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Abstract

Home health care problems consist of scheduling visits to home patients by health professionals while follow-
ing a series of requirements. This paper studies the Home Health Care Routing and Scheduling Problem, which
comprises a multi-attribute vehicle routing problem with soft time windows. Additional route inter-dependency
constraints apply for patients requesting multiple visits, either by simultaneous visits or visits with precedence.
We apply a mathematical programming solver to obtain lower bounds for the problem. We also propose a biased
random-key genetic algorithm, and we study the effects of additional state-of-art components recently proposed in
the literature for this genetic algorithm. We perform computational experiment using a publicly available bench-
mark dataset. Regarding the previous local search-based methods, we find results up to 26.1% better than those
of the literature. We find improvements from around 0.4% to 6.36% compared to previous results from a similar
genetic algorithm.

Keywords: home health care problem; vehicle routing problem with time-windows; route inter-dependencies; route synchroniza-
tion; solution space; exploration and exploitation

1. Introduction

The increase in life expectancy directly impacts the demand for health services, thus motivating public
authorities to design and implement such services. Home Health Care (HHC) was proposed as an
affordable alternative to provide health assistance to the population, leveraging hospital bed availability
and the comfort and sanitation of home-assisted patients (Eveborn et al., 2006; Frifita et al., 2017). Home
health care prevents moving the elderly from their homes, positively impacting their mental health and
quality of life (Gutiérrez and Vidal, 2014). In most cases, home health care is a less intrusive option than
nursing homes (Eveborn et al., 2006). People currently receiving medical treatments can also benefit
from this type of service, which reduces hospitalization stress (Landers et al., 2016). It also allows
environmental conditions, which is important in scenarios such as the COVID-19 pandemic. Thus, a
home health provider can implement a protocol to follow-up low-risk patients at home, which helps to
reduce the spread of contaminant pathogens. This way, only medium-to-high risk patients would need to
receive total healthcare assistance at hospitals.
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According to the literature, the HHC was introduced to increase the access to healthcare services by
people living in rural areas (Fernandez et al., 1974). Nowadays, it is the social component that motivates
the implementation of public and private initiatives of HHC. For example, there are initiatives focused on
enhancing the population’s quality of life by providing services like psychology, occupational therapy,
and physiotherapy to encourage the physical exercise and maintain the mental well-being of the elderly
(Maya Duque et al., 2015). From a management perspective, home care is the most cost-effective among
other alternatives (Gutiérrez and Vidal, 2014).

For those reasons, the HHC has attracted more attention in the last two decades, and we see initiatives
to implement services in all developed countries worldwide. The counterpart is that HHC practitioners
are faced with the complex logistics of routing caregivers around the coverage area while taking care
of fulfilling regulations, maintaining work balance, and maximizing the preferences of both nurses and
patients. The lack of computational tools to optimize HHC operations often leads to poor solutions,
incurring problems like unnecessarily costly routing and poor scheduling of caregiver working times
(Grenouilleau et al., 2019).

This paper discusses efficient solution methods for the daily Home Health Care Routing and Scheduling
problem (HHCRSP), introduced by Mankowska et al. (2014). The contributions of this work can be
summarized as follows.

• Improved lower bounds by simple tweaks of a standard mathematical optimization software;
• A new heuristic-powered decoding strategy for the HHCRSP;
• Analysis of state-of-art intensification components of biased random-key genetic algorithms;
• Study how more convoluted decoding strategies compare against a simpler decoding algorithm.

The remainder of the paper is organized as follows. Section 2 reviews related HHC literature, focusing
on the daily HHC problem. Section 3 defines the problem addressed in this research. Section 4 introduces
our proposed solution method using a biased random key genetic algorithm. This section also discusses
the relevant implementation details of our metaheuristic algorithm. In Section 5, we present the outcomes
of the proposed solution method, and we perform a comparison with previous results from the literature.
Lastly, we summarize the findings of this study and point to some potential future work in Section 6.

2. Previous work

The HHC problem (HHCP) is not a new research topic in the OR literature, and the first paper dates
back to the 1970s with the seminal work of Fernandez et al. (1974). Since then, we have observed an
increasing interest in these problems, and their state-of-art is very complex yet robust by considering
several practical constraints. Typically, the core feature set of HHCP consists of a routing problem, a
set of skilled/qualified caregivers, and a set of patients spread over a geographical region. In the VRP
literature, this is often referred to as a multi-attribute Vehicle Routing Problem (Grenouilleau et al., 2019).
Most authors consider a single-depot problem (Cissé et al., 2017; Grieco et al., 2020), and the Euclidean
space is frequently used to model travel times between locations. Recent surveys indicate the prevalence
of single transportation modes (Fikar and Hirsch, 2017; Grieco et al., 2020). Patients usually have hard
time windows (Bredström and Rönnqvist, 2008; Rasmussen et al., 2012), but some authors allow some
flexibility via soft time windows (Mankowska et al., 2014; Decerle et al., 2018). Any combination of



these features configures a complex vehicle routing problem. Furthermore, this is not an exhaustive list of
characteristics from the HHC literature, and there is no consensus of what configures a standard problem
(Fikar and Hirsch, 2017; Grenouilleau et al., 2019; Grieco et al., 2020).

To better define the scope of our research, we focus our study on the variant of the daily home health
care problem introduced by Mankowska et al. (2014). This problem considers multiple service types,
caregiver qualification levels, soft time windows, and route inter-dependency constraints for patients
requesting multiple visits. Bredström and Rönnqvist (2008) approached a similar problem with hard time
windows, and they also model caregiver preferences through additional soft constraints. Both publications
applied mathematical programming models, solving only small instances to optimality. In both cases, the
most promising algorithms were heuristics. Mankowska et al. (2014) solved instances with up to 300
patients and 40 caregivers, and Bredström and Rönnqvist (2008) solved instances with up to 80 patients
and 16 caregivers.

Lasfargeas et al. (2019) proposed stochastic local-search operators to solve HHCRSP of Mankowska
et al. (2014). Similar to the literature, the authors used a matrix-based structure to represent solutions and
facilitate the implementation of the local search operators, especially the ones for optimizing multiple
visits patients. The authors tested their algorithm over the benchmark dataset proposed by Mankowska
et al. (2014). According to their results, the stochastic approach benefits the local search technique,
leading to improved results and shorter computational times compared to the deterministic algorithms
proposed by Mankowska et al. (2014). Despite that, the authors only tested instances up to 75 patients,
supposedly due to feasibility issues on larger test cases.

Rasmussen et al. (2012) approached a very similar problem to that of Mankowska et al. (2014)
but considered hard time windows for the patient visits. They modeled the patient assignment as soft
constraints to circumvent feasibility issues, allowing a solution to have unscheduled visits. The authors
also generalized the route inter-dependency requirements for multiple visit patients, and they propose a
master formulation using such generalized constraints (Desaulniers et al., 2006). They applied a branch-
and-price algorithm, but the generalized constraints were implicitly enforced during the branching phase,
so there is no need to develop a specialized algorithm for the pricing problem. Proposed algorithms
were tested over the dataset of Bredström and Rönnqvist (2008). The authors also devised new random
instances, partially based on a real HHC problem arriving in Denmark. They solved instances of 15
caregivers and 150 patients exactly with a branch-and-price algorithm, exploiting the problem structure
with tailored branching rules from routing problems with transshipment (Drexl, 2012).

A few other authors further tested the dataset of Mankowska et al. (2014). Kummer et al. (2019)
provide new solutions via a fix-and-optimize matheuristic that, iteratively, efficiently re-optimizes small
portions of the problem. They applied the constructive heuristic of Mankowska et al. (2014) to generate
initial solutions, and the matheuristic runs until achieving a certain number of non-improving iterations.
The authors were capable of improving the best-known solutions to instances of up to 100 patients in a
competitive computational time compared to Mankowska et al. (2014) and Lasfargeas et al. (2019). Their
fix-and-optimize demonstrated to be inapplicable in instances with more than 100 patients, mainly due to
high memory consumption by the solver.

Kummer et al. (2020) were the first to propose a biased random-key genetic algorithm (BRKGA)
(Gonçalves and Resende, 2011) for solving an HHC problem. Their decoder employed a greedy best-
insertion heuristic that selects the best caregiver(s) to fulfill patient demands, and the patients were
processed according to the permutation derived from the chromosome. Their metaheuristic algorithm was



tested on the instances from Mankowska et al. (2014). According to the authors, the exploit-and-explore
capabilities of their BRKGA performed consistently better than the local search operators from the
literature, mainly in medium to large-sized instances. Due to the greediness of the decoder used, the
metaheuristic algorithm could not achieve an optimal solution for some small instances. Despite that, the
proposed algorithm outperformed almost all previous literature results for instances with 25 patients and
five caregivers up to the largest test cases of the dataset, comprising 300 patients and 40 caregivers.

Considering that there is still no agreement in the literature about a standard home health care problem,
we summarize in Table 1 the closely related literature to the single-day HHC problem we study. For a
more comprehensive overview of the literature, please c.f. Cissé et al. (2017), Fikar and Hirsch (2017),
and Grieco et al. (2020).

Table 1: Summary of publications regarding the HHCP.

Work M PH RM T WT PR PTW CTW WB WT OT BR SK CP SY SM
Largest inst. solved

#C #P #J

Fernandez et al. (1974) – S TD H – – – – – – – – – – – – – –
Bredström and Rönnqvist (2008)† x S TT H – S H H S – – – – – S, P MIP+RH 16 80 80
Rasmussen et al. (2012)† x S TC S – S H H – – – – H – S, P B&P 16 150 150

Mankowska et al. (2014)∗ x S TT H – – S – – – – – H – S, P MIP,
AVNS 40 300 390

Lasfargeas et al. (2019)∗ x M TT H – – S H – – – – H H S, P VNS 15 75 98
Decerle et al. (2018)† x S TD H – – S H – – – – H – S MA 6 109 109
Kummer et al. (2019)∗ x S TT H – – S – – – – – H – S, P F&O 20 100 130
Kummer et al. (2020)∗ x S TT H – – S – – – – – H – S, P GA 40 300 390

M: Proposes a model to the problem; PH: Length of the planning horizon (S: short/single day, M: medium/up to one week, L: long/several months); RM: Routing
metric used to evaluate the solution cost of the routing (TD: travel distance, TC: travel cost, TT: travel time); T: Tasks must be fulfilled (H: hard) or may not (S: soft,
with penalization in the objective function); WT: Constraints to model waiting times; PR: Preference of assignments between caregivers and patients; PTW: Patient
time-windows; CTW: Caregiver time-windows; WB: Working balance constraints; WT: Constraints to model work time regulations; OT: Constraints to model
overtime; BR: Breaks/rest time constraints; SK: Presence of skills/qualification levels for the caregivers; SY: Route inter-dependency constraints (S: simultaneous
attendance, P: precedence constraints); SM: Best-performing solution method (LP+RH: linear programming plus rounding heuristic, RMH: repeated matching
heuristic; PSO: particle-swarm optimization, MIP+RH: MIP with rounding heuristic, VNS: variable neighborhood search, B&P: branch-and-price solver, AVNS:
adaptive VNS, MA: memetic algorithm, F&O: fix-and-optimize matheuristic, GA: genetic algorithm); #C: Number of caregivers; #P: Number of patients; #J:
Number of jobs. Works that use the benchmark dataset proposed in Bredström and Rönnqvist (2008)†, and Mankowska et al. (2014)∗, respectively .

3. The home health care problem

Mankowska et al. (2014) proposed a single-day problem called the home health care routing and schedul-
ing problem (HHCRSP). We use the terms HHCRSP and HHCP interchangeably in this section and
the following. Let V be the set of the caregivers/vehicles, and C the set of patients/nodes. This routing
component aims to assign caregivers to the patients, seeking to minimize each caregiver’s travel time. Let
C0 = {0} ∪ C , where 0 represents the depot. Parameter dij defines the travel time between the tuples
(i, j) ∈ C0 × C0. All caregivers travel at the same time–i.e. the problem considers a single transportation
modality. The patients also have time-windows. More precisely, each patient i ∈ C has a hard time-
window starting ei, meaning that a visit can only happen after the start of the time-window. Conversely,



patient i also has a soft time-window ending li, and such services should be served ideally before the end
of the patient time-window. If such a requirement is not fulfilled, then attendance is considered tardy,
and a penalty is incurred in the objective function. In the next section, we introduced service types, a
characteristic of this HHCP that sets routing components as multi-attribute VRPTW (Grenouilleau et al.,
2019).

