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ABSTRACT 

For businesses to benefit from the many opportunities of Cloud computing, they must first address a number of security 

challenges, such as the potential leakage of confidential data to unintended third parties. An inter-VM attack, also known as 

cross-VM attack is one threat through which Cloud-hosted confidential data could be leaked to unintended third parties. An 

inter-VM attack exploits vulnerabilities between co-resident guest VMs that share the same Cloud infrastructure. In an attempt 

to stop such an attack, this paper uses the principles of logical analysis to model a solution that provides physical separation 

of VMs belonging to conflicting tenants based on their levels of conflict. The derived mathematical model is founded on 

scientific principles and implemented using four conflict-aware VM placement algorithms. The resultant algorithms consider 

a tenant’s risk appetite and cost implications. The model offers guidance to VM placement and is validated using a proof-of-

concept. A Cloud simulation tool was used to test and evaluate the effectiveness and efficiency of the model. The findings 

reflect that the introduction of the proposed model introduced a time lag in the time it took to place VM instances. On top of 

this, it was also discovered that the number and size of the VM instances has an effect on the VM placement performance. The 

findings further illustrate that the conflict tolerance level of a VM has a direct impact on the time it took to place.  
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1. INTRODUCTION 

Shared public Cloud infrastructures open up a subtle data leakage threat which happens on the 

virtualization layer. This threat allows tenants to gain unauthorised access to confidential data from 

other co-resident tenants. For example, Perez-Botero, Szefer and Lee (2013) reflect on how malicious 

attackers could practically exploit vulnerabilities to the memory management unit to compromise the 

confidentiality of data belonging to co-resident guest VMs. Cloud computing uses virtualization and 

multi-tenancy to place tenants’ Virtual Machines (VMs) on a shared physical infrastructure. 

Virtualization abstracts and multiplexes the shared physical infrastructure of a Cloud Service Provider 

(CSP) and hides the complexity of its underlying pool of virtualized resources. Multi-tenancy, on the 

other hand, allows different tenants to share the pool of virtualized resources provided by the CSP (Auer 

et al. 2019; Goyal et al. 2019). Both these techniques are realised by the concept of a VM instance.  

Multi-tenancy and virtualization make it possible for VMs of co-located tenants to be instantiated on 

the same physical infrastructure. Given this scenario, it means that tenants’ confidential data within 

VMs sharing the same physical infrastructure is only logically separated. If VMs are co-located on the 

same physical Cloud infrastructure, they can reveal confidential data (Lefray et al. 2015; Xing et al. 

2019; Bazm et al. 2019). It would only take another tenant, who might be a competitor, to launch an 

inter-VM attack targeted at its rival to gain access to their confidential data. For this reason, the ever-

increasing demand of Cloud computing services places VM placement at the heart of CSPs’ decision 

making process (Goyal et al. 2019).  

An inter-VM attack can be carried out by a malicious guest VM in order to compromise the 

confidentiality, integrity or availability of virtualized resources of other co-resident guest VMs. This 
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attack exploits vulnerabilities on the physical separation between co-resident guest VMs that share the 

same physical infrastructure (Ahmad and Bakht 2019; Bazm et al. 2019). To broaden the attack surface, 

malicious tenants can compromise the hypervisor to escalate their access privileges and gain 

administrator access to a wide range of VMs. Given that a hypervisor runs at the highest privilege level 

and mediates all user access to the shared pool of virtualize resources, it becomes a single point of 

failure. This makes it a critical component from a security perspective and a prime target for attackers. 

A compromise on a hypervisor puts all VM instances that it monitors in danger (Ahmad and Bakht 

2019). Exploiting a hypervisor would allow an attacker to perform administrative tasks of creating, 

starting, stopping and destroying guest VMs as they please. For example, some research has already 

demonstrated how a malicious user’s guest VM could exploit vulnerabilities to trick a hypervisor to 

issue a command that could destroy another co-resident guest VM (Almutairy and Al-Shqeerat 2019). 

Consequently, some researchers are proposing solutions that either aim to remove or harden the 

hypervisor (Barrowclough and Asif 2018; Nanavati 2019).  

This paper derives and proposes a mathematical Conflict-Based VM Isolation Control for Cloud 

Computing (CBAC4C) model. The CBAC4C model is aimed at improving the physical separation 

between VMs in order to contain data leakage threats posed by inter-VM attacks. The physical 

separation focuses on the physical hosts, clusters and data centres. The rest of the paper is structured as 

follows: Section II discusses related work. Section III highlights system requirements, problem context 

and assumptions, and provides a theoretical formulation of the problem. Section IV derives and presents 

a mathematical formulation of the problem. The proposed CBAC4C architecture and algorithms thereof 

are presented in Section V. Section VI briefly discusses some screenshots of our proof-of-concept 

prototype. Section VIII concludes the paper and provides direction for future work.   

2. RELATED WORK 

A number of research efforts (Mashayekhy et al. 2014; Ristenpart et al. 2009; Kamran 2018; Yadav, 

Bharti and Raw 2018) have made attempts to address the problem of VM placement (in our context 

placement includes both initial placement and subsequent migration) on the Cloud from different view-

points. In support, Bartok and Mann (2015) and Ferdaus et al. (2017) assert that the VM placement 

problem in Cloud computing has been extensively studied with greater emphasis on server resource 

utilization, energy consumption and quality of service. Han et al. (2013) and (2014) argues that the VM 

placement problem can be categorised based on how it balances workloads, reduces power consumption 

and improves security. Some existing research efforts argue that the VM placement problem can be 

categorised based on performance issues and maximum utilisation of resources (Calcavecchia et al. 

2012; Azar et al. 2014). Some research work (Kamran 2018; Doung-Ba et al 2018) takes a business 

view to focus on VM placement that aims to minimize costs or maximize returns for CSPs. The work 

of Filho et al. (2018) provides a comprehensive classification of literature focusing on the different 

aspects of VM placement problem which also include a pointer to information security.  

