Reasoning about Actions and Planning with Preferences
Using Prioritized Default Theory

Tran Cao Son and Enrico Pontelli
Knowledge Representation, Logic, and Advanced Programming Laboratory
Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA
{tson,epontell }@cs.nmsu.edu

October 14, 2003

Abstract

This paper shows how action theories, expressed in an extended version of the language
B, can be naturally encoded usiRgioritized Default Theory We also show how prioritized
default theory can be extended to express preferences betuleanThis extension provides
a natural framework to introduce different types of preferences in action thegore$erences
between actionandpreferences between final statés particular, we demonstrate how these
preferences can be expressed within extended prioritized default theory. We also discuss how
this framework can be implemented in terms of answer set programming.

1 Introduction

One of the central aspects in formalizing commonsense reasoning is represented by reasoning
aboutactionsand theireffects(Reasoning about Action and Change (RA®esearch in RAC

has mostly focused on developifigrmalismsfor representing and reasoning about actions and
their effects. Dynamic domains can be conveniently described using specialized languages—e.g.,
situation calculus [22], event calculus [14], STRIPS [7], and action description languages [26, 10].
In these languages, a dynamic domain is represented astian theory where effects of actions

are encoded as sets of propositions. The semantics of an action theory is defined by an entailment
relation that determines what will be true/false after an action sequence is executed starting from a
given initial state.

For several years, thieame problem[22], the ramification problem[12], and thequalification
problem[21] have been at the center of RAC’s research. Intuitively, the frame problem is the
problem of concisely describing thn-effectof actions, i.e., to express whdbes not change
after an action is executed. The ramification problem is concerned with the representataicof
domain constraintgor the relationship between fluents). The qualification problem is concerned

1

with actions that may not be executable in a certain situation. To date, solutions to these problems
have been discussed in several RAC’s approaches, such as the situation calculus [30], high-level
action description languages [10, 20], and event calculus [31].

The strong connection between RAC and default reasoning has been discussed in [16], where it is
shown that the law of inertia can be viewed as a default. As such, it is natural to think that any
logical framework for default reasoning could be a suitable framework to support RAC as well.
Indeed, this is the approach explored in [36] where Reiter’'s default logic [29] is used.

Despite the strong connection between RAC and default reasoning, it is interesting to observe that
several important problems in default reasoning—such as the problem of preferring a conclusion
over others in presence of conflicts—do not seem to arise in RAC. Can we attribute it to the fact
that action theories are often assumed to be consistent and there is only one default (the law of
inertia) which will be overridden whenever conflicts arise? To a certain extent, this is true in the
context of RAC, where the focus has been limited to predicting the effects of actions or action
sequences. On the other hand, this is not the capéaiming with preferencefr constraints),

where the goal is find a trajectory that achieves a predefined goal and at the same time satisfies
certain preferences.

Current approaches to RAC provide the ability to construct trajectories achieving a predefined goal.
Nevertheless, in many situations, it is desirable to find one among several possible trajectories that
satisfies certain constraints. For example, when developing strategies to obtain a loan to purchase
a house, a user may have preferences towards local lenders, at parity of conditions. These prefer-
ences can be viewed asft constraint®on a trajectory or a plan, that may or may not be satisfied
depending on the particular situation. In the context of planning, this could be also viewed as an
indication of the plan quality [23] or plan with optimal utility [13].

In this paper we show th&rioritized Default Theory11] provides a natural framework for repre-
senting and reasoning about actions and their effects. We show that by viewing dynamic and static
causal laws asules and the inertial law aslefaults action theories can be elegantly translated
into semantically equivalent prioritized default theoriéBhe novel encoding proposed in this pa-

per provides an elegant and concise way to describe actions and their effects, along with effective
solutions to the frame, ramification, and qualification problems.

We also explore ways to allow the action language to encode different typsgiié preferences

and use them to guide the developmenprdferredplans. The preferences allow the user to ex-
press a bias towards certain types of trajectories to achieve the given goal—i.e., certain trajectories
will be preferredto others. In this work we explore alternative forms of preferences at the level of
the action language:

1. Preferences betweeawmtions—i.e., the ability to define an order of preference between ac-
tions to be used in developing a plan; e.g.,

prefertake a limo to drive the car

2. Preferences betwedimal states—although all final states reached by valid trajectories are
guaranteed to satisfy the required goal, the user may be interested in suggesting additional
criteria to choose final states; e.g.,

1In this work we concentrate on the action langu#gé0].

2

prefer to have more thafil0,000 left at the end of the trip.

We demonstrate how these different forms of preferences can be elegantly encoded within a gen-
eralized prioritized default theory framework, where preferences between rules and formulae can
be enforced in the process of proving consequences. The advantage of this new formalism is that
it provides a convenient way to incorporate different forms of preferences in the process of repre-

senting and reasoning about trajectories (or plans in deterministic action theories).

Finding a preferred trajectory that achieves a certain goal is not new in planning. Approaches
to planning have tried to address this issue by using a utility function [13] or developing specific
algorithms for planning in the presence of preferences [23]. The key idea in using a utility function
is that it will allow us to find the trajectories with minimal (maximal) cost. This approach is very
general. The main disadvantage of this approach is that coming up with a good utility function is
not easy in many cases.

To the best of our knowledge, the only work addressing this issue in the context of logic program-
ming based approaches to planning is from [6] and in an early version of this work [35]. In [6],
each action is assigned a cost and the minimal cost plan is searched. In contrary, we emphasize
the use of prioritized default theory in expressing the preferences between actions and formulae.
Since domain-dependent knowledge could be viewed as preferences on trajectories, an early work
by one of the authors [34] could also be viewed as an attempt to add different forms of preferences
to answer set planning. In this paper, we emphasize on allowing users to specify their preferences.

The paper is organized as follows. Section 2 describes the syntax and semantics of the action
languageB? used in this work—the language is a novel extension of the langBagih non-

inertial fluents. Section 3 provides a brief overview of prioritized default theories. Section 4
describes our proposed translation from the action languifge prioritized default theories.

Section 5 describes how preferences can be expressed, encoded, and used to guide the process o
computing trajectories. Section 6 demonstrates how trajectories can be effectively computed using
an answer set solver, suchsa@oDELS Finally, Section 7 provides some concluding remarks.

2 The Action Language3?

In this section, we present the basic action language that we will employ to encode action theories.
The language, calle?, is an extension of the the langualjg10], with the addition of default
knowledge abouton-inertial fluents

2.1 Syntax

B¢ is alanguage schema that allows the development of specific action description languages; each
specific action description language includes

e a non-empty set of symbols, calledfluent names

e a non-empty set of symbols, calledaction names

Fluents are used to descripeoperties whose value depends on the current state of the world.
The set of fluent nameE is partitioned in two subset®, = F; U Fy, with Fi N Fx = (0. The
fluents inF; are callednertial fluents while those irF'y are callechon-inertial fluentsintuitively,
non-inertial fluents encode properties that are exempt from the commonsense laws of inertia.

2.2 Formulae and Action Descriptions

A fluent literal is a fluent name, possibly preceded by A fluent formulais a propositional
combination of fluent literals.

There are four type of propositions Bf:

e Dynamic Causal Law:
a causes f if pi,...,p, Q)

wherea is an action namex(€ A), f is a fluent literal, ang, . . ., p,, are fluent literals.

e Static Causal Law:

foif p,.. ., pm (2)
wheref is an inertial fluent literal angd,, . . ., p,,, are fluent literals.
e Executability Conditions:
a executableif pq,...,p, (3)

wherea is an action name and, . . ., p,, are fluent literals.

e Default Knowledge:
g by_default 4)

whereg is a non-inertial fluent literal—i.e., a fluent literal constructed using a flfien'y .

The dynamic law (1) represents the (conditional) effect of actiam the fluent literalf, while

the causal law (2) states a causal relationship between the fluent lifeaaldp;, ..., p,,. The
proposition (3) represents the conditions under which the aatian be executed. Propositions

of the form (4) represent our default knowledge about non-inertial fluents—by asserting what is
the default value for the fluemnt

A domain descriptiorfor domair) is a set of propositions of the forms (1)-(4), with the additional
restrictions:

e for eachf € Fy;, exactly one of the following propositions is present in the domain descrip-
tion:

f by_default - f by_default

2Observe that thi part of rule (1) is used to condition the outcome of the action, not to determine the executability
of the action, as in rule (3).

e non-inertial fluents are changed only by direct effects of actions, i.e., non-inertial fluents
cannot occur on the left hand side of static causal laws.

Axiomsin B¢ are propositions of the form
initially f (5)

wheref is a fluent literal. This axiom states that the fluent litefas true in the initial state of the
world. Finally, aqueryin B¢ is of the form

o after o (6)

wherey is a fluent formula and: is a sequence of actions. Intuitively, the query asks whether the
fluent formulay is true in all the states resulting from the execution of the action sequefioen
the initial state?

An action theoryis a pair(D,T"), whereD is a domain description aridis a collection of propo-
sitions of type (5) (thenitial state).

2.3 An Example

The next example illustrates the use of the langudfj¢o describe a simple dynamic domain.
Consider the problem of finding ways to exit a building. The building has two exits, a front door
and a back door. Both doors require a key to open them; the key for the front door is available
only from the janitor, while all employees have a key to the back door. Opening the back door will
cause an alarm to go off (as long as the door is open) and the police will be automatically notified.
Furthermore, the back door has a spring system that will automatically close it when released.

2.3.1 Fluents and Actions

The domain description makes use of the fluents:

at(X) the person is at location X
opendoor(Y) the doorY is open

haveKey(Y) the person has the key to the daor
inside the person is inside the building
alarm the alarm is sounding
police_alerted the police has been notified

In the fluent schemas abov&, represents a possible location (i.effice frontdoor, backdooj
while Y indicates one of the doors (i.e., eitHemtdooror backdoo). In particular, all the fluents,
except for theopendoor(backdoor), belong toF, while the fluentopendoor(backdoor) is non-
inertial.

3We could also generalize the discussion and allow this query to be posed w.r.t. an arbitrary state.

The set of action namea includes the following elements:

goto(X) the person moves to location
open(Y) the person opens the dobr
cross(Y) the person crosses the dobr

getKey(backdoor) get key for the back door from the janitor

In this context,X represents a possible location (i.érontdoor, backdoor, or office), while Y
represents one of the doorg-pnitdoor or backdoor).
2.3.2 Domain Description

The domain description includes the following set of dynamic causal laws, describing the effect of
the actions:

goto(X) causes at(X)

open(Y) causes opendoor(Y) if at(Y)
cross(Y) causes —inside if inside,at(Y)
cross(Y) causes inside if —inside,at(Y)

get Key(backdoor) causes haveK ey(backdoor)

The actions have some preconditions that have to be met in order to allow their execution:

goto(office executableif inside
open(Y) executableif haveKey(Y)
cross(Y) executableif at(Y'), opendoor(Y)

get Key(backdoor) executableif true

As mentioned earlier, the backdoor has a spring system that will force it to close immediately after
it has been opened. This is modeled as a non-inertial fluent with a default value expressing the fact
that the door is closed:

—opendoor(backdoor) by_default

The causal relationship between fluents is described through a set of static caual laws

—at(X) if at(Y),X#Y
alarm if open(backdoor)
police_notified if open(backdoor)
—alarm if —open(backdoor)
—at(of fice) if —inside

inside if at(of fice)

“Notice that the effects of some static causal laws can also be described using dynamic laws. For example,
goto(X) causesat(X) andgoto(X) causesat(Y) for Y # X. Deciding whether to use dynamic law or static
law to represent certain knowledge of the domain is a challenging task that deserves a careful investigation and is
outside the scope of this paper.

2.4 Semantics

The semantics of a domain descriptibnin B¢ is defined by a correspondirigansition function

® 5. For the sake of readability, we will omi? from & , whenever the domain description is clear
from the context. The transition function is aimed at describing the possible states of the world
(®p(a, s)) an agent might be in after she/he executes the aatiarthe states. When®p(a, s) is

the empty set, then this means that the acti@not executable in.

2.4.1 States

Let D be a domain description i?. An interpretation/ of the fluents inD is a maximal con-
sistent set of fluent literals frorfA. A fluent f is said to be true (respectively false)inff f € I
(respectively—f € I). The truth value of a fluent formula ih is defined recursively over the
propositional connectives in the usual way. For example, give two fluent formpuéael), the
fluent formulap A v is true inI iff ¢ is true inI and is true in/. We say that a formula holds
in I (or I satisfiesp), denoted byl |~ ¢, if pistrue in/.

Let U be a consistent set of fluent literals andAébe a set of static causal laws. We say fttias
closed undelx if, for every static causal law

fifp17"'7pn

in K, whenevefp,...,p,} C U we have thaf € U. By Clx(U) we denote the least consistent
set of fluent literals front’ that containd/ and is closed undex.

A states of D is an interpretation of the fluents Fthat is closed under the set of static causal
laws belonging td). An actiona is executablen a states if there exists a proposition

a executableif fi,..., f,
in D such thats = f1 A ... A f,. If the executability condition
a executableif true

belongs taD, thena is executable in every state of.

2.4.2 The Transition Function

Theimmediate effect of an actionia states is the set
E(a,s)={f]| |acausesfif fi,....fa]l €D, sEfiAN...Nfn}
Additionally, given a domain descriptiaR, let us introduce the set
Def(D)={f | |[fbydefault |e D }

For a domain descriptioP, ¢, (a, s) identifies the set of states that may be reached by executing
a in s; this is defined as follows: ii is executable i, then

dp(a,s) ={s | sisastateand = Clp.(E(a,s)U(sNs'N(FTUF7))U(Def(D)\E(a,s)))}

7

where D¢ is the set of static causal laws imandF; = {~f | f € Fr}. If ais not executable in

s, then®p(a, s) =). For each domain descriptidd in B¢, the transition functio®, is unique.
SinceClp,(X) could be empty, it is possible thét(a, s) = () even wheru is executable irs.

When this happens, we say thats inconsistent This situation is not particularly realistic, as the
execution of an action in the states should result in another state whenewdas executable in

s. In other words, this anomaly is an indication of a possible mistake in the domain description.
As out interest in this paper is to use action theories in planning and not the study of RAC per se,
we limit ourselves on domains without this problem. In other words, we will assume that domain
descriptions in this paper acensistenti.e., domain descriptions in whichy, (a, s) # 0 for every
actiona and states, if a is executable ir3.

With a slight abuse of notation, we will also extend the transition function to operatequences
of actions Given a sequence of actioas- - - a,, (n > 0)

[{s} ifn=0
(I)D(al fin- S) a { Us/€<I>D(a1---an—1,s) (I)D(am 5,) otherwise

Given a domainD with transition®,, a sequenceqa;s; . .. a,s,, Wheres;’s are states and,’s
are actions, is calledtaajectoryin D if

sit1 € ®play1,s;) foreveryi, 0 <i<n-—1.

A trajectoryspa; sy - . . a,s, IS a trajectory of a fluent formula if s, = A.
An action theory(D, I') is consistent ifD is consistent and

so={f| [initially f]eT}

is a state ofD. s is called thenitial stateof (D,).