3.1. Service types, qualification, and job requirements

In the HHCRSP, a patient may request up to two distinct service types, which skilled caregivers must
fulfill. This feature is inherent to the HHCP, requiring multiple visits to some patients. Let S be the set
of service types considered in the problem. Caregivers are skilled in the sense that each caregiver has
a subset of service types that they can perform. For each v ∈ V and service type s ∈ S, the parameter
avs = 1 indicates if caregiver v can perform service type s, and is otherwise 0. Patients have a similar
parameter setting. The parameter ris = 1 indicates if patient i ∈ C requires attendance for service type
s ∈ S, and is otherwise 0. Additionally, the processing time required to complete such attendance is
defined according to the parameter pis > 0.

In general, the problems are composed mostly of single service patients, requiring a visit by a single
skilled caregiver. Patients requesting two distinct service types are known as double service patients. We
introduce the set Cd ⊆ C to refer to the subset of double service patients. In double services, two visits are
required by distinct (and skilled) caregivers to fulfill each patient’s demands, and additional constraints
are imposed when performing such visits.

3.2. Synchronization constraints for double service patients

As aforementioned, some patients require more than one service type. For those, two new constraints,
inherent to the scope of HHCP, are imposed. These constraints establish route inter-dependency among
the caregivers, either in simultaneous attendances or by precedence constraints. A first requirement is that
both caregivers be simultaneously present with the patient. Thus, the processing of both services starts
simultaneously. Additionally, the caregivers can only depart from the patient after the completion of the
longest of the two services, as shown in Figure 1a.

In precedence constraints, we have a priority order for which the service types requested must be
serviced. Without loss of generality, HHCRSP considers a global priority among the service types in S.
For example, with a set S = {1, 2, 3}, service 1 has priority over services 2 and 3. Similarly, service 2
also has priority over 3. In other words, service i has priority over service j if i, j ∈ S.

In addition to this priority, patients with precedence constraints require a minimum and maximum
separation time between their two service requests. Parameter δmin indicates the minimum difference
between the start of both service types, which may cause the caregiver responsible for the lower priority
service to wait until the start of their operation. Similarly, parameter δmax indicates the maximum difference
between the start time of the services. In this case, such a requirement can cause the caregiver responsible
for the high priority service to delay their operation to maintain the solution feasibility. In the example of
Figure 1b, service type 5 can be started at any time after te, and before tl.
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(a) Double service with simultaneous attendance
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(b) Double service with precendece constraint

Fig. 1: A time-space visualization of a double service patient. In 1a, caregiver #1 arrives at patient #1
before caregiver #2, thus the attendance of the services are delayed until both caregivers are present with
patient #1. In 1b, caregiver #2 must start service type #5 within the dynamic time-window [te, tl].

3.3. Mixed integer programming model

In addition to discussing the features of the HHCRSP, we also introduce the model of Mankowska et al.
(2014) to define the problem formally. This MIP considers three sets of variables. The decision variables
xijvs ∈ {0, 1} indicates if caregiver v ∈ V departs from i ∈ C0 to j ∈ C0 to perform the service type
s ∈ S in the destination node. Considering caregiver capabilities and the patient requirements, we can
rewrite the bounds of these variables as xijvs ∈ {0, avsris}, allowing the removal of several decision
variables from the problem. Variable tivs > 0 indicates the service start time of patient i ∈ C by caregiver
v ∈ V for service type s ∈ S. Variable zis > 0 is the tardiness when the service type s ∈ S starts after
the end of the patient’s time window.

The HHCP has three minimization criteria, computed in variables D,T, Tmax > 0, respectively,
regarding the total travel distances, the total tardiness, and the largest tardiness over all the patients. Those
criteria are weighted according the multiplicative factors λ1, λ2, and λ3 in a single objective function.
The MIP model for the HHCRSP is given in (1–15).

Minimize λ1D + λ2T + λ3T
max (1)

Subject to:

D =
∑
v∈V

∑
i∈C0

∑
j∈C0

∑
s∈S

dijxijvs (2)

T =
∑
i∈C

∑
s∈S

zis (3)

T max > zis ∀i ∈ C, s ∈ S (4)



∑
i∈C0

∑
s∈S

x0ivs =
∑
i∈C0

∑
s∈S

xi0vs ∀v ∈ V (5)∑
j∈C0

∑
s∈S

xjivs =
∑
j∈C0

∑
s∈S

xijvs ∀i ∈ C, v ∈ V (6)

∑
v∈V

∑
j∈C0

avsxjivs = ris ∀i ∈ C, s ∈ S (7)

tivs1 + pis1 + dij 6 tjvs2 +M (1− xijvs2)
∀i ∈ C0, j ∈ C,
v ∈ V, s1, s2 ∈ S

(8)

tivs > ei ∀i ∈ C, v ∈ V, s ∈ S (9)

tivs 6 li + zis
∀i ∈ C, v ∈ V,
s ∈ S

(10)

tiv2s2 − tiv1s1 > δmin
i

−M

2−
∑
j∈C0

xjiv1s1 −
∑
j∈C0

xjiv2s2


∀i ∈ Cd

v1, v2 ∈ V,
s1, s2 ∈ S : s1 < s2

(11)

tiv2s2 − tiv1s1 6 δmax
i

+M

2−
∑
j∈C0

xjiv1s1 −
∑
j∈C0

xjiv2s2


∀i ∈ Cd,
v1, v2 ∈ V,
s1, s2 ∈ S : s1 < s2

(12)

xijvs ∈ {0, avsrjs} ∀i, j ∈ C0, v ∈ V, s ∈ S (13)

tivs, zis > 0 ∀i ∈ C0, v ∈ V, s ∈ S (14)
D, T, Tmax > 0 (15)

Expression (1) defines the objective function, using the solution quality indicators calculated in
constraints (2–4). Constraints (5) indicate that each vehicle should depart and return to the depot once,
and constraints (6) model the flow balance to the other vertices. Constraints (7) guarantee that the service
requests of the patients are performed by skilled caregivers. Constraints (8) are the sub-tour elimination
constraints considering the distances between nodes and service processing times. Parameter M is a large
number. Constraints (9, 10) model the time windows and compute the services start times on patients.
Constraints (11, 12) model both simultaneous double services and separation times on double services
with precedence. Finally, constraints (13–15) define the domain of the decision variables.



4. Proposed solution method

The weak linear relaxation of model (1–15) severely hurts the performance of branch-and-cut methods
from the state-of-art MIP solvers (Mankowska et al., 2014). Although new valid inequalities can potentially
help to strengthen the linear relaxation of the MIP, the number of variables required to model the problem
is still an issue, rendering the employment of solvers impractical for instances with more than 100 patients
with a standard computer of 8 GB of memory (Kummer et al., 2019). Furthermore, methods based on
the modification of solutions are often ineffective in solving the HHCRSP. Regarding the optimization
landscape, the presence of time-windows makes it hard to escape from local optima (Gendreau et al.,
2010). Previous work in the literature show how complex it is to keep the solution structure for trajectory-
based methods in the presence of route inter-dependency constraints (Ait Haddadene et al., 2016). Drexl
(2012) suggests that it may be worthwhile to try to solve problems with route inter-dependencies using an
indirect approach over an auxiliary search space to overcome feasibility issues.

Instead of crafting nifty local search operators to navigate through the neighborhoods of a promising
solution, we propose exploring the problem solution space indirectly through a multi-population multi-
parent biased random-key genetic algorithm, with an additional component of implicit path-relinking for
intensification of the search (Andrade et al., 2021).

4.1. The biased random-key genetic algorithm

The biased random-key genetic algorithm (BRKGA) has been applied to a wide variety of combinatorial
optimization problems, including the container loading problem, the parallel machines scheduling problem,
and project scheduling problems (Gonçalves et al., 2011; Gonçalves and Resende, 2012; Chaves et al.,
2016). To the best of our knowledge, just one paper in the literature proposes solving the HHCP with a
genetic algorithm (Kummer et al., 2020).

In a BRKGA, the initial population is comprised of vectors of real-valued random keys from [0, 1). Let
p be the population size of the genetic algorithm. In each generation, individuals of the current population
are sorted according to their fitness values. The best pe individuals of the population form the elite set, and
the other p− pe individuals compose the non-elite set. The BRKGA is elitist and copies all individuals of
the elite set of the current population to the next population. This way, the BRKGA monotonically keeps
the best solutions found over the search (Gonçalves and Resende, 2011).

A BRKGA uses two strategies to create the offspring in the next population. The first strategy aims
to keep the new population’s diversity by inserting pm new random mutants in the next population. The
second strategy consists of mating one member from the elite set with another member from the non-elite
set by employing a parametrized uniform crossover operator to generate offspring. Each allele of the
offspring is either inherited from the elite parent, with a probability of ρe , or from the non-elite parent,
with a probability of 1− ρe. The mating generates p− pe − pm new individuals, which are inserted in the
next population. Finally, the next population becomes the current population, and the process repeats until
achieving a maximum number of generations or some other stopping criterion. Figure 2 depicts, at a high
level, these operations, highlighting the sequence of operations.

The multi-population BRKGA consists of evolving multiple islands simultaneously. The islands consist
of several populations evolving independently, allowing distinct islands to (possibly) achieve distinct local



minima. Immigration allows exploiting the problem’s solution space by moving some individuals from
one island to the other. With k individual populations, m immigrants from the island i are moved to the
island min{i+ 1, 1}, and this process repeats for i = 1, 2, . . . , k. Typically, the immigration mechanism
is triggered by some criteria during the evolutionary process, e.g., periodically after a fixed number of
generations (Toso and Resende, 2015).

A BRKGA has some strengths that help to manage the complicating constraints of the HHCP. It
uses a parameterized uniform crossover, dismissing the necessity of repair operators by delegating
feasibility issues to the problem’s objective function, requiring a well-designed decoder to prevent
the evolutionary process from getting stuck due to infeasibilities (Gonçalves and Resende, 2011). The
choice of chromosome representations with random keys and the constant generation of mutants enables
exploring the solution space. In contrast, the crossover operator and the decoder exploit the structural
properties of the solutions (Eiben et al., 2003). Such characteristics also relieve the necessity to employ
local search, which is frequently a very time-consuming component of the heuristics and has a negligible
impact on the solutions (Drexl, 2012).

TOP

BOT

MutationMutation

CrossoverCrossover

Elitist selectionElitist selection

1

2

3

4

Best

Worst

Current population Next population

One chromosome
    from elite set

    One chromosome
from entire population

Fig. 2: Overview of the BRKGA internals. The operation (1) sorts the current population. In (2) the elite
individuals are copied to the next population. In (3), some new mutant individuals are generated to keep
the diversity of the next population. In (4), the remaining space of the next population is filled up with
offspring.

4.2. Multi-parent BRKGA

As aforementioned, the standard BRKGA performs the mating process over two parents from the
population. Further researchers identified simple modifications that improve the convergence of the
mating process. Computational experiments presented in Lucena et al. (2014) showed that the multi-
parent mating produces consistently better results than the standard and the gender-defining variant of
BRKGA (Lucena et al., 2014).

In multi-parent BRKGA, the metaheuristic selects a total of πt parents for each mating, with πe
individuals from the elite set, and the other πt − πe from the non-elite set. Contrary to specifying the



bias for selecting alleles from the parents directly, the multi-parent BRKGA uses a two-step approach.
First, the parents are put into a list, which is then sorted according to their fitness. The second step
consists of applying a bias function to compute each parent’s weight according to their rank r in the
sorted list. Andrade et al. (2021) suggest using one of the non-decreasing bias functions Φ to compute
such weights (Bresina, 1996). In addition to these functions, we derived the quadratic Φ(r) = r−2 and
cubic Φ(r) = r−3 functions.

4.3. Implicit path-relinking in random-keys space

Path-relinking is an intensification procedure that explores the intermediate solutions between a base
and a guide solution by incrementally introducing changes in the base solution according to the guide.
It finishes when both guide and base solutions are equal (Glover, 1997), or after exploring a maximum
number of intermediate solutions (Resende et al., 2010). According to the studies of Resende and Ribeiro
(2016), the direction of this exploration matters. In the forward path-relinking, the changes come from the
guide solution. Conversely, the algorithm is called backward path-relinking when the changes come from
the base solution. Resende and Ribeiro (2016) also propose the mixed path-relinking, which combines
both forward and backward strategies. According to their experiments, this mixed intensification approach
often finds a better solution than the others.

A typical implementation of the path-relinking heuristic is usually tied closely to the problem (Andrade
et al., 2021). The heuristic is structured around the solution components (or variables), and how these
components can be interchanged between the base and guide solution to generate new intermediate
solutions. It is very hard to generalize a single implementation of path-relinking to a wide variety
of problems. Nevertheless, Andrade et al. (2021) propose a path-relinking implementation that takes
advantage of the generic solution encoding of the BRKGA to implement what they call an implicit
path-relinking procedure (IPR).