This paper puts more emphasis on existing work that attempts to address the VM placement problem 

from the view of providing security guarantees. For example, Nanavati (2019) incorporates stronger 

VM isolation in a trusted computing base of a hypervisor. This work mediates and restricts access to 

shared Cloud infrastructure but does not cover the shared cache memory. The short-coming of 

Nanavati’s work comes in its failure to provide a greater degree VM separation. This is due to the lack 

of support from the underlying shared hardware which makes it computationally expensive to provide 

a greater degree of VM separation (Nanavati 2019). Similar to Nanavati’s work, our research also does 

not extend the separation of VMs to the shared cache, but it learns and uses Nanavati (2019) as a baseline 

to provide an improvement on the degree of VM separation.   
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Mashayekhy et al. (2014) propose a data protection framework for federated Cloud infrastructure. The 

propose framework therein incorporates a VM placement and migration strategy. Mashayekhy et al.’ 

strategy considers data protection requirements in terms of restricting VM co-residence and co-location 

in what they refer to as ‘trust restrictions’ and ‘disclosure restrictions’ respectively. Mashayekhy et al. 

(2014) considers the separation of tenants’ VMs based on conflict of interest as a level of data protection 

on top of encryption. It is argued therein that the strategy subsequently reduces the need to encrypt all 

data (Mashayekhy et al. 2014). Encrypting all Cloud-bound data has proven to increase computational 

costs and is also time consuming (Mosola et al. 2017). Other work (Zhang et al. 2013; Zhang et al. 

2014) as cited in Mashayekhy et al. (2014) have made plausible attempts to address the cost and time 

implications of encryption in the Cloud.  

Moreover, Tobin et al. (2018) report a widely used encryption standard which has a gaping backdoor 

that allows law enforcement agencies uninterrupted access to Cloud-hosted data. The work of Abelson 

et al. (2015) reports on more calls for regulations mandating Cloud Service Providers amongst others 

to design backdoors on their crypto systems. Such backdoors are argued to give law enforcement 

agencies ‘exceptional access’ to intercept suspected tenant data for analysis. This compromises the 

integrity of cryptographic standards and poses one of the greatest risks, as malicious entities can also 

use such ‘exceptional access’ backdoors for stealing data.  

Compromising the integrity of encryption standards indicates that CSPs cannot be trusted to prevent 

Cloud-hosted data from being leaked to unauthorized third parties. A good example is the United States 

of America vs Paige A. Thompson case, where a disgruntled former employee of Amazon - a Cloud 

computing company decided to leak confidential data of a tenant (financial institution) and host it in 

GitHub (Martini and Theiler 2019). Such cases which can be easily prevented by our proposal continue 

to erode consumer trust on Cloud services. The untrustworthiness of CSPs necessitates a tenant-side 

encryption mechanism to protect data from disgruntled and malicious CSP employees. This requires 

tenants to encrypt their Cloud-bound data on their premises before it is uploaded on the Cloud servers. 

Mosola et al. (2017) posits that tenants must use their own personalised encryption algorithms and keys 

that cannot be shared with the CSP.   

Kumar et al. (2014) make use of the Bell-LaPadula confidentiality model to detect data leakage on the 

Cloud. This work aims to identify in real-time those who are responsible for data leakage. Kumar et al. 

(2014) reflects on the computational cost, complexity and time lag introduced by robust cryptographic 

algorithms. Therefore, they make use of a lightweight AES-128 encryption algorithm, SHA-512 

hashing algorithm and water-marking to provide twice as much security with half the computational 

time required (Kumar et al. 2014). It is for the above reasons that the current paper also considers the 

separation of tenants’ VMs based on conflict of interest as extra layer of protection running on top of 

encryption to provide defence-in-depth. The idea is not necessarily to replace encryption, but to provide 

an extra layer of data protection on top of it to prevent data leakage. Encryption in itself does not prevent 

data leakage threats, it only ensures that if data is leaked, attackers would not be able to decrypt and use 

it. 

There are scanty research efforts that investigate data leakage threats in the Cloud (Ristenpart et al. 

2009; Zhang 2012; Tsai et al. 2011; Si et al. 2013). Existing efforts aim to strengthen the physical 

isolation (also referred to as separation) layer by employing the popular Chinese Wall Model (CWM) 

(Brewer and Nash 1989; Tsai et al. 2011). For example, Tsai et al. (2011) developed a Chinese Wall 

Central Management System (CWCMS) that manages the deployment of VMs based on the CWM. 

However, the CWM was designed in the time of centralised architectures where most of the data was 

hosted in a centralised location. The CWM cannot cope with the complex environments presented by 
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Cloud infrastructures. Consider for example scalability problems in that (in the worst case) a Cloud 

infrastructure is created in which all VMs of tenants are hosted on their own physical nodes. Such an 

approach is not scalable.   

Si et al. (2013) proposed a Security awareness VM Placement Scheme (SVMPS). This scheme 

considers two conflict-of-interest relations, namely “Aggressive Conflict of Interest Relation” (ACIR) 

and “Aggressive In Ally with Relation” (AIAR). Both relations are based on Brewer and Nash’s 

Chinese Wall security model. Using these, Si et al. (2013) were able to formulate and enforce physical 

isolation rules for placing and migrating VMs owned by conflicting users on the Cloud. Unlike 

Ristenpart et al. (2009), Sailer et al. (2005) does not discuss the issue of optimal utilisation of resources 

in the Cloud infrastructure. Furthermore, Si et al.’ solution does not provide tenants with any visibility 

with regard to the placement of their VM in the Cloud infrastructure. This is one aspect that this current 

paper tries to address with its ability to generate GPS coordinates and show the location for tenants’ 

VM placements at any point in time.  

The work of Wang et al. (2012) and Wang et al. (2013) provides tenants with a mechanism to verify 

CSP’s physical VM isolation – an issue that they argue has not yet been fully investigated. This is due 

to the complex nature of conflicts that arise between entities, more especially smaller ones which may 

not be in a position to disclose their conflicts for the sake of losing business. Such complexity is made 

worse, if for example some of the tenants choose to spoof their identity and intentionally register 

incorrect line of business. The current paper also assumes trustworthy tenants and specifically focuses 

on addressing an inter-VM attack which happens within the Cloud infrastructure where potentially 

conflicting tenants’ VM may co-reside. Though, it may be the best thing to model our solution to cater 

for all possible attack vectors, it is not feasible to do so in one paper.  

Wang et al. (2013) and Sailer et al. (2005) adopted and enforced the CWM to address the problem of 

insecure information flow as an attempt to prevent accidental leakage of confidential information to 

unintended parties. Similar to this work, Ristenpart et al. (2009); Wang et al. (2013); and Wu et al. 