An action theory(D,I") is completeif, for each fluentf, we have that eithef initially f] or

[initially —f] belongs tol'. In this paper we opt to focus on complete action theories; the
issues arising from incompleteness (e.g., sensing actions [33] and conformant planning [32]) are
orthogonal to the scope of this work.

Finally, given an action theoryD, T") whose initial state is,, a fluent formulap, and an action
sequencer = ay, . . ., a,, We say that the query after « is entailed by(D, T"), denoted by

(D,T) E ¢ after «

if for every possible trajectorypa; s; . . . a,s,, ¢ holds ins,, (s, =). In what follows, we will
consider only consistent and complete action theories.

Example 1 Let D, be the domain description in Example 2.3 dhde the initial state containing
the following propositions:

initially at(office)
initially ~ —at(frontdoor)
initially ~ —at(backdoor)
initially ~ —open(frontdoor)
initially ~ —open(backdoor)
initially ~ —police_noti fied
initially ~ —alarm
initially have K ey(backdoor)
initially ~ —haveKey(frontdoor)
initially inside
The initial states, in this action theory is
at(office), mat(frontdoor), ~at(backdoor),
have K ey(backdoor), ~have K ey(frontdoor), inside,

—police_noti fied, ~alarm, ~open(frontdoor),
—open(backdoor)

So —

The actiongoto(backdoor) is executable irg,. We can easily check that

s € ®(goto(backdoor), sy) = s | at(backdoor)

This implies that D,, ") |= at(backdoor) after goto(backdoor). If we consider also the actions
opendoor(backdoor) andcross(backdoor) then we can obtain

(Dy, I') = —inside after goto(backdoor), opendoor(backdoor), cross(backdoor).

3 Perioritized Default Theory

Prioritized default theory has been discussed in [11]. In this paper we decided to rely on prioritized
default theory because of two major reasons. First of all, its syntax is simple and intuitive. Further-
more, the semantics of prioritized default theory is defined in terms of logic programs and answer
set semantics [8]. Not only this avoids the creation of an ad-hoc semantics, but this also allows
us to reuse existing inference systems developed for answer set semantissA@rE L sanddlv

[25, 4]) to compute the entailment relation of prioritized default theory. In this paper we begin
with the theory proposed by Gelfond and Son in [11]. We then extend it to deal with preferences
between rules.

A prioritized default theory consists of facts, defaults, rules, and preferences between defaults.
Rules and defaults are used to derive new conclusions. Nevertheless, the use of rules and defaults
is different. A rule is used to derive a conclusion whenever all its premises are satisfied. On
the other hand, a default can be used to derive a conclusion as long as such conclusion does not

introduce inconsistencies into the theory—even if all its premises are satisfied. Formally, a default
theory over a multi-sorted logic languaggor adomain) is a set of literals of the form

rule(r, lo, [l1, ..., lm)) (7)

default(d, ly, [l1,. .., ln]) (8)

prefer(dy,ds) (9)

wherer is a rule named, d,, d, are default names,, ..., [,, are literals of the languagé, and
[] is the list operator. For convenience, we will refer to the atoms of the form (7), (8), and (9) as

rules, defaults, and preferences, respectively. For arfuket body(r) denote the lisfly, ... 1,,]

and lethead(r) denote the literal,. Similar notation will be used for defaults. We assume that
default names and rule names belong to two disjoint sets. The semantics of a defaulf/tih®ory
defined by the answer set semantics of a logic program [8], consistiiigaofl the following set

of domain independent axioms:

e Rules for Inference:

holds(L) <« rule(R, L, Body), hold(Body). (20)
holds(L) <« default(D, L, Body), hold(Body), (11)
not de feated(D).
hold([]) — (12)
hold([H|T]) <« holds(H),hold(T). (13)
e Rules for Defeating Defaults:
defeated(D) <« default(D, L, Body), (24)
holds(Ly), contrary(L, Ly).
defeated(D) <« default(D, L, Body), (15)

de fault(Dy, L1, Body,),
prefer(Dy, D),
hold(Bodyy),

not de feated(Dy).

wherecontrary determines the opposite of a literal (e.gmtrary(A,—A) holds for any
atomA).

This collection of axioms, denoted I3, is different from the original one presented in [11]:

1. we do not distinguish betweéiwlds andholds_by_de fault, since our goal is to use priori-
tized default theories in reasoning about actions; in this context it is not interesting to know
whether a fluent is made true by an action or by inertia

2. inrule (15) we do not requir® and D, to be conflicting defaults.

SThere are other approaches in reasoning about actions that do emphasize this point but we are not interested in
this distinction at this point in time.

10

4 Action Theories as Prioritized Default Theories

We will show now that each action theory can be elegantly represented by a prioritized default
theory. The language for representing an action thébryl") in prioritized default theory consists

of atoms of the formyf («) andpossible(a, o), wheref is a fluent literala is an action, and. is a
sequence of actions. For convenience, we oftenaist® denote the length of and«; to denote

the prefix of length of . « C [denotes the fact that is a prefix of/3. o is the concatenation
operator between action sequences. The translation of an action tHedry into a prioritized
theoryIl(D,T") is performed as follows.

e For each dynamic law
a causesf if py,...,pn

in D, II(D, I") contains the set of rules
rule(dynamic(f,a,), f(Boa),[pi(B),...,pn(B), possible(a, 3)]) (16)
where(is an arbitrary action sequence.
e For each executability condition
a executableif ¢, ..., ¢n
in D, II(D, I") contains the set of rules
rule(executable(a, 3), possible(a, 3)), [q1(B), - -, qm(B)]) a7
where/ is an arbitrary action sequence.

e For each static causal law
fifpla"'upm
in D, II(D, I') contains the set of rules

rule(causal(f,a,), f(Boa),[pi(Boa),...,p.(0oa),possible(a,)]) (18)
where/ is an arbitrary action sequence ants an action.

e For each default law
g by_default

in D, II(D, I') contains the set of defaults

de fault(def(g,a,3), (B o a), [possible(a, 3)]) (19)
where/ is an arbitrary action sequence ang an arbitrary action.

e The inertial axiom is represented by the set of defaults

de fault(inertial(f,a, 3), f(B o a),[f(3), possible(a, 3)]) (20)

wheref is an inertial fluent literalg is an action, and is an arbitrary sequence of actions.

11

e Finally, the set of axioms of the form (5) is represented by the set of facts

holds(f([])). (21)
Notation: Let R, denote the set of rules of the form (16)-(20) whérea C «. Let R* denote
RF=|J R,
|| <k

LetI1¢(D,T") denote the program consisting of the rules the set of rules (10)-(15), and the set
of facts (21). For each integérand for each action theofyD, I'), let

m*(D,T) = |J m*(D,T).

|a| <k

Example 2 Let us consider the following simple action theory with actier@db and fluentsf
and g whereg is non-inertial:

b causes f if true
a causes -f if g

a executableif f
b executableif true

g by _default
initially =f
initially g

For every action sequengg Rz, consists of the following rules:

rule(executable(a, 3), possible(a, 3), [f(5)])
rule(dynamic(=f, 0,), ~f(3 o a), [9(8), possible(a, B))
default(def(g,a,3),9(0 o a), [possible(a, 3)])

de fault(inertial(f,a, B), f(B o a),[f(B), possible(a, 3)])

de fault(inertial(=f, a, 3), ~f(5 o a), [~ f(B), possible(a, ()]).

The set of rulesis., is similar to R ., and consists of the following rules and defaults:

rule(executable(b, 3), possible(b, 3), [])
rule(dynamic(f,b,3), f(5 ob), [possible(b, 3)])

de fault(de (g, b, 5),9(6 o b), [possible(b, §))

de fault(inertial (f,b, 3), f(B o b), [f(5), possible(b, 3)])

de fault(inertial(=f, b, 3), ~f(5 o b), [~ f(B), possible(b, 5)])

and the set of rules of the form (21) consists of the following facts:

holds(=/([]))
holds(g({]))-

12

We next discuss the properties of the progiahiD, I'). We will show that the action theories in
B¢ and their prioritized default theories are semantically equivalent.

Theorem 1 For every consistent and complete action theoBy, I'), the programIl*(D,T) is
consistent.

Proof. See Appendix A.
Given a progranil, let us denote witltki¢(I1) the set of literals ofl. The following result holds:

Theorem 2 Let(D,T") be a consistent and complete action theory artte a sequence of actions
with |a| < k. Then,

e If M is an answer set ofl*(D,T') then M* = M n [it(I1*(D,T)) is an answer set of
1*(D,T).

o If M« is an answer set ofl*(D, I') then there exists an answer gdtof [1*(D, I') such that
M* = M N Lit(I1*(D,TI)).

Proof. See Appendix A.

In the next two theorems, we prove the correctnesd’dfD, I'). In particular, we prove that the
semantics provided by the prioritized default theory coincides with the semantics of the action
theory. LetM be an answer set ¢f*(D,T") anda be a sequence of actions with| < k. Let us
define

s(a, M) = {f | holds(f(«)) € M}.
We begin with the soundnessdf (D, T).

Theorem 3 Let(D, T") be a consistent and complete action theddybe an answer set &f* (D, I),
« be a sequence of actions with| < k, and a be an action such that(«, M) # () and
s(awoa, M) # (. Then,

s(eoa, M) € ®(a,s(a, M)).

Proof. See Appendix A.
The next theorem proves the completenessdfD, I').

Theorem 4 Let(D,T") be a consistent and complete action theory and s; . . . axs be a trajec-
tory of (D, T'). Then, there exists an answer 3étof [1*(D, T') such thats; = s(«;, M), i > 0.

Proof. See Appendix A.

It is easy to see that each answer set of the prodidam, I") corresponds to an evolution tree
whose paths are possible trajectories of the domain specified by the action tfhedry The
multiplicity of answer sets is due to the fact that an action theory with static causal laws may be
non-deterministic. The size of the evolution tree encoded is exponential in the maximal length of
the trajectories encoded in the tree (for a set afctions and for a maximal trajectory length

the size isD(k™)). In practice, we are typically interested in generating only one of such branches
that meet some desired requirements (e.g., satisfy a given set of preferences). When the action
theory is deterministic, there is only one possible evolution tree of the domain. As such, we have
the following corollary.

Corollary 1 For a consistent, complete, antkterministicaction theory(D, I')—i.e.,®(a, s) has
at most one element for each actieand states—the progranil(D,I") has a unique answer set.

13

5 Planning with Preferences usindI(D, ')

It follows from Theorems 3 and 4 that trajectories achieving a forrdulzan be computed using
II(D,T"). Given an answer séff of IT1(D, T"), if s(a, M) satisfiesA, thena is a trajectory achieving
A. Since an answer set & D, I") can contain other trajectories that do not achi@yeve propose

to introduce additional rules ifi(D, I"), with the purpose of extracting the trajectories achieving
A from an answer set. For simplicitylet us assume thal is a conjunction of fluent literals, i.e.,
A= fi A... A f,. Inthis case, the set of rules

rule(goal, goal(B), [f1(B), ..., [2(B)]), (22)
is added td1(D,I'), where(is a sequence of actions. We call the new progtay, I', A). For
an answer set/ of II(D, I, A) and a sequence of actiofis= ay, ..., a, let

tr(ﬁ, M) = soals(ﬁl, M)a2 e S(ﬁk,h M)aks(ﬁ, M)

where; is the prefix of length of 3. The next corollary follows immediately from Theorems 3
and 4.

Corollary 2 Let (D, I') be a consistent and complete action theakybe a conjunction of fluent
literals, and M be an answer set dfl(D,I", A). Then, for every action sequengeif goal () €
M, thentr (5, M) is a trajectory achieving\.

The significance of this corollary is that it allows us to single out trajectorieaftyom other tra-

jectories in an answer set. Each trajectoryAois a possible plan to achieve it. In many situations,

it is desirable to find one, among several possible trajectories, that satisfies certain constraints. For
exampleride a busandtake a taxiare two alternatives to go to the airport. An agent might choose

to take the bus because he does not like taxi drivers. But he is willing to take the taxi if the bus
does not run. Here, the agent has a preference between the actions he can execute and he would
like to choose the trajectory that suits him best.

We will refer to these user-defined biases towards certain trajectormef@sences between tra-
jectories We will show next howlI(D,T', A) can be modified to deal with two different types of
preferences between trajectories—i.e., preferences between actions and preferences between final
states. In the process, we extend the prioritized default theory for representing the preferences
between rules.

5.1 Preferences Between Rules

Whenever we express the fact that we do not prefer arfulee mean that we do not want to use

r. This does not necessarily mean thatannot be applied, but it simply means that i€an be

replaced, then we prefer to do so. For this reason, we use literals of the form
block(r,[l1,...,ln]) (23)

6Similar encoding can be provided for an arbitrary fluent formula.

14

in the prioritized default theory to describe conditions under which arrsleould not be used. In
particular, literals of this type can be used to represent preferences between the rules. For example,

block(ry, body(rs))

can be used to express the fact that we prefer tousestead of-,—i.e., if the body of the rule,
is satisfied, we block the use of the rule

To implement the new type of rules in prioritized default theory, we replace rule (10) with the
following rule:

holds(L) <« rule(R, L, Body), hold(Body), not blocked(R). (24)
and add the next rule to the set of independent ril@call thatP consists of the rules (10)-(15)):
blocked(R) <« block(R, Body), hold(Body). (25)

This is used to block the application of the rute By P’ we denote the set of rules (10)-(15) and
(24)-(25). Observe that blocking a rule is different than defeating a default; a rule can be blocked
only at the explicit will of the domain specifier, while a default can be defeated if its application
introduces inconsistencies. Next, we show how this extension to prioritized default theories can be
used to express preferences between actions and preferences between final states.

For a prioritized default theory’, let b/(7T") denote the set of literals of the forbdock(.) in T
The next theorem shows that if there is no preference between rules, the new set of rules behaves
exactly as the old one.

Theorem 5 For a prioritized default theory” with b/(T)) = (), T U P andT U P’ are equivalent.

Proof. Let Q be the set of rules of type (25). It is easy to see that(if’) = () thenT U P’ is
equivalent tal’ U P \ Q. Splitting the program (see Appendix B) with the set of liter&l®f the
form blocked(.) yields the empty program as the top ahd P as the evaluation af UP®\ @ with
respect td), X'). The splitting theorem implies that each answer sét of P° \ @ (and hence, of
T U PP is an answer set &f U P and vice versa. d.

The next lemma, useful in proving properties of programs with preferences between actions and
formulae, relates the applicability of a rule in an answer set with the set of preferences over the
rules.

Lemma 1 LetT be a prioritized default theory. Letle(r, [, body) be a rule inT" such that does
not occur in the head of any other rule or defaultfin Then, for every answer sgf of 7' U P, if
blocked(r) € M thenholds(l) ¢ M.