As the reader may expect, there is a significant overhead of applying a path-relinking heuristic inside
another metaheuristic such as the BRKGA. For this reason, Andrade et al. (2021) also propose a minimum
distance metric between the base and the guide solution to allow running the IPR. This strategy relies on
the fact that measuring such distances is much faster than running the heuristic itself, so it works as an
effective speedup strategy to skip IPR runs between solutions that are too similar.

Andrade et al. (2021) suggested two variations of the IPR that operates differently according to how
the solutions are encoded. Specifically to routing and sequencing problems, the decoder uses the random
keys to establish a permutation of the solution elements. For a vehicle routing problem, e.g., each client
is associated with a chromosome position; thus, the visit order is obtained by sorting the chromosome
(Ruiz et al., 2019). For this type of solution encoding, Andrade et al. (2021) proposed a permutation IPR
that uses the guide chromosome to induce permutations in the base chromosome, as shown in Figure 3.
This variation of the implicit IPR starts by sorting both guide and base individuals. At this point the
algorithm tests for the minimal distance criterion, using the Kendall-tau distance over the permutation of
array indices of sort(b) and sort(g). After that, the IPR generates intermediate individuals by swapping
keys in either base or guide individual, following a hybrid forward-backward path relinking strategy. In
the example of the figure, the guide individual sets that the first key must be associated with index 5
(according to sort(g)), but the base solution associates the index 1 to the first key (according to sort(b)).



The IPR then swaps the key associated with the index 5 in b (following the permutation of g), with the
key currently occupying position 1 of b. This procedure generates the individual b′, whose first element
(in sort(b′)) respects the first element in the permutation of g. After introducing this change, the decoder
evaluates the intermediate individual, hopefully finding an improved solution.
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Fig. 3: Example of permutation IPR. The guide individual g is used to induce changes in the base
individual b.

In presence of multiple islands, the implicit path-relinking is applied between pairs of elite individuals
from distinct islands, either by selecting the best individuals or selecting random individuals from their
elite sets, following the same circular strategy of the immigration mechanism. For example, with three
islands, the IPR runs between some elite individuals from islands 1 and 2, then from islands 2 and 3, and
finally 3 and 1. With the “best selection” strategy, each IPR run selects the elite individuals according to
their fitness. With the random selection, the IPR simply selects two random individuals from the elite sets.
When only a single island is considered, the heuristic operates between elite individuals from the same
island (Andrade et al., 2021).

4.4. Heuristic-powered decoder for the HHCRSP

In our solution approach, the genetic algorithm evolves the sequence in which the patients are inserted
into the solution, and each chromosome has length |C| + 2. The example of Figure 4 demonstrates
the decoding process on an instance with three patients. The algorithm starts pairing the list of patients
with the chromosome, then it sorts the task list according to the increasing order of the allele values,
reaching the task sequence depicted in task insertion sequence. This process uses the first |C| alleles of
the chromosome. Then, a greedy cheapest-insertion heuristic assigns the sorted sequence of tasks to the
caregivers, and the last two alleles are used to toggle optional components of the decoding algorithm.
When allele |C|+ 1 < 0.5, the decoder only considers the increase in total travel time by inserting the



patient into the caregiver’s route. When this allele has a value > 0.5, then the decoder also includes
the distance for returning the caregiver to the depot after servicing the patient. In the context of this
manuscript, we refer to this behavior as the convex hull strategy. The last allele |C|+ 2 toggles a simple
heuristic that tries to balance the workload of caregivers during the greedy construction phase.

Patient: 1
Svc: 1, 2

Patient: 2
Svc: 1

Patient: 3
Svc: 2

Patient: 1
Svc: 1, 2

Patient: 2
Svc: 1

Patient: 3
Svc: 2

0.480.16 0.31

Unordered tasks

Sorted keys
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sequence
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0.48 0.31Unordered keys
(Alleles)
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convex-hull
flag

workload 
balancing flag

Greedy cheapest-insertion heuristic

0.06 0.82

Fig. 4: Decoding example for a instance with three patients.The greedy phase has the convex hull strategy
set off and the caregiver workload balancing heuristic set on.

Algorithm 1 details the implementation of the proposed decoder. In line 1, the decoder starts an empty
solution, with all the vehicles placed at the depot. Line 2 performs the same steps depicted in the example
of Figure 4. Lines 3 and 4 check if the optional components should be enabled during the rest of the
decoding. Line 5 initializes the total workload of each caregiver as 0. The decoder then takes each task
from the sorted task sequence (line 6) and tests all the possible caregiver assignments to such task (lines
7–19), considering all the service types requested by the patient. This is done by passing the service
types requested by tasks [i] to the function AllVehicleCombinations, which returns a list with all pairs
of vehicles with qualification to perform the service types s1 and s2, respectively. The heuristic then
evaluates the cost of assigning the task to the current vehicles v1 and v2 through FindInsertionCost
(line 10). Lines 11–13 update the cost c̄ according to the workload balancing heuristic. Lines 14-18 check
if the current pair of vehicles leads to a cheaper insertion cost (strict improvement). If the cost current
choice of vehicles c̄ is very close to c∗, then the algorithm still updates the choice of best candidate
vehicles v∗1 and v∗2 if the value of the allele associated with the task is > 0.5. This allows the genetic
algorithm to reach elements of the solution space otherwise inaccessible. After deciding the best pair
of candidates, the algorithm updates the solution by inserting the patient into the routes of the selected
caregivers (line 20). Line 21 updates the cost of s using a similar algorithm to FindInsertionCost.
Lines 22–25 update the workload of the selected vehicles. Finally, the decoder returns the final solution
cost at line 27. Considering n = |V| and m = |C|, the decoder algorithm has the worst-case complexity
of O(mn2).

In addition to this description of the decoding algorithm, a few points still need to be explained. First
is that function GetSkills returns all the service types requested by the patient and, in case of a single
service request, s2 will have the special value null. AllVehicleCombinations is also aware of this



Algorithm 1: Greedy cheapest-insertion constructive heuristic.
Input: A chromosome ch .
Output: Solution cost.

1 s← EmptySolution()
2 tasks ← Sort(C, ch) /* Gets the permutation of patients. */
3 convHull ← GetKey(ch , |C|+ 1) > 0.5 /* Uses the second to last key. */
4 wloadHeur ← GetKey(ch , |C|+ 2) > 0.5 /* Uses the last key. */
5 wload ← Zeros(|V|) /* List of zeros. */
6 for i← 1 to |tasks| do
7 c∗ ←∞
8 (s1, s2)← GetSkills(tasks[i])
9 for (v1, v2) ∈ AllVehicleCombinations(s1, s2) do /* All pairs of qualified vehicles. */

10 c̄← FindInsertionCost(s, v1, v2, tasks[i], convHull )
11 if wloadHeur = true then /* Workload balancing heuristic. */
12 c̄← c̄+ wload [v1] + (s2 6= null ?wload [v2] : 0)
13 end
14 if c̄ < c∗ or (c̄ = c∗ and GetKey(tasks[i]) > 0.5) then /* Strict/non-strict improvement. */
15 v∗1 ← v1
16 v∗2 ← v2
17 c∗ ← c̄

18 end
19 end
20 UpdateRoutes(s, v∗1 , v∗2 , tasks[i]) /* Updates solution structure. */
21 UpdateCost(s, v∗1 , v∗2 , tasks[i]) /* Updates incumbent. */
22 wload [v∗1 ]← wload [v∗1 ] + ServiceDuration(task[i], s1) /* Updates total workload of v∗1. */
23 if s2 6= null then
24 wload [v∗2 ]← wload [v∗2 ] + ServiceDuration(task[i], s2) /* Updates total workload of v∗2. */
25 end
26 end
27 return GetCost(s)

behavior, so in such cases, all tuples from the returned list of vehicles will have v2 equals to null. The
value of s2 is also used to decide which vehicles are considered when calculating the workload balancing
(line 12) and when updating the workload of the vehicles selected to service to a patient (lines 23–25).
Note that function FindInsertionCost can also handle the cases in which v2 is null.

The cost calculation in the insertion heuristic is not straightforward due to the double services and
soft time windows. Algorithm 2 details how this can be implemented, considering all the soft constraints
of the problem. The function starts by querying the current location of vehicles in solution s (line 2).
Line 3 calculates the arrival time of v1 at the patient i, taking into account the travel time between the
current vehicle location and i. In case of a single service patient, the algorithm proceeds with lines 5–10,
calculating visit tardiness. In case of the convex hull strategy to be set on, the algorithm takes a few more
steps to subtract the travel times from vpos1 to depot, to then add the travel times from node i to depot
(lines 8–10). In the case of a double service patient, the algorithm calculates the arrival time for v2, as
well as the increase in travel times. Lines 14–17 apply similar calculations as lines 8–10. In the case of
simultaneous double services, the algorithm calculates the service start times according to line 19. The
next two lines calculate the visit tardiness. For a double services patient with precedence, the algorithm



calculates the visit times according to the minimum and maximum separation times for patient i (lines
23–27). If the maximum separation time is violated, then a delay is inserted into the start time of the
first vehicle (lines 25–27). Violations of the soft time windows are computed in lines 6, 20, and 28, and
the maximum tardiness in lines 7, 21, and 29. Finally, the function takes the updated solution quality
indicators and returns its cost (lines 32–35). Assuming that all operations inside FindInsertionCost
run at constant time, the function has a complexity of O(1).

Algorithm 2: Implementation of FindInsertionCost.
Input: s, v1, v2, task , convHull .
Output: Updated solution cost of appending task to the routes of v1 and v2.

1 i← GetNode(task )
2 (vpos1, vpos2)← VehiclesLocation(s, v1, v2) /* Current location of v1 and v2. */
3 arrival1 ← max{ei, LeaveTime(s, v1) + TravelTimes(vpos1, i)}
4 dist ← TravelTimes(vpos1, i)
5 if i ∈ Cs then /* Processes a single service patient. */
6 tard ← max{0, arrival1 − li} /* Vehicle starts processing immediatelly at arrival1. */
7 tmax ← tard
8 if convHull = true then
9 dist ← dist − TravelTimes(vpos1, 0) + TravelTimes(i, 0)

10 end
11 else
12 arrival2 ← max{ei, LeaveTime(s, v2) + TravelTimes(vpos2, i)}
13 dist ← dist + TravelTimes(vpos2, i)
14 if convHull = true then
15 dist ← dist − TravelTimes(vpos1, 0) + TravelTimes(i, 0)
16 dist ← dist − TravelTimes(vpos2, 0) + TravelTimes(i, 0)

17 end
18 if δmin

i = δmax
i = 0 then /* Simultaneous double service. */

19 svcStart ← max(arrival1, arrival2)
20 tard ← 2 · max{0, svcStart − li}
21 tmax ← max{0, svcStart − li}
22 else /* Double service with precedence. */
23 svcStart1 ← arrival1
24 svcStart2 ← max{arrival1 + δmin

i , arrival2}
25 if svcStart2 − svcStart1 > δmax

i then /* v2 arrived too late at the patient. */
26 svcStart1 ← svcStart2 − δmax

i /* Adds some waiting to v1. */
27 end
28 tard ← max{0, svcStart1 − li}+ max{0, svcStart2 − li}
29 tmax ← max{max{0, svcStart1 − li}, max{0, svcStart2 − li}}
30 end
31 end
32 dist ← dist + GetTravelTimes(s)
33 tard ← tard + GetTotalTardiness(s)
34 tmax ← max{tmax , GetTMax(s)}
35 return λ1 · dist + λ2 · tard + λ3 · tmax

Despite its similarity to the decoding algorithm proposed by Kummer et al. (2020), our new decoder
has some important additions that allow the genetic algorithm to reach a larger amount of the solution



space of the HHCRSP. These additions–notably the convex hull strategy–allow our BRKGA to achieve
solutions otherwise inaccessible by previous work in the literature. Similarly, the workload balancing
heuristic can also help to improve solution quality when a problem instance has similar vehicles with
respect to qualification levels, which indirectly guide to solutions with improved travel times.

5. Computational results

This section presents computational results for our proposed metaheuristic. We describe the benchmark
dataset used in our computational experiments and the benchmark machine. We also compare our results
with all the previous publications that use this same dataset, and we highlight which solution methods
work best for each instance tested.

