N

N

Expression of syntactic and semantic features in
logic-based grammars
Patrick Saint Dizier

» To cite this version:

Patrick Saint Dizier. Expression of syntactic and semantic features in logic-based grammars. [Research
Report] RR-0449, INRIA. 1985. inria-00076106

HAL Id: inria-00076106
https://inria.hal.science/inria-00076106
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076106
https://hal.archives-ouvertes.fr

N - LT AR
G

T

(RHERANTL

N° 449 :

PR i

T,

EXPRESSION OF SYNTACTIC
AND SEMANTIC FEATURES
IN LOGIC - BASED GRAMMARS

T

SR

S

2

[
%
3
g
i g
% |
] 8
i
(u

T IR ey e

Patrick SAINT-DIZIER

-85

it s

N K
3

i 5
1 i

Octobre 1985

IRIS a INSTITUT DE RECHERCHE EN INFORMATIGUE
'ET SYSTEMES ALEATOIRES

Campus Universitaire de Beaulieu
Avenue du Général Leclerc

35042 - RENNES CEDEX Publication Interne n° 266

FRANCE
él. : (99) 36.20.00
Telex : UNIRISA S5 0473 F Septembre 1985 - 19 pages
EXPRESSION OF SYNTACTIC AND SEMANTIC FEATURES
IN LOGIC-BASED GRAMMARS
P. SAINT-DIZIER
ABSTRACT

In this paper, we introduce and motivate a formalism to represent syn-
tactic and semantic features in logic-based grammars. We also introduce
technical devices to express relations between features and inheritance
mechanisms. This leads us to propose some extensions to the basic unifica-
tion mechanism of PROLOG. Finally, we consider the problem of long distance
dependency relations between constituents in Gapping Grammars rules from
the point of view of morphosyntactic featurss that may change depending on
the position occupied by the "moved” constituents: What we propose is not
a new linguistic theory about features, but rather a formalism and a set
of tools that we think to be useful to grammar writers to describe features
and their relations in grammar rules.

RESUME ' :

Dans ce document, nous introduisons et motivons un formalisme pour
représenter dans les grammaires logiques les traits syntaxiques et sémanti-
gues. Nous introduisons en complément des outils pour exprimer les relatlons
entre traits, ainsi que des mécanismes d’' heritage. Cecl nous conduit a augmen-
ter le mécanisme d'unification de base de PROLOG. Enfin, nous considérons le
probléme des dépendances lointaines entre constituants, du point de vue de
1'évolution de leurs traits syntaxiques. Ce que nous proposons ici n'est pas
une nouvelle théorie linguistique des traits, mais plutdt un formalisme et
des outils que nous pensons pouvoir &tre utiles pour 1'écriture de grammaires
du langage naturel. :

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
(L.A.227) EN INFORMATIQUE ET EN AUTOMATIQUE
UNIVERSITE DE RENNES 1 LN.S.A. DE RENNES - - . (LABORATOIRE DE RENNES) -

EXPRESSION OF SYNTACTIC AND SEMANTIC FEATURES
IN LOGIC-BASED GRAMMARS

Patrick SAINT-DIZIER

I.R.1.S5.A.

- Campus de Beaulieu
35042 RENNES -Cedex

FRANCE :

1 INTRODUCTION :

Most linguistic theories use features and feature notations
for the description of several aspects of phonology, morphology,
syntax and semantics. The features used differ slightly from a
theory to another. For instance, some theories use semantic
filtering via semantic features (human, animate, ...), others use
only morphosyntactic features. The structure of features vary also
: some theories use very few features and very refine syntactic
categories [Gross 84] whereas others have a system of complex -
features associated with inheritance mechanisms. A theory such as
Unification Grammars [Kay 85] is essentially based on features and
unification : no Hhierarchy is made between syntactic categories
and other features.