Proof. SinceM is an answer set of U P® andblocked(r) € M, there exists no rule i U P°
whose head isolds(l) and whose body is satisfied By. This implies thatiolds(l) ¢ M. O

15

5.2 Preferences between Actions

As we have discussed earlier, an agent might prefer an action over some others for several reasons.
We assume that we have an irreflexive partial order between agpiayg;r-(a, b), to represent the
preferences between actions. Intuitively, this means that aatisrpreferred to actiom and we

would like to consider all the trajectories containimgn the place ob before considering those
containingb. More precisely:

Definition 1 (Preferred Trajectory) A trajectorya = spais; ..., a,s, IS said to bepreferredto
a trajectory 5 = sobis) ..., bys,, with respect to a set of action preferencesef, denoted by
« "<Pref 61 if

1. there exists an integér1 < i < min(n, m), such thaprefer(a;, b;) € Pref, and
2. for everyintegef, 1 < j < i, prefer(b;,a;) & Pref.

Definition 2 (Most Preferred Trajectory) A trajectorya = sgpai$; ... a,s, is said to be amost
preferredtrajectory with respect to a set of preferendese f if there exists no trajectory such
thatﬁ =<Pref Q.

Remark 1 <p,.s is an antisymmetric, transitive, and irreflexive relation.

Example 3 Let us revisit the example of Section 2.3. If an employee wants to leave the building
he will typically prefer to approach the front entrance (to avoid triggering the alarm):

Pref = {prefer(goto(frontdoor), goto(backdoor))}

Similarly, if a thief is in the building and he knows that the backdoor has an alarm, he will clearly
want to avoid opening it:

Pref = {prefer(X, open(backdoor)) : X € A N X # open(backdoor)}.

We will now show how the preferences over actions can be enforced in the extended framework of
prioritized default theories. Given an action the¢fy, I'), a goalA, and a set of preferences over
actionsPref, we add toll(D, ", A) the rules that block the execution lofvhenever: (an action
preferred td) can be used. More precisely,

e For each preferenge-efer(a,b) in Pref, and for each pair of sequences of actianand
B such that: occurs ina anda g o a T o: the set of rules of the form

block(executable(b, 3), [goal(c)]) (26)
belongs tdl(D, T, A).

The next theorem shows that adding (26)Y1@D, I', A) will eliminate non-preferred trajectories
from its conclusions.

16

Theorem 6 Let (D, I") be a consistent and complete action theakybe a conjunction of fluent
literals, and Pref be a set of action preferences. For every action sequendell(D,T', A) &
goal(7y), then for every answer sét/ of II(D, I, A) we have thatr(v, M) is a most preferred
trajectory achievingA.

Proof. TI(D,T", A) = goal(y) implies thatgoal() belongs to every answer setGf D, I", A).
Since)M is an answer set di(D,T", A), by Corollary 2 we have that = tr(v, M) is a trajectory
achievingA. It remains to be shown that is indeed a most preferred trajectory. Let us assume
that there exists a trajectosysuch thaty <p,.; 7/, i.€., there exists an actiann « and and action
bin ' such thaprefer(a,b) € Pref.

From Theorem 3, we know that there exists an answehBeif [1(D, ', A) such thatyoal(«) €

M'. This means that/’ satisfies the body of rules of the form (26). Hence, every rule or default,
whose body contaipossible(b, d), whered o b C -, is not applicable in\/’. It follows from
Lemma 1 thayoal(y) ¢ M’; this contradicts the fact thgbal(y) € M. O

The following corollary follows from the above theorem and Corollary 1.

Corollary 3 Let (D, I') be a consistent, complete, and deterministic action thetrpe a con-
junction of fluent literals, and/ be the answer set éf(D, ", A) with a set of preferenceBref.
For every action sequengg if goal(y) € M thentr(vy, M) is a most preferred trajectory achiev-
ing A.

Example 4 Consider an action theoryD, T"), whereD consists of the propositions

join causes f if g,h
b causes g if true
c causes h if true
dir ~ causes f if —g

join executableif true
b executableif true
c executableif true
dir executableif true

g by_default

while the initial statel” contains:

initially —g

initially —f

initially —h
Let us assume that the goal we desire to achievg i®ifferent trajectories lead to the desired
goal, e.g.,

S0 S1 52 S3

a={=f,7g,~h} c{=f h,~g} b {=f h.g} join {f h,—g}

B ={~f,~g,~h} dir {f,~g,~h}

S0 S4

17

Let us introduce the preferences
Pref = {prefer(dir,b),prefer(dir,c)}

which leads to
B = 8o dir 54 <pref S0 € 51082 join sz = a.

This preference will lead to the introduction of the facts

block(executable(b, 3), [f(a)])
block(executable(c, B), [f(a)])

for each sequence of actiopsand for each such thatyg o dir £ o. For example, the facts

block(executable(b, []), [f(dir)])
block(executable(c, []), [f(dir)])

will prevent the execution éfandc when the goal is reachable Iy from the initial situation.

The next example presents a situation in which a preferred trajectory is not a conclusion of the
programIl(D, T, A).

Example 5 Let (D, T") be an action theory, where the set of fluents containg, h, !} and the
set of actions is equal t¢a, b, c}. The action theoryD contains the dynamic causal law and
executability condition:

causes f if —f
causes [if f.g
causes l if f,h

executableif —f, —g, —h
executableif f, g
executableif f, h

O T Q O O Q9

and the static causal laws:
gif f,=h
hif f,—g

The initial statel is defined by the propositions:
initially —f
initially —g
initially —h
initially —/

We would like to havé\ = . It is easy to see that

a={=f,7g,~h,=l} a {f.g.~h,~l} b{f g,~h 1}

S0 S1 52

18

and
B=A{~f,—g,~h,=l} a {f,h,—g,~l} c {f, h,—g,1}

50 M M

are two possible trajectories that achieve the goal Assume that we preférto ¢, i.e., Pref =
{prefer(b,c)}. Obviouslya <p,.r 3.

It is easy to see that for every answer sefl¢D, I", A), if it containsgoal(y) thena must be the
first action ofy. Thus, there exists one answer selloD, I', A), say My, in whichs| = s(a, My).
Obviously, the only action that is executable in this state @nd thereforegoal(3) € M, and
goal(a) € My, i.e,II(D, T, A) = goal ().

Observe that the encoding of action preferences in prioritized default theory offers scope for a
number of generalizations. For example, the same scheme allows us to enodd@nal action
preferenceswhere the preference between actions is considered only if a given set of conditions is
satisfied. We can extend the syntax of action preferences as follows:

p?"efer(a, b) if di;---,qm

whereqy, ..., q, IS a conjunction of fluent literals. The encoding in prioritized default theory is
straightforward: for each

prefer(a,b)if q1,... . qm
we add the set of block rules of the form

block(executable(b, 8), [goal(a), q1(B), - ., gm(B)])

wherea occurs ino andayg o a C a.

5.3 Preferences between Formulae

The second type of preferences that we consider consists of preferences between formulae. Unlike
preferences between actions, this type of preference is often a soft constraint or a secondary goal
that an agent has in mind when selecting a trajectory for his goal. Consider for example the agent
that is trying to exit the building, described in Section 2.3. He might prefer to exit through the
front door since this will avoid alerting the policejfolice_alerted). Here, the primary goal of the

agent is to leave the building-(inside), and his soft constraint is to avoid alerting the police. The
trivial choice would be to go to the front door. Going to the back door should be used as the last
resource. This type of preference can be added to an action theory by introducing preferences of
the form

Y1 =< P2 (27)

wherep; andy, are fluent formulae. Given a set of fluent formul@ee f expressing final state
preferences, we assume th&ef, <) is a total order—i.e., the set of preference formulae can be
written as

Y1 = P2 < =Pk

19

This condition is acceptable in a variety of situations—indeed, many proposals in the literature
dealing with preferences in logic programming, e.g., [3, 5], extend partial orders to total orders,
and use such total orders in computing the preferred answers. We will explore in future works
how to deal directly with partial orders. In addition, we require that for daghi < k& — 1 the
following holds:

©i = 7Pt N N TP

The Definitions 1 and 2—preferred trajectories and most preferred trajectories—can be extended
to the case of preferences between formulae as follows.

Definition 3 (Final State Preferred Trajectory) A trajectorya = sga;s; ..., a,s, IS said to be
preferredo a trajectorys = sobi 5] . . ., by, s, With respect to a set of preferences between formu-
lae Pref if

1. there exist®; < ¢, € Pref such thats,, = ¢, ands], = ¢, (denoted byy <, -, /),
and

2. foreveryp, < ¢y € Pref, B Api<p, Q.
We will denote the fact that is preferred tog w.r.t. Pref with the notatiomy <p,.s 3.

Definition 4 (Final State Most Preferred Trajectory) A trajectorya = sga;s; ... a,s, is said
to be amost preferredrajectory with respect to a set of preferences between formblag’ if
there exists no trajectory such that3 <p,.; a.

Remark 2 The relation<p,.; between trajectories is a partial order.

To encode this type of preferences, we addl{@, I') a set of rules to block the execution of an
action leading ta», as long as; is satisfied by other trajectories. We assume that, for each action

a, for each goal formula\, and for each formula,, we can compute a formulg, .., such that if

a is executed in a state satisfyigg ,, thenA A ¢, holds in the successor state. There are well-
known regression technigues that have been proposed in the literature to determine such formulae
(see e.g. [30]). In that case, we will block the executior:of there exists another trajectory
satisfyingy,. For each preference; < - in P, we will add tolI(D, T", A) the following set of

rules

block(executable(a.), [goal(8), £1(8); Gaips (7)) (28)

where~ and are sequences of actions. Additionally, we addItd, ", A) rules for reasoning
aboutg, .., which are similar to (22). With a slight abuse of notation, welié®,I', A) to denote
the program with rules of the form (26) and (28) when formulae preferences are present.

Example 6 Consider the action theor§yD, I') where D contains the propositions

causes f if g
causes g if —g
causes f if —h

executableif true
executableif true
executableif true

if g

>0 S O QR

20

andI' contains o
initially —f
initially —g
initially —h

The goal isf and we are assuming the presence of a preference
Pref = {—-h < h}.

It is easy to see that = socs; wheres; = {f,—h,—g} is a most preferred trajectorys =
sobsas, is another trajectory achieving but we have thatr <p,.; 3.

One of the facts generated to handle this preference is

block(executable(a,), [f(3), ~h(B), Par()])

for sequences of actions 5. For example, for

y=10
0b=c

we will obtain
block(executable(a,b),[f(c), =h(c), g(b)])

since executing actiomin a state satisfying will lead to a state that satisfies both the go#) és
well as the right-hand side of the preferenég.(This prevents the execution®offterb, i.e., this
will eliminate the trajectorys from answer sets di(D, ", A).

It is instructive to see that the action sequenrgcee., the trajectoryn is not removed from any
answer sets dfi (D, I", A). Assume the contrary, i.e., we have an answeisetith goal(c) ¢ M.
This can happen only if the rule of the form (28) (for the actipn

block(executable(c, []), [f(5), =h(5), den(]])])

has its body satisfied hy/. Since the execution ofin any state will not change the value/ofwe
have that. ;, = h. Thisimplies that([]) € M, i.e.,his true in the initial state — a contradiction,
which implies thayoal(c) belongs to every answer setldfD, I, A).

The following theorem is similar to Theorem 6.

Theorem 7 Let (D, I") be a consistent and complete action theakybe a conjunction of fluent
literals, and Pref be a set of preference between formulae. For each non-empty action sequence
g, if II(D,I", A) = goal(B) then for every answer séf of I1(D,I", A) we have thatr (5, M) is

a most preferred trajectory achievinly.

Proof. II(D, 3, A) = goal(3) implies thatgoal(/3) belongs to every answer setGf D, 3, A).
Since M is an answer set dfl(D, ", A), by Corollary 2 we have that-(3, M) is a trajectory
achievingA. It remains to be shown that = ¢r(3, M) is indeed a most preferred trajectory.
Assume the contraryy <, <., 3 for some preference; < ¢,. From Theorem 3, we know
that there exists an answer st of I1(D, ', A) such thatgoal(a) € M'. Leto' = tr(a, M).

21

Becausey <, .., ', we have that; (o) € M'. Sincef is a non-empty action sequence, there
exists an actiom and an action sequengesuch thats = v o a. It follows from the construction
of M', ¢q4,(y) € M'. This means that the body of the rule (28) is satisfiedMdy Thus,
holds(possible(a,~y)) ¢ M' (Lemma 1); this contradicts the fact thatul(3) € M'. O

The above theorem shows thatjifal(3) is contained in every answer setléfD, ', A) thenj

is a most preferred trajectory with respectifoef. Due to the presence of distinct answer sets,
it is possible to find a trajectory such thatgoal(+y) belongs to some but not all answer sets of
II(D, T, A). In this case, we cannot guarantee thét a most preferred trajectory. This is shown
in the next example.

Example 7 Consider again the planning problef, T", A) in Example 5. Recall that the two
trajectories
a={=f g, —h,~l} a {f.g,=h, =1} b {f g,~N,1}

S0 S1 52

and
ﬂ - {_‘fa g, _‘h? _‘l} a {f> h7 -9, _'l} ¢ {f> h7 -9, l}
50 s 55
both achieve the godl Consider the set of preferenc€sef = {—-h < =g A h}. Again, we have
thata <p,.s 5. Similar argument as in Example 5 shows thaD, I', A) has an answer set which
containsgoal(3) and does not contaifioal ().

The following corollary is similar to Corollary 3.

Corollary 4 Let (D,I') be a consistent, complete, and deterministic action thetrpe a con-
junction of fluent literals, and/ be an answer set ¢f(D, I, A) with a set of preferences between
formulae Pref where< is a total order. For every action sequenge if goal(y) € M then
tr(y, M) is a most preferred trajectory achieviny.

Example 8 Let us consider the example of section 2.3. The person trying to exit the building may
prefer to use the key for the backdoor than asking the janitor for another key:

haveKey(backdoor) < haveK ey(frontdoor)

As another example, it may be likely that the person wants to leave the building without alerting
the police
—police_alerted < police_alerted

Similarly to what discussed in the case of action preferences, we can extend the notation used for
formulae preferences to encode conditional preferences. The notation we suggest is:
¥1 <902 ifpla--'vpn

whereyp,, @, are preferences between fluent formulae gnd. . , p,, are fluent literals. Intuitively,

the preference states that we are interested in considering this particular preference only if the final
state satisfies the literals, . . . , p,. The modification to the encoding in prioritized default theory

is the following:

block(executable(a,v), [goal(3), ¢1(5), ba.ps(V), P1(B), - pn(B)])-

22

6 Computing the Entailment Relation = Using SMODELS

The prograni1*(D,T') can be implemented using a solver for answer set programming; in particu-
lar, in this work we experimented our ideas using$ivDELS[25] system. To make this possible,

we need to introduce a collection of predicates to overcome the limitations of the input language,;
in particular,sMmoDELSs does not support the list operator and requires finite domains and domain
predicates to perform grounding. An automated translator to cohiféib, I') to a SMODELS
program has been devised and can be founevat/.cs.nmsu.edu/lldap/Preferences

Below, we describe the translation and prove its correctness. Appendix C presents an example of
a translation using the scheme described in this section.

