjer X}JDL. =0 Vv eV,Vie
P 4)

Viv =k =Y xl;— Yjer X, =0 Vv EV,Vi € P,Yw €
w (5)
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R (28)
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VveV,VieP,Vw €

Vv eV,Vie

VveV,Vie P,Vw €
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Vi € P,Vw €
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Vv eV, Vie

Vv EV,ViER V€

Vv EV,Vi ER,VwW E

Vv EeV,Vi e

Vv €

vv eV,v(i,j) €

Vv EV,Vi e P,VYw €

Yv eV ,Vi €
VieER,VWwWE

Vv eV,Vie

where a is the weighting factor coefficient for objective k = {1,...,4}. Our optimization model
includes four types of objectives that reflect different goals involving minimization of the shared
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vehicle and passenger related costs. Objective 1 is a shared vehicle-related objective which aims to
minimize the total distance traveled by all vehicles. Objective 2 is a passenger related objective
which minimizes the maximum difference between the travel time of the multi-modal transportation
\Md vehicle and self-driving time. The objective is modeled through the variable u
19). This objective also aims equity in travel times of all passengers as it ensures

system
and the co
that the trd
objective which minimizes the average travel time of vehicles. Objective 4 is a passenger related
objectivgthers the cost of transferring decisions. It minimizes the total number of transfers
made by pL

of all passengers is close to each other. Objective 3 is another vehicle-related

In our m@del, wélensure that each passenger is picked up by one vehicle through constraint (2).
Constraint es that the passengers can transfer to another transportation mode at the

transfer st straint (4) ensures that if the passenger i € P is picked up by vehicle v € VV and
if the pass s not transfer to another transportation mode, the corresponding destination

location of nger is visited by the shared vehicle. Constraint (5) links y;;, and x;; variables. If
the passenger usegiboth transportation modes, it is ensured that the shared vehicle visits the

correspon sfer station and the passenger is dropped off at the transfer station. Constraint
(6) defines on that the passenger reaches her/his destination location by using a shared
vehicle or portation modes (i.e., a shared vehicle and another public transportation mode).
Constraint (7 nstraint (8) ensure that every shared vehicle leaves the depot and enters the
end termingl. straint (9), we balance the flow for each vehicle at each location. Constraints
(10), (11), a re used to define s} the time when vehicle v € V arrives at the specified

locatio (13) defines the time when passengers arrive at their destination from transfer
location w se constraints (i.e., constraints (10)-(13)) also make sub-tours impossible.
Constrai nd (15) state that the pick-up time of a passenger at location i € P occurs before
the pas es to her/his destination. In constraints (16), (17), and (18), we link y},, variable

with the arrival time of passengers at certain locations. More specifically, constraint (16) ensures
that if no o§ in a shared vehicle v € V transfers at the transfer station w € W, the shared vehicle

does not vi nsfer station (i.e., s;, = 0). Similarly, constraint (17) states that if passenger

i € P does fer at the transfer station w € W, then (s)he will not take the public
transporta ce at station w € W to the destination (i.e., sp,,, = 0). On the other hand,
constraint ( ribes that if the passenger at location i € P transfers at any of the transfer
station w €W, then the shared vehicle does not visit the destination location of passenger i € P

(i.e,Xy

L
As descn!ed above, we define variable u through constraint (19) which represents the maximum
difference betweeithe travel time of a passenger using the multi-modal transportation system with

ride-sharin senger’s self-driving time. Constraints (20) and (21) define the current number

of passengers. h shared vehicle at each location. We assume that the number of passengers at

each pi e, l; Vi € P, is less than the vehicle capacity, C. With constraint (20), all passengers
at location 1 picked up by the same vehicle at the pickup node. Similarly, with constraint (21),
the number of passengers in vehicle v € V is updated at the transfer station w € W if any passenger
transfers to public transportation. In constraint (22), we state that the current number of passengers
at each location should be less than or equal to the capacity of the shared vehicle. Constraints (20)

and (22) together ensure that if the remaining capacity of the vehicle v € V is greater than the
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number of passengers at pickup node i € P, the vehicle will pick up all passengers at that node. If
not, another vehicle satisfying that condition will pick them up. We also ensure that the vehicle is
empty at the depotand the end terminal through constraint (23). Constraints (24) and (25) define
integralthraints (26) - (28) define non-negativity.

In our mo many nonlinear constraints (i.e., constraints (4), (5), (10) - (18), (20), and
(21)). Thes giAtE can be linearized, and the model (1) - (28) can be easily transformed into a

MILP medcimEemexample, we use the following two constraints to linearize constraint (4).

Zwewsﬁ =0= EjeR X?j _ZjER xiji =0 VveV,Vie

P (29)

=>{Z RX}; BLjerXjp, < 0+ M Zyew Yin Vv EV,Vi€P
ZjeR i _ZjERx}]DiZO_M Ywew Yiw VveV,VieP

(30)

where M i alue. We determine the value of M for each nonlinear constraint separately by
considering the smallest possible value for that constraint. Similarly, we convert all nonlinear

constraints ear constraints.