The formalisms and the tools we develop can be used for basic
morphosyntactic feature systems as well as for complex systems of
features including Unification Grammars. The elaboration of a
general theory of features seems to us a promising approach to the
problem of natural language understanding because the use of
features permits considerable elegance without excessive power. Of
course, the means of expression and of implementation are also

H!l D PAPIER RECUPERE ET RECYCLE

crucial. In particular, the means of expression of feature control
have to be independant of the parsing strategy.

The usefulness of features has no longer to be demonstrated.
At the last TANLU workshop, Dan Flickinger insisted on the fact
that ”every element in a sentence must be accounted for, since it
may not be redundant”, As an illustration, he gave the two
following sentences that dlffer only in the form of the auxiliary
})to be” s
(1) ”The scientists who suggested this theory was proven wrong by
all the data returned from the moon. ”’

(2) ”The scientists who suggested this theory were proven wrong by
all the data returned from the moon. ”

He shown also the interest of using lexical rules in the lex1con to
express generalizations, including inflectional and derivational
rules.

In this paper, we first define what we call b351c features.
Then, we introduce the notion of descriptor and prototype of
descriptor for the set of features of a given language.. Next, we
give some properties of a descriptor and, finally, we introduce
functions for instanciations and comparisons of descriptors. These
functions are practical tools for grammar writers. Tools and
structures are viewed in the spirit of a declarative programming
language and a programming methodology is introduced through
examples. Finally, we consider the problem of long distance
dependency relations between constituents in Gapping Grammars from
the point of view of morphosyntactic features that may change
depending on the position occupied by the ”moved” constituents, and
that may be used to express constraints on gaps.

2 FEATURES.

Features are traditionally viewed as attribute-value pairs
[Gazdar and al 82], [Karttunen 84}, [Pereira and al 84], for
example : (gender-masc), (person=2nd). Most current theories make
no longer a distinction between features and values : values are
themselves features. Thus, from this point of view, it is possible
to define a complex feature system represented as an acyclic graph
or as an oriented tree :

(agreement= ((gender masc), (number:plural)))-

This approach is adopted in Lexical Functional Grammar (LFG)
[Kaplan 82], Generalized phrase Structure Grammar (GPSG) [Gazdar
and al B82] and Unification Grammars, among others and also in
PATRII, a grammar for english [Shieber and al. 83].

We now define the set L of features for a given language. L
is a finite set of distinct constants vi whose nature is language
dependent. For instance, for french, we have syntactic features
such as : singular, feminine, 1st, 3rd, ... We may also have
semantic features (human, abstract idea, ...), if we wish to have
semantic filtering. This notion of semantic features is subject to

several controversies : their nature is not really well known and
their number is a priori unbounded. Their role also is not very
clear. However, it seems to me that semantic features can be used

'in an efficient way for natural language front ends, where the

vocabulary and the underlying concepts are very limited [Dahl 77].
It is also possible to define a hierarchy between semantic features
with a partial order relation associated with inheritance
mechanisms. Works in cognitive science [Le Ny -80] confirm the
interest of this approach. As our long term goal is to build
interfaces that supports a natural language communication, we will
also consider here the use of semantic features. More precisely,
in our examples, we assume that to a verb is associated a list of
pairs :

(sem-t-subj,list-of-sem-t-of-cpt)

where :

sem-t-subj is an acceptable semantic feature for the subject,
list-of-sem-t-of-cpt is the corresponding list of acceptable
semantic features for complements. : -
we alsc assume that to an NP is associated a proper semantic
feature.

A feature value may be a single value (complex or not), a
disjunction of possible values, or the negation of a value :
NOT(1lst) means that the value associated with that - feature is any
value except the value ”1st”. Several justifications about this
point and examples are developed in [Karttunen 84]. As we will see
later, these possibilities have consequences on the unification
mechanism we need. : :

Another possible feature is the expression of the X-bar
notation, with values : 1, 2, 3, lexical. The syntactic function
(subject, object, ...) is also a feature in the sense given here.
but it has also other uses. In fact, the syntactic function is
also used to build the resulting structure of the parsing process
(ex. : f-structure in LFG), or to control some aspects of the
syntactic analysis in Gapping Grammars [Dahl and Abramson 84],
[Saint-Dizier 85].