5.1. Computational environment and benchmark dataset

We use in our experiments an Intel Xeon E5-2697 v2 computer running at 2.70 GHz, with 64 GB of mem-
ory. Our code is implemented in C++, and we compile our binary using the GNU G++ compiler, version
7.5.0 running Ubuntu 18.04 with Linux kernel 4.15.0. We use the open-source brkga_mp_ipr_cpp frame-
work of Andrade et al. (2021). This framework not only allows developing standard BRKGA algorithms,
including the variant with an island model, but it also supports the IPR and the MP mating described
in the former sections. This way, most of our implementation effort is to develop a problem-specific
decoder compatible with the Andrade et al. framework, altogether with some auxiliary code to handle
the problem data. The brkga_mp_ipr_cpp framework supports the new C++17 standard. Similar to its
predecessor, the brkgaAPI of Toso and Resende (2015), it also supports multi-core processing through
OpenMP directives. Thus, we take advantage of our benchmark machine’s parallel capabilities to decode
individuals in parallel using four real cores–we explicitly disabled the hyperthreading feature during our
experiments.

We test out metaheuristic algorithm using the benchmark dataset proposed by Mankowska et al. (2014).
This dataset is comprised of seven instance subsets, each one composed of ten synthetic instances. Table 2
highlights the general properties of each subset. The columns identify the instance family, the total
number of patients, and the number of single service and double service patients, respectively. The last
column presents the number of caregivers. The set of service types S = {1, 2, 3, 4, 5, 6} is the same
for all the 70 instances, and the selection of the requested service types per patient is at random. Each
instance comprises 30% of double service patients, 15% requiring simultaneous double services, and 15%
requiring double services with precedence constraints. The other 70% are single service patients. Note
that single service patients require just one service type, and double service patients require exactly two.
The caregiver skills are also set at random. Half of the caregivers can perform up to three service types
from the set {1, 2, 3}. The same happens to the other half of V , considering the service types {4, 5, 6}.
The authors guarantee at least one caregiver capable of performing each service type. All the points (the
depot and patient homes) were generated within a 100×100 grid, and the travel times are symmetric.
Each patient has a two-hour time-windows drawn from a time horizon of ten hours.

Lastly, we use the weights λ1 = λ2 = λ3 = 1/3 in the objective function. These are the same weights

https://github.com/ceandrade/brkga_mp_ipr_cpp


Table 2: Characteristics of the benchmarking dataset proposed by Mankowska et al. (2014). For each
instance subset, we indicate the total number of patients |C|, and the number of single |Cs| and double
service patients |Cd|, respectively. Column |V| indicates the number of caregivers considered.

Instance subset |C| |Cs| |Cd| |V|

A 10 7 3 3
B 25 17 8 5
C 50 35 15 10
D 75 52 23 15
E 100 70 30 20
F 200 140 60 30
G 300 200 100 40

# of instances 70

used in all previous publications that use the Mankowska et al. (2014) dataset.

5.2. Improved lower bounds with CPLEX 20.1.0.0

During computational experiments with CPLEX 12.3, Mankowska et al. (2014) attempted to solve their
instance dataset by applying the MIP model (1–15). According to the authors, only instances with up to
ten patients could be solved to optimality, and feasible solutions could only be found for other test cases
with 25 patients. For these experiments with the MIP, the authors also report the best lower bound found
within 10 hours of solver runtime. Thanks to the generation of additional cuts, its value improves during
the branch-and-cut phase due. Thus, these best lower bounds are stronger than the simple lower bounds
from the MIP linear relaxation. For the test cases with 200 and 300 patients, the authors simplify the
experiments by relaxing the route inter-dependency constraints (11) and (12). This way, the best lower
bound provided for these instances are (provably) weaker than the best lower bounds for the HHCRSP.

Prior to assessing the solution quality for our proposed metaheuristic algorithm, we first experiment
with the Mankowska et al. model to obtain stronger new best lower bounds (LB+), using the most updated
version available of the CPLEX solver. In our experiment, we consider all the constraints for the MIP (1–
15). We also use constraints (13) to skip generating decision variables that are trivially fixed to zero due to
either the lack of caregiver skills or missing patient request for some service types. Such preprocessing also
allows us to skip generating empty flow constraints (6). With these minor improvements, we significantly
reduce the MIP memory consumption by a third for instances with 300 patients. We solve the MIP using
CPLEX 20.1.0.0 and we applied three configurations to the solver, aiming to test the standard optimizer
performance (Defaults), and to test the effectiveness of our strategies for reducing the growth in memory
consumption as the search progresses (configurations #1 and #2). We achieve the following parameter
setting presented in Table 3 by inspecting the optimizer documentation (IBM, 2020). Reducing the
number of threads available to CPLEX reduces the growth in memory consumption as the branch-and-cut
algorithm proceeds. The solver also has a “memory emphasis” flag that disables some memory-intensive
pre-processing routines, at expanse of worsening the solver performance.

In addition to the tweaked parameters, preliminary experiments indicate that CPLEX can greatly benefit



Table 3: Parameter setting for CPLEX while obtaining strong best lower bounds.

Parameter Defaults Configuration #1 Configuration #2

# threads (automatic) 1 1
Memory emphasis off on on
MIP warmstart off off on

from a warm start from a feasible solution to enhance further both memory usage and to produce better
values of LB+. This way, we use the genetic algorithm of Kummer et al. (2020) to produce such initial
solutions. We use most of the parameter settings proposed in their paper, but we limit the number of
evolved generations to 600 to reduce the time spent on the warm start. In these experiments, we use
the same computer we describe in Section 5.1. We use CPLEX command line interface to run our tests,
and we set a time limit of two hours for each run of the solver. To better represent a standard personal
computer, we also limited CPLEX to use up to 8 GB of memory.

Table 4 presents our new average best lower bounds for each instance subset. The first column presents
the instance subset’s name, followed by the computational time and the best lower bounds reported by
Mankowska et al. (2014). Note that we adjusted the times reported by Mankowska et al., as explained in
Subsection 5.4. The next columns present our average results for each instance subset, for the standard
CPLEX configuration, and configurations #1 and #2. For each configuration, we report the average solver
runtime in seconds, the average number of branch-and-cut nodes explored, and the average LB+. At the
bottom of the table, we present the number of instances in which each experiment produced the best lower
bound (# Best), the number of proved optimal solutions (# Opt), the number of instances that achieved a
time limit of 2 hours (# TL), and the number of runs that were stopped due to out-of-memory (# OOM).

Table 4: New best lower-bound found with CPLEX 20.1.0.0. Values in bold indicate the best lower-bound
available.

Inst.
subset

Literature Defaults Configuration #1 Configuration #2

T (sec.) LB+ T (sec.) # Nodes LB+ T (sec.) # Nodes LB+ T (sec.) # Nodes LB+

A 5.47 225.18 0.26 2158.70 225.18 0.61 1038.20 225.18 0.27 656.70 225.18
B 37,908 343.11 3169.94 2,445,294.20 387.14 7200.00 1,867,494.20 345.90 3250.88 705,862.00 391.29
C 37,908 342.62 4640.88 357,600.10 384.24 7200.00 217,070.70 382.00 7200.01 222,574.10 393.75
D 37,908 377.36 5595.87 123,144.00 399.73 7200.01 32,363.10 408.71 7200.02 38,002.30 412.71
E 37,908 404.53 4952.80 58,249.20 402.10 7200.02 9,987.50 428.47 7200.06 12,679.80 425.55
F 37,908 435.26 3210.13 2696.30 492.88 7200.37 1,682.90 530.97 7200.40 690.90 536.43
G 37,908 462.12 – – – 7200.84 358.00 620.76 7200.62 336.40 604.59

# Best 9 31 29 46
# Opt 10 17 10 17
# TL 60 17 60 53

# OOM 0 36 0 0

On average, the newer version of CPLEX can find better LB+ values than the previously reported in
the literature, although the most remarkable difference is that we use only 20% of the processing time of
Mankowska et al. (2014) to produce these new results. We also managed to prove the optimal solutions
to 7 out of 10 instances of subset B, which justifies the average running time of 3169.94 seconds for



this group of instances (using CPLEX defaults). These results are obtained at the expense of exploring
gigantic branch-and-cut trees with more than 106 nodes on average. Despite that, we observed no trees
consuming more than 500 MB of memory for subset B. Naturally, the number of nodes explored drops as
the problem size increases, as a consequence of the large time spent solving LP subproblems. The smaller
improvement of LB+ on subsets D and E is related to some instances that are particularly difficult to
solve, e.g., E3, for which the LB+ improvement is only 3.90% between the literature and configuration #1,
and 3.27% between the literature and configuration #2. We believe this issue may be related to phase
transition between easy and hard instances of the HHCRSP, which is often discussed in the literature of
other optimization problems.

5.3. Automatic algorithm configuration with irace

As the reader may expect, the presence of several components makes our proposed genetic algorithm
heavily parameterized. In such scenarios, a state-of-art approach to configure an algorithm is to apply
an automatic algorithm configuration (AAC) tool to automate the finding of good set of parameters.

The AAC approach has several inherent advantages over the manual configuration procedure. It reduces
the human effort, allowing the practical evaluation of thousands of configurations automatically. It also
helps prevent experimental errors or preconceptions in consequence of any human bias with respect to
algorithm behavior (Eggensperger et al., 2019). Tools like irace (López-Ibáñez et al., 2016) require a
very minimal effort to set up an AAC experiment. First, we need to specify the range of values for each
parameter we want irace to configure. We also need to provide a set of training instances and a budget
of maximum runs of the algorithm to tune. Irace then evaluates many configurations automatically by
iteratively sampling new ones, evaluating them over the training dataset, and then refining the sampling
model towards promising configurations generated so far.

To configure our metaheuristic algorithm, we employed irace version 3.4.1 (R 3.4.4), and we used
the same machine we described in Section 5.1. Regarding metaheuristic components, we set three
parameters for controlling the “traditional” BRKGA elements; three parameters for the multi-parent
mating component; three parameters controlling the island model; and four parameters controlling the
implicit path relinking. We consider a total of 13 parameters listed in Table 5. The first column presents
the parameter description, and the second column presents the domain of each parameter. The third
column depicts the range of values we allow irace to evaluate. The last column presents the parameter
setting set by irace as the best configuration found after a budget of 300 runs of our BRKGA-based
algorithm. Additionally, we use the G instance subset as training instances during the AAC experiment.

Some of the parameters required by our algorithm were excluded from the AAC experiment, and we
set them to fixed values. For example, brkga_mp_ipr_cpp supports both direct and permutation implicit
path-relinking, but we fixed our implementation to always the permutation IPR due to the properties
mentioned by Andrade et al. (2021). We also set the minimum distance threshold for IPR runs to zero,
leaving to irace to decide the frequency which IPR should be applied, as well as how many pairs of
individuals to try.

From our computational experiments, we observe the island model helps to cope with the typical issue
diversity loss among the evolutionary process. Using the parameter setting from Table 5, 16% of the elite
sets immigrate from one island to the others periodically after 167 generations, keeping some diversity as



Table 5: Parameters and range of values configured by irace.

Parameter description Type Range of values Best config.

Population size int [500, 1500] 1462
Elite (%) real [0.05, 0.4] 0.30678
Mutant (%) real [0.01, 0.3] 0.07575
# of parents int [2, 6] 5
# of elite parents int [1, 5] 4

Bias function categorical
{constant, cubic,

exponential, linear,
loginverse, quadatic}

constant

Independent populations int [2, 6] 2
Immigrants int [3, 150] 73
Exchange elite frequency int [30, 180] 167

IPR pairs int [1, 100] 95
IPR selection criteria categorical {best, random} random
IPR path (%) to explore real [0.01, 1.0] 0.33754
IPR frequency int [5, 100] 40

the search progresses. Additionally, the implicit path-relinking also improves the diversity by generating
hybrid solution from individual of distinct islands. Typically these intermediate individuals improve the
diversity of both elite sets over the time. Considering the standard deviation metric applied to individuals’
fitness, we observe an increase in the diversity of the elite set each time a new solution is found, mainly
by the mating process, by immigration, and by the IPR, in this order.

The stopping criterion of our genetic algorithm is calculated dynamically, and it is proportional to
the number of patients of each test cases. This way, our algorithm stops the search after achieving |C|2
generations without improvement.

5.4. Comparison with local-search-based method from literature

In this section, we compare our results with those of local-search-based methods from the literature.
As we mention previously, several authors test their methods against the same dataset of Mankowska
et al. (2014), enabling us to compare distinct approaches with our proposal. Despite that, we did not
replicated all the experiments from the literature. Instead, we compare against the results from their
original publications. We then correct the published processing times to our benchmark machine using the
PassMark scores as comparison criteria (PassMark, 2021). Table 6 present these factors for Mankowska
et al. (2014) and Lasfargeas et al. (2019). The first column presents the reference, and the second
column presents the description of the machine used in their experiments. The third column presents the
machine score according to PassMark. The last column presents a speed factor we use to correct their
published processing times. As the table shows, our machine is actually slower than the ones used in
all previous works, so we might expect to run our metaheuristic algorithm faster in their machines than
ours. Furthermore, the source code of both Kummer et al. (2019) and Kummer et al. (2020) are available



online, so we could re-run their experiments in our benchmark machine.