4. Heuristi;ch

Our problefn i iant of the vehicle routing problem, and it is an NP-hard problem. NP-hard
problems ar€'u y difficult to solve for large instances due to the curse of dimensionality. In our

er of passengers, transfer locations, and vehicle capacity increase, it becomes
intractable to ¢ ute the optimal objective function and find the optimal assignment, routing, and

4.1. Angmsed Clustering (AC) Algorithm

In this sect@ropose a three-stage, Angle-Based Clustering Algorithm which splits the problem
into several clusters and reduces the size of the optimization model. We assume that some

passengersimay have the same destination location or may have nearby destinations (i.e., by walking
distanc {D;, ..., D,'} represent the set of different destination locations where D' € D

and P, yiz} represent the set of passengers’ initial locations traveling to destination D,,
where P, .. denotes passenger i traveling to destination D,,. In the first stage of the algorithm,
we aim to create alet of clusters of passengers who have the same destination or having close
destinatio sume that cluster m,, € {1,2, ..., m,} is formed for destination location D, where

myis the nu of clusters formed for that destination location. We use h(m;) to represent the

bngers assigned to each cluster m;,. We determine clusters by using angles. Let £A,
st angle formed by P;,D;P;,, V D, € D" and VP,,, Pj, € P,and 4B, = 24z

represent the 13

4

represent equal angles for all different destination locations D,. We describe the first stage of the
Angle-Based Clustering Algorithm with details as follows:
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In stage 1, we form the clusters of passengers sharing the same destination location by
considering the initial location of each passenger. In the AC algorithm, if the size of the any of the
formed clusters exceeds the vehicle capacity, we split that clusters into the equal angled subclusters.
To split mkmje

Angle-Based Clustering Algorithm - Stage 1:

Step 1: Calculate the largest angle /A, formed by P,,D.P;,,V D. € D" and ¥P;., Pj. € P so that
passengers fall within the angle.
Step 2: Calculate the number of clusters ., for each different destination location D’ using:

Number of Passengers Traveling to Destination D/,
Shared Vehicle Capacity

x | D'

m, =

Step 3: Calculate £ B. for each different destination location D’ using: /B, = —

Step 4: Assign passengers to clusters as follows:
for z < 1to |D'| do
for j « 1to|P.|do
for m/, < 1tom, do
if ( /P1.D.Pj, < m’/B.) then
Pj. is assigned to cluster m/,
h(m’) + h(m’) + 1; break
Step 5: Rearrange clusters by considering the shared vehicle capacity.
for z + 1to |D'| do
if h(m!) > C then
Step 5.1: Split the cluster m’, equally, until each new subcluster does not exceed the vehicle
capacity as follows:
for 9’: + 1to p, do
if(/P.D.Pj. < (m! —1)-/B. + 0. - /B!) then
Step 5.1.2: P;, is assigned to cluster m. =m, + (¢}, — 1)
h(ml) < h(m!) +1
Step 5.1.3: Update the number of clusters as m, = m, + (0, — 1)
if h(m.) > C' where m), = m. + (o, — 1) Vo, € {1,..., 0.} then
Update o, as p, + o, + 1 and go to step 5.1

that exceed capacity, we use the same approach that we use to determine the initial clusters. To
this end, wg define g, to represent the number of subclusters that are obtained after the split in
cluster itahe clusters with equal angles and ensure that each subcluster has the same

angle. Heni, we ?fine £ BJ to represent the angle of each subcluster.
To allo ed load, in stage 2, we combine the clusters formed in stage 1 by considering the

distances ach cluster and assign one shared vehicle to each cluster. Let Cent,,,; and
e centroids of clusters mz, m; € {1, ..., m,}, respectively. We use d,,s,,/to

Cent,,ire

denote the dist
model t

between clusters m;, and m; where z € {1,...,|D’'|}. We use an optimization
e the clusters as a group. We further define a binary decision variable km;m;’ where

it equals to ters m,, and m. are grouped together, and equals to 0 otherwise. We describe

the second stage of the algorithm as follows:
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Angle-Based Clustering Algorithm - Stage 2:

Step1: Calculate the Cent,,, where m!, € {1,...,m.} for all clusters of all destination locations (i.e.,
the centroid of each cluster formed in stage 1).
Step2: Solve the following optimization model:

D'l m. me

Hﬁnz Z Z dm“:m“;km’:m’;’ (31)

z=1lmi=1m’=1m"#m/,

subject to
| m,
Yo > ke 2D vm, e {1,...,m,} (32)
z=1mi=1mi7#m.
kmtmye = kmime vml, ml) € {1,...,m;} (33)
kmime € {0,1} vml,m, € {1,...,m;} (34)
-