6.1 Encodingll*(D,T") as aSMODELSProgram

In this section, we will present the encodingIéf(D,T") as asMODELS program, denoted by
SM*(D,T). Inthe next section, we will show ho#*(D, T") can be used in finding trajectories
and preferred trajectories usisyoDELS. Sincell*(D,T) consists of two parts, the set of rules
Rk = Ujai<x 2o @nd the set of rules (10)-(15), we divide the translation in two parts. The first part
deals with the default theory?) while the second part deals with the rules (10)-(IE) (@, T") \

RF).

6.1.1 smoDELSEncoding For R*

Observe that we can divide literals in the language underl¥#hglenoted byC, into three types:
(A.i) f(v) wheref is a fluent andy is a sequence of actions;

(A.ii) possible(a,~) wherea is an action and is a sequence of actions;

(Auii)) dynamic(f,a,), causal(f,a,v), executable(a,), def(f,a,~), andinertial(f,a,y) —
which are names for rules and defaults in the prioritized default theories.

Similarly, every list occurring idl(D, ") contains only literals of the types (A.i)-(A.ii) and is of
the following form:

(L) [p1(7),-..,pm(7)] Wherep,’s are fluent literals and is a sequence of actions;

(L.ii) [p1(7),- -, pm(7), possible(a,~y)] wherep;’s are fluent literalsa is an action, andy is a
sequence of actions; or

(L.iii)) [pi(yoa),...,pm(7y 0 a),possible(a,~)] wherep;’s are fluent literalsq is an action, and
is a sequence of actions.

It is worth noticing that each list ilR* can be divided into two parts. The first part consists of
literals of the form (A.i) and the second part is either empty (for (L.i)) or consists of a single
element of the form (A.ii). Furthermore, if = [l;,...,[,] is a list of literals of the form (A.i)
obtained through this splitting théfis have the same sequence of actions as their last parameter.
The language underlying the prioritized default theory of the progsaift(D,T'), denoted by
L£5M | is defined as follows.

23

e Foreach c £ of the types (A.i)-(A.iii),£™ containd*, which is obtained fronhby replac-
ing v with |v|; for instance.f(a o b) becomesf(2), possible(a, []) becomeossible(a,0),
etc.

e For each listy in £, £5 contains a new and distinguished atep)(m) where (i)|y| is the
list of fluent literals occurring iny; and (ii) m is the length of the sequence of actions that
appears as the last parameter in literals of the form (A.i) belongingftor example:

— the list[f(a), g(a)] is associated with the atom);, (1), whereny;, is a new and dis-
tinguished predicate name that does not appear in the langljage

— thelist[f(aoc), g(aoc), possible(b, a o c)] is associated with the atonj; . (2), and
— the list[f(a o ¢), g(a o ¢), possible(c, a)] is associated with the aton;, (2).

Intuitively, the integer associated to each literall6f! denotes a time stamp on a linear time line.
For example f(2) represents the fact thdtis true at the time moment 2ossible(a, 3) says that

it is possible to execute the actiarat the time momerg. As such, whileR* that represents a tree

of possible trajectories whose length is at mgsi* — the sMoDELS encoding ofR* — only
represents a possible trajectory. Given a trajectgtys; ... a,s,, the definition of a trajectory
says that; must be executable is;,_;. For this reason, we will drop literals of the form (A.ii)
from the lists occurring in rules d&* and give them a special treatment. We will introduce literals
of the fromocc(a, i) wherea is an action and is an integer to indicate thatoccurs at the time
moment; and introduce a constraint stating that an action can occur only if it is executable. The
translation is done as follows.

e For each atom of the form (16), the following rule belonggy), :
rule(dynamic(f,a,m), f(m +1),n(m)) < occ(a, m) (29)

wherem = |3| andn(m) is the atom associated to the list of atoms of the from (A.i)
occurring in (16).

e For each atom of the form (17), the following atom belong#&#p:
rule(executable(a, m), possible(a, m), n(m)) (30)
wherem = || andn(m) is the atom associated to the list occurring in (17).
e For each atom of the form (18), the following atom belong&#p:
rule(causal(f,a,m), f(m+1),n(m+ 1)) < occ(a, m) (31)

wherem = |3| andn(m) is the atom associated to the list of atoms of the from (A.i)
occurring in (18).

e For each atom of the form (19), the following atom belong&4p:
default(def(f,a,m), f(m + 1), true) < occ(a, m) (32)
wherem = |3 andn(m) is the atom associated to the list of atoms of the from (A.i)

occurring in (19).

24

e For each atom of the form (20), the following atom belong&{p:
de fault(inertial(f,a,m), f(m + 1),n(m)) < occ(a, m) (33)

wherem = |3 andn(m) is the atom associated to the list of atoms of the from (A.i)
occurring in (20).

e For each atom of the form (21), the atom
holds(f(0)) (34)
belongs toRkk .

Finally, for every actior:, we add the constraint

— occ(a, T),not holds(possible(a,T)) (35)
to R% and for each atomy, ;. representing the list;, ..., /,], we add rules of the following
form

hold(ny, ...1,)(T)) < holds(l,(T)), ..., holds(l,,(T')). (36)
to R* , whereT is the time variable.

sm?

Notice the difference betwee® andR% . For an action theoryD,T'), R* represents a possible
history while R* represents an evolution tree. As such, the siz&8%f is rather small comparing
to that of R*.

Example 9 The dynamic causal law
opendoor(backdoor) causesopen(backdoor) if at(backdoor)
is encoded as the logic programming rule:

rule(dynamic(open(backdoor), opendoor(backdoor), T'), open(backdoor, T + 1), Njas(backdoor) (T'))
— occ(opendoor(backdoor), T), time(T).

for values ofl” which are legal plan lengths (the predicatene is used to limitI’ to acceptable
values). In addition, the rule fakold will be specialized:

hold(njat(backdoor) (1)) < time(T'), holds(at(backdoor,T'))
and the constraint
— occ(opendoor(backdoor), T'), not holds(possible(opendoor(backdoor),T))

is added to thesmODELSencoding.

6.1.2 smoDELSEncoding For I1*(D,T') \ R*

SincesmMoDELSsdoes not allow the list operator and the rule (36) effectively replaces the two rules
(12)-(13), the only thing we need to do in encodifi§(D,T") \ R* is to remove the two rules
(12)-(13) fromP. Other rules do not change. Thus, the progiaii* (D, ") consists ofR* ~and

the rules (10)-(11) and (14)-(15).

25

6.1.3 Property of SM*(D,T)

We now discuss a property 6f\/*(D,T'). As we have pointed out earlier, in encodifi§(D, T"),

we replace a sequence of actions with its length. As such each answerSkt“¢D, I') cor-
responds to only one trajectory of the action theory while each answer 8t afrresponds to

a possible evolution tree. We will now show that this difference will be eliminated when we fix
the trajectory in both programs. LéD,I") be a complete and consistent action theory, and let
a =ay,...,a; be asequence of actions. Lt (D, I") be the program consisting of

e the rules (10)-(15), and

o the set of rules?,,.

The next theorem relates the progrétt(D, ') andSM*(D,T).

Theorem 8 Let (D, I') be a consistent and complete action theory ane a4, ..., a; be a se-
guence of actions. Then,

1. if M is an answer set aP®(D, T'), thenSM*(D,T) U {occ(a;,i —1) | i=1,...,k} has an
answer sefl/’ with the property that

M |= holds(f(ay o---o0a;))ifand only if M' = holds(f(i))

2. if M is an answer set of M*(D,T') U {occ(a;,i — 1) | i = 1,...,k} then there exists an
answer set\/’ of P*(D,T") such that

M = holds(f(i)) if and only if M’ |= holds(f(aj 0 - -0 a;)).

Proof. See Appendix A. O

6.2 Finding a Trajectory Using SM*(D,T')

The discussion in the previous section shows fhat“(D, T') can be used to compute the entail-
ment relation of(D, T"). In this section, we discuss the uses¥/*(D, T') in finding a trajectory
seaq . .. aysy, that satisfies the following properties:
1. sx = A for some given fluent formuld—this means that the trajectory is a possible plan
to accomplish the goal,;
2. the trajectoryga; . . . aps, satisfies some soft constraints that are expressed as preferences
between actions or between fluent formulae.

6.2.1 Finding A Trajectory for A

Let A be a conjunction of fluent literal§ A ... A f.”. We are interested in finding a trajectory
soay . .. apsg for A. As it is customary in answer set planning, we addfa*(D,T') the set of

"Fluent formula can be dealt with as in [34].

26

rules to generate action occurrences and to represent the goal. This set of rules consists of:

— not goal(k). (37)
goal(T) «— time(T), holds(f1(T)),...,holds(fr(T)). (38)
H{occ(A,T) : action(A)}1 «— time(T), T < k. (39)

In addition, we add the set of factaction(a) | a € A} to SM*(D,T') which specifies the domain

of actions needed for the grounding of rules (39). Intuitively, rule (38) is used to express under
what conditions the goal can be considered to be satisfied atftiniRule (37) is an answer set
constraint [25] used to reject answer sets that do not satisfy the goal at tilRale (39) makes

use of amsMODELSchoice ruleto ensure that, at each tirig the answer set includes exactly one
fact of the formocc(A, T), where A is an action name. LefMP*(D T, A) be the program
consisting of the rules o M/*(D,T") and the set of rules (37)-(39), in which the time variable
takes values from to k. The next theorem relates trajectories satisfying the go@ answer sets

of SMPlank(D T A).

Theorem 9 For a consistent and complete action the¢fy, I'),

1. if spay . .. apsy is atrajectory forA thenSM Pk (D T, A) has an answer set/ such that
(@) occ(a;,i — 1) € M for every integet, 1 < i < k, and
(0) si = {f [holds(f(i)) € M},

2. if SMPlank (D T, A) has an answer sét/ such that
(@) occ(a;,i — 1) € M for every integet, 1 < i < k, and
(0) si = {f [holds(f(i)) € M}

thenspa, . .. a;sy is a trajectory forA.

Proof. See Appendix A. O

6.2.2 Finding a Preferred A Trajectory: Action Preferences

Let us now encode the preferences between actions as ruded 6f* (D, T', A). For simplicity,
instead of translating the set of preferences between actions into literals of the form (23) we will
encode it directly asMODELSrules. For each action preferenee: fer(a, b), we define a rule

block(executable(b,T),nil) <« goal(length) (40)

wherenil is the name assigned to the ljstvhich is true at every moment of time. Intuitively, this
rule prevents the actionto be used in achieving the goal. L{g?, I") be an action theory an#l be
a set of preferences on actionslin Let SM7¢/*(D, T, A) be the program consisting of

e the programS M Pk (D T A), and

¢ the set of rules (40) with the time variable ranging betweéandk.

27

It is easy to see that, whemefer(a, b) is present and both actions are executable and lead to the
goal, therz will be used to construct the trajectory. This encoding provides the following form of
soundness:

Theorem 10 Let (D, T") be a consistent and complete action theory dridoe an answer set of
the programSMPrerk(D. T, A) encoding the planning problef®, I', A) with a set of preference
P. Then,spays; - - - a,s, IS a most preferred trajectory satisfyiny where

e occ(a;,i—1)e M
o s, ={f|holds(f(i)) € M}

Proof. See Appendix A. O

Notice that the rules of the form (40) do not warrant completeness, i.e., they do not guarantee that
a most preferred trajectory is found, even if one exists. For instance, when two actods are
possible and we have the preferenee fer(a, b), but the actior: fails to lead to the final goal,

then the program may fail to produce a trajectory. At this time it is unclear whether completeness
can be achieved using this encoding of prioritized default theories with action preferences.

An alternative approach to encode preferences between actions can be developed gsiapthe
ELS constructmaximize. The maximize construct allows the programmer to associate static
weights (non-negative integers;) to a selected set of ground atonas)(

maximize[a; : wy, - - -, ag : wgl.
Intuitively, this rule instructsMODELSto find answer set in which the sum
k
X7 olai] * w;

is maximal wherda;| = 1if a; is in the answer set and;| = 0 otherwise.SMODELSmakes use
of branch-and-bound techniques to return an answer set with maximal weight—i.e., it maximizes
the sum of the weights of the atoms satisfied by the answer set.
We can ensure that the most preferred trajectory can always be found, by adding the following
optimization rule to the programi M*e/"(D T, A): for eachprefer(a,b) and for each time
pointt

maximize[occ(a,t) = 1, oce(b, t) = 0].

6.2.3 Finding a Preferred Trajectory: Formulae Preferences

To implement (27), for a totally ordered collection of fluent formulge< ... < ¢, we add the
optimal rule [24]

maximize[p; =k, ..., p, = 0] (41)

to SMFPlenn (D, T'). We are assuming that the computation of the answer sets maximizes each rule
of type (41)% If we want to use the current version sMODELS, then we need to additionally

80bserve that the current implementationsefODELS does not guarantee this behavicgMODELS maximizes
only the last optimal rule in the program.

28

require that the preference relatienis total order over the set of fluent formulae. The correct
behavior ofmaximize is guaranteed in the current implementation of dsenodelsystem [15].
The use of the implementation afaximize in Jsmodelsllows us to make use of both types of
preferences concurrently within the same domain specification.

7 Discussion and Conclusions

The advantages of making use of high level languages for the description of action theories have
been highlighted by many researchers (e.g., [9, 36]). Our interest in this line of research is to enrich
action theories with more complex forms of reasoning—including reasoning with preferences over
trajectories and handling default and exogenous actions. In this paper we presented a formalism for
reasoning about actions in the context of prioritized default theory. In the process, we developed
an encoding of action theories in prioritized default theories, whose semantics coincides with the
entailment relation of the action theory. It is worth noticing that prioritized default theory is very
expressive, and can be used to model dynamic domains that cannot be expressed using, e.g., the
languages; for example

e domains with user-defined preferences between trajectories;

e domains with non-inertial fluents (e.g., a spring-loaded door is open immediately after the
push action is performed, but it will automatically revert to close at the next moment of
time).

e domains with exogenous actions—e.g., a domain where a driver agent stops at the traffic
light, and expects the light to change color; i.e., the driver agent expects the change color
action to occur (exogenously).

We illustrate these last two types of actions in the following simple example.

Example 10 Consider a mail delivering robot who drives around the city to deliver mails. The
robot knows that it can pass an intersection when the traffic light is green and that it needs to stop
when the traffic light is red. In this domain, the action of changing the traffic light color could be
viewed as a default action which changes the color of the traffic light fjoeento yellow, from

yellow to red and fromredto green and so on. This action is not an action that the robot can do.

It is also not an action that happens arbitrarily. Rather, its behavior can be predicted given the
current situation, i.e., the light will be green in the next situation if it is currently red.

The robot also knows that the traffic light could also be changed by an ambulance in an emergency
situation. This action is an example of an exogenous action. Like a default action, exogenous
actions are actions that the robot can not perform but their occurrence is rather unpredictable.

Observe that exogenous actions can be added to any of the current RAC’s approaches without
the need of redefining their semantics. Exogenous actions can be used to explain discrepancies
between the real state of the world (represented by observations) and the predicted model of the
world (represented by the effects of actions); for example, in [2], exogenous actions are used in
formalizing dynamic diagnoses. For default actions, certain modifications need to be done to take

29

into consideration their occurrences. In approaches using high-level action description languages,
this would mean that the definition of the transition function needs to be revised because in a
domain with default actions, the real state of the world changes even when the agent does nothing.