Table 6: Comparison of computational environments. Neither Mankowska et al. (2014) nor Lasfargeas
et al. (2019) specify which machine they use in their experiments. Considering the date of the publications
and the documentation available on the Intel website, we guess that Mankowska et al. use an Intel i3-4130,
and that Lasfargeas et al. use an Intel i7-6700K as their benchmark machines.

Publication Machine description PassMark score Factor

Mankowska et al. (2014) Intel Core at 3.40 GHz 1887 1.0530
Lasfargeas et al. (2019) Intel i7 at 4.00 GHz 2523 1.4080
This work Intel Xeon E5-2697 v2 at 2.70 GHz 1792 1.0000

Table 7 presents the previous results from the literature, together with the results for the BRKGA of this
paper. We solve each instance from Mankowska et al. dataset 20 times, using the numbers between 1 to
20 as seeds. We also rerun the fix-and-optimize matheuristic of Kummer et al. (2019) 20 times, using the
same seeds as to our algorithm. The first column presents the instance name. The second column presents
the new best lower bounds we discussed in Section 5.2. The next two columns present the results from
Mankowska et al. (2014), respectively, the solve times adjusted using the factors we discussed earlier,
and the solution cost reported by the authors. Note that the algorithms proposed by Mankowska et al.
(2014) are all deterministic, so the authors reported results for a single run on each instance. The next four
columns present the results from Lasfargeas et al. (2019): their solve times–also corrected using the speed
factors, the best solution value they produced, and the average and standard deviation of the solution cost.
According to their report, each instance was solved 40 times. The next four columns present the data
as to Lasfargeas et al. (2019), but these columns report the values for the fix-and-optimize matheuristic
proposed by Kummer et al. (2019). Again, the last four columns present these same data, but for the
BRKGA-based algorithm proposed in this work. At the bottom of the table, we present the average solve
time for each approach (Avg time (sec.)), the number of instances which each method produced the best
solution value (# Best), and the number of times which each method produced the best average solution
value (# Best avg). To ease our writing, we refer to Mankowska et al. (2014), Lasfargeas et al. (2019), and
Kummer et al. (2019) by MBB2014, LGS2019, and KBA2019, respectively.



Table 7: Extensive computational results comparing the performance of local search-based method from
the literature, and our proposed BRKGA.

Inst. LB+

MMB2014 LGS2019 KBA2019 BRKGA

Time
(sec) Cost Time

(sec) Best Avg SD Time
(sec) Best Avg SD Time

(sec) Best Avg SD

A1 218.20 2.11 218.20 <1 218.20 224.30 14.60 0.15 218.20 219.19 4.44 0.20 218.20 218.20 0.00
A2 246.63 5.27 246.60 <1 246.60 258.10 31.60 0.15 246.63 246.63 0.00 0.17 246.63 246.63 0.00
A3 305.86 7.37 305.90 <1 305.90 358.80 38.50 0.39 305.86 305.86 0.00 0.16 305.86 305.86 0.00
A4 186.90 8.42 186.90 <1 186.90 196.40 11.10 1.10 186.90 189.25 7.24 0.16 186.90 186.90 0.00
A5 189.54 2.11 189.50 <1 189.50 216.50 36.60 0.19 189.54 194.00 13.73 0.18 189.54 189.55 0.01
A6 200.10 2.11 200.10 <1 200.10 200.10 0.00 0.15 200.10 200.11 0.03 0.15 200.13 200.13 0.01
A7 225.40 1.05 225.40 <1 225.40 232.40 24.20 0.11 225.37 225.37 0.00 0.18 225.37 225.37 0.00
A8 232.05 4.21 232.00 <1 232.00 281.40 47.60 0.16 232.05 232.05 0.00 0.16 232.05 232.05 0.00
A9 222.30 21.06 222.30 <1 222.30 225.40 4.00 2.10 222.30 222.30 0.00 0.20 222.30 223.75 3.57
A10 225.01 1.05 225.00 <1 225.00 225.00 0.00 0.09 225.01 226.55 6.91 0.13 225.01 225.01 0.00

Avg 225.20 5.48 225.19 <1 225.19 241.84 20.82 0.46 225.19 226.13 3.23 0.17 225.20 225.35 0.36

B1 428.10 <1 458.90 74.76 434.10 552.80 93.40 36.17 428.10 434.79 8.06 0.78 428.10 428.53 0.15
B2 476.05 37,908.00 476.20 39.00 476.00 561.30 61.40 10.85 476.05 483.03 17.71 0.87 476.05 476.92 2.34
B3 399.09 37,908.00 399.20 89.41 399.10 527.60 72.50 177.66 399.09 419.51 12.07 0.99 402.80 409.29 4.78
B4 411.30 37,908.00 576.00 94.05 414.00 509.70 74.50 17.48 411.30 439.23 17.23 1.13 422.06 430.46 8.81
B5 366.34 25.76 391.10 19.29 385.60 496.90 98.10 64.06 366.34 390.17 20.30 0.98 369.44 375.15 3.88
B6 405.58 99.09 534.70 61.53 447.80 611.80 129.90 220.15 441.70 516.99 84.59 1.22 470.59 470.70 0.16
B7 328.67 14.81 355.50 86.59 328.70 398.80 64.80 35.97 328.67 334.33 9.72 0.93 328.67 328.67 0.00
B8 357.68 37,908.00 357.80 111.65 359.70 488.70 116.20 30.71 357.68 373.95 16.85 0.70 357.68 359.40 0.66
B9 330.30 37,908.00 403.80 87.44 404.10 483.40 60.30 185.51 402.67 410.59 18.52 0.91 404.11 404.29 0.23
B10 420.99 31.34 500.40 12.25 462.70 616.80 147.70 184.17 462.75 479.48 17.31 0.85 469.58 469.58 0.00

Avg 392.41 21079.00 445.36 67.60 411.18 524.78 91.88 96.27 407.43 428.21 22.24 0.93 412.91 415.30 2.10

C1 459.25 180.13 1123.60 135.45 974.20 1350.40 365.30 1058.09 957.05 1001.48 60.67 3.09 969.11 973.87 3.52
C2 373.94 114.99 673.80 149.81 605.10 685.50 55.60 330.47 582.99 610.95 43.52 2.88 584.18 587.00 3.26
C3 390.48 98.58 642.40 154.60 562.90 698.20 82.70 453.59 558.75 644.42 91.42 2.86 549.63 552.52 3.96
C4 371.99 76.20 580.40 158.26 521.90 630.40 101.80 180.66 507.38 527.13 25.72 2.97 520.13 524.15 2.88
C5 464.97 86.69 754.60 161.78 683.10 822.60 119.30 316.68 667.53 687.64 20.16 3.35 668.65 685.92 13.92
C6 360.73 208.76 951.60 163.19 854.60 1010.60 146.40 989.14 822.85 900.74 82.23 2.92 841.48 846.83 2.40
C7 354.15 82.90 577.40 154.04 529.20 572.50 29.70 351.53 521.89 540.31 10.63 3.37 533.92 541.88 5.94
C8 375.52 60.75 540.60 156.01 471.00 522.80 29.80 115.40 476.66 489.45 10.30 3.46 475.96 478.39 2.84
C9 355.29 98.60 608.70 162.48 551.10 642.70 77.60 346.79 535.87 572.36 29.68 3.44 545.18 558.54 15.13
C10 431.18 75.80 679.30 139.39 608.90 653.00 35.60 341.12 590.26 617.35 26.91 2.73 611.03 614.59 3.74

Avg 393.75 108.34 713.24 153.50 636.20 758.87 104.38 448.35 622.12 659.18 40.12 3.10 629.93 636.37 5.76

D1 492.09 5.27 1321.80 201.34 1278.20 1498.80 199.00 2248.63 1149.70 1202.98 66.99 7.99 1193.21 1215.79 11.11
D2 384.68 4.21 892.70 237.53 746.90 914.30 97.90 1017.40 690.21 761.25 50.31 7.24 679.58 695.99 11.49
D3 380.05 4.21 819.40 218.80 678.60 817.80 80.90 1097.04 643.23 680.90 36.63 8.50 644.16 650.22 3.65
D4 418.94 4.21 877.40 209.09 809.70 1073.10 197.50 1329.47 798.99 828.36 23.85 7.22 795.15 827.28 12.32
D5 415.81 5.27 872.10 211.62 777.00 924.90 120.80 1231.71 688.53 741.15 35.31 7.72 693.83 702.68 3.91
D6 392.08 5.27 835.20 217.68 768.60 886.60 97.40 1011.85 712.15 764.51 31.68 7.91 731.71 743.64 5.97
D7 372.49 6.32 706.30 236.68 600.10 680.40 31.60 1121.08 595.22 619.66 20.47 7.83 586.10 597.25 5.68
D8 409.35 4.21 811.40 210.92 715.50 775.80 31.10 975.76 666.09 712.81 31.97 8.10 658.49 669.83 7.02
D9 385.89 6.32 842.70 219.65 741.00 818.20 46.50 661.42 671.23 726.78 28.43 9.15 689.83 710.32 10.95
D10 485.63 3.16 1306.60 243.72 1424.60 1867.70 258.60 1733.73 1239.79 1329.02 88.15 6.87 1189.32 1280.92 62.72

Avg 413.70 4.84 928.56 220.70 854.02 1025.76 116.13 1242.81 785.51 836.74 41.38 7.85 786.14 809.39 13.48



Table 7: (Continued) Extensive computational results comparing the performance of local search-based
method from the literature, and our proposed BRKGA.

Inst. LB+

MMB2014 LGS2019 KBA2019 BRKGA

Time
(sec) Cost Time

(sec) Best Avg SD Time
(sec) Best Avg SD Time

(sec) Best Avg SD

E1 430.36 17.90 1604.90 – – – – 4201.41 1337.87 1466.10 121.41 17.19 1327.72 1340.36 8.44
E2 444.88 10.53 1101.90 – – – – 3860.38 858.38 924.91 51.62 17.14 829.79 865.05 45.91
E3 454.27 14.74 986.40 – – – – 3246.19 795.72 883.85 43.01 16.70 789.56 806.53 17.56
E4 412.08 20.01 871.00 – – – – 3710.59 732.28 791.98 40.14 14.77 723.87 728.96 3.45
E5 416.62 20.01 1018.00 – – – – 4643.35 791.18 857.18 34.80 17.03 780.04 817.13 34.10
E6 416.60 20.01 1003.00 – – – – 4216.42 831.76 881.96 39.75 18.28 779.82 793.68 8.15
E7 389.57 21.06 921.10 – – – – 3565.23 744.15 813.42 42.63 18.02 705.79 715.46 7.89
E8 433.89 20.01 884.60 – – – – 3889.80 745.18 808.44 30.05 17.20 733.90 750.59 6.90
E9 446.49 18.95 1131.70 – – – – 3575.06 926.38 1011.13 49.52 16.38 893.35 916.56 14.53
E10 455.07 11.58 1053.60 – – – – 4197.26 874.51 931.44 35.06 15.99 822.85 841.57 9.28

Avg 429.98 17.48 1057.62 – – – – 3910.57 863.74 937.04 48.80 16.87 838.67 857.59 15.62

F1 548.88 936.12 1721.40 – – – – 6765.23 2557.06 2681.11 63.85 124.35 1311.10 1351.20 22.09
F2 543.32 957.18 1763.80 – – – – 4389.44 2544.32 2628.75 30.43 121.74 1298.31 1337.41 20.01
F3 547.64 914.00 1549.60 – – – – 5325.04 2433.87 2473.77 16.10 116.49 1215.96 1272.23 56.87
F4 531.84 1391.01 1420.40 – – – – 2650.15 2116.80 2125.39 3.77 135.95 1100.66 1134.66 35.94
F5 538.14 1205.69 1701.90 – – – – 2502.22 2669.68 2697.29 6.50 119.79 1298.55 1331.09 21.10
F6 518.47 880.31 1639.70 – – – – 9663.74 2455.95 2504.51 30.34 109.64 1292.52 1368.41 83.02
F7 512.98 1362.58 1384.30 – – – – 2337.04 2253.09 2253.09 0.00 120.48 1084.57 1125.37 17.55
F8 536.15 972.97 1544.60 – – – – 5802.21 2321.96 2374.64 26.50 107.70 1123.22 1140.42 9.52
F9 543.16 1729.03 1572.90 – – – – 4297.17 2510.01 2529.09 8.81 125.42 1263.19 1344.62 84.05
F10 546.84 1396.28 1581.00 – – – – 2593.33 2686.98 2709.23 7.75 119.55 1383.08 1419.76 15.41