Equatiorme objective function that minimizes the sum of the distances between clusters

that are grou ether. Constraint (32) states that at least | D’| clusters should be grouped
Numbers of Passengers Traveling to Destination D}

together siffce there are at least m, = Shared Vehicle Capacity X |D'| clusters

for each different dEstination D). In constraint 33, we define that variable km;m;’ is symmetric (i.e.,

if cluster 18 g d with cluster 2, it means that cluster 2 is grouped with cluster 1). Finally, we
define inte itions through constraint (34). We assign one shared vehicle for each cluster
formed stage 3, we fix the vehicle assignment decisions and solve each cluster
simultaneou ing the MILP model to find optimal shared vehicle routing and passenger transfer
decisions n shared vehicle assignment decisions. Below, we describe a simple example to
illustrat Based Clustering Algorithm:

Example 1$uppose, there are ten passengers and two different destination locations (i.e., D; and

D;). Let sh
dheyy

from1to 5
cluster 1 offD;, passengers 4 and 5 are assigned to cluster 2 of Dy, passengers 6, 9, 10 are assigned

icle capacity be 5 passengers. As shown in Figure 1, we assume that passengers
eling to Dy, and passengers from 6 to 10 are traveling to D;. By using stage 1 of

. ) o 5
the propos stic approach, we define two clusters for each destination (i.e., m; = m, = S X

tained clusters in Figure 1(a). More specifically passengers 1, 2, 3 are assigned to

d passengers 7 and 8 are assigned to cluster 2 of D;. No cluster contains more

than fiv“es, so we move on to stage 2.

In the first sta f the heuristic, four clusters are formed. Assigning one vehicle for each cluster
with a capasi e would be costly. Thus, in the second stage of the heuristic, we group clusters

to make the vehiel assignment decisions by allowing the mixed load. We use the optimization

model e that passengers who are close to each other are traveling together. Since we have

two differe inations (i.e., D' = 2), we assign two clusters for each group. According to the
optimization model, passengers 1, 2, 3, 7, and 8 are assigned to one group, and passengers 4,5, 6, 9,

and 10 are assigned to another group.
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Weiillu ur results in Figure 1(b). Finally, in the third stage, we fix the shared vehicle

assign s, and we use the original MILP model to find optimal routing and transfer
decisions for two new clusters formed in stage two. We show two feasible routes where the transfer
station is v!’ted, and the transfer station is not visited in Figures 1(c) and 1(d), respectively.

5. Numerig @ ments

ises three main parts. First, we describe the instance generation process that we
merical experiments in Section 5.1. Second, we compare the performance of the
heuristi f the MILP solution in Section 5.2. Third, in Section 5.3, we evaluate the benefits
of the m“’ansportation system in terms of travel distance and travel time by comparing
the multi- nsportation system with the single-mode system ( i.e., shared vehicles only).

This section

use in our

transportation s m. We consider a shared-shuttle service that can take employees to and from
the nearest high-frequency public transportation stop or directly to their work. In all instances, we
assume that the passengers’ locations are distributed within a 10 miles radius around their
destination, and we generate these pick-up locations randomly. More specifically, we generate the
distance between locations by sampling from a uniform distribution and by considering a Manhattan
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distance structure. In our numerical experiments, we consider that there is one public transfer
station, one depot, one end terminal, and two destination locations and we vary the number of
pickup locations, the number of vehicles, and the capacity of vehicles. We summarize the settings
and theMnstances in each setting in Table 1 as follows:

Table 1
Summary oettings of generated instances
Number of Vehicle Number of Total Number of

I Passengers Capacity Vehicles Instances

L 10 5 2 vehicles 12

15 5 3 vehicles 12

20 5 4 vehicles 12

10 2 vehicles 12

w 30 5 6 vehicles 12

10 3 vehicles 12

j 50 5 10 vehicles 12

10 5 vehicles 12

As showf¥ in Table 1, in our numerical experiments, we consider cases where there are 10, 15, 20,

30, and 50 rs. When there are 10 and 15 passengers, we use vehicles with a capacity of 5,
and when there are more than 15 passengers we use vehicles with a capacity of both 5 and 10. We

consider a umber of vehicles as well. For example, when there are 20 passengers, and when
the capacity vehicles is 5, we consider that there are 4 vehicles. Similarly, when there are 20
passen n the capacity of the vehicles is 10, we consider that there are 2 vehicles. In
each se ensure that total vehicle capacity can meet the total number of passengers. We also
vary the weigh he subobjectives (i.e., a; Vi € {1, ...,4}). More specifically, we consider two

a, = 0. For each defined scenario setting, we consider 6 instances. For example, there are a total of
6 instances for the scenario setting where there are 10 passengers and 2 vehicles with a capacity of 5
and when ge objective function weights are a; = a, = a3 = a, = 0.25. Since we consider two
different bjective settings for this scenario, we analyze 6 X 2 = 12 instances in total
when there, I@passengers. The number of total instances can be calculated with a similar
approach f @

aining settings as illustrated in Table 1.