(2010) resolves conflict-of-interest issues in Cloud computing at the IaaS layer. Unfortunately these 

efforts do not consider the potential different degrees of conflict of interest that arises in the Cloud.  

Han et al. (2013) make use of game theory to determine a VM placement policy that minimizes an 

attacker’s possibility of co-locating with their targets. This work also maintains a workload balance and 

lower power consumption. Han et al. (2014) propose a VM placement policy that allocates a new VM 

to a physical node with most VMs. This is an improvement on their previous work (Han et al. 2013). 

They argue that this approach increases the difficulty for an attacker to achieve co-residence with their 

target. Han et al. (2017) extends (2013) and (2014) with a mathematical formulation (Jeihoonian, 

Zanjani and Gendreau 2020) of the solution to mitigate the threat of co-resident attacks whilst satisfying 

constraints in workload balance and power consumption. In an attempt to prevent an attacker from 

starting too many VM instances, and contrary to our work, Han et al.’s efforts attempt to bundle all 

VMs of a user in one physical host. This goes against the second goal of load balancing and bundling 

all VMs in one physical host might have far reaching consequences with respect to hardware failures.  

Miao, Wang and Wu (2018) proposes a technique that minimizes co-residence of conflicting VM on 

the same host. Miao et al. (2018) is consistent with our work because it also considers different degrees 

of conflict in their ConflictDegree (cd) matrix, where they claim that cdij expresses the degree of conflict 

between tenant i and tenant j. However, it is not clear how the different degrees of conflict correlate to 

the placement if their isolation is only focused on the physical host without considering the cluster and 

data centre levels. Miao et al. (2018) also does not show exactly how the isolation of partially conflicting 
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tenants is to be handled. Without this, their work also becomes a dichotomy in that there is either a 

conflict or no conflict, yet this is not the true reflection of what happens in reality. By far Miao et al. 

(2018) is closer to the approach taken in this paper, though they also consider load balancing and cost 

of migration.  

Lefray et al. (2015) proposes a fine-grained VM allocation mechanism to prevent information leakage 

through micro-architectural covert channels. This work allows tenants to specify isolation properties 

and acceptable risk that fits their risk profile before placement can be done. Though the work of Lefray 

et al. (2015) does not consider conflict of interest, their proposed model is similar to the current paper 

in that it gives tenants a chance to choose VM placement based on their chosen isolation properties and 

risk profile.       

The current paper extends and takes the work of Ratsoma et al. (2015) as a baseline to incorporate 

jurisdictional issues which allows potential tenants to make an informed decision on the location of 

their VM placements. The current work also includes the associated cost and risk of placement or 

migration of tenant VMs. This paper also extends the work in Dlamini et al. (2014) by providing the 

actual model, VM algorithms with the implementation thereof.   

The overview of related work has highlighted a number of shortcomings of existing approaches. For 

example, none of the covered literature discusses the need for solutions that consider varying degrees 

of conflict, improved scalability and visibility of VM placements. There is also a need for mechanisms 

that present a well-structured IaaS approach for the placement of VMs on the Cloud. The one major 

shortcoming of existing approaches is that none of the work focuses on providing value for the tenants. 

All the work seems to be focused on providing value for the CSPs. Tenants need to have an input into 

how their VMs are placed and migrated on the Cloud. Furthermore, existing work seems to be taking 

one view of the problem by placing more emphasis on the placement of a new VM. This leaves a huge 

gap for research efforts that takes a holistic approach to cover initial VM placement and subsequent 

migration of an existing VM.  

The main contribution of this paper is as follows:  

(1) It introduces a novel tenant-oriented conflict-aware VM placement approach that considers a holistic 

view (i.e. both initial VM placement and migration) based on tenants’ different degrees of conflict of 

interest, i.e. direct (very high), high, medium, low and no conflict.  

(2) It provides physical Separation (S) of conflicting tenants’ VMs according to the potential data 

leakage Risk (R) posed and Cost (C) in order to mitigate and defend against inter-VM attacks.  

(3) It abstracts, defines and models the Cloud infrastructure into Location, Data Centre, Cluster, 

Physical Node and VM in order to provide for jurisdictional and regulatory compliance issues 

associated with the VM placement and migration problem. The idea is to ensure that the final decision 

to place or migrate VMs is informed by the tenants as well as regulatory requirements and jurisdictional 

mandates. 

(4) It provides transparency and visibility of VM placement or migration and ensures that all such efforts 

are consented and approved by the tenants. Users of the Cloud have always complained that they do not 

have control over where their data sits on the Cloud at any particular point in time. Even though tenant 

data might be hosted in VMs on the Cloud infrastructure, this does not absolve them of their 

responsibility to account for those Cloud-hosted datasets. Hence, this paper partly places VM placement 

and migration back to the hands of tenants. 
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(5) It formulates the VM placement problem as a prioritized best-fit and multi-objective bin packing 

heuristic. A prioritized best-fit and multi-objective bin packing heuristic makes use of a priority list of 

potential VM placement addresses. These heuristics are used to determine not only the best-fit VM 

placement options but one that is prioritized according to the needs of the tenant.   

The next section outlines the requirements of the proposed solution. These are mainly based on the gaps 

in literature as identified above and the main contribution.  

3. REQUIREMENTS, PROBLEM CONTEXT AND ASSUMPTIONS FOR CBAC4C 

The CBAC4C model as proposed in this paper is based on the CWM policy where each tenant belongs 

to only one Conflict-of-Interest (CoI) class. A CoI is a grouping of tenants from the same functional 

business domain. Furthermore, it is assumed that the data sets of a tenant could be assigned to and stored 

on one or more VMs. Based on these assumptions and the current body of knowledge, the requirements 

for CBAC4C are as follows: 

Requirement 1: Focus on Infrastructure as a Service (IaaS).  

Requirement 2: Provide VM isolation based on Conflict-of-Interest (CoI) classes and Conflict 

Tolerance Levels (CTL).  

Requirement 3: Manage “different degrees of conflict” between tenants.  

Requirement 4: Minimise the risk of data leakage caused by inter-VM attacks.  

Requirement 5: Provide visibility with regard to the placement of VMs.  