The previous work conducted by the authors [11] and the related work conducted by other re-
searchers (e.g., [36]) have demonstrated the advantages of making use of more specialized forms
of logic, such as prioritized default theories, for commonsense reasoning, causal reasoning, and
other advanced forms of reasoning. In this work we propose to lay the foundations for using pri-
oritized default theory for reasoning about actions and planning. Our claim is that advanced forms
of reasoning about actions (including preferences, exogenous actions, and default actions) can be
naturally addressed in the context of prioritized default theory—some preliminary steps in this di-
rection can be found in [11]. In this paper we lay the foundations for this research. We accomplish
this by illustrating a sound and complete translation of a high-level action language (a variation of
the languag®®) into prioritized default theory, along with a simple extension of prioritized default
theory that allows an elegant encoding of powerful types of preferences between trajectories and
management of non-inertial fluents. Our extension of prioritized default theory allows preferences
between rules and formulae to be expressed. We also show how these features can be ultimately
translated from prioritized default theory to answer set programming, thus allowing us to use in-
ference engines for answer set programming (8}gQDELS) for planning. Further extensions to
handle exogenous and default actions will be considered in our future work.

The considerations provided in this work represent also a starting point towards the treatment of
more general forms of preferences. In general, an agent can have several preferences on trajecto-
ries. For example, he might prefer to use an actiaver an actiorb, he might also prefer that
whenever he has to execute an acttdhend should be the next action, etc. It has been discussed
in [1] that many preferences or constraint of this type can be conveniently expressed as a temporal
logic formula. Since the truth value of a temporal logic formula can be easily checked given a
trajectory, this feature can be added to our framework by
e adding rules for checking the truth value of temporal logic formulae, that associate each
temporal logic formula, say, to a new boolean variable’, whose truth value in the final
state corresponds to the satisfiabilityofv.r.t. the chosen trajectory (as illustrated in [34]),
e adding an optimization rule
maximize[p? = 1, not 7 = 0]
to the programs M Plenn (D, T), that allows us to find trajectories satisfyipgoefore con-
sidering those not satisfying it.
A more complete treatment of these preferences is beyond the scope of this work and will be dealt
with as future work.

The preliminary experiments performed have provided encouraging results, and work is in progress
to establish the full range of capabilities of this approach. In particular, we intend to use the
proposed framework in the design of bioinformatics applications—i.e., software agents in charge of
mapping high-level biological process descriptions into a predefined collection of software services
[27]—and in the development of Web accessibility agents for visually impaired individuals [28].

Several other approaches to dealing with preferences between logic programming rules have been
proposed [3, 5, 37]. In our future work we plan to investigate the use of these methods in repre-
senting and reasoning with preferences among actions.

30

Acknowledgments: The authors wish to thank M. Gelfond and M. Balduccini for the comments
on various drafts of this work, and the anonymous referees for their helpful comments. Research
has been supported by NSF grants EIA-0130887, CCR-9875279, HRD-9906130, EIA-0220590,
and EIA-9810732.

References

[1]

[2]

[3]

[4]

F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning.Atrtificial Intelligence 116(1,2):123-191, 2000.

C. Baral, S. Mcllraith, and T.C. Son. Formulating Diagnostic Problem Solving using an
Action Language with Narratives and SensiRgoceedings of the Knowledge Representation
and Reasoning Conferencz000.

G. Brewka and T. Eiter. Preferred answer sets for extended logic progremifscial Intelli-
gence 109:297-356, 1999.

S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. The dlv system: Model generator and application frontends. In F. Bry, B. Freitag,
and Seipel D., editor®roceedings of the 12th Workshop on Logic Programming VpaBes
128-137, Sep 1997.

[5] J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic

programs.Theory and Practice of Logic Programming(2):129-187, March 2003.

[6] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Answer set planning under action

[7]

[8]

[9]

costs. In S. Flesca and S. Greco, N. Leone, and G. lanni, editmysgeedings of the Eighth
European Conference on Logics in Artificial Intelligence, JELIA'®2ges 186—-197. Springer
Verlag, LNAI 2424, 2002.

R. Fikes and N. Nilson. STRIPS: A new approach to the application of theorem proving to
problem solving Artificial Intelligence 2(3—-4):189-208, 1971.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren and Peter
Szeredi, editord,ogic Programming: Proceedings of the Seventh International Cpages
579-597, 1990.

M. Gelfond and V. Lifschitz. Representing Action and Change by Logic Progrdmsnal
of Logic Programming17:301-322, 1993.

[10] M. Gelfond and V. Lifschitz. Action languagekTAl, 3(6), 1998.

[11] M. Gelfond and T.C. Son. Prioritized default theorySelected Papers from the Workshop on

Logic Programming and Knowledge Representation 1@@iges 164—223. Springer Verlag,
LNAI 1471, 1998.

[12] M. Ginsberg and D. Smith. Reasoning about actions I: a possible worlds appAvébhial

Intelligence 35:165-195, 1988.

31

[13] P. Haddawy. A logic of time, chance, and action for representing phati§icial Intelligence
80(1-2):243-308, 1996.

[14] R. Kowalski and M. Sergot. A logic-based calculus of eveiNew Generation Computing
4:67-95, 1986.

[15] H. Le, E. Pontelli, T.C. Son. An Java Based Solver for Answer Set Programmifg,CS.
nmsu.edu/"hle , 2003.

[16] V. Lifschitz. The logic of common sens&CM Computing Survey27:343-345, 1995.

[17] V. Lifschitz. Answer set planning. Imternational Conference on Logic Programmjiages
23-37, 1999.

[18] V. Lifschitz and H. Turner. Splitting a logic program. In Pascal Van Hentenryck, editor,
Proceedings of the Eleventh International Conf. on Logic Programpmages 23-38, 1994.

[19] V. Lifschitz and H. Turner. Representing transition systems by logic progranfrobeed-
ings of the 5th International Conference on Logic Programming and Nonmonotonic Reason-
ing, pages 92-106, 1999.

[20] N. McCain and M. Turner. Causal theories of action and changBrdoeedings of the 14th
National Conference on Atrtificial Intelligencpages 460-467. AAAI Press, 1997.

[21] J. McCarthy. Epistemological problems of artificial intelligenceProceedings of the 5th In-
ternational Joint Conference on Atrtificial Intelligengeages 1038-1044. Morgan Kaufmann
Publishers, San Mateo, CA, 1977.

[22] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editorslachine Intelligencevolume 4, pages
463-502. Edinburgh University Press, Edinburgh, 1969.

[23] K. Myers. Generating qualitatively different plans through metatheoretic bias€soteed-
ings of the Sixteenth National Conference on Artificial Intellige®g®Al Press, 1999.

[24] I. NiemeR. Logic programming with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligenc@5(3,4):241-273, 1999.

[25] I. Nieme& and P. Simons. Smodels - an implementation of the stable model and well-founded
semantics for normal logic programs.Pnoceedings ICLP & LPNMRpages 420-429, 1997.

[26] E. Pednault. ADL and the state-transition model of actidlegirnal of Logic and Computa-
tion, 4(5):467-513, October 1994.

[27] E. Pontelli, G. Gupta, D. Ranjan, and B. Milligan. A Domain Specific Language for Solving
Philogenetic Inference Problems. Technical Report TR-CS-001/2002, New Mexico State
University, 2002.

[28] E. Pontelliand T. Son. Navigating HTML Tables: Planning, Reasoning, and Agenitst. In
Conference on Assistive Technologi@€EM Press, 2002.

32

[29] R. Reiter. A logic for default reasonindrtificial Intelligence 13(1,2):81-132, 1980.

[30] R. Reiter. KNOWLEDGE IN ACTION: Logical Foundations for Describing and Implement-
ing Dynamical System#MIT Press, 2001.

[31] M. ShanahanSolving the frame problem: A mathematical investigation of the commonsense
law of inertia MIT press, 1997.

[32] D.E. Smith and D. Weld. Conformant GraphPlan.AAAl, AAAI/MIT Press, pp. 889-896,
1998.

[33] T.C. Son and C. Baral. Formalizing Sensing Actions—A Transition Function Based Ap-
proach. InArtificial Intelligence 125(1-2):19-91, 2001.

[34] T.C. Son, C. Baral, and S. Mcllraith. Domain dependent knowledge in planning - an an-
swer set planning approach. Rroceedings of the 6th International Conference on Logic
Programming and NonMonotonic Reasonipgges 226—-239, Vienna, 2001.

[35] T.C. Son and E. Pontelli. Reasoning about actions in prioritized default theory. In S. Flesca,
S. Greco, N. Leone, and G. lanni, editoPspceedings of the Eighth European Conference
on Logics in Artificial Intelligence, JELIA'QZpages 369-381. Springer Verlag, LNAI 2424,
2002.

[36] H. Turner. Representing actions in logic programs and default theodmsnal of Logic
Programming 31(1-3):245-298, May 1997.

[37] Y. Zhang and N. Foo. Answer sets for prioritized logic program$2risceedings of ILPS 97
pages 69-84, 1997.

Appendix A — Proofs

We apply the Splitting Theorem and Splitting Sequence Theorem [18] several times in our proof.
To make the presentation more self-contained, the splitting theorems are included in Appendix B.
Letr be arule

AQ<—Q1, -+ Qpyy MOt Qi 1, - - ., NOL . (42)
By head(r), body(r), andlit(r) we denoteuy, {ay,...,a,}, and{ag,as,...,a,}, respectively.
pos(r) andneg(r) denote the sefay, ..., a,} and{a,,.1,...,a,}, respectively. For a program

7, by lit(7) we denote the set of literals of the programThe following lemma is also useful.

Lemma 2 Let M be an answer set af*(D,T") anda = a4, ..., a;, | < k, be an action sequence.
If for everyj <, a; is executable iz (a;_1, M), thens(a, M) # 0.

Proof. Follows immediately from the construction & (D, T") sincepossible(a;, ;1) belongs
to the body of every rule/default that generates fluent of the flastds(f(c;)) in M. As such,
s(a, M) #) means thapossible(a;, ;1) € M for everyj < . This implies the conclusion of
the lemma. O

33

Before we prove the theorems, we simplify the progdfitD,T") andI1*(D,T") and introduce
some notation that will be used subsequently. For an action thiéary), let s, be its initial state.
Define,

Sa = Ry U {holds(f,[]) | f € so}

and
Spy= | RaU{holds(f,]]) | f € so}

| <k

First, we simplifyl1*(D,T") andII*(D,T") by
1. removing rules of the form (12)-(13); and

2. replacinghold([L4, ..., L,]) with the sequencéolds(L,), ..., holds(L,) in every rule of
the remaining program whose body containgd([L, ..., L,]).

Let us denote the new programs by and=~, respectively. It follows from Lemma 3 of [11] that
each answer set af* (resp.7®) corresponds to an answer seftf(D, T') (resp.I1%(D, T")) which
contains the same set of literals of the fohwids(L), de feated(D), andSy (resp. S,) and vice
versa.

Theorem 1 For every consistent and complete action theoB, I'), the programll*(D,T) is
consistent.

Proof. Our discussion shows that to prove the theorem, itis enough to prove‘thas a consistent
answer set. Lef; be the set of literals of the programi. It is easy to see that; is a splitting
set of 7 if i < k. Thus, the sequencd.;);x, is a splitting sequence of*. By the splitting
sequence theorem [18] (included in Appendix B as Theorem M2)js an answer set af” iff
MF = Ui<r A" where (A"),<; is a solution tor” with respect to{L,),<,. Hence, to prove the
theorem, we will construct a solutigi’);<,. We prove this by induction ove.

e Base:The theorem is trivial fok: = 0 sincer” = =l and this program has only facts that is
consistent because of the consistency/ofI).

e Step: Assume that we have proved the theoremifove need to prove it fok + 1. It is easy
to see thatr**! can be splitted byit(7*), the set of literals ofr*, andm" = by (7" 11).
This implies thatV/ is an answer set of**1 iff M = M*U M’ where(M*, M’) is a solution
of 7%1 with respect tdit(7*). That is,M* is an answer set of* and M’ is an answer set
Of 7' = €yt (TN By (1), MF).

By inductive hypothesis)/* = Ui<x A" for some solution tac® with respect ta ;) <. We
construct an answer sdt*! of 7’ as follows.
— A**L contains the sef;; \ S,

— For each action sequeneeand actiona such thatja| = k£ anda is executable in
s(a, M*), we select an arbitrary but unique states ®(a, s(o, M*)) and add ta4**!
the following literals:

34

* holds(possible(a,),

x holds(f(aoa)) wheref € ¢,

x defeated(inertial(f,a,a)) if f € s(a, M¥) and f € s’ where f denotes the
negation off, and

* defeated(def(f,a,))if f € s(a, M*) andf € s'.

By construction and the assumption that I') is consistent, we can easily check tht™!
is indeed an answer set of. This concludes the proof of the inductive step, and hence, the
theorem.

O

Theorem 2 Let(D,T") be a consistent and complete action theory artte a sequence of actions
with |a| < k. The following results hold:

e If M is an answer set ofl*(D,T') then M* = M n [it(I1*(D,T)) is an answer set of
(D, T).

o If M>isan answer set di“(D,T") then there exists an answer s¢tof [1%(D, T') such that
M* = M N lit(I1*(D,TI)).

Proof. It is easy to see tha$;, is a splitting set ofr* andbg, (%) = S. Furthermore, let
7 = es, (7% \ Sk, Sk). Applying the splitting set theorem, we have thatconsists of rules of the
form

holds(L) <« holds(Ly),...,holds(Ly). (43)
holds(L) <« holds(Ly),...,holds(L,),not defeated(D). (44)
defeated(D) <« holds(—L). (45)

where
o for each rule of the form (43), there exists a rtlée(R, L, [Ly, ..., L,]) € Sk;
o for each rule of the form (44), there exists a defaldlfault(D, L, L1, ..., L,]) € Sk; and
e for each rule of the form (45), there exists a defaldlfault(D, L, [L1, ..., L,]) € Sk.

Similar arguments hold far* andsS,,. Letm, = eg_(7*\Sa, So). We have that, also consists
of rules of the form (43)-(45) in which the conditions following the definitionmefis applied to
S.- It follows from the splitting theorem and the fact tha C S that it suffices to prove the
following:

e If M, is an answer set of,; thenM, = M, N lit(ms) is an answer set of,.

e For each answer sét/, of m, there exists an answer s&f; of m; such thatd/, = M; N
llt(’ﬂ'g)

35

We will now prove these claims.

e Let M, be an answer set af,. We will show thatM, = M; Nlit(rs) is an answer set of;,.
Let m = (my)*2. Becauser, C m;, we have thatr C ()™ and thereforel/, satisfiesr.
To complete the proof, we need to show the minimalitylof. Assume the contrary, there
exists a setX C M, and X satisfiesr. We will show thatY” = X U (M; \ M,) satisfies
(m)M1. Consider a rule € (7)™ whose body is satisfied by. Clearly, if the head of
r does not belong t&it(ms) then it belongs tal/; \ M; and thereforey is satisfied byy".
Because of the construction of andm,, it is easy to see that if the head obelongs to
lit(my) then so is the body of. As such,r is satisfied byX. In both cases; is satisfied by
Y. This implies that” is a proper subset af/; and satisfies all the rules ifr;)*. This
contradicts the fact that/; is an answer set aof;. In other words, we have that, is an
answer set ofrs.

e Let M, be an answer set af,. Let7 be the program obtained from \ =, by

— Removing all the rules whose body contains some literal&) \ Mo.
— Removing all the literals i/, from the remaining rules.
It is easy to see thdit(w) N lit(m) =) and if X is an answer set of then X U M; is an

answer set ofr;. Obviously,M; = X U M, is an answer set of; satisfying the condition
thatMQ =M N th(’ﬂ'g)

The theorem is proved. O

Theorem 3 Let (D, T") be a consistent and complete action thedrybe an answer set &f* (D, I'),
« be a sequence of actions with| < k, and a be an action such that(a, M) # () and
s(aoa, M) # 0. Thens(aoa, M) € ®(a, s(a, M)).