We further j account the differences between the speeds of different modes, since we
consider tWlo modes of transportation. The average driving speed of several U.S. cities without traffic
is state (Trigg, 2015). We use 24 MPH for the speed of the shared vehicle by considering

the traan during the rush hours. As stated in our model assumption, we consider a more
direct and faster mode than the shared vehicles as a second transportation mode (i.e., subway, train,
etc.). The s ain speed is stated as around 30 MPH (Johnson, 2010), and we use this value in
our numerical expgriments. The speed of the different modes impacts the time it takes to travel
between locations
Inourm e include the time it takes to get on and get off the vehicle. We consider that it

inute (i.e., t, = 1min) for a passenger to get on a shared vehicle. Considering that

there might be than one passenger getting off the shared vehicle or subway/train, we use 2
minutes (i.e., t; = t,, = 2 mins) for getting off at the destination and transfer locations. For
passenger waiting time at the transfer stations, we review subway schedules (i.e., NYC MTA) and
train schedules (i.e., Detroit) during the rush hours where a subway/train is scheduled around every

4-6 minutes. Thus, we use a uniformly distributed waiting time at the transfer stations with an
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average waiting time of 2.5 minutes. We also take into account a walking time from the transfer
station to the passenger’s destination for passengers using the second mode (i.e., train, subway). In
our instances, we use uniformly distributed walking times changing from 1 to 10 minutes. We
provide Hto illustrate one of the instances in Appendix B.

5.2. Con% of Solution Algorithms
 —

In this secti@n, we compare the MILP solution with the proposed methodology (i.e., the AC
algorithm) and use it as a benchmark value for the proposed algorithm. We solve the problem for all
instances, @ defined in Section 5.1, and all instances are solved by using the CPLEX solver.
We note th so provide a comparison of algorithms for small-sized settings (i.e., when N = 5)
in AppendiyB. scribed before, we define 6 instances for each scenario setting, and thus, we
present ouWor each scenario setting in each table. Moreover, since four sub-objectives have
different ugi agnitudes, we normalize the value of each sub-objective before calculating the
weighted sum of f@Qur sub-objectives. Hence, we present the normalized objective function values in

the tables.

In each thIe, we present the numerical results of the exact MILP and the AC Algorithm for each
instance. F LP result, we present the objective value of the MILP (i.e., Obj.), the optimality
gap obtain end of the running time by the CPLEX solver (i.e., Gap %), and the computation
time in sec@od , Run time/s). Similarly, for the proposed algorithm, we present the

0

correspondin ective value (i.e., Obj.), percent difference with the MILP solution at the end of the

ie., % Gap with MILP), and the computation time in seconds (i.e., Run time/s). We
t difference with the MILP solution by using the following formula:

running
calculate the

% Gap with MILP
! _ Obj. of Heuristic Algorithm — Obj. of MILP

Obj. of MILP

(35)

In Table @ marize the comparison results for 6 instances. We present the run results for
the MILP and"AC"Algorithm when the vehicle capacity is 5 (i.e., C = 5) when the sub-objectives are
equaIIM& a1 = ay = az = ay = 0.25), and when there are 10 passengers (i.e., N = 10).
As showgasi the average “% Gap with MILP” for the AC Algorithm is 0.34% which means that
the AC algarithm viglds slightly worse objective function value than that of the MILP solution on
averagemario setting. However, the run time of MILP is one hour, while that of the AC

Algorithm is 3 mingtes (i.e., 180 seconds)’. Hence, the AC algorithm is more time-efficient than the
MILP for thi i

Table 2
Comparige rorithms for setting: N = 10, =5, = a, = a3 = a, = 0.25

MILP AC Algorithm

! We limit the computation time of the MILP as one hour and limit the run time of the Angle-based Clustering Algorithm as
3 minutes.
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% Gap with

Obj.  Gap% Runtime/s Obj. MILP Run time/s
1 0.3235 55.72% 3600 0.3235  0.00% 180
HZ 0.4637 60.31% 3600 0.4408 -4.93% 180
3 0.3070 59.20% 3600 0.3142 2.37% 180
4 0.3465 58.30% 3600 0.3465 0.00% 180
0.3899 59.18% 3600 0.400 2.74% 180
N —— 0.3618 53.93% 3600 0.3686  1.88% 180

Average 57.77% 0.34%

Similarly@lin Tabl@ 3, we present the run results for the MILP and AC Algorithm when the vehicle

G

capacity is ®C = 5) when the sub-objectives are equally weighted (i.e., @y = a, = a3 = a4 =

0.25) and e are 15 passengers (i.e., N = 15). As shown in Table 2, the average “% Gap
with MILP"§o C Algorithm is -0.15%. Different from the results of Table 2, the AC algorithm
outperforms the MILP in terms of both the objective function value and the run time. On average,