Below, the authors contextualize the problem and provides some assumptions. The CBAC4C is 

modelled to conform to and operate in a hierarchical Cloud IaaS architecture as illustrated in Figure 1 

below.  
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Fig 1 Cloud IaaS Architecture 

The CBAC4C model is based on the context of Figure 1 and following assumption i.e. 

 

This basically mean that a VM is contained in a Physical Node (PN) which is contained in a Cluster 

(Clu) that is contained in a Data Centre (DC) which is found at a specific geographical Location (Loc). 

However, the relationships between each of these are not necessarily of a one-to-one type. 

4. MATHETICAL PROBLEM FORMULATION 

The CBAC4C is modelled based on a relationship between a tenant te, which operates within a 

Functional Business Domain (FBD) and has a CoI with its competitors. The relationship is modelled as 

follows: a tenant te is a member of a FBD; a FBD is associated with a specific CoI class. For example, 

an oil company Oil-A belongs to the Petroleum FBD. Hence, Oil-A - a direct competitor of company 

Oil-B belong to the same FBD and CoI class, which means they are in direct conflict with one another. 

Consequently, requests by Oil-A and Oil-B for VM placement or migration must be handled in such a 

way that the risk of inter-VM attacks is minimised. This is modelled in such a way that no one tenant 

will have knowledge of other tenants. Only the Cloud Service Provider has access to all information 

about each of the tenants.   

For a VM placement, a tenant (tei) provides four inputs:  

(1) A tenant identification (tei_ID) 

(2) A Conflict Tolerance Level (CTL)  

(3) A FBD which is expressed in terms of a CoI class 

LocDCCluPNVM 
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(4) Size of a requested VM (sizeOfVM) that is directly proportional to the resource capacity 

constraint – this can also be deduced from the data that the tenant wants to host. 

A tei_ID is a unique identifier for each tenant. The CTL determines how much conflict a tenant tei can 

tolerate for being hosted on the same infrastructure with a conflicting tenant tej. The FBD of tei and tej 

is the same if they are in direct conflict. The size of a requested VM refers to the storage resource 

capacity for example in terms of megabytes (MB). Each VM, PN, Clu, DC and Loc at time t is subject 

to resource capacity constraints, i.e. ci(t), cj(t), ck(t), cl(t) and cm(t) respectively. The model targets the 

IaaS of Cloud computing, and this paper then puts an emphasis on storages as compared to CPU, 

networking and memory.   

4.1 Sphere of Conflict and Non-Conflict 

Each tenant tei has its own Sphere-of-Conflict (SoCi) and Sphere-of-non-Conflict (SonCi) sets (Loock 

and Eloff 2005; Loock 2012). The Sphere-of-Conflict set is denoted as: 

SoCi={te1,…. ten} 

where; te1, …..ten is a set of conflicting tenants to tei that uses the same CSP. 

For each VMi 
 tei in the set SoCi = {te1,…. ten} is associated with an address Addri in the 

following form:  

Locm.DCl.Cluk.PNj.VMi. 

A placement matrix is the list of all addresses for all VMs in the set SoCi that are hosted in the CSP. 

This set could be further refined by applying a CTL to eliminate some addresses from the union set 

SoCi. A tenant tei may be in conflict with any other tenant tej due to it being in the same FBD, in other 

words the same or related CoI class.  

The proposed CBAC4C model is designed to be flexible and allow CSPs to co-host a tenant’s VMs 

with other conflicting tenants’ for specific requests. This is referred to as non-optimal placement 

because it does not guarantee adequate physical separation between the conflicting tenant VMs. Tenants 

could, however, opt for non-optimal placement of their VMs for various reasons, including affordability 

and hosting of public data without any confidentiality or secrecy clauses. Tenants could also opt to not 

host their VMs with any conflicting tenants. This is called optimal placement which implies that tenants 

can only co-host their VMs with non-conflicting tenants to ensure adequate physical separation. The 

set of all non-conflicting tenants is called a Sphere-of-non-Conflict.  

The Sphere-of-non-Conflict set is denoted as: 

SonCi={teo,…,tez} 

 where; teo,…,tez is a set of non-conflicting tenants to tei that uses the same CSP. 

For each VMi 
 tei in the set SonCi = {teo,…. tez} is associated with an address Addri in the 

following form:  

Locm.DCl.Cluk.PNj.VMi. 

A placement matrix is the list of all addresses for all VMs in the set SonCi that is hosted in the CSP. 
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4.2 Conflict-of-Interest Relationship 

A CoI relation is defined as neither an equivalence nor a binary relationship, i.e.:  

 Not reflexive: if (tei CoI  tei)  

  tei cannot be in conflict with itself.  

 Symmetric: if (tei CoI tej) the reverse is also true i.e. ( tej CoI tei)  

 that the CoI relation is mutually inclusive. If tei is in conflict with tej then tej is in conflict with 

tei. 

 Not transitive: if (tei CoI tej CoI tek)  

  (tei CoI tek). If tei is in conflict with tej who is in conflict with tek, it does not imply that tei is 

in conflict with tek. 

Therefore, this is neither an equivalence nor a binary relationship. 

4.3 Risk, Physical Security and Cost 

The proposed model recognizes that tenants can have different degrees of conflict with each other. For 

this reason, the risk (R) of confidential data leakage posed by inter-VM attacks also varies depending 

on the degree of conflict. For example, co-residence of VMs that belong to two competing tenants that 

are in direct conflict of interest with one another, poses the highest risk, R.  

A physical separation, S is defined for implementing CTL. This indicates how much isolation a tenant 

requires between its VMs and that of its co-resident competitors. The separation is implemented in 

terms of co-reside in the same PN or reside in a different PN within the same Clu; in the same Clu but 

different DC; in the same DC but different Loc.  

This is followed by a cost value, C for implementing a CTL. C is not necessarily given in monetary 

value like the United States Dollar or South African Rand. It is just a metaphorical figure used to enable 

the modelling. For each SoCi a cut-off point ri is defined beyond which conflict of interest is to be 

regarded by a tenant tei as minimal or insignificant. This defines a starting point of SonCi for tei. Ideally, 

these could be the only tenants that tei would prefer to be co-resident with. However, CSPs are likely 

to charge a high cost, C for non-conflict placement of tenants’ VMs and relative low C for flexible co-

resident placement with conflicting tenants. 