Avg 536.74 1174.52 1587.96 – – – – 4632.56 2454.97 2497.69 19.40 120.11 1237.12 1282.52 36.56

G1 612.37 7581.60 2248.00 – – – – 3569.71 5089.92 5089.92 0.00 439.40 1744.14 1824.34 96.54
G2 605.84 7581.60 2316.10 – – – – 3926.59 10299.50 10299.50 0.00 519.49 1709.70 1799.78 78.71
G3 614.20 7525.79 1885.30 – – – – 3477.90 3152.55 3152.55 0.00 461.61 1464.69 1511.86 50.36
G4 604.30 7581.60 2023.20 – – – – 3858.37 3277.34 3277.34 0.00 529.01 1508.94 1569.01 76.22
G5 633.66 7581.60 2247.60 – – – – 3502.11 3584.11 3584.11 0.00 466.62 1652.88 1681.01 17.35
G6 621.46 7581.60 2144.40 – – – – 3939.74 3498.75 3498.75 0.00 570.54 1681.64 1719.18 52.60
G7 602.42 7301.50 1971.50 – – – – 3573.50 3214.17 3214.17 0.00 522.37 1536.00 1604.96 35.02
G8 618.74 7581.60 1987.40 – – – – 3459.40 3241.68 3241.68 0.00 531.73 1498.38 1535.90 53.54
G9 662.70 7395.22 2415.50 – – – – 3482.24 3673.47 3673.47 0.00 446.57 1850.07 1976.27 111.56
G10 633.76 7374.16 2373.40 – – – – 3436.26 3751.71 3751.71 0.00 482.81 1785.37 1868.56 102.21
Avg 620.94 7508.63 2161.24 – – – – 3622.58 4278.32 4278.32 0.00 497.01 1643.18 1709.09 67.41

Avg time (sec.) 4027.59 147.27 1993.37 92.29
# Best 11 19 33 62

# Best avg – 2 8 70

Observe that not all authors provide solutions to all the instances for the Mankowska et al. (2014)
benchmark dataset. The missing results are marked with a dash. Lasfargeas et al. (2019) argued that
their solution method could not produce results for instances larger than 75 patients unless some of the
problem’s constraints are relaxed. We conjecture that this issue is related to the failure of their initial
solution heuristic to produce feasible solutions. Kummer et al. (2019) justified that instances with 200 and
300 patients cannot be solved with the fix-and-optimize matheuristic due to the memory required to keep
the MIP model. For instances larger than 200 patients, we can expect only the AVNS of Mankowska et al.
(2014) and our BRKGA-MP-IPR to produce feasible solutions, with an advantage for our metaheuristic
algorithm both terms of solution value and processing time.

Mankowska et al. (2014) provided optimal solutions for subset A, and all four approaches achieved
these solutions. In subset B, Lasfargeas et al. (2019) individually produced 4 out of 10 best solutions, and



Kummer et al. (2019) produced the best values for the entire instance subset. Our metaheuristic algorithm
also provides the four best results for this subset. For the instances with 25 patients, our BRKGA is,
on average, the fastest method. It is followed by the VNS from Lasfargeas et al. (2019) and by the
matheuristic from Kummer et al. (2019). Our metaheuristic algorithm produces almost all the best results
for subset D and greater. Additionally, the metaheuristic algorithm of Mankowska et al. (2014) was the
fastest method for solving up to 75 patients, but the solutions produced are the worst among all the
compared methods. For subsets F and G, the largest test cases, the BRKGA outperformed all the others in
both solution quality and runtime.

5.5. Comparison with the standard BRKGA

As we mentioned in Section 4, Kummer et al. (2020) tested a very comparable but more limited version
of our heuristic consisting of a single population variant with the standard two-parent mating with the
explicit setting of bias weight towards the elite parent. Furthermore, their proposed decoder has no extra
components, namely the convex hull strategy and the workload balancing heuristic we proposed in this
paper. Their algorithm also only selects candidate vehicles that strictly improve the cost during the greedy
construction phase of the decoder. Despite these differences, both have so many similarities that it makes
sense to run a dedicated comparison between the two methods.

Table 8 presents results for each instance from Mankowska et al. (2014) dataset (column “Instance”).
Under “KBA2020”, we present the average solve time in seconds, the value of the best solution, and
the average and standard deviation of solution values produced by the algorithm of Kummer et al.
(2020). We run their genetic algorithm 20 times, using the numbers between 1 and 20 as seeds. We
present results for two variations of our BRKGA. The variation “BRKGA (SD)” uses the intensification
components proposed by Andrade et al. (2021) but uses the simpler decoding (SD) algorithm proposed
by Kummer et al. (2020). The variation “BRKGA (FD)” uses the full decoding (FD) scheme described
in Subsection 4.4. For both variations, we report the average number of generations evolved by the
algorithms (Gens (avg)), the average solve times (Time (sec)), the best solution value among the 20
runs of each instance (Best), and the average (Avg) and standard deviation (SD) of solution values per
instance, respectively. At the bottom, we present the average solve time of each method (Avg time (sec)),
the number of instances in which each method produced the best solution value (# Best), and the number
of instances in which each method produced the best average solution value (# Best avg).



Table 8: Comparison of Kummer et al. (2020) genetic algorithm and our proposed BRKGA.

Instance

KBA2020 BRKGA (SD) BRKGA (FD)

Time
(sec) Best Avg SD Gens

(avg)
Time
(sec) Best Avg SD Gens

(avg)
Time
(sec) Best Avg SD

A1 0.77 226.98 226.98 0.00 11.05 0.20 226.98 226.98 0.00 11.25 0.20 218.20 218.20 0.00
A2 0.77 246.63 246.63 0.00 9.00 0.15 246.63 246.63 0.00 10.40 0.17 246.63 246.63 0.00
A3 0.77 305.86 305.86 0.00 9.05 0.18 305.86 305.86 0.00 9.40 0.16 305.86 305.86 0.00
A4 0.75 186.90 186.90 0.00 9.75 0.17 186.90 186.90 0.00 9.75 0.16 186.90 186.90 0.00
A5 0.82 191.97 191.97 0.00 8.45 0.14 191.97 191.98 0.01 10.10 0.18 189.54 189.55 0.01
A6 0.79 200.13 200.13 0.00 8.30 0.12 200.13 200.15 0.01 8.70 0.15 200.13 200.13 0.01
A7 0.73 225.37 225.37 0.00 10.90 0.19 225.37 225.37 0.00 10.65 0.18 225.37 225.37 0.00
A8 0.73 232.05 232.05 0.00 10.05 0.17 232.05 232.05 0.00 10.00 0.16 232.05 232.05 0.00
A9 0.83 234.21 234.21 0.00 10.60 0.17 234.21 234.37 0.70 12.20 0.20 222.30 223.75 3.57
A10 0.73 225.01 225.01 0.00 7.35 0.12 225.01 225.01 0.00 7.55 0.13 225.01 225.01 0.00

Avg 0.77 227.51 227.51 0.00 9.45 0.16 227.51 227.53 0.07 10.00 0.17 225.20 225.35 0.36

B1 2.18 428.10 428.32 0.25 42.65 0.74 428.10 428.97 1.30 42.80 0.78 428.10 428.53 0.15
B2 1.99 483.63 485.31 1.54 47.30 0.82 483.63 484.26 1.04 48.35 0.87 476.05 476.92 2.34
B3 2.23 402.80 402.80 0.00 51.55 0.87 402.80 408.21 4.41 55.05 0.99 402.80 409.29 4.78
B4 2.09 420.29 432.55 3.37 60.00 1.02 432.16 439.93 5.85 62.35 1.13 422.06 430.46 8.81
B5 1.94 372.16 374.65 3.09 51.30 0.89 372.16 378.57 2.45 54.95 0.98 369.44 375.15 3.88
B6 2.29 471.00 471.95 1.43 55.45 0.98 471.17 474.22 1.99 66.40 1.22 470.59 470.70 0.16
B7 2.36 328.67 328.67 0.00 49.00 0.86 328.67 328.71 0.19 51.85 0.93 328.67 328.67 0.00
B8 2.35 359.70 359.70 0.00 34.15 0.59 359.70 359.70 0.00 38.00 0.70 357.68 359.40 0.66
B9 2.49 402.67 404.25 1.06 50.15 0.88 402.67 404.10 0.54 48.65 0.91 404.11 404.29 0.23
B10 2.21 469.58 469.58 0.00 45.15 0.79 469.58 469.58 0.00 46.40 0.85 469.58 469.58 0.00

Avg 2.21 413.86 415.78 1.07 48.67 0.84 415.06 417.63 1.78 51.48 0.93 412.91 415.30 2.10

C1 7.08 965.15 977.56 14.39 129.80 2.96 966.96 972.56 6.03 131.00 3.09 969.11 973.87 3.52
C2 7.39 583.39 590.45 8.53 121.20 2.84 582.22 588.15 3.04 120.20 2.88 584.18 587.00 3.26
C3 7.14 548.79 559.53 6.44 117.30 2.72 553.05 559.33 5.60 121.15 2.86 549.63 552.52 3.96
C4 6.74 519.91 531.91 7.38 112.45 2.57 520.97 528.59 5.25 126.55 2.97 520.13 524.15 2.88
C5 6.01 678.49 698.14 19.54 137.80 3.02 678.49 698.34 14.10 148.90 3.35 668.65 685.92 13.92
C6 6.99 840.69 845.30 4.30 121.90 2.81 842.99 846.66 1.97 123.30 2.92 841.48 846.83 2.40
C7 8.28 534.01 540.42 5.33 133.30 3.17 528.56 537.72 3.14 136.55 3.37 533.92 541.88 5.94
C8 6.82 474.55 479.75 3.60 127.75 2.87 473.82 480.68 2.66 148.60 3.46 475.96 478.39 2.84
C9 8.40 534.30 551.72 9.25 143.60 3.44 536.99 548.04 6.42 139.25 3.44 545.18 558.54 15.13
C10 6.61 611.25 618.83 4.36 115.20 2.63 611.67 617.06 3.36 116.85 2.73 611.03 614.59 3.74

Avg 7.14 629.05 639.36 8.31 126.03 2.90 629.57 637.71 5.16 131.24 3.10 629.93 636.37 5.76

D1 17.67 1186.20 1208.19 13.98 187.25 6.03 1199.65 1206.88 4.90 235.60 7.99 1193.21 1215.79 11.11
D2 14.38 693.28 719.52 15.00 222.25 6.74 695.81 713.60 12.03 231.85 7.24 679.58 695.99 11.49
D3 18.48 635.67 650.29 7.63 211.60 7.14 638.82 644.33 3.07 238.20 8.50 644.16 650.22 3.65
D4 14.46 809.45 840.61 13.72 187.95 5.74 811.33 841.19 10.31 227.25 7.22 795.15 827.28 12.32
D5 17.81 691.50 703.23 12.10 211.90 6.90 692.54 699.64 5.36 228.20 7.72 693.83 702.68 3.91
D6 19.30 733.67 744.99 7.32 195.75 6.75 728.94 743.78 6.16 221.30 7.91 731.71 743.64 5.97
D7 20.51 590.64 603.65 6.42 209.70 7.44 588.73 606.52 14.61 211.50 7.83 586.10 597.25 5.68
D8 18.66 661.78 681.10 12.47 196.65 6.61 660.33 670.59 6.85 230.85 8.10 658.49 669.83 7.02
D9 17.71 704.63 722.09 10.35 238.30 7.78 706.44 719.93 7.67 271.60 9.15 689.83 710.32 10.95
D10 13.37 1208.71 1294.66 66.45 200.80 5.97 1236.76 1289.61 54.11 222.05 6.87 1189.32 1280.92 62.72

Avg 17.23 791.55 816.83 16.54 206.22 6.71 795.94 813.61 12.51 231.84 7.85 786.14 809.39 13.48

E1 33.89 1331.49 1352.33 10.75 277.00 12.91 1317.90 1337.99 13.61 347.55 17.19 1327.72 1340.36 8.44
E2 33.01 848.08 869.45 15.00 327.80 15.08 837.54 857.31 11.91 357.25 17.14 829.79 865.05 45.91
E3 32.17 788.03 815.31 15.16 307.55 13.85 787.94 805.38 10.37 351.10 16.70 789.56 806.53 17.56
E4 34.99 711.19 731.24 11.75 276.55 13.03 713.78 725.05 5.99 292.25 14.77 723.87 728.96 3.45
E5 32.18 781.50 806.81 13.73 319.35 14.51 782.54 799.66 11.26 354.15 17.03 780.04 817.13 34.10
E6 34.38 788.08 803.28 7.86 328.20 15.40 790.51 799.31 6.18 371.35 18.28 779.82 793.68 8.15
E7 37.90 711.11 731.83 9.38 285.95 14.40 712.56 728.04 7.11 343.10 18.02 705.79 715.46 7.89
E8 31.83 748.48 761.06 7.40 284.55 12.80 737.01 762.65 16.46 366.10 17.20 733.90 750.59 6.90
E9 30.96 921.78 950.89 13.90 324.55 14.47 901.83 939.67 17.90 352.20 16.38 893.35 916.56 14.53
E10 33.61 825.24 847.64 14.48 294.65 13.65 822.24 840.13 8.25 327.45 15.99 822.85 841.57 9.28

Avg 33.49 845.50 866.98 11.94 302.62 14.01 840.39 859.52 10.90 346.25 16.87 838.67 857.59 15.62



Table 8: (Continued) Comparison of Kummer et al. (2020) genetic algorithm and our proposed BRKGA.