8

the AC Algmaches a better objective function value within 3 minutes.
Table 3
Comparison c hms for setting: N =15,C =5,a; = a, = a3 = a, = 0.25
_Ins. MILP AC Algorithm
m Obj. Gap% Runtime/s Obj. % ?V?IT_I;NIth Run time/s
1 0.3652 57.95% 3600 0.3700 1.32% 180
22 0.3277 58.71% 3600 0.3199 -2.36% 180
3 0.3487 61.50% 3600 0.3430 -1.63% 180
4 0.4128 54.45% 3600 0.4068 -1.44% 180
5 0.3102 52.34% 3600 0.3116 0.45% 180
6 0.4006 53.23% 3600 0.4115 2.73% 180
Average 57.77% -0.15%

[

For a setting

here the vehicle capacity is 5, we also consider the case with 50 passengers. In this

case, due t umber of passengers, MILP cannot obtain any feasible solution within 1 hour,
whereas theWa@malgorithm obtains feasible solutions within 5 minutes. Since there is no MILP solution
to compar Gap with MILP” column cannot be calculated. Thus, it is clear that the AC
algorithm erforms the MILP in this scenario setting as well. We present our comparison results

inTable 9 iiAppeWix B.
We furt re the results of the settings when the vehicle capacity is 10. In Table 4 and in
Table 10, we presefiit the results where there are 20 and 30 passengers, respectively’. For both

tables, the

capacity is 10 and the sub-objectives are equally weighted. As shown in tables, the

MILP canno solutions for some settings, specifically, for the settings where the number of
passen ge (i.e., N = 30). For the instances where there is no MILP solution, the percent gap
with MILP can calculated. When there are 20 passengers, it is shown that the AC algorithm

obtains a better objective function value in 5 minutes than the MILP can obtain within one hour. We

% Table 10is presented in Appendix B.
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note that the results for the remaining settings are similar to our findings. We present the tables for
the remaining instances in Appendix B.

Table 4 I '
Comparisontof algorithms for setting: N =20,C =10,a; = a, = a3 = a, = 0.25

Q MILP AC Algorithm
Ob % Gap with

j.  Gap% Runtime/s Obj. Run time/s

H I MILP
s 1 - - 3600 0.4908 - 300
2 0.4494 65.00% 3600 0.4234 -5.78% 300
‘ ’3 0.2297 57.40% 3600 0.2195 -4.43% 300
4 - - 3600 0.2204 - 300
5 0.2203 54.91% 3600 0.2170 -1.48% 300
w6 0.2679 65.20% 3600 0.2529  -5.58% 300

erage 60.62% -4.31%
Overall, gi complexity of the problem, the exact MILP model cannot find a feasible solution

within one ho en the number of passengers is greater than 20. On the other hand, the AC
Algorithm Both reduces the number of decision variables in the MILP model and reduces the size of

the proble ting the model into clusters that can be solved by the MILP simultaneously. Thus,
the AC Algagi n find a feasible solution for all instances within 5 minutes. Moreover, the AC
Algorithm i&m ficient (i.e., can solve within 5 minutes) and more straightforward compared to
the MILP. Giventhat our analysis focus on ride-sharing and point-to-point pickup and delivery
service, lude that high-quality solutions can be obtained within 5 minutes using the AC
Algorithm.

5.3. Value of the Multi-Modal Transportation System

In recent yhsportation planning has expanded to include more emphasis on non-automobile

modes, to traffic speeds, minimize congestion, reduce pollution emissions, and to

minimize t traveling. A multi-modal transportation system is an alternative option to the
single-mode (i.e., private vehicles or ride-sharing mode only), and it is expected to minimize the use

of vehiclesfn our study, we calculate the benefits of the multi-modal transportation system on the

vehicle i ce and vehicle travel time. Hence, we consider two settings: (i) single-mode,
where t blic transportation is not allowed (ii) multi-mode, where the use of public
transporta is allowed. We run the same instances by considering both single- and multi-mode
options and calculdte the percent difference between the objective function values of these two
options. T ted difference gives us the obtained benefits in terms of vehicle driven distance
and vehicle tr me when the multi-mode system is used instead of the single-mode system. We
use the ILP model for comparison. We analyze the change in the vehicle travel distance (i.e.,
a; =1)an travel time (i.e., a3 = 1) when multi-mode and single-mode transportation

systems are compared. We use the same instances that are introduced in Section 5.2. Since the
exact MILP solution does not provide a feasible solution in some cases, we illustrate our results for
the ones where a solution can be obtained within one hour in Table 5.
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Table 5
Comparison of multi-mode and single-mode transportation systems in terms of shared vehicle travel distance
(i.e., &y = 1) and travel time (i.e., a3 = 1)

H Objective Function Objective Function

Vehicle Number of whena; =1 whenas; =1
pacity Passengers Single Multi Percent Single Multi  Percent
Mode Mode Change Mode Mode Change