4.4 Utility Function U  

CBAC4C introduces a global utility function, the dependent variable U for combining S, R and C. U 

computes the overall physical separation of tenants’ VMs using a conflict-aware VM placement 

algorithms. U uses the SoC and SonC sets as derived from a tenant’s inputs of CTL and FBD. The output 

is a set (i.e. either SoC or SonC) of all possible VM placements.  

The CBAC4C model delivers a reduced set of VM placements using a best-fit algorithm which is also 

embedded in the placement algorithms. The result is used by a CSP to identify all potential nodes where 

a tenant’s VM could be placed whilst preserving confidentiality and managing potential placement 

conflicts in a transparent manner. Tenants can then make informed decisions on where their VMs could 

be placed by the CSP and at what cost, risk and security. Final placement also requires a tenant’s 

approval before it can be done. This feature gives tenants the opportunity to decline placements that do 

not comply with their own requirements.   

4.5 The Objective Function 

The main objective from a potential tenant’s perspective is to minimise R and C while maximising S, 

in other words to follow a weighted sum multi-objective optimisation approach (Branke et al. 2008; 
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Fox et al. 2019; Gunantara and Ai 2018). This approach is used to simultaneously quantify trade-offs 

in satisfying different conflicting objectives (i.e. minimise R and C whilst maximising S) with weights 

that are proportional to their relative importance.  The aim is to maximise U of physically separating 

tenants’ VMs on the CSP’s infrastructure. The main goal is to address the data leakage threats posed by 

inter-VM attacks on the Cloud; subject to a number of constraints, i.e. resource capacity, and CTL, 

which indirectly implies cost and risk appetite. 

In this context, the VM placement problem is herein framed as a nested multi-dimensional variable 

vector-size bin-packing problem (Hatzopoulos et al. 2013; Wu et al. 2014). A nested multi-dimensional 

variable vector-size bin-packing problem is formulated as a vector of Locs to DCs to Clus to PNs and 

VMs bins.  

The proposed solution has the following binary decision variables ijx (t), jky (t), klz (t) and wlm(t). ijx (t) 

denotes that VMi is placed on PNj(t); jky (t) denotes that PNj is placed in Cluk(t), klz (t) denotes that 

Cluk is place in a DCl(t); and wlm(t) denotes that DCl is placed in Locm(t) at a particular time t. Each 

decision variable is associated with three coefficient weight vectors, i.e.  

αi1={ α11, α21, α31, α41} ∀i = {1,..,4} relates to the Security (S) vector.  

βj2={ β12, β22, β32, β42} ∀j = {1,..,4} relates to the Cost (C) vector.  

γk3={ γ13, γ23, γ33, γ43} ∀k = {1,..,4} relates to the Risk (R) vector.  

αi1={ α11, α21, α31, α41}, βj2={ β12, β22, β32, β42} and γk3={ γ13, γ23, γ33, γ43} are the coefficient weights for 

each binary decision variable ijx (t), jky (t), klz (t) and wlm(t) respectively. For example, ijx (t) has a 

coefficient weight vector {α11, β12, γ13} where α11 is the coefficient weight in terms of physical 

separation security; β12 is the coefficient weight in terms of cost and γ13 is the coefficient weight in 

terms of risk posed on a VMi being placed in PNj. jky (t) has a coefficient weight vector {α21, β22, γ23} 

where α21 is the coefficient weight in terms of physical separation security; β22 is the coefficient weight 

in terms of cost and γ23 is the coefficient weight in terms of risk posed on a PNj being placed in Cluk. 

Furthermore, klz (t) has a coefficient weight vector {α31, β32, γ33} where α31 is the coefficient weight in 

terms of physical separation security; β32 is the coefficient weight in terms of cost and γ33 is the 

coefficient weight in terms of risk posed on a Cluk being placed in DCl. The same applies for wlm (t)’s 

coefficient vector DCl being placed in Locm. 

Hence, the mathematical problem formulation (multi-objective function) (Jangiti, Vijayakumar and 

Subramaniyaswamy 2020) is as follows: 

𝑴𝒂𝒙 𝑈(𝑆, 𝐶, 𝑅) = ∑ (
𝛼11
𝛽12
𝛾13

)

𝑚

𝑖=1

𝑥𝑖𝑗 + ∑ (
𝛼21
𝛽22
𝛾23

)

𝑛

𝑗=1

𝑦𝑗𝑘 + ∑ (
𝛼31
𝛽32
𝛾33

)

𝑜

𝑘=1

𝑧𝑘𝑙 + ∑ (
𝛼41
𝛽42
𝛾43

)

𝑝

𝑙=1

𝑤𝑙𝑚 (1) 

subject to the following constraints:  
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          (3) 
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



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lmw
1

1       l {1,…p}    (8) 

xij(t){0,1}      i {1,…,m}, j {1,…,n}   (9) 

yjk(t) {0,1}     j {1,…,n}, k {1,…,o}   (10) 

zkl(t){0,1}     k {1,…,o}, l {1,…,p}   (11) 

wlm(t) ){0,1}     l {1,…,p}, ∀𝑚{1,…,q}   (12) 

The multi-objective function (1) maximises U of placing each VMi in a Physical Node, PNj (xij); a PNj 

in a Cluster, Cluk (yjk); and a Cluk in a Data Centre, DCl (zkl); and a DCl in a Location, Locm (wlm) of a 

CSP. This ensures that placement of tenant VMs is done based on their conflict tolerance levels (i.e. 

constraints (2) to (4)), and resource capacity (i.e. constraints (5) – (8)). Resource capacity constraints 

ensure that VMi capacity must not exceed the capacity )(tcj  of PNj, )(tck  of Cluk, )(tcl of DCl and 

)(tcm of Locm. The binary decision variables )(txij , )(tyjk , )(tzkl  and wlm(t) denote that VMi is placed 

on PNj, which is placed in Cluk within a DCl that is also placed at Locm at time t. Constraints (9) – (12) 

ensure that the decision variables )(txij , )(tyjk , )(tzkl  and wlm(t) can either take the value one, which 

indicates placement, and otherwise zero for all VMs to be placed in PNs, for all PNs to be placed in 

Clus, for all Clus to be placed in DCs and for all DCs to be placed in Locs. 
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5. CBAC4C CONFLICT-AWARE VM PLACEMENT ARCHITECTURE 

Illustrated in Figure 2 is an architectural diagram that shows how the mathematical CBAC4C model 

has been implemented and how VM placement is done in our architecture. It starts off with a prospective 

tenant requesting to host their data in a VM from a CSP. Depending on the size of the dataset, the CSP 

takes the request, creates a VM and allocates the necessary resources as specified by the prospective 

tenant. The CSP then uses the CBAC4C conflict-aware placement solution to select an appropriate PN 

within an appropriate Clu held in an appropriate DC within an appropriate Loc which then ensures 

optimal or non-optimal physical separation of VMs from conflicting tenants. 