Instance

KBA2020 BRKGA (SD) BRKGA (FD)

Time
(sec) Best Avg SD Gens

(avg)
Time
(sec) Best Avg SD Gens

(avg)
Time
(sec) Best Avg SD

F1 133.86 1372.69 1421.76 17.34 686.70 91.38 1369.44 1395.91 16.45 886.80 124.35 1311.10 1351.20 22.09
F2 143.70 1336.33 1383.55 23.01 855.10 117.93 1301.28 1347.48 22.79 833.60 121.74 1298.31 1337.41 20.01
F3 137.42 1263.39 1288.66 14.08 668.75 90.42 1230.40 1248.36 10.22 814.70 116.49 1215.96 1272.23 56.87
F4 169.13 1124.24 1145.53 10.23 653.15 103.74 1111.23 1127.86 10.44 811.45 135.95 1100.66 1134.66 35.94
F5 153.59 1316.54 1361.64 20.75 720.25 105.20 1298.00 1323.14 16.49 770.95 119.79 1298.55 1331.09 21.10
F6 128.41 1322.89 1369.38 25.66 755.45 96.41 1307.26 1346.67 38.96 807.15 109.64 1292.52 1368.41 83.02
F7 164.91 1131.27 1163.97 17.53 645.15 99.49 1110.86 1133.37 14.68 736.90 120.48 1084.57 1125.37 17.55
F8 145.91 1132.77 1165.67 16.72 695.65 96.86 1118.15 1139.21 10.36 726.10 107.70 1123.22 1140.42 9.52
F9 155.50 1293.78 1347.78 22.91 657.55 97.43 1264.42 1305.77 21.42 802.15 125.42 1263.19 1344.62 84.05
F10 149.67 1418.53 1446.56 15.68 737.80 105.59 1392.71 1421.59 14.29 787.05 119.55 1383.08 1419.76 15.41

Avg 148.21 1271.24 1309.45 18.39 707.56 100.44 1250.38 1278.94 17.61 797.69 120.11 1237.12 1282.52 36.56

G1 348.03 1778.54 1851.25 32.13 1224.20 413.30 1758.18 1787.46 16.29 1211.20 439.40 1744.14 1824.34 96.54
G2 388.24 1824.74 1899.33 34.71 1404.65 508.39 1708.75 1780.34 28.55 1316.45 519.49 1709.70 1799.78 78.71
G3 340.51 1514.23 1546.44 13.92 1131.70 381.37 1453.53 1485.42 19.77 1294.70 461.61 1464.69 1511.86 50.36
G4 397.61 1564.42 1599.35 23.92 1113.75 417.95 1491.44 1541.94 24.76 1313.95 529.01 1508.94 1569.01 76.22
G5 328.49 1694.50 1750.03 28.07 1092.55 354.84 1630.25 1671.12 23.07 1358.10 466.62 1652.88 1681.01 17.35
G6 420.99 1714.38 1779.29 21.68 1161.00 454.69 1671.76 1704.90 15.71 1353.85 570.54 1681.64 1719.18 52.60
G7 354.21 1640.07 1677.66 22.99 1203.90 411.84 1568.52 1614.15 19.17 1430.45 522.37 1536.00 1604.96 35.02
G8 348.98 1547.63 1582.71 20.05 1244.15 418.63 1499.45 1522.14 15.26 1486.25 531.73 1498.38 1535.90 53.54
G9 357.05 1942.21 1974.16 19.69 1366.90 472.92 1836.61 1895.25 62.12 1190.35 446.57 1850.07 1976.27 111.56
G10 317.27 1872.08 1931.99 25.31 1283.50 403.33 1821.23 1863.12 55.45 1437.50 482.81 1785.37 1868.56 102.21

Avg 360.14 1709.28 1759.22 24.25 1222.63 423.72 1643.97 1686.59 28.02 1339.28 497.01 1643.18 1709.09 67.41

Avg
time (sec) 81.31 78.40 92.29

# Best 22 27 44
# Best avg 13 37 38

The results indicate a mixed performance among BRKGA (SD) and BRKGA (FD). Very few instances
presented better solution via the genetic algorithm of Kummer et al. (2020) (B4, C1, C6, D1, D3, D5, and
E4), although the largest difference was 1.36% between the best solution our algorithm produced to the
test case D3 and KBA2020. Furthermore, we credit this difference to the stopping criteria of the solution
methods. While KBA2020 used a fixed number of generations on their tests, our algorithm calculates its
stopping criterion according to the instance sizes. For instance D1, KBA2020 evolved a solution by 1823
generations, while our BRKGA (FD) achieved, on average, 235.60 generations.

In general, our BRKGA produced the best solution up to 44 out of 70 instances from the Mankowska
et al. (2014) dataset, compared to the best 22 results from Kummer et al. (2020). (# Best at the bottom of
the table). Furthermore, the BRKGA (SD) was the fastest among the three approaches, which indicates
that a clever stopping criterion can leverage short computational times, even in the presence of potentially
expensive components such as the multi-population and the IPR heuristic. Note also that BRKGA (FD)
is, on average, slightly slower than the other two algorithms. This result comes from the larger effort by
BRKGA (FD) to converge the solution, mainly due to the increased number of possible solutions that it
can achieve. This increased effort can be further verified in the average number of generations evolved by
BRKGA (FD) for subset G (1339.28 versus 1222.63 generations by BRKGA (SD)).



5.6. Component analysis for the new genetic algorithm

Although we already verified the superiority of our new BRKGA in producing better solution values to
the HHCRSP, it is still interesting to further analyze by how much each of the additional intensification
components proposed by Andrade et al. (2021) effectively contributes in producing new solution values.
With that in mind, we dissected our algorithm BRKGA (FD) in four variants as follows. Note that we
used the best configuration of irace from Subsection 5.3 among all these four algorithms. Thus some
parameters were just ignored when their relative components were explicit turned off.

• BRKGA-MP (FD). Uses the decoding algorithm from Subsection 4.4, but only the multi-parent mating
component of Andrade et al. (2021);

• BRKGA-MP-MI (FD). Similar to BRKGA-MP (FD), but also uses the multiple islands to evolve
independent populations;

• BRKGA-MP-IPR (FD). Similar to BRKGA-MP (FD), but also uses the implicit path-relinking of
Andrade et al. (2021);

• BRKGA-MP-MI-IPR (FD). Uses all the intensification components proposed by Andrade et al. (2021),
plus the full decoding scheme of Subsection 4.4. This is the same as “BRKGA (FD)” we mention in
Subsections 5.4 and 5.5.

Table 9 lists the extensive computational results for all the four combinations of the intensification
components tested. For each approach, the table indicates the average solve time in seconds (Time (sec)),
the best solution produced per instance (Best), and the average solution value (Avg). We used the same
testing protocol as our other experiments, so we solved each instance 20 times by each approach, using
the numbers 1 to 20 as seeds. At the bottom of the table, we summarize some data regarding the whole
experiment. We present the average solve times in second (Avg time (sec)), the number of instances in
which each approach produced the best solution values (# Best), and the number of times which each
algorithm produced the best average solution values (# Best avg).

Table 9: Results of combined intensification components from the literature.

Instance
BRKGA-MP (FD) BRKGA-MP-MI (FD) BRKGA-MP-IPR (FD) BRKGA-MP-MI-IPR (FD)

Time (sec) Best Avg Time (sec) Best Avg Time (sec) Best Avg Time (sec) Best Avg

A1 0.11 218.20 218.33 0.20 218.20 218.20 0.10 218.20 218.33 0.20 218.20 218.20
A2 0.10 246.63 246.63 0.18 246.63 246.63 0.10 246.63 246.63 0.17 246.63 246.63
A3 0.10 305.86 305.86 0.15 305.86 305.86 0.10 305.86 305.86 0.16 305.86 305.86
A4 0.10 186.90 186.90 0.16 186.90 186.90 0.10 186.90 186.90 0.16 186.90 186.90
A5 0.10 189.54 189.55 0.17 189.54 189.55 0.10 189.54 189.55 0.18 189.54 189.55
A6 0.10 200.13 200.14 0.15 200.13 200.13 0.10 200.13 200.14 0.15 200.13 200.13
A7 0.10 225.37 225.37 0.18 225.37 225.37 0.10 225.37 225.37 0.18 225.37 225.37
A8 0.10 232.05 232.05 0.17 232.05 232.05 0.10 232.05 232.05 0.16 232.05 232.05
A9 0.14 222.30 223.13 0.21 222.30 223.75 0.13 222.30 223.13 0.20 222.30 223.75
A10 0.09 225.01 225.01 0.12 225.01 225.01 0.10 225.01 225.01 0.13 225.01 225.01

Avg 0.10 225.20 225.30 0.17 225.20 225.35 0.10 225.20 225.30 0.17 225.20 225.35



Table 9: (Continued) Results of combined intensification components from the literature.

Instance
BRKGA-MP (FD) BRKGA-MP-MI (FD) BRKGA-MP-IPR (FD) BRKGA-MP-MI-IPR (FD)

Time (sec) Best Avg Time (sec) Best Avg Time (sec) Best Avg Time (sec) Best Avg

B1 0.40 428.10 429.03 0.76 428.10 428.53 0.40 428.10 429.03 0.78 428.10 428.53
B2 0.45 476.05 478.53 0.86 476.05 477.24 0.45 476.05 478.34 0.87 476.05 476.92
B3 0.47 402.80 412.30 0.95 402.80 410.15 0.49 402.80 412.49 0.99 402.80 409.29
B4 0.54 422.06 434.86 1.12 422.06 429.54 0.54 422.06 434.06 1.13 422.06 430.46
B5 0.51 370.49 376.17 0.98 370.49 374.63 0.50 369.44 376.43 0.98 369.44 375.15
B6 0.59 470.59 472.26 1.19 470.59 470.80 0.59 470.59 472.25 1.22 470.59 470.70
B7 0.48 328.67 328.86 0.96 328.67 328.67 0.48 328.67 328.88 0.93 328.67 328.67
B8 0.32 358.69 359.60 0.69 358.69 359.35 0.33 358.69 359.60 0.70 357.68 359.40
B9 0.46 404.11 404.76 0.89 404.11 404.29 0.48 404.11 404.74 0.91 404.11 404.29
B10 0.46 469.58 469.61 0.83 469.58 469.58 0.47 469.58 469.61 0.85 469.58 469.58

Avg 0.47 413.11 416.60 0.92 413.11 415.28 0.47 413.01 416.54 0.93 412.91 415.30

C1 1.45 970.36 980.74 3.24 970.36 972.34 1.42 969.01 980.20 3.09 969.11 973.87
C2 1.48 584.25 589.52 2.83 584.25 587.42 1.49 584.25 589.73 2.88 584.18 587.00
C3 1.48 549.35 554.66 2.90 549.35 552.26 1.46 549.63 555.08 2.86 549.63 552.52
C4 1.46 519.91 527.11 2.96 519.91 524.83 1.54 519.91 526.49 2.97 520.13 524.15
C5 1.60 674.69 705.11 3.09 674.69 688.88 1.61 679.88 703.80 3.35 668.65 685.92
C6 1.44 843.73 851.38 2.72 843.73 847.77 1.53 845.82 851.77 2.92 841.48 846.83
C7 1.66 533.74 544.14 3.49 533.74 539.72 1.69 538.03 544.46 3.37 533.92 541.88
C8 1.69 475.81 478.77 3.42 475.81 478.44 1.63 476.20 480.19 3.46 475.96 478.39
C9 1.91 538.04 558.05 3.33 538.04 562.49 1.75 536.88 561.61 3.44 545.18 558.54
C10 1.41 611.03 617.76 2.77 611.03 615.05 1.50 611.03 617.49 2.73 611.03 614.59