Proof. Let us assume that = ag, ..., a; for somel < k. By Theorem 2, we know that there exists
an answer set/“ of 7 such that\/* C M. Itis easy to see tha{a;, M) = s(a;, M“) for every
j. We prove by induction overthe following conclusions:

(@) s(a;, M®) is a state ofD if s(ay, M*) # (); and
(b) s(ajr1, M*) € ®(a, s(a;, M*)) if s(air1, M*) # 0.

e Base:i = 0. We have that([|, M) = {f | “ initially f” € I'}. Because of the completeness
and consistency afD, I'), (a) holds. The proof that (b) holds is similar to the proof of (b) in
the inductive step and is omitted here for brevity. The base case is proved.

e Step: Assume that we have proved (a)-(b) for< i. We prove them for = i. We
begin with (a). Clearly, by induction hypothesis, dfa;, M) # () then s(a;, M) €
®(a;, s(ai—1, M*)) and hence(q;, M®) is a state oD. Letu = s(«a;, M®). Consider a flu-
entliteralf € u. First, we prove that(«;, 1, M) is complete. It follows from Lemma 2 that
possible(a;y1, ;) € M. We then prove that it is a state belongingdt®u; 1, s(a;, M?)).
We have two cases:

36

1. fis a non-inertial fluent literal. Then, the default

de fault(def(f, aiy1), f(itr), [possible(ait1, a;)])
is applicable. Thus, it f & s(a;1, M) thenf € s(a;1, M®).
2. fis aninertial fluent literal. Clearly, the default

de fault(inertial(a; i1, f,), f(ai1), [f (), possible(a; i1, o;)])

is applicable with respect to/“. Thus, if it is not defeated, thef(«;,,) would belong
to M“. Otherwise, the default is defeated, and hence, we havédhét(—f(a; 1)) €
M=, ThUSf € S(ai+1, Ma) or—f € S((IZ‘+1, Ma).

The above two cases, together with the completeness obnclude the completeness of
s(y1, M®).

We now show that(«;. 1, M) is a state belonging (a1, s(a;, M*)). Consider an atom
h = holds(f(a;41)). We know thath € M iff one of the following cases happens:

1. Arule of the form (16) is used in conjunction with a rule of the form (10) in deriving
h. This implies thatf € E(a;41, s(a;, M?)).

2. Arule of the form (20) is used in conjunction with rule (11) in derivingT his implies
thatf € S(Ozi, M) N S(O{H_l, Ma) N (FI UFI)

3. A rule of the form (19) is used in conjunction with a rule of the form (11) in de-
riving h. This implies thatf is a non-inertial fluent ang € Def(D) and—f ¢
E(ai41, s(a;, M®)). In other wordsf € Def(D) \ E(ait1,s(a;, M%),

4. A rule of the form (18) is used in conjunction with a rule of the form (10) in deriving
h. This implies that
f € Cl(E(ai1,s(a;, M) U (s(a;, M®) N s(ay1, M*) N (Fr UFT)) U (Def(D) \
E<ai+1> S(ai7 Ma)))'

The above four cases show théty; 1, M) is complete and is a state Bfand also belongs
to ®(a;41, s(a;, M*)). The theorem is proved.

O

Theorem 4 Let (D, ') be a consistent and complete action theory. Then, for every sequence of
actionsa = [ay, ..., ax] and a trajectoryspa; s; . . . axsg of (D, I"), there exists an answer sat
of IT*(D, T') such thats; = s(ay, M).

Proof. It follows from Theorem 2 that it is enough to show that there exists an answéfsef
7 such thats; = s(«;, M“). We prove by induction ovek.

e Base:ltis easy to see that! has only one answer set consisting of the set

X = {holds(f([)) | f € so}-

The conclusion follows immediately from the construction\of

37

e Step: Assume that we have proved the theorem|fdr< k. We prove it for|a| = k. Let
L = lit(m*-1). SincelL is a splitting set ofr®, A is an answer set of* iff A = A; U A,
andA; is an answer set df, (7%) and A, is an answer set of = ey (7 \ by (7%), A1).

By inductive hypothesis, we can findl, such thats; = s(«;, A;). It remains to be shown
that we can find an answer sét of 7’ such thats, = s(a, A; U A). Observe that due to
the fact thatr’ does not contain any rule with atom of the fopme fer(D, D;) in the head,
we can remove the rule (15) fromi without affecting its answer sets. Thus, in what follows
we will omit (15) from#’. We have that’ = Y U m; where

— Y is the union of the set of facts of the form (16)-(20), which belongto In other
words,Y” consists of rules of the form (16)-(20) in whi¢he a = a.

— 1, I1s defined as follows.
« For each atom of the form (16) iri, the rule

holds(f(a)) <« rule(dynamic(ag, f,ax_1), f(a), Body). (46)

belongs torm, if Body is satisfied byA, i.e., , holds(a) € A; for every literal
a € Body.

x For each atom of the form (17) ini, the rule
holds(L) « rule(R, L, Body). (47)

belongs tory, if Body is satisfied byA,
x For each atom of the form (18) ivi, the rule

holds(L) <« rule(D,L,[B,...,B,]), (48)
holds(By), ..., holds(B,).

belongs tor;.
x For each atom of the form (20) ivi, the rule

defeated(D) «— default(D, L, Body), holds(—L). (49)
belongs tar; and if Body is satisfied byA, the rule
holds(L) <« default(D, L, Body),not defeated(D). (50)

belongs tor;.
x For each atom of the form (19) iri, the rule

defeated(D) <« default(D, L, Body), holds(—L). (51)

and the rule
holds(L) <« default(D, L, Body),not defeated(D). (52)

belongs tor;.

38

We constructd, = Y U X U Z as follows:

— X = {holds(f(a)) | f € sk} U{holds(possible(ar,as_1))} if there exists an exe-
cutable condition
ay executableif ¢, ..., g,
andg; € s;_1.
— Z consists of
x defeated(inertial(f, ag, ax—1)) if f is an inertial fluentholds(f(ax—1)) € X,
andf € s,_, wheref denotes the contrary of the fluent litergli.e., for a fluent
f. f=-f, and=f = f; and
x defeated(def(f,ar,ar_1))if fis anon-inertial fluent anflolds(f(«)) € X and
f € spn.

We will show thatA, is an answer set of’ by proving that it is a minimal set that is closed
under the rule oft” = (7’)42. First, we begin with the closeness.

It is easy to see that, is closed under the rules (16)-(20) because of the constructidn of
which contains all of the rules in this form which belongro A, is closed under the rules
of the form (49) and (51) (because of the constructiot pf This shows thatd, is closed
under the rules (16)-(20), (49), and (51). kdie a rule ofr’. Consider the remaining cases:

— ris of the form (46) whose body is satisfied Hy. Then, we have that contains

rule(dynamic(f, ag, ax_1), f(@), [pr1(ax-1), - -, Pn(ar_1), possible(ag, ax_1)])

and holds(p;(a,—1)) € X for 1 < j < m andpossible(ay, ay_1) € As. This
means that,, is executable irs,_; and f € s,. By construction ofX, we have that
holds(f(«)) € As. Thus,A, is closed under rules of the form (46) of.

— ris of the form (47). ThenY contains
rule(executable(ay, ax_1), possible(ay, ax_1), [p1(cr_1), ..., pu(ar_1)])

andholds(p;(ax—1)) € X for 1 < j < m. Obviously, the construction of makes
sure thatholds(possible(ay, ax_1)) € As, i.e., Ay is closed under rules of the form
(47) of n”.

— ris of the form (48). ThenY contains
rule(causal(f, ax, ap—1), f(a), [p1(@), ..., pn(@), possible(ay, ag_1)])

and holds(pj(«)) € X for1 < j < n. Thus, f € s, and hence we have that
holds(f(«)) € X. This implies thatA, is closed under rules of the form (48) of
7.

39

— ris of the form (50). Then4, contains

de fault(inertial (f, ax, ag_1), f(a), [f(ar_1), possible(ay, ag_1)])

andholds(f(ax_1)), does not contaitde feated(inertial(f, ay, ax_1)), andholds(—f(a)).
This implies thatf is an inertial fluent literal andl € s, and—f & s;. Hence,f € s.
So,holds(f(«)) € X and therefored, is closed under rules of the form (50) of.

— ris of the from (52). That means thdt, contains

de fault(def(f, ag, ax_1), f(@), [possible(ay, ag_1)])

andholds(f(«)), and does not contaife feated(de f(f, ax, ax—1)) andholds(—f(a)).
This implies thatf is a non-inertial fluent anéh f ¢ s,. Thus, A, is closed under the
rules of the form (50) of”.

The above discussion shows that is closed under the rules af'. To complete the proof,
we need to show that no proper subsetdgfis closed under the rules af’. Assume the
contrary, there exist®8 C A, and B is closed under the rules af’. Consider some literal
h € A, \ B. Obviously, h cannot be a fact of” which is either a literal of the form
rule(R, L, B) orde fault(D, L, B). Consider the two cases:

— h is of the formholds(f(«)) for some fluent literalf € s;. There are four cases:
h € E(ak,Sk_1>, h € s, Nsp_1 N (FI U E), h € Def(D) \ E(ak,sk_l), orh ¢
El(ay, s;) U (s Nsp_1 N (F1) UF) U (Def(D) \ E(ax, sk_1)). The first case cannot
happen becaus€’ contains a rule of the form (46) whose body is satisfieddbyand
whose head is%.. The second and third case cannot happen becaUsentains a
rule of the form (50) and (52), respectively, whose body is satisfied bgnd whose
head ish. Finally, the fourth case cannot happen becatfseontains a sequence of
rules of the form (48), say;, ..., r;, wherebody(r;) C A, N B andbody(r;+1) C
(AN B) U {head(r;) | 1 <1 < j}.

— his of the formde feated(inertial(f, ar, ax—_1)). This can happen only if there exists
some literalholds(—f(«)) in As \ B. The first case shows that this cannot happen.

— his of the formde feated(def(f, ax, ax—_1)). This can happen only if there exists some
literal holds(—f(«)) in Ay \ B. The first case shows that this cannot happen.

— h is of the formholds(possible(ay, ax—1)). This cannot happen sineg is executable
in Sk—1-

The above cases show th&t is minimal set closed undet’. Together with the closeness
of A, under the rules of” we have thatd, is an answer set of . This proves the inductive
step sinces;, = s(a, X) = s(a, As).

a

Before we prove the other theorems, we prove some lemmas that will be used in the proof of
Theorem 8.

40

Lemma 3 Let(Q be a logic program. Lef)* be the program obtained fro@ by replacing each
literal [in (Q by a new and distinguished literat that does not belong to the languageafThen,
M is an answer set af iff M is an answer set a)* whereM ™ = {i* |l € M}.

Proof. The conclusion of the lemma follows from the equatigh')" = (Q™)*. (Q™ denotes
the reduct of a program® with respect to the set of literald.) O

Lemma 4 Let @ be a logic program. Lety); = {l,...,l,} be a set of facts i) and Q2 =
{a1,...,qn} be aset of new atoms that do not occurtjnLet R be the set of rule$l, — ¢; | i =
1,...,n}and@" = RU(Q \ Q1). Then,M is an answer set af iff M™ = M U {q | ¢ € Q,
and R contains a rule whose body g is an answer set ap+.

Proof. Because of), N lit(Q) = 0, Qs is a splitting set of) ™. Furthermore),(Q*) = Q- that
has a unique answer s@t. Thus,M ™ is an answer set @™ iff M+ = M U Q, whereM is an
answer set of, (Q" \ b, (@), Q2) = Q. O

In the next lemma we prove the correctness o$m@DELSencoding of prioritized default theory.
LetT be a prioritized default theory with the underlying propositional and finite langdage., T

is a finite set of ground literals of the form (7)-(9). By definitia?,T") is the program consisting of
T and the set of rules (10)-(15). For eachlist. . ., [,,], we associate to its a new and distinguished
nameny, . ;.- TheSMODELS-encoding ofl’, denoted bysm(T'), consists of the following:

e The prioritized default theory'* that consists of the following literals:
— Each atonrule(r, ly, [l1, . .., l,,]) iIn T is translated into an atom

Tule(r7 l[):n[ll ~~~~~ lm})

of T';
— Each atomie fault(d, ly, [l1, ..., 1)) in T is translated into a rule
default(d,lo,ny, . 1))
of T,

— Each atonprefer(d;, dsy) in T is translated into a rule
prefer(dy, ds)
of T*;
e The rules (10)-(11) and (14)-(15) from(7"); and
e For each new name(l;, . ..,[,] in sm(T'), the rule
,,,,, 1,]) < holds(ly), ..., holds(l,) (53)

belongs tosm(T").

41

Lemma 5 For a prioritized default theory”,

e if M is an answer set oP(7') then there exists an answer skét’ of sm(7") such that
holds(l) € M iff holds(l) € M’; and

e if M is an answer set ofm(T") then there exists an answer skf’ of P(7T") such that
holds(l) € M iff holds(l) € M'.

Proof.

e Let M be an answer set d?(7") andlit(hold) be the set of literals of the forrhold(L) in
lit(P(T)). By name(P(T)) we denote the set of names introduced in creattngl’). Let
@ be the set of literals of the formold(ny, ..;,;) € M such thatn, ;.1 € name(P(T))
and{holds(l;) |i=1,...,n} C M. We define

M = M\ (lit(thold) UT)UTT UQ

and prove thaf/’ is an answer set afn(7"). We prove this by showing that’ is a minimal
set of literals inlit(sm(T)) that satisfies the rules im (7)) .

— Satisfiability It is easy to see that each rute, except the rule of the form (53), in
(sm(T))M" corresponds to a rulein (P(T))™ and if body(r*) C M’ thenbody(r) C
M. Thus, head(r) € M since M is an answer set oP(7"). The construction of
M' implies thathead(r*) € M'. Furthermore, because of the constructior)of}/’
satisfies all the rules of the form (53) efm (7). So, M’ satisfies(sm(T))".