 
Fig 2 CBAC4C Conflict-aware VM Placement Architecture 

 

The conflict-aware VM placement algorithms within this solution also makes use of the best-fit heuristic 

algorithm (Lin and Kernighan 1978; Burke, Kendall and Whitwell 2009) to choose the best fitting 

placement. The choice of best-fit heuristic algorithm is made based on the fact that it is known to offer 

a near-optimal solution in a reasonable time (Jangiti et al. 2020). In the context of this research, this 

algorithm ensures that VMs are placed where they fit best to avoid underutilization of resources. 

However, placing a VM using the best-fit heuristic algorithm might mean that there is not much room 

for growth.  

A placement matrix is created from which a tenant is allowed to choose their best location based on the 

guidance of the solution. A tenant may choose their VM placement or migration based on jurisdiction 

and data protection regulatory compliance mandates. For example, it may be illegal for some tenants to 

host their VMs in certain jurisdictions. This is where the solution offers some guidance and ensures that 

the final decision to place or migrate VMs is informed by a tenant’s regulatory requirements and 

jurisdictional mandates. In order to guarantee tenant-CSP confidentiality, the placement matrix does 

not reveal or leak any data about the identity of other co-resident tenants’ VMs. Such information is 

only visible to the CSP and not in any way revealed to the existing tenants or prospective ones. On the 

approved tenant’s choice, the solution creates a GPS point to mark the geographical location of the 
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newly created VM on a cartographical map. A certificate of placement with the full address and 

allocated resources of the VM is issued and sent back to the tenant. The cartographical map on the 

tenant’s side gets updated automatically with the new location of the new VM. It must be explicitly 

stated that tenants can only see the location of their own VMs on the cartographic map and not those of 

others.  

The architecture in Figure 2 is implemented using the following four algorithms – the first two 

algorithms are for initial VM placement and the last two are for migrating existing VMs. Algorithm 1 

below considers a new tenant whose VM is to be placed for the first time with a requirement to be only 

placed with non-conflicting tenants.  

Algorithm 1 Optimal VM Placement Algorithm 
Require:  

1: teid, FBD, CTL, sizeOfVM, p_Type 

Ensure:  

2: SonC{teo,... tez} 

3: if (p_Type = optimal) then 

4: SonC{} ← {teo,… tez} 

5: for all  tei    SonC{teo,… tez} do 

6: allNCAddresses{} ← {teo,… tez} 

7: i ← 0 

8: for all addri 
    allNCAddresses{teo,… tez}do 

9: if (addri)  ≥  sizeOfVM then 

10: sufNCAddresses{} ← addri 

11: end if 

12: i ← i + 1 

13: for all addri
 sufNCAddresses{teo,… tez-n} do 

14: Find bestFitAddress (addri) 

15: Place vmix in bestFitAddress (addri) 

16: Return vmix. addri 

17: Update AllocPlaceMatrix (vmix.addri) 

18:  Update visibility.Map (vmix.addri) 

19: end for 

20: end for 

21: end for 

22: end if 

Algorithm 1: Placing a New VM in an optimal manner 

 

For this algorithm a tenant tei makes a request to host its data on a newly allocated VM. The CSP checks 

the tenant’s ID (teid), and gets the FBD, CTL and size of the VM of the tenant. Based on the CTL, and 

the type of placement, which is optimal in this case, the CSP then provides a list of all existing tenants 

that are not in conflict with the prospective tenant. This is referred to as a SonC set. The requesting 

tenant cannot see this list. This is a set of all tenants that are not in conflict with the prospective tenant. 

The next step is to locate and list all addresses of VMs owned by each of these tenants. From this list 

of addresses (i.e. Loc.DC.Clu.PN), Algorithm 1 determines if the host (i.e. PN) has sufficient space to 

host the tenant’s VM. 

The solution then applies a best-fit algorithm (in the function bestFitAddress (addri)) to further 

determine a set of addresses to best place the new VM. These are addresses with space that is at best 
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the same as the size of the prospective VM to be placed. Once the best potential host is found, the 

algorithm places the VM on the approval of the prospective tenant. Our solution then sends the address 

of the new VM placement to the tenant. 

It then updates the placement matrix (in the AllocPlaceMatrix (vmix.addri) function). This is basically a 

list or matrix of all the tenant’s VM placements within the CSP’s infrastructure; and cartographic map. 

The cartographic map reads from the placement matrix to then visualise (using the visibility.Map 

(vmix.addri) function) and display the information with respect to geographical location. The best-fit 

algorithm, placement matrix and cartographic map are applied in a similar manner across the rest of the 

algorithms. 

Algorithm 2 considers a new tenant whose VM is to be placed for the first time – with a requirement to 

co-reside with conflicting tenants of a specified CTL. Tenant tei requests placement of its new VM and 

specifies a certain CTL. The specified CTL is less restrictive and allows some level of flexibility for the 

tenant to co-host with some conflicting tenants. The CSP checks the tenant’s ID (teid) (note that teid is 

used in place of tei_ID), and gets the FBD, CTL and size of the VM of the tenant. 