= i 5 10 0.5515 0.4907 -11.03% 0.6405 0.5528 -13.69%

52 5 10 0.7730 0.7385 -4.46% 0.9533 0.8467 -11.18%

5 10 0.6326 0.6260 -1.03% 0.7605 0.7367 -3.13%

4 5 15 0.5943 0.5468 -8.00% 0.9740 0.8538 -12.34%

5 15 0.5323 0.4993 -6.19% 0.8053 0.7844 -2.59%

6 5 15 0.5685 0.5166 -9.13% 0.9242 0.8599 -6.95%
m 10 20 0.3639 0.3320 -8.77% - - -
10 20 0.3292 0.2870 -12.80% - - -

: Average -7.68% -8.31%

From left jght, Table 5 presents the instance number, the capacity of the shared vehicle,
the numbefffof passengers, objective function value of the single-mode system when a; = 1,
objective f i lue of the multi-mode system when a; = 1, percent difference between

different mag n a1= 1, objective function value of the single-mode system when a; = 1,
objective fdhc lue of the multi-mode system when a3 =1 and the percent difference between
€

different m naz; = 1. We calculate the percent difference between different modes by
using t ormula:
Perc erence Between  Obj. Value of Multi mode — Obj. Value of Single mode

odes h Obj. Value of Single mode (36)

As shown in Table 5, when a; = 1 (i.e., when the objective function is to minimize the total travel
distance solely), the result indicates that the average total travel distance over all instances
decreases s 7.68% with the existence of multiple modes. When a3 = 1 (i.e., when the objective
function is ize the average travel time solely), the result shows that the average travel time
decreases b
shared ve
savings in botlm#@Vel distance and travel time. It is also expected that the decreased use of shared
vehicles wi reduced traffic density and traffic delay. Overall, the existence of multiple modes
he travel distance and the travel time of the shared vehicle to a large extent, which
nd time.

6. Conclusi

Multi-modal mobility systems are essential in day-to-day transportation of commuters, such as

ork in big cities or people who live in low-populated neighborhoods. Multi-modal
stems ensure more flexible, less costly (i.e., regarding traffic density, travel time,
and travel distanc@) transportation compared to the single-mode systems. Multi-modal
transportation system also contributes to improving the accessibility of the residents to the
resources that they need. Although its implementation with shared vehicles is relatively new, the

demand is increasing, and cities are investigating solutions to implement an efficient integration of
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multiple modes. Thus, it is important to analyze efficient ways to implement multiple modes with
shared vehicles and evaluate its value.

In thisMuild an MILP model for multi-modal transportation systems with shared
vehicles. Since investigated problem is NP-hard, it is computationally intractable to obtain

optimal (a pasible) solutions for large problem instances. Thus, we propose an Angle-Based

Clustering d we compare its performance with the MILP solution. We show that the
Angle-B&sc@I@IUSEETing Algorithm is a more practical procedure that outperforms the MILP.
Moreover,ie Anﬁle—Based Clustering Algorithm requires less computational effort and can solve

relatively large scale multi-modal transportation system problem, since it splits the problem into

clusters anfl solvesfall of them simultaneously. We further show that the Angle-Based Clustering

Algorithm g s a feasible solution for real-world instances in a reasonable time.

As part of fuBurelfesearch, first, variants of the proposed multi-modal mobility model can be
considered to allow even more flexibility to the pickup and delivery problems. For example,
configurations where both delivery and pickup operations are performed within specific time-
windows, i eet of vehicles with different capacities can be considered. Second, more than
two differe can be considered which can provide more flexibility and options to passengers.
We build a\deterministic model to analyze the multi-modal transportation system with ride-sharing.
As a third , a stochastic programming model can be introduced to model the uncertainty in

waiting anmmes which would be a practically relevant variation to the problem.
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Definition

Model set-

Number of passengers using multi-modal transportation system with ride-sharing.

The set of passenger locations.

The passenger location i.

I

The set of passenger destinations.

The destination of passengers from passenger location i.

The set of all passenger locations and destinations.

The set of all shared vehicles.

Number of shared vehicles.

The capacity of shared vehicle.

The initial location (i.e., depot).

The end terminal location.

:
=

The set of transfer locations.

The transfer location w.

v}
Il

>
Cl
oy

The set of all nodes the transportation system.

the delay time of passenger i € P due to the transfer at transfer locationw € W.

The distance between location i € R and location j € R.

The travel time between location i € R and location j € R.

The time that passenger i € P drives to his destination directly.

The pick-up time needed at passengers’ initial locations.

The drop-off time needed at passengers’ destination locations.

The drop-off time needed at the transfer stations.

The number of passengers picked at locationi € F.

The number of passengers can be dropped off at transfer location w € W.

)\H{ho
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Notation Definition

Variables for MILP

A binary variable which equals to 1 if the shared vehicle v travels from location i € R to
location j € R, and equals to 0 otherwise.

b%; A binary variable which equals to 1 if a passenger at initial location i € P is transported
the transfer station w € W by vehicle v € V to use the public transportation service,
B B and equals to 0 otherwise.

S; The time when vehicle v € V arrives at locationi € R.