— Minimality: Assume the contrary)/’ is not minimal, i.e., there exist&/” c M/’,
M'\ M" # (), andM" satisfies all the rules dfsm(7))™'. Considerl € M" \ M.
From the construction af/” andsm(T"), we conclude thatis of the formholds(l’). It
follows that there exists some rutén (P(T'))™ such thaticad(r) = [andbody(r) C
M. Consider the rule* of sm(T) that corresponds to. Clearly, body(r*) C M.
This implies that)/” does not satisfy*, i.e., A" does not satisfysm (7)), which
contradicts our assumption. This contradiction implies thétis a minimal set of
literals that is satisfieesm (7).

The above two properties show that' is an answer set ofm (7). The construction oft/’
ensures thatolds(l) € M iff holds(l) € M.

e Let M be an answer set @in(7"). By name(P(T')) we denote the set of names introduced
in creatingsm(7'). Let @, be the set of literals of the formolds(ny,,. ;) € M. Let
Q- be the set of all literals of the forrhold([l4,. . .,1,]) such that; & name(P(T)) and
{holds(l;) |i=1,...,n} C M. We define

M =M\ (QUT)UTUQ,

and prove thafl/’ is an answer set dP(7"). We prove this by showing that/’ is a minimal
set of literals inP(T") that is closed underP(T))™'.

42

— ClosenessConsider a rule in (P(T))™'. From the construction ofm(7"), we can
conclude that ifr is of the form (10)-(11) or (14)-(15) then there exists a rutein
(sm(T))™ such that ifbody(r) C M thenbody(r*) C M'. Thus,head(r) € M. The
construction of\/” implies thathead(r™) € M’. This implies that\/’ is satisfies all the
rules of the form (10)-(11) or (14)-(15) iP(T))™'. The construction of), ensures
that M/’ satisfies all the rules of the form (12)-(13) GP(7))™'. So, M’ satisfies
(P(T)™'.

— Minimality: Assume the contrary/’ is not minimal, i.e., there exist&/” C M’ and
M" satisfies all the rules ofP(7))™'. Considerl € M"\ M'. From the construction
of M’ and the definition of?(7"), we conclude thatis of the formholds(l’). It follows
that there exists some rule in (sm(T'))™ such thatiead(r) = [andbody(r) C M.
Let r be the rule from which-* is constructed. We have thatdy(r) € M’ and
head(r) ¢ M", which implies that\/” does not satisfy, i.e., M” does not satisfy
(P(T))™', which contradicts our assumption. This contradiction implies Mats a
minimal set of literals satisfyingP(7))™".

The above two properties show that' is an answer set aP(7"). The construction ofl/’
ensures thatolds(l) € M iff holds(l) € M.

The proof of the lemma follows from the above two cases. O

We will use the above three lemmas to prove Theorem 8. First, for each literdit(P~) we
definel™ as follows.

1.

© ®© N O

if I = rule(dynamic(f,a,B), f(Boa),[pi(B),...,pu(0), possible(a, 3)])
thent* = rule(dynamic(f,a, k), £ (b + 1), [pr(F). . ., pu(F), possible(a,)
where|s| = k;

f L = rule(causal(f,a,3), f(Boa),[p1(Boa),...,p.(00a),possible(a,)])

thenl™ = rule(dynamic(f,a, k), f(k+ 1), [p1(k+1),...,pa(k + 1), possible(a, k)])
where|3| = k;

if | = default(def(f,a,B), f(Boa),[possible(a, 3)])
theni™ = default(def(f,a, k), f(k + 1), [possible(a, k)]) where|3| = k;

if | = default(inertial(f,a,), f(Boa),[f(3), possible(a, 3)])
thenl™ = default(inertial(f,a, k), f(k+ 1), [f(k), possible(a, k)]) where|3| = k;

if | = rule(executable(a, 3), possible(a, 3), [p1(B), ..., pa(B)])
thenl™ = rule(dynamic(a, k), f(k), [p1(k), ..., pn(k)]) where|5| = k;

if I = holds(f((3)) thenl™ = holds(f(k)) where|3| = k;

if | = holds(possible(a, 3)) thenl™ = holds(possible(a, k)) where|3| = k;

if | = defeated(def(f,a,3)) theni™ = defeated(def(f,a,k)) where|3| = k; and

if | = de feated(inertial(f, a, 3)) thenl* = de feated(inertial(f, a, k)) where|8| = k.

43

Let « be a sequence of actions, . .., a;. Let@, = (P*)* wherel* is defined for each literal
lin lit(P*) as above. Le®, be the set of fact§/y, ..., [} of Q wherel; is of the form (1)-(4)
as described above (i.€;,is a rule or default constructed fro(, I') except those correspond to
executability conditions of D, T")). Furthermore, let), is the set of factocc(a;, i — 1) | i =
1,...,k}. Itfollows from the Lemmas 3-4 thal/ is an answer set dP* iff M+ UQ, is an answer
setof(Q.)" = Q. U Q.. Let Q3 be the program obtained frof,,)* by:

e replacing each occurrence of alist . . ., ;] in the atoms of the formule(., ., .), de fault(., ., .)
with the atom associated to the list as in the translation ffnto (), in each rule or default

in (Qa)";
e removing the rules (12)-(13); and

e adding arule

hold(ny, ...1,1) < holds(ly), ..., holds(l})

,,,,,

for each new namey, ;).

We can prove the following lemma.

Lemma 6 Let (D, I') be a consistent and complete an action theory ané- ay,...,a, be a
sequence of actions. Then,

1. if M is an answer set aP*(D, I'), then@; has an answer se¥/’ with the property that

M = holds(f(ayo---o0a;))ifand only if M' = holds(f(i))

2. if M is an answer set af; then there exists an answer set of P*(D,T") such that

M [holds(f(i)) ifand only if M = holds(f(ay o - -+ o a;])).

Proof. The proof is based on Lemmas 3-5. FirBt! is translated into a prograd, in which
every occurrence of an action sequefids replaced by/|. Second, to creat&),)* from Q,,, the

set of action occurrencég, = {occ(a;,i — 1) | i =1,...,k} is introduced tay), with respect to

the set of rules);, which consist of all the rules and defaults, whose body does not contain literals
of the from (A.ii), of the prioritized default theory corresponding 1o, I"). Third, the list notation

is dropped by introducing the names for lists and adding the rules (53) to ¢ygate

e Let M be an answer set d?*. Lemma 3 implies that there exists an answerldetof (),
such thatiolds(f(a; o ---0a;)) € M iff holds(f(i)) € M;. It follows from Lemma 4 that
there exists an answer sk, of (Q,)™ such thatholds(f(i)) € M, iff holds(f(i)) € Ms.
Lemma 5 implies that there exists an answer/gdéwof (); such thatholds(f(i)) € M, iff
holds(f(i)) € M’. This proves the first item of the theorem.

e The proof of the second item of the theorem is similar to the proof of the first item—based
on the second item of the Lemmas 3-5.

44

We now give the proof of Theorem 8.

Theorem 8 Let (D, I") be a consistent and complete action theory ané- a4, ...,a; be a se-
guence of actions. Then,

1. if M is an answer set aP*(D, T'), thenSM*(D,T) U {occ(a;,i —1) | i =1,...,k} hasan
answer sefl/’ with the property that

M = holds(f(ayo---o0a;))ifand only if M' = holds(f(i))

2. if M is an answer set o§ M*(D,T") U {occ(a;,i — 1) | i = 1,...,k} then there exists an
answer sef\/’ of P*(D,T") such that

M = holds(f(i)) if and only if M’ |= holds(f(a; 0 -0 a;)).

Proof. Let P = SM*(D,T') U {occ(a;,i — 1) | i = 1,...,k}. It follows from Lemma 6 that
it suffices to prove thaf); and P are equivalent. FoPred € {rule, default, hold, holds} and
Prog € {P,Qs}, bylit(Prog, Pred) we denote the set of literals whose predicate nanierisi
in the programProg. For a set of literalsS in Qs (respP), M;(S) (resp. N,(S)) we denote
the set of ruleg); whose body is empty or contains only the literal of the fasm(a, k). It
is easy to see that i/ is an answer set af);, then M N (lit(Qs, rule) U lit(Qs, de fault)) =
M, (S). Similarly, if M is an answer set @?, thenM N (lit(P, rule) Ulit(P, default)) = N1(S5).
Observe that for each ruleof the form (29)-(33) inP there exists one and only one rulein
Qs N (lit(Qs, de fault) U lit(Qs, rule)) of Q3 with the following property: (i) andr’ have the
same body; and (ii) the headsioéndr’ refer to the same default or rule of the original prioritized
default theory, i.e., this correspondence is one-to-one. In what follows, we will' usgefer to
rule in Q3 and use- to refer to its correspondence in

We now prove the theorem.

e Let S be an answer set @f;. We have thakolds(possible(a;,j— 1)) € Sforj=1,... k
(Lemma 6 and Theorem 4). Let

Spar = {head(r) | r' € My(S)}
and
Shold = {hold(n[h Im) (t)) ‘ Ny,] is a name |nP, hOldS(ll(t)) e Sfori = 1, .. ,m}.

Intuitively, S, accounts for the difference in the set of rules and defaults whilg ac-
counts for the difference between the nameg iand();. We will show that

S = (S'\ (M1(S) U lit(Qs, hold))) U Spdt U Shotd

is an answer set aP. It is easy to see thai’ satisfies all rules of°. Suppose that there
exists S” C S’ that satisfies?. Considerl € S” \ M’. We know that/ cannot have
the formoce(a;, i — 1) or holds(possible(a;, j — 1)). It can also not be itit(hold) by the

45

construction ofS”. Hence/ is of the formholds(f(t)) for some fluent literaf. This implies
thatholds(f(t)) € S. From the construction af)s;, we conclude that there exists a rufe
in lit(Qs, de fault) or lit(Qs, rule) whose head ig(t) and whose body is satisfied I
Consider its correspondence i the ruler. It is easy to see that the body ofs satisfied
by S’ i.e.,l € S”. This contradicts the fact thatc S’ \ S”. Therefore,S’ is an answer set
of P.

Let S be an answer set dP. Because of the constraint (35) anet:(a;,i — 1) € P, we
conclude thatolds(possible(a;,i — 1)) € S fori = 1,..., k. Similarly, we can show that
S" = (S\(N1(S)Ulit(P, hold)))U{head(r") | rin Ny(S)}U{hold(ny,.. 1,.1) | holds(l;) € S
fori =1,...,m} is an answer set @s.

The above two cases show tliag and P are equivalent. In other words, we prove the theorem.
Theorem 8, together with Theorem 4, yields the proof of Theorem 9.

Theorem 9 For a consistent and complete action the¢fy, I').

1. If spay . .. aysy is atrajectory forA thenSM ek (D T') A) has an answer set/ such that

(@) occ(a;,i — 1) € M for every integet, 1 < i < k, and

(0) si = {f [holds(f(i)) € M}.

2. If SMTlemk(D T, A) has an answer set/ such that

(@) occ(a;,i — 1) € M for every integet, 1 < i < k, and
(b) s; = {f | holds(f(i)) € M}

thensgay . .. as; is a trajectory forA.

Proof.

e Leta = ay,...,a;,. Sincespa, ...agsy IS a trajectory forA, by Theorem 4 there exists
an answer sed!’ of P~ such thats(a;, M) = s;. Theorem 8 implies tha§M/*(D,T") U
{occ(a;,;i — 1) | @ = 1,...,k} has an answer set/ such thatholds(f(«;)) € M’ iff
holds(f(i)) € M. Inother words, we have that= s(a;, M’) = {holds(f (7)) | holds(f(i)) €
M}. Itis easy to verify tha/ is indeed also an answer set$f/"'*»*(D T, A).

o Leta =ay,...,a. Itiseasytoseethadtl’ = (M NIit(SM*(D,T)))U{occ(a;,i—1) | i =
1,...,k} is an answer set §M*(D,T) U {occ(a;,i — 1) | i = 1,...,k}. Thus, Theorem
8 implies that there exists an answer set &€t of P~ such thatholds(f(a;)) € M" iff
holds(f(i)) € M. Because of the rule (37) we have thatsatisfies the goal. This, together
with Theorem 4, implies thaiya; . . . ai s, is indeed a trajectory achievind.

The above two cases prove the theorem. a.
We now prove Theorem 10.

46

Theorem 10 Let(D,T") be a consistent and complete action theory ahdbe an answer set of the
program SMTrefk(D T, A) encoding the planning probleD, I", A) with a set of preferences
P. Then,spa;s; - - - a,s, IS @a most preferred trajectory satisfyiny where

o occ(a;,i—1)e M
o 5, ={f | holds(f(i)) € M}

Proof. Lettr(M) = spa;s1 - - - axsk. Assume thatr(M) is not a most preferred trajectory. By
definition, there exists a trajectoryb; s - - - b, s, such thatprefer(b;,a;) € Pref for some

i < min{m,k} and for every integey, 1 < j < i, prefer(a;,b;) ¢ Pref. Because of
prefer(b;,a;) € Pref we have that

block(executable(a;,i — 1), true) « goal(k)

is applicable inM. Thus, rule (24) implies thaic(a;,i—1) ¢ M. This contradicts the assumption
thatocc(a;,i — 1) € M. O

Appendix B — Answer Sets and Splitting Theorem

Consider a set of ground atomas The body of a rule- of the form (42) is satisfied by if
{ams1,-- . a} NA=0and{ay,...,a,} C A.

For a set of ground atom$ and a progranil, thereductof I with respect ta4, denoted byil4,
is the program obtained from the set of all ground instancés lof deleting

1. each rule that has a naf-literalt « in its body witha € .S, and

2. all naf-literals in the bodies of the remaining clauses.
S is ananswer sebf 11 if it satisfies the following conditions.

1. If IT does not contain any naf-literal (i.e2 = n in every rule ofll) thenS is the smallest
set of atoms that satisfies all the ruledin

2. If the programll does contain some naf-literaly(< n in some rule ofll), thenS is an
answer set ofl if S is the answer set di®. (Note thatll® does not contain naf-literals, its
answer set is defined in the first item.)

For a progranil over the languag€P, a set of literals oLLP, A, is a splitting set of I if for every
ruler € I, r is of the form ifhead(r) € A thenlit(r) C A.

Let A be a splitting set ofl. Thebottom ofII relative to A denoted byb,4(II), is the program
consisting of all rules < IT such that the head efbelongs toA.

Given a splitting setA for 11, and a sefX of literals from/it(b(II)), the partial evaluation ofl]
by X with respect to Adenoted by 4 (11, X), is the program obtained froiih as follows. For each
ruler € IT\ b4 (II) such that

47

1. pos(r)N A C X;

2. neg(r) N Alis disjoint from.X;
there is a rule’ in e4(I1, X') such that

1. head(r") = head(r) , and

2. pos(r’) = pos(r) \ A,

3. neg(r') = neg(r) \ A.