Algorithm 2 Non-optimal VM Placement Algorithm 

Require:  

1: teid, FBD, CTL, sizeOfVM, p_Type 

Ensure:  

2: SoC{te1,... ten} 

3: if (p_Type = non-optimal) then 

4: SoC{} ← {te1,… ten} 

5: for all  tei    SoC{te1,… ten} do 

6: allCAddresses{} ← {te1,… ten} 

7: i ← 1 

8: for all addri 
    allCAddresses{te1,… ten}do 

9: if (addri)  ≥  sizeOfVM then 

10: sufCAddresses{} ← addri 

11: end if 

12: i ← i + 1 

13: for all addri
 sufCAddresses{te1,… ten-p} do 

14: Find bestFitAddress (addri) 

15: Place vmix in bestFitAddress (addri) 

16: Return vmix. addri 

17: Update AllocPlaceMatrix (vmix.addri) 

18:  Update visibility.Map (vmix.addri) 

19: end for 

20: end for 

21: end for 

22: end if 

 

Algorithm 2: Placing a New VM in a non-optimal manner 

Based on the CTL, the CSP then provide a list of all existing tenants that are within the specified CTL 

with the prospective tenant. This is called a SoC set; a set containing all tenants that are in conflict with 

tei. From this set, Algorithm 2 then chooses all addresses of tenants that are within the CTL range 

specified by tei and subsequently reduces the list to only those addresses with sufficient storage space. 

This algorithm helps the prospective tenant to choose the one address that best fits the new VM. On the 
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tenant’s approval, Algorithm 2 next places the new VM on the best potential host, sends the address of 

the new VM placement to the tenant, and updates the placement matrix and cartographic map. 

For brevity and readability, the next two algorithms have been deliberately left out. Due to their 

similarity to the first two algorithms, and to avoid duplication, it suffices just to explain the differences. 

The first two algorithms are used to perform an initial VM placement, yet the next two i.e. algorithm 3 

and 4 are used to migrate an existing tenant’s VM from one existing host to another. Algorithm 3 

considers an existing tenant whose VM is to be migrated from one PN to another PN. The VM is to be 

migrated to a new PN where it can co-reside with non-conflicting tenants only. This algorithm handles 

such issues in a similar manner to Algorithm 1. The only difference is that Algorithm 3 can only be 

used by a CSP to migrate an existing VM from one address to another instead of a new placement. This 

implies that when the VM has been migrated, the old entry must be removed and the placement matrix 

be updated with the new address. Otherwise, all steps are carried out exactly as in algorithm 1. There 

are numerous reasons that could necessitate this, such as load balancing, changing tenant requirements 

and operational cost optimisation purposes. Finally, algorithm 4 considers an existing tenant whose VM 

is to be migrated from one PN to another – with a requirement to co-reside with conflicting tenants of 

a specified CTLi+1 that is different from the initial CTLi in the new PN. This algorithm is similar to 

Algorithm 2. However, Algorithm 4 can be used by a CSP to migrate an existing VM from one existing 

address to another. Similar to algorithm 3, algorithm 4 has an extra step of replacing the old address 

from which the VM is with the new address.  

 

The scenarios raised by these algorithms demonstrate the dynamic nature of today’s organisations and 

the potential conflict involved. For example, a conflicting tenant today could be a non-conflicting tenant 

tomorrow. This could be due to a drop in the sensitivity of the data within an existing VM. VM with 

confidential data could be re-classified at some point later to a public classification. For example, a VM 

that holds blueprints of new products are mostly confidential and highly sensitive prior to the products’ 

release date. Once the products have been released, such blueprints somehow lose their sensitivity and 

their risk changes to a lower level. Each of these scenarios demonstrate the scalability of CBAC4C in 

handling different tenants’ requirements. 

Overall, these algorithms are used for making initial VM placement and migration decisions. It must be 

noted though that placement and migration of VMs could also be initiated by the CSP for load-balancing 

purposes and other reasons. However, this must be done in a privacy-preserving, transparent and visible 

manner to the implicated tenants but should still conform to the requirements as spelt out by the 

respective tenants. The privacy element indicate that tenants are only able to see their own VM 

placement and migration. 

The next section briefly discusses a proof-of-concept on how the authors implemented the proposed 

CBAC4C architecture and algorithms to prove our concept. 

6. PROOF-OF-CONCEPT 

The proof-of-concept demonstrates how each of the proposed algorithms was implemented to achieve 

the proposed conflict-aware VM placement solution. Figure 3 depicts a UML class model for the proof-

of-concept classes. The model comprises of CSP, Tenant, Conflict_of_Interest, VM, Placement, 

Address, Position and GPS classes. The CSP uses each of these classes to effectively place and migrate 

a Tenant’s VM on the Cloud. 

A Tenant belonging to a specific CoI class has a VM associated with it. The VM is placed or migrated 

based on the Tenant’s requirements (optimal or non-optimal based on their CTL) using the Placement 

class. The Placement class returns an Address of placement or migration that shows the global 
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positioning of a Tenant VM. A tenant can use this cartographical map to trace and track their VM 

placement at any particular point in time.  

 

Fig 3 UML Class Diagram for the Implementation of the Proposed Architecture 

7. EVALUATION AND DISCUSSION OF CLOUDSIM EXPERIMENTAL RESULTS 

A number of experiments were conducted to test and evaluate the effectiveness and efficiency of the 

algorithms of the proposed conflict-aware VM placement model. The authors defined a set of four VM 

instances, i.e. small, medium, large and extra-large for CloudSim – a cloud simulation tool (Barbierato 

et al. 2019). This is similar to the naming convention in Amazon Web Services IaaS. Table 1 shows the 

corresponding number of VM instances used in each of the three experiments on CloudSim, with a CTL 

of 0 for all VM placements.  

Table 1 VM Instances in CloudSim 

Experiment No. VM Instance Classes 
 

Small Medium Large Extra Large 

1 10 15 30 50 

2 15 30 50 75 

3 30 75 115 150 

 

The specification of the different VM instances is shown in Table 2.  