Number of passengers on vehicle v € IV after serving location i € R.
An auxiliary variable that defines the difference between shared vehicle driving time
and self driving time.

The weighting factor coefficient for objective k = 1,... ,4.

+
Spi The time when a passenger at location i arrives at destination location D; by walking
! ’ from transfer station w.
ar
D

A large value used for linearizing nonlinear constraints.

- C

B. Supp Numerical Experiments

An lllustrative’Example:

Example 2. igure 2, we present an illustrative example on the map of Detroit to visualize the
described and solutions of two approaches (i.e., MILP and AC algorithm). In this example,
we con re are ten passengers, one terminal, one depot, one transfer station, and two

shared vehicles with a capacity of five. There is one passenger at each location. Passengers from 1 to
5are travegg to destination 1, and passengers from 6 to 10 are traveling to destination 2. We use

the followi for the weights of sub-objectives: a; = a3 = 0.5, a, = a4, = 0, where the

total vehicl

gitravaldistance and vehicle travel time are minimized. Figure 2(a) presents feasible
routes of v @

at are obtained by the exact MILP, while Figure 2(b) presents feasible routes of
vehicles that are obtained by the AC Algorithm. As illustrated, in the MILP solution only one vehicle is
used to pick'up all ten passengers. Shared vehicle 1 starts the route at the depot, picks up the

passen d 9in order, and drops them at their destination (namely at D,). Then, shared
vehicle ssengers 10, 1, 2, 3 in order, and drops passenger 10 at the transfer station. The
vehicle, th s to destination 1 to drop the remaining passengers. Finally, it picks up

passengers 4 and Sland completes its route after dropping them at the destination 1. The second
shared veh Is from the depot to the terminal directly indicating that this vehicle is not used

to pick up anypa8senger. On the other hand, in the solution of the AC Algorithm, both vehicles are
«.@ gers 4,5,6, 8,9 are picked up by vehicle 1, and passengers 1, 2, 3, 7, 10 are picked
up by vehicle

used a
Walbpassengers are dropped at the transfer station to travel their final destinations.
We further compare the objective functions and run times of both MILP and the AC algorithm for the
above setting. MILP finds the described route within 1 hour, while the AC algorithm finds the
described route in 5 minutes. Further, the objective function value obtained by the AC algorithm is
better than the objective function value of the MILP where the percent difference is %-1.6 (i.e.,
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AC Algorithm Solution—MILP Solution
MILP Solution
settings and the solution for this setting. In the next section, we compare the MILP with the AC

algorithm 'r all ﬁ’erated instances.

Compar m gorithms for small-sized instances:

In this section, we generate small cases where we can actually solve the problem optimally. We
consideﬂhmare 5 passengers to pick-up and one vehicle with a capacity of five. We further
consider th b-objectives are equally weighted (i.e., a; = 0.25, 2, = 0.25,a3 = 0.25,a, =
0.25). We whe comparison of MILP and AC algorithm for the described setting in Table 6.

= % — 1.6). We note the above example describes just one of the

Similar to vious tables, in Table 6, we present the numerical results of the exact MILP and
the AC Algagith or the MILP result, we present the objective value of the MILP (i.e., Obj.), the
optimalitymned at the end of the running time by the CPLEX solver (i.e., Gap %), and the
computation timéin seconds (i.e., Run time/s). Similarly, for the proposed algorithm, we present the
correspon tive value (i.e., Obj.), the percent difference with the MILP solution at the end of
the running time (jf¢., % Gap with MILP), and the computation time in seconds (i.e., Run time/s). As
illustrated in Table 6, the “Gap%” column for the MILP and the “% Gap with MILP” column for the
heuristics i instances. This indicates that the obtained solutions are optimal for all instances.
Moreover, Sinoce the number of passengers is only 5, we do not create any sub-clusters for the AC
Algorithm. Hence, the MILP and the AC Algorithm solves the same problem and their run times are

the same. m

— Vehicle 1goute — Cluster 1 route

~—+ Vehicle 2 route ==+ Cluster 2 route

P6 €

Transfer
Station

Terminal

D2

P7 Pl
(o]
0 P2 L P3

Feasible MILP route (b) Feasible AC Algorithm route

Feasible MILP route and Clustering route for a; = 0.5,a, = 0,a3 =0.5,¢, =0
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Table 6
Comparison of algorithms for setting: N =5,C = 5,2, = a, = a3 = a, = 0.25

MILP AC Algorithm

t

. . . % Gap with  Run

Q Obj. Gap%  Runtime/s Obj. MILP time/s
0.1617 0.00% 180 0.1617 0.00% 180

I — 0.1763 0.00% 258 0.1763 0.00% 258
! 3 0.1273 0.00% 345 0.1273 0.00% 345
0.0961 0.00% 255 0.0961 0.00% 255

0.1292 0.00% 169 0.1292 0.00% 169

0.1170 0.00% 108 0.1170 0.00% 108

Compari§onfef dlgorithms for the remaining settings:
In this seclion, We present the table results for the remaining instances which are presented in the
and the AC Algorithm.