Avg 1.56 630.09 640.72 3.07 630.09 636.92 1.56 631.06 641.08 3.10 629.93 636.37

D1 3.94 1198.16 1218.58 8.18 1198.16 1210.86 3.96 1199.55 1219.44 7.99 1193.21 1215.79
D2 3.34 685.75 705.39 6.96 685.75 697.31 3.66 686.24 709.32 7.24 679.58 695.99
D3 3.87 638.32 652.23 8.03 638.32 650.10 4.07 643.77 651.88 8.50 644.16 650.22
D4 3.55 802.84 834.41 6.62 802.84 829.25 3.39 805.58 836.03 7.22 795.15 827.28
D5 3.76 693.17 708.35 7.34 693.17 702.23 3.70 692.58 707.27 7.72 693.83 702.68
D6 4.04 735.43 748.01 7.87 735.43 743.51 3.85 737.07 749.53 7.91 731.71 743.64
D7 3.83 590.19 602.78 8.42 590.19 596.59 3.76 591.90 604.78 7.83 586.10 597.25
D8 3.94 663.69 677.42 7.53 663.69 670.61 3.93 666.12 681.46 8.10 658.49 669.83
D9 4.56 700.52 720.21 8.83 700.52 715.10 4.25 693.62 722.10 9.15 689.83 710.32
D10 3.45 1231.59 1324.11 6.47 1231.59 1287.24 3.10 1236.28 1330.68 6.87 1189.32 1280.92

Avg 3.83 793.97 819.15 7.62 793.97 810.28 3.76 795.27 821.25 7.85 786.14 809.39

E1 7.54 1336.46 1351.90 16.90 1336.46 1338.61 8.58 1330.70 1348.62 17.19 1327.72 1340.36
E2 8.92 818.69 853.75 18.22 818.69 853.93 8.66 833.48 866.48 17.14 829.79 865.05
E3 8.55 784.89 808.47 18.08 784.89 803.01 8.28 793.33 815.41 16.70 789.56 806.53
E4 7.11 719.89 729.39 13.71 719.89 729.28 7.51 713.59 728.82 14.77 723.87 728.96
E5 8.83 787.01 810.93 17.26 787.01 799.44 8.95 781.20 809.80 17.03 780.04 817.13
E6 8.66 784.54 800.74 17.67 784.54 800.21 9.02 786.32 802.22 18.28 779.82 793.68
E7 8.10 706.81 725.04 16.28 706.81 716.00 8.73 704.42 720.59 18.02 705.79 715.46
E8 7.94 737.83 750.62 14.25 737.83 751.94 7.73 746.26 755.86 17.20 733.90 750.59
E9 8.27 907.58 937.97 16.42 907.58 921.63 9.53 916.17 935.03 16.38 893.35 916.56
E10 7.77 824.25 845.67 15.28 824.25 843.52 8.12 831.13 846.80 15.99 822.85 841.57

Avg 8.17 840.80 861.45 16.40 840.80 855.76 8.51 843.66 862.97 16.87 838.67 857.59

F1 56.36 1333.99 1367.22 121.40 1333.99 1357.88 63.80 1331.25 1372.64 124.35 1311.10 1351.20
F2 55.02 1323.80 1345.16 117.58 1323.80 1337.45 67.65 1308.09 1352.35 121.74 1298.31 1337.41
F3 54.04 1226.14 1260.75 113.02 1226.14 1252.67 61.93 1227.43 1258.71 116.49 1215.96 1272.23
F4 57.77 1108.51 1131.85 131.34 1108.51 1129.72 68.72 1094.77 1133.73 135.95 1100.66 1134.66
F5 53.86 1314.89 1343.67 121.37 1314.89 1332.29 60.71 1326.11 1345.59 119.79 1298.55 1331.09
F6 48.34 1311.24 1348.44 102.82 1311.24 1356.85 51.12 1310.66 1366.06 109.64 1292.52 1368.41
F7 54.66 1110.95 1137.43 113.36 1110.95 1133.37 65.54 1104.15 1134.54 120.48 1084.57 1125.37
F8 46.82 1127.27 1148.04 95.26 1127.27 1140.94 55.61 1120.09 1150.68 107.70 1123.22 1140.42
F9 55.43 1279.43 1315.39 120.59 1279.43 1313.67 66.08 1293.61 1320.42 125.42 1263.19 1344.62
F10 51.70 1374.92 1429.27 102.23 1374.92 1425.94 60.60 1386.55 1424.99 119.55 1383.08 1419.76

Avg 53.40 1251.11 1282.72 113.89 1251.11 1278.08 62.17 1250.27 1285.97 120.11 1237.12 1282.52



Table 9: (Continued) Results of combined intensification components from the literature.

Instance
BRKGA-MP (FD) BRKGA-MP-MI (FD) BRKGA-MP-IPR (FD) BRKGA-MP-MI-IPR (FD)

Time (sec) Best Avg Time (sec) Best Avg Time (sec) Best Avg Time (sec) Best Avg

G1 215.48 1759.49 1797.37 465.45 1759.49 1771.01 265.46 1760.69 1813.14 439.40 1744.14 1824.34
G2 250.01 1736.98 1787.91 499.88 1736.98 1773.96 319.97 1738.21 1799.39 519.49 1709.70 1799.78
G3 189.77 1480.51 1510.20 457.79 1480.51 1487.32 253.78 1474.21 1510.04 461.61 1464.69 1511.86
G4 221.62 1513.00 1553.84 496.57 1513.00 1548.89 321.27 1511.15 1549.92 529.01 1508.94 1569.01
G5 199.71 1671.42 1701.86 423.41 1671.42 1680.65 252.90 1658.72 1710.80 466.62 1652.88 1681.01
G6 224.13 1700.53 1728.20 501.02 1700.53 1716.80 308.38 1698.21 1738.29 570.54 1681.64 1719.18
G7 207.47 1584.82 1612.97 451.29 1584.82 1591.85 302.10 1591.10 1606.23 522.37 1536.00 1604.96
G8 206.47 1515.08 1548.83 431.53 1515.08 1530.88 291.82 1508.53 1538.69 531.73 1498.38 1535.90
G9 258.00 1844.29 1890.54 552.71 1844.29 1883.73 272.46 1862.58 1943.51 446.57 1850.07 1976.27
G10 214.86 1828.34 1865.95 469.80 1828.34 1850.58 263.73 1790.54 1892.33 482.81 1785.37 1868.56

Avg 218.75 1663.45 1699.77 474.94 1663.45 1683.57 285.18 1659.39 1710.23 497.01 1643.18 1709.09

Avg
time (sec) 40.89 88.15 51.68 92.29

# Best 28 28 28 54
# Best avg 14 41 11 38

The first thing to notice is that we can sort the algorithms by their average solve times. The BRKGA-
MP (FD) was the fastest approach, requiring on average 218.75 seconds to finish on the largest test
cases with 300 patients (subset G). This algorithm is 60.7% faster compared to KBA2020 (c.f. Table 8).
BRKGA-MP-IPR was the next fastest algorithm, which indicates a relatively small overhead associated
with the IPR heuristic, even though the configuration used with the algorithms triggered the IPR quite
frequently, between a large number of guide and base solutions (c.f. Subsection 5.3). It is easy to see that
multi-population is the most expensive feature within all four intensification components. Compared to
BRKGA-MP (FD), the BRKGA-MP-MI (FD) consumed 2.17 more time to finish, mostly because this
algorithm had to evolve two isolated populations in parallel; thus, we expect an increase in algorithm
runtime by a factor of two, plus some overhead due to the immigration process.

All the three algorithms discussed so far have similar performance, producing the best solution values
for 28 out of 70 instances of the Mankowska et al. (2014) dataset–although the best solution by each
algorithm refers to distinct instances. Compared to the other algorithms, the slowest yet best-performing
BRKGA-MP-MI-IPR (FD) produced the best solutions to 54 out of 70 test cases, which is almost twice
the number of best solutions provided by any other algorithm. We can credit its best performance to the
IPR heuristic, which seems to perform much better in the presence of the multi-population component;
thus, it allows the heuristic to trigger the implicit path-relinking between elite individuals from distinct
islands. Again, it also has similar solve times to BRKGA-MP-MI (FD), mainly due to the additional
overhead of evolving two isolated populations. Both BRKGA-MP-MI (FD) and BRKGA-MP-MI-IPR
(FD) have a similar performance regarding # Best avg, but the first algorithm showed a better performance
in producing the best average solution values for the subset G, which indicates better stability of results for
BRKGA-MP-MI (FD). We think this can be related to the IPR because it is an intensification mechanism
that could cause an early loss in population diversity, especially in larger test cases. Still, this would
require additional testing and probably new AAC experiments to produce a tailed configuration for each
of the four combinations of the intensification components.

As we have a substantial number of experiments, we applied a pairwise Wilcoxon signed-rank test
to identify which of the proposed variations of our metaheuristic algorithm are statistically different.
According to Figure 5, almost all pairs of algorithm variations behave differently, with two notable



exceptions. First, the statistical test identified no difference between BRKGA-MP (FD) and BRKGA-
MP-IPR (FD), which indicates that the IPR heuristic has a negligible impact in such a variant without the
multiple populations. Secondly, the test indicated no statistical difference between BRKGA (FD) and
BRKGA-MP-MI (FD). The statistical test used a confidence level o 5%, and the Bonferroni correction
was applied. Roughly speaking, a Wilcoxon test works by comparing the distribution of the solution
values by each algorithm, so counting which method produces most of the best solutions per instance
has no importance. Nevertheless, the BRKGA (FD) variant still produced the largest number of "best
solution" over all the studied variations, as presented in Table 9.

> with(AllResults, pairwise.wilcox.test(x=cost, g=algorithm, p.adj="bonf", paired=T))

Pairwise comparisons using Wilcoxon signed rank test

data: cost and algorithm

BRKGA (FD) BRKGA (SD) BRKGA-MP (FD) BRKGA-MP-IPR (FD) BRKGA-MP-MI (FD)
BRKGA (SD) 1.8e-06 - - - -
BRKGA-MP (FD) < 2e-16 2.9e-08 - - -
BRKGA-MP-IPR (FD) < 2e-16 2.1e-06 1 - -
BRKGA-MP-MI (FD) 1 1.4e-07 < 2e-16 < 2e-16 -
KBA2020 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16

Fig. 5: Output of pairwise Wilcoxon signed rank test for paired samples.

6. Conclusion

In this paper, we propose a new multi-population multi-parent biased random-key genetic algorithm
for solving the daily home health care problem. This problem consists of a vehicle routing problem
with time-windows, in which the vehicles represent skilled caregivers, and the nodes represent patients
requiring one or more service types. To enable such attendance, a matching of skilled caregivers to
patient service type requests is required. Additional route inter-dependency constraints are imposed
for patients requiring more than one service type. Our implementation, and the benchmark dataset are
publicly available at https://github.com/afkummer/brkga-mp-ipr-hhcrsp-2021. This repository
also contains additional logfiles regarding our automatic parameter configuration experiment, as well as
supplementary material regarding our experiments.

We present a heuristic-powered decoder for the problem, and we use a state-of-art tool to perform the
automatic parameter configuration of our proposed metaheuristic algorithm. We use a benchmark dataset
from the literature to both configure and benchmark our algorithm. We run an extensive experiment where
we compare our algorithm with previously proposed methods. With respect to previous local search-based
methods, we consistently find improvements up to 26.1% from previously published results. Compared to
the similar work of Kummer et al. (2020), our algorithm finds improvements from around 0.4% up to

https://github.com/afkummer/brkga-mp-ipr-hhcrsp-2021


6.36% in the largest test cases.
There are a few possible directions for improvement of our algorithms. We would like to improve

the heuristic decoder further improve its capability of exploring the problem’s solution space. We also
plan to run a more in-depth study of the benchmark dataset characteristics to automatically provide
more accurate parameter settings for the metaheuristic through a combined algorithm configuration
and selection framework. We are currently in contact with a manager that coordinates a pilot project to
implement this type of service in a large Brazilian city. Our goal is to adapt our solution technique to
solve a real problem the manager currently deals with every week. As a result of the longer planning
period, we also target re-planning the problem due to uncertainties.
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