Table 2 Specification of VM Instances in CloudSim 

 Specification of VM Instance Classes in CloudSim 

 Small  Medium Large Extra Large 

VM

-VMID:String
-CTL:int
-sizeOfVM:long
-location:Position
-tenant: Tenant

+getCTL():int
+setLocation(a:Address): void

Placement

-t:Tenant
-v:VM
-fbd:String
-ctl:int
-sizeofVM: long
-soc:List<Tenant>
-sonc:List<Tenant>

Placement(vm:VM)
Placement(vm: VM, CTL:int)
setPlacementPosition(): void
setPlacementPosition(CTL:int): void
generateCost():void

Tenant

-tenantName:String
-businessDomain:String
-CoI:Conflict_of_Interest
-CTL:int
-vms: List<VM>

+Tenant(name:String)
+setCTL(ctl:int): void
+getVMs(): List<VM>
+getNumVMs(): int

Address

-DataCentre:String
-Cluster:String
-PhysicalNode:String
-capacity:Long
-loc:Position

+getCapacity():Long
+getLocation(): void
+addVM(sizeOfVM:long): void

CSP

-tenants:List<Tenant>
-c:Cloud
-name:String

+Cloud(name:String)
+getTenants():List<Tenant>
+init():void
+setName(): String

Conflict_of_Interest

-CoI: Conflict_of_Interest
-FBD_Map: <string Set<Tenant>

+Conflict_of_Interest()
+getInstance(): Conflict_of_Interest
+setFBD(domain:String, tenant: Tenant): void

GSP

-latitude:double
-longitude: double

+GPS(lat:double, longi:double)
+getLat():double
+getLongi():double
+setCoordinates(lat:double, longi:double)

Position

-location:GPS
-country:String

+Position(country:String)
+getPosition():String
+getCountry():String
+getCoordinates(): GPS

Use

0..*
1

11

1

1..*

0..*1

1..*

1
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Storage (GB) 2 5 10 30 

RAM (MB) 128 512 768 1024 

No. of CPU 1 1 1 1 

No. of vCPU 1 1 1 1 

 

The results of running these experiments are shown in Figure 4. The results show the time it took to 

place each of the VM instances in CloudSim. For all VM instances, the CTL was kept at zero, which 

means they were placed wherever there was sufficient space. Figure 4 reflects on the results of the three 

experiments.  

 

Fig 4 VM Placement Performance across the Different VM Classes in CloudSim 

Given the constant CTL in all three experiments, the results reflect a linear increase across the different 

types of VM instances. Furthermore, small VM instances appeared to take less time to be placed, 

compared to the other classes of instances. The author consequently deduced that the number and size 

of the VM instances had an effect on the VM placement performance. At this point it is important to 

note that the increase in placement times related to the number and size of VM instances. However, in 

Experiment 2, a deviation occurred from the normal linear increase. This is where it took about 13 

seconds to place 50 large instances, which is almost the same time it took to place 30 medium instances 

in the same experiment. This is one of the rare occurrences which might be attributed to some external 

factor that could not be determined. 

Figures 5, 6 and 7 reflect on the results of re-running the experiment with different CTLs ranging from 

zero to four and an increasing number of VMs. This is done as a continuation from the previous three 

experiments where the CTL was constant and set to be zero.  
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Fig 5 Experiment 1: Results of VM Placement Execution Time against Different CTLs in CloudSim 

 

Fig 6 Experiment 2: Results of VM Placement Execution Time against Different CTLs in CloudSim 
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Fig 7 Experiment 3: Results of VM Placement Execution Time against Different CTLs in CloudSim 

From these three figures it can be deduced that the VM placement execution time increased linearly 

with a linear increase in CTL. For an example, an extra-large VM instance of CTL zero took 

approximately half the time to place, compared to an exact same size with a CTL of 4. This means that 

it took more time to place VMs of high CTL than those of a lower one. In general, the results illustrate 

that the CTL of a VM had a direct impact on the time it took to place a VM in CloudSim. The higher 

the CTL of the VM instance to be placed, the more time it took to do the actual placement. 

Furthermore, it follows that the bigger the size of the VM instances that were to be placed, the more 

time it took to do the VM placement. Therefore, the authors conclude that the introduction of the 

proposed CBAC4C model introduced a time lag in the time it took to place VM instances in CloudSim. 

Based on the results, the authors argues that it was better to allocate small VMs of zero CTL than large 

ones of higher CTLs. Furthermore, the author deduced that distributing tenants’ data in many small 

VMs, even with higher CTLs, would also improve the resilience of the cloud, more especially when 

other hardware drives fail. The tenants would still be able to retrieve parts of their data elsewhere. 

However, this approach might have a negative impact on data retrieval. Retrieving data from several 

distributed small VMs might introduce time delays. This could be more of a challenge if the data needs 

to be assembled in a sequential order at the tenant’s side. An inherent challenge to having many small 

VMs distributed across the cloud infrastructure is that with more tenants coming on board, it would 

become very difficult to find non-conflicting slots. However, this problem can be addressed by a 

conflict-aware load balancing. Since conflict-aware load balancing falls outside the scope of this 

research, it is recommended as future work.  

In concluding this section, the simulated conflict-aware VM placement provides good guidance on what 

to expect in a real cloud environment. However, cloud simulations cannot be relied upon for a true 

reflection of what could happen on the real cloud infrastructure. Therefore, it is important that future 

research also evaluates the proposed model on a real cloud infrastructure.  The next section concludes 

the paper and points out a direction for future work. 
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8. CONCLUSION 

The VM placement problem has direct impact on security, costs, performance and energy consumption 

and other computational aspects. This paper focused on the security of Cloud-hosted data which may 

be leaked to unintended parties through an inter-VM attack. This paper reports on the formulation of a 

CBAC4C model to prevent confidential data leakage threats posed by inter-VM attacks and manage 

conflict of interest between tenants on the Cloud. The CBAC4C model as the main contribution of this 

paper uses varying degrees of conflict, the construct of Sphere-of-Conflict and Sphere-of-non-Conflict 

to provide for the physical separation of VMs belonging to conflicting tenants. Unlike most VM 

placement algorithms, this work algorithms consider a tenant’s risk appetite and cost implication of VM 

placement. CSPs can use our model, algorithms and architecture to make informed VM placement 

decisions that factor in their tenants’ security profile – balanced against cost constraints and risk 

appetite. CSPs can also use the proof-of-concept class diagram to validate the CBAC4C model before 

they can implement our algorithms in their operational environments. In order to strengthen the 

scientific foundation of this paper, it consists of the experimentation on a simulated cloud environment. 

Future work is still required on a real cloud infrastructure to get more detailed empirical performance 

analysis of our proposed CBAC4C model’s algorithms in comparison with other VM placement 

algorithms. Future work will also include formal proofs of the model and resultant algorithms. Whilst 

the current paper has focused on addressing inter-VM attacks, from trusted tenants who are assumed to 

provide the correct identity and line of business, future work will extend the attack vector to include 

malicious actors using spoofed identities or incorrect line of business information to defeat the current 

model. 
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