S

main pape

Table 7
Comparison of

U

s forsetting: N =20,C =5, =a, = a3 =a, = 0.25

Ins.  MILP Clustering

)

% Gap with  Run

Obj.  Gap% Runtime/s Obj. MILP time/s
- - 3600 0.3664 - 300
2 - - 3600 0.3160 - 300
3 - - 3600 0.3485 - 300
4 - - 3600 0.3223 - 300
5 - - 3600 0.3293 - 300
6 - - 3600 0.2993 - 300
Table 8
Comparison !algorithms forsetting:N =30,C =5,a; =a, = a3 = a, = 0.25
ns. MILP AC Algorithm
Obj.  Gap% Runtime/s Obj. % G'\:ﬁ_;wth ':?nne/s
- - 3600 0.3963 - 300
- - 3600 0.3035 - 300
- - 3600 0.2995 - 300
3600 0.3220 - 300
3600 0.3005 - 300
- - 3600 0.2918 - 300

Autho
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Table 9
Comparison of algorithms for setting: N = 50,C =5, a; = a, = a3 = a, = 0.25

MILP AC Algorithm

% G ith R
Obj. Gap% Runtime/s  Obj. o Bapwi un

pt

MILP time/s
1 3600 0.3010 - 300
2 - - 3600 0.2933 - 300
o —— - 3600  0.2774 - 300
s 4 - - 3600 0.2978 - 300
5 - - 3600 0.3466 - 300
O 6 - - 3600 0.1790 - 300
Table 10
Comparison of algagihms for setting: N = 30,C = 10, a; = a, = a3 = a, = 0.25
w Ins. MILP AC Algorithm
. . . % Gap with  Run
: Obj. Gap% Runtime/s  Obj. MILP time/s
1 - - 3600 0.4534 - 300
C 2 - - 3600 0.5855 - 300
3 - - 3600 0.3486 - 300
4 - - 3600 0.2123 - 300
5 - - 3600 0.1879 - 300
m 6 - - 3600 0.2151 - 300
Table 11
Compari s for setting: N =50,C =10, 2; = a, = a3 = a, = 0.25
S. MILP AC Algorithm
Obj. Gap% Runtime/s  Obj. % G'\jlpL;V'th Et‘n"e s
1 - - 3600 0.1689 - 300
s 2 - - 3600 0.1835 - 300
3 - - 3600 0.1814 - 300
4 - - 3600 0.1866 - 300
OS - - 3600 0.2098 - 300
6 - - 3600 0.1782 - 300
Table 12 :
Comparison algormns for setting: N = 10,C =5,a; = 05,0, = 0,253 = 05,0, =0
. MILP AC Algorithm
H Obj. Gap%  Runtime/s Obj. % G'\jﬁ_;v'th ::nne/s
: 0.5396 48.50% 3600 0.5396 0.00% 300
0.7671 51.42% 3600 0.7690 0.26% 300
0.5258 51.51% 3600 0.5306 0.91% 300
4 0.5244 43.81% 3600 0.5164 -1.52% 300
5 0.6144 46.47% 3600 0.6258 1.86% 300
0.6805 48.23% 3600 0.6641 -2.41% 300
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Table 13

Comparison of algorithms for setting: N = 15,C =5, @¢; = 0.5,a, = 0,a5 = 05,2, =0

Ins. MILP AC Algorithm
H Obj. Gap% Run time/s Obj. % G,\jﬁ_:"th El:e/s
Q 0.5947 49.05% 3600 0.6306 6.04% 300
0.5349 49.39% 3600 0.5585 4.42% 300
= mmmmms 05832 54.40% 3600 0.5679 -2.63% 300
4 0.6953 46.23% 3600 0.6723 -3.31% 300
L 0.5286 48.23% 3600 0.5236 -0.94% 300
0.7496 49.05% 3600 0.6897 -8.00% 300
Table 14
Comparison o!;ms for setting: N = 20, =5,a; = 0.5,0, = 0,a3 =05,a, =0
ws. MILP AC Algorithm
Obj.  Gap% Runtime/s Obj. % GMalrl)_;vnh :{ilr;ne/s
;1 - - 3600 0.6281 - 300
2 - - 3600 0.5462 - 300
C3 - - 3600 0.5874 - 300
4 - - 3600 0.5091 - 300
5 - - 3600 0.5527 - 300
6 - - 3600 0.5191 - 300
Table 15 m
Comparison of'alg s for setting: N =30,C =5, a; = 0.5,a, = 0,3 =0.5,a, =0
S. MILP AC Algorithm
Obj. Gap% Runtime/s  Obj. G,\;ﬁ;"'th El:e s
- - 3600 0.5220 - 300
- - 3600 0.4972 - 300
- - 3600 0.5116 - 300
- - 3600 0.5589 - 300
- - 3600 0.4726 - 300
- - 3600 0.4671 - 300

Author M
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