Let A be a splitting set ofl. A solution toIl with respect to As a pair(X,Y’) of set of literals
satisfying the following two properties:

1. X is an answer set df, (II);
2. Y is an answer set afy (1T \ b4 (IT), X);

3. X UY is consistent.
The splitting set theorem is as follows.

Theorem 11 (Splitting Set Theorem, [18])Let A be a splitting set for a prograrmil. A setA of
literals is a consistent answer setldfiff A = X UY for some solutio X, Y) to II with respect
to A. O

A sequencés a family whose index set is an initial segment of ordifald o < p}. A sequence
(Aq)a<y Of sets ismonotoneif A, C Ag whenevera < [, andcontinuousif, for each limit
ordinala < p, Ag = U cq A

<o £ty
A splitting sequencéor a progranil is a nonempty, monotone, and continuous sequéAge,
of splitting sets oflI such thatit(II) = U,<, Aa-

Let (A,)a<, be a splitting sequence of the progrdin A solution toIl with respect to As a
sequencék,), of set of literals satisfying the following conditions.

1. E, is an answer set of the program, (I1);
2. for anya such thaty + 1 < p, 41 is an answer set fary,, (b4, ., (IT) \ ba, (I1), U, <, E5);
3. For any limit ordinaky < p, E, = 0;
4. U,<, E, is consistent.
The splitting set theorem is generalized for splitting sequence next.

Theorem 12 (Splitting Sequence Theorem, [18]Let A = (A,).<, be a splitting sequence of
the programlIl. A set of literalsE is a consistent answer set of iff £ = {J,., E, for some
solution(E,)<, to IT with respect taA. O

48

Appendix C — Sample Translation

In this appendix, we present the details of the translation from action theory into prioritized default
theory as well as itsMODELSencoding.

Action Theory

The action theory D, I') contains the following propositions:

e D contains: .
a causesf if g

b causey if —g
c causesf if —h
hif g
e [contains:
initially —f
initially —g
initially —hA
The formulaA representing the goal is
A=f
The goal isf and we are assuming the presence of a preference

-h<h

Prioritized Default Theory

Let us focus on sequences of actions of length at most 2. The corresponding prioritized default
theory contains the following rule and default definitions. In all the rules and defaules)otes
the empty sequence of actions.

49

Dynamic Causal Laws

rule(dynamic(f,a,€), f(a),[g(€), possible(a, €)])
rule(dynamic(f,a,a), f(aa), [g(a), possible(a, a)])
rule(dynamic(f,a,b), f(ba), [g(b), possible(a, b)])
rule(dynamic(f,a,c), f(ca),[g(c), possible(a, c)])
rule(dynamic(g,b,€), g(b), [-g(€), possible(b, €)])
rule(dynamic(g, b, a), g(ab), [~g(a), possible(b, a)])
rule(dynamic(g,b,b), g(bb), [-g(b), possible(b, b)])
rule(dynamic(g, b, c), g(cb), [mg(c), possible(b, c)])

c,€), f , possible(c, €)]
G a)7 f(C), [_' (),pOSSZble(C,)
c,b), f), possible(c, b))
c,c), f), possible(c, c)]

(T\
—

O
~
1
=
~—~
2

)

rule(dynamic
rule(dynamic

)

rule(dynamic(f,)
rule(dynamic(f]
((f)
((f;)

Executability Conditions

rule(executable(a, €), possible(a, €),[])
rule(executable(a, a), possible(a, a)
rule(executable(a,b), possible(a, b)
rule(executable(a, c), possible(a, c)

rule(executable
rule(exzecutable

((b, €), possible(b, €), [])

((
rule(executable(

((

)
,a), possible(b, a), [])
,b), possible(b,b), [])
) (0,0), 1]

,¢), possible(b, c),]

S o o O

rule(executable

rule(executable(c, €), possible(c, €), |])
rule(executable(c, a), possible(c,a), [])
rule(executable(c,b), possible(c, b), [])
((¢.0)]

(
rule(executable(c, ¢), possible(c, c), [])

50

Static Causal Laws

rule(causal(h,a, €), h(a), [g(a), possible(a, €)])

rule(causal(h,a,a), h(aa), [g(aa), possible(a, a)))

rule(causal(h,a (ba), [g(ba), possible(a, b)])
((h, a,¢), h(ca))

9
rule(causal ca),[g(ca), possible(a, c)])

rule(causal(h, b, €), h(b), [g(b), possible(b, €)])
rule(causal(h,b, a), h(ab), [g(ab), possible(b, a)])
rule(causal(h,b,b), h(bb), [g(bb), possible(b,b)])
rule(causal(h, b, c), h(cb), [g(cb), possible(b, c)])

rule(causal(h, ¢, €), h(c), [g(c), possible(c, €)])
rule(causal(h, ¢, a), h(ac), [g(ac), possible(c, a)])
rule(causal(h, c,b), h(bc), [g(be), possible(c, b)])
rule(causal(h, c,c), h(ce), [g(cc), possible(c, c)])

Inertial Axioms

The inertial axioms are encoded as follows.
o Inertial defaults for the fluent literal f

de fault(inert(f, a,¢€),

de fault

(a),[f(€), possible(a,€)])

f,a,a), f(aa),[f(a), possible(a,a)])

f,a,b), f(ba),[f(b), possible(a,b)])

f,a,c), f(ca),|f(c), possible(a,c)])
(

f
mert f
de fault(inert
de fault(inert

de fault(inert

Y

f

f
f.b,€), f(b),[f(€), possible(b, €)])

f,b,a), f(ab),[f(a), possible(b, a)])

f,b,0), f [f (D), possible(b, b)])

f,b0), f [f(c), possible(b, c)])

), f

f

f

f

(
(
(
(
de fault(inert
de fault(inert (bb),
de fault(inert (cb)
de fault(inert
de fault(inert
de fault(inert
((

de fault(inert

f,c,€), fe), [f(€), possible(c,€)])
f,c,a), flac),[f(a), possible(c,a)])
f,c,b), f(be), [f(b), possible(c,b)])
f,c,0), f(ce), [f(c), possible(c,c)])

o~~~ o~ o~ o~ o~ o~ o~ o~ o~ —~

Y

o Inertial defaults for the fluent literal ¢

de fault(inert(g, a,€), g(a), [g(€), possible(a, €)])
de fault(inert(g, a,a), g(aa), [g(a), possible(a, a)])
de fault(inert(g, a,b), g(ba), [g(b), possible(a, b)])
de fault(inert(g, a, c), g(ca), [g(c), possible(a, c)])

51

de fault(inert(g, b, €), g(b), [g(€), possible(b, €)])
de fault(inert(g,b,a), g(ab), [g(a), possible(b, a)))
de fault(inert(g, b, b), g(bb), [g(b), possible(b, b)])
de fault(inert(g, b, c), g(cb), [g(c), possible(b, c)])
de fault(inert(g, c,€), g(c), [g(€), possible(c, €)])
de fault(inert(g, c,a), g(ac), [g(a), possible(c, a)])
de fault(inert(g, c,b), g(be), [g(b), possible(c,b)])
de fault(inert(g, c, c), g(cc), [g(c), possible(c, ¢)])

e Inertial defaults for the fluent literal &

de fault(inert(h, a,€), h(a), [h(€), possible(a, €)])
de fault(inert(h, a,a), h(aa), [h(a), possible(a, a)])
de fault(inert(h,a,b), h(ba), [h(b), possible(a, b)])
de fault(inert(h, a,c), h(ca), [h(c), possible(a, c)])
de fault(inert(h,b,€), h(b), [h(e), possible(b, €)])
de fault(inert(h,b,a), h(ab), [h(a), possible(b, a)])
de fault(inert(h,b,b), h(bb), [h(D), possible(b, b)])
de fault(inert(h,), [h(c), possible(b, ¢)])
default(mert(h c,€),h(c), [h(€), possible(c, €)])
de fault(inert(h,)
de fault(inert(h,

(inert(

de fault(inert(h,c,c

D“
o
S
- =

(be), [h(b), possible(c,b)])
(cc)), possible(c, c)])

¢ Inertial defaults for the fluent literal —f

de fault(inert(—f,a,€),~f(a), [~ f(€), possible(a, €)])
de fault(inert(—f,a,a), - f(aa), [~ f(a), possible(a, a)])
de fault(inert(—f,a,b), ~f(ba), [~ f(b), possible(a, b)])
de fault(inert(—f,a,c), —f(ca), [~ f(c), possible(a,c)])
de fault(inert(—f,b,€),~f(b), [~ f(€), possible(b, €)])

de fault(inert(—f,b,a), —f(ab), [=f(a), possible(b, a)])
de fault(inert(—f,b,b), ~f(bb), [=f(b), possible(b, b)])
de fault(inert(—f,b,c), ~f(cb), [~ f(c), possible(b, c)])
de fault(inert(—f,c,€),~f(c), [~ f(€), possible(c, €)])
de fault(inert(—f,c,a), = f(ac), [~ f(a), possible(c, a)])
de fault(inert(—f,c,b), ~f(bc), [=f (D), possible(c, b
de fault(inert(—f,c,c), = f(cc), [-f(c), possible(c, ¢

[

)

)
)

52

e Inertial defaults for the fluent literal —g

de fault(inert(—g, a,€),ng(a),[—g(e), possible(a, €)])
de fault(inert(—g, a,a),~g(aa), [~g(a), possible(a, a)])

de fault(inert(—g, a,b), ~g(ba

()7
,7g(ca), [—g(c), possible(a, c)])
(

,b), = [—g(b), possible(a, b)])
,€))

y g b)v [g(e),possz'ble(b, 6)])
,a)),
,a)

default(inert(—g, a
de fault(inert(—g,b
,7g(ab), [g(a), possible(b, a)])
(8b). [g(b), possible(b, b))
,[mg(c), possible(b, c)])

,g(c), [mg(€), possible(c, €)])
, 7g(ac), [=g(a), possible(c, a)])

J

de fault(inert(—

de fault(inert(—

)

possible(c,b)
, possible(c, c)])

,[mg(b

,g(be), [
de fault(inert(—g,c, c), ng(cc), [ng(c

(
(
(
(
(
de fault(inert(—g,b
(
(
(
(
de fault(inert(—g, c
(

(mg
(
(
(
(—g.b,€)
(
de fault(inert(—g,b,b),
de fault(inert(—g, b, c)
(—yg)
(mg
()
()

e Inertial defaults for the fluent literal —h

de fault(inert(=h,a, €), ~h(a), [-h(€), possible(a, €)])
de fault(inert(=h,a a),ﬁh(aa) [—h(a), possible(a, a)])
de fault(inert(—h(b), possible(a,b)])
default(mert(ﬁh a, c),ﬂh(ca [=h(c), possible(a, c)])
de fault(inert(=h, b, €), ~h(b), [-h(e), possible(b, €)])
de fault(inert(=h,b,a), —h(ab), [-h(a), possible(b, a)])
de fault(inert(=h,b,b), - —h(b), possible(b, b)])
de fault(inert(¢), possible(b, c)])
(1 (€), possible(c, €)])
(((a), possible(c, a)])
((,[2h(D), possible(c, b)])
((,[=h(c), possible(c, c)])

J
D‘
o
SR
J
>
Q
&
T
> -

de fault(inert
de fault(inert

de fault(inert —|h c,c

J

@‘

o

S
=

D‘
—~ o~ =

S

o

Initial State

The initial statel” leads to the following collection of facts:

holds(—f(€))
holds(—g(€))

holds(—h(e))

SMODELS Encoding

Let us illustrate the structure of ti#&V/?(D, T") generated from this program.

53

Translation of D
The axioms i are translated as follows:

holds(neg-f(0)).
holds(neg_g(0)).
holds(neg_g(0)).

The dynamic causal laws are translated as follows:

rule(dynamic(f,a,T), f(T +1),n(T)) :— time(T),occ(a,T).
rule(dynamic(g,b,T), g(T + 1),n(T)) :— time(T),occ(b,T).
rule(dynamic(f,c,T), f(T +1),n3(T)) :— time(T),occ(c,T).

Table 1 shows the mapping between names and lists of atoms used for the encoding presented here.
(Notice that we simplify the encoding by using numerical indices in the names instead of using the
lists of fluent literals as indices).

List Name\ List Value

no(T) [
n(T) | [9(Br)]
ny(T) | [neg-g(Br)]
n3(T) | [neg-h(Br)]
na(T) l9(Br)]
ns(T) | [9(Br)]
ne(T) | [9(Br)]
n7(T, A) [f(ﬁT)]
ng(T, A) l9(Br)]
g (Tv A) [h(ﬁT)]
n1o(T, A) | [neg-f(Br)]
ni1 (T, A) | [neg-g(Br)]
n12(T, A) | [neg-h(Br)]

Table 1: Encoding of Lists of Literals

The executability conditions are encoded as:

rule(executable(a,T'), possible(a, T),no(T)) : — time(T).
rule(executable(b, T'), possible(b, T),no(T)) :— time(T).
rule(executable(c, T'), possible(c, T),no(T)) :— time(T).

The static causal laws are encoded as:

rule(causal(h,a,T),h(T 4+ 1),n4(T + 1)) : — occ(a,T),time(T).
rule(causal(h,b,T),h(T 4+ 1),n5(T + 1)) : — occ(b,T),time(T).
rule(causal(h, ¢, T),h(T + 1), ne(T + 1)) : — occ(e,T), time(T).

54

The domain independent partbids is unchanged, and it contains the following rules:

holds(L) :— rule(R, L, Body), hold(Body), not blocked(R).
holds(L) : — default(D, L, Body), hold(Body),not defeated(D).
blocked(R) :— block(R, Body), hold(Body).

The unfolding described in Section 6 transforms/ih&l predicate as illustrated below.

hold(ny(T)) — time(T).

hold(ny(T)) — time(T), holds(g(T)).

hold(ny(T)) — time(T), holds(neg_g(T)).
hold(ng(T)) — time(T), holds(neg_g(T)).
hold(ny(T)) — time(T), holds(g(T)).

hold(ns(T)) — time(T), holds(g(T)).

hold(ng(T)) — time(T), holds(g(T)).

hold(n7(T,A)) :— time(T),action(A), holds(f(T)).
hold(ng(T,A)) :— time(T),action(A), holds(g(T)).
hold(ng(T, A)) :— time(T),action(A), holds(h(T)).
hold(nio(T, A)) : — time(T),action(A), holds(neg_f(T)).
hold(ny1 (T, A)) : — time(T),action(A), holds(neg_g(T)).
hold(ny2(T, A)) : — time(T), action(A), holds(neg-h(T)).

The rules used to define the defeat of a default can be expressed as follows:
defated(D) :— default(D, L, Body),contrary(L, L1), holds(L1).

Observe that since we do not have specific preferences between default we can omit the second
case of thalefeatecpredicate.

Goal Encoding
The goal we are trying to achieve fsthis is encoded as:

: — not goal(2).
goal(T) : — time(T), holds(f(T)).

H{occ(A,T) : action(A)}1 = — time(T).
: — action(A),time(T), occ(A, T),not holds(possible(A,T)).

Preference Encoding

The single preference we require in this example is the formula preference:
-h < h

This will be encoded as:

maximize [holds(neg_h(2)) = 1, holds(h(2)) = 0]

55

Auxiliary

The following auxiliary predicates are employed in the encoding.

contrary(f(T),neg_f(T)) :— time(T).
contmg*y)(negf(T),f(T)) . — time(T).
action(a).
action(b).
action(c).
time(1..2).

56