3 PROTOTYPE OF A DESCRIPTOR OF FEATURES.

Wé now give a structure to the set of features. We introduce
the notion of preterminal feature, descriptor and prototype of
descriptor of features for a given natural language.

A'preterminal feature P is a feature to which a value or a

vdisjunction of values is directly associated. We think that

features should be designed so as to be independent, and, in fact,
they are naturally so in most cases. However, if, for a specific
language, or a particular context, there are relations between
features and their respective values, then integrity constraints

can be formulated. These constraints are specified apart from the

rules themselves and intervene as a control process when
descriptors are built.

The prototype of descriptors of the features of a given
language is an oriented tree where : _

- the root node is an arbitrary node we note FR,

- nodes are features. The lowest nodes are the preterminal
features.

- each feature is used only once.

- to each preterminal symbol is associated the set of possible
values it may have.
Example :

,///)P\\\\
Synt Se

gender number person Sem-pr Sem-cpt

| l .
{...} {...} (...} (...} {..q.}

m

This prototype depends on the language considered and also,
for natural language front ends, on the precision and the sharpness
of the treatment. Then, once defined, the prototype of descriptors
is fixed for the grammar and, in fact, act as a process that
controls the coherence of descriptors when they are elaborated
during the parse. It may be considered as a guideline for the
description of feature structures in grammar rules, or, in
programming terms, as a predefined typed structure, with sets of
predefined values attached to its leaves.

Finally, to each terminal or non-terminal symbol in the
grammar rules is associated a descriptor D which is a particular
instance of the prototype of descriptor and where preterminal
features are linked to precise values. However, and most
importantly, a descriptor may be only partially instanciated : an
unknown subtree is then represented by a variable. The variables
we use within the logic programming framework are logical variables
and their use has several meanings. Logical variables [Palmer and
al 83] allow one to create structures with free constituents.
These free constituents represent structures that have not yet been
discovered, they may also mean that the subtree represented by a
logical variable is any structure or of no present interest.

Finally, it is also possible to formulate constraints on such
variables, and, in logic-based grammars, these constraints may
percolate in other rules. In fact, logical variables and terms,
associated with unification, are the major strength of logic-based
grammars. From a computational point of view, using appropriately
logical variables results in a gain in efficiency, because
instanciated structures are used only when they are necessary.

Let’s con51der, for example, the lex1cal item ”the”; its assoc1ated
descriptor is :

gender -- *g
number -- sing
person -- 3

Synt
FR—"

™~

(a * before a symbol denotes a variable indentifier) (FR is the
root of the descriptor; FR= Feature Representation.)

Sem — xs

4_ PROPERTIES OF DESCRIPTORS.

Theorems and properties given below follow straightforwardly
from the definitions given above, thus, they will be stated without
proofs.

Theorem 1 : The set of possible descriptors, completely
instanciated or not, is finite. . This follows from the fact that
feature names and feature values are finite.

 Definition 1 : A descriptor is empty if it is represented by a free
variable.

Definition 2 : A descriptor is maximal if ‘is it completely
instantiated.

Definition 3 : To create an extension Dj of a descriptor Di is to
limit its degree of freedom : a free variable is instantiated to a
value or a disjunction of values 1is decreased of one or several
.elements.
More formally, for any descriptor Di let :
Pi be the set of preterminal symbols linked to a single value. Pi
is a set of pairs (pt Vi) where pt, is the name of the feature
and v., its value.
Fi be the set of symbols that dominate only a free variable.
LEi be the set of preterminal symbols linked to a disjunction of
values. - '
Let Ei = Pi U Fi U LEi.
Then, Dj is an extension of Di (noted EXT(Di,Dj)) iff for all e, ik’
element of Ei, one of these conditions is true :

(i) if €5k E (Pi U LE1), then e = €4y

(ii) if &5 ELEL, e J

(iii) if e EFi, ghen (e E Fi) or (e; E (Pi U LEi)) or
e. jk- is the root of a non- elementﬁry tree. J

Definition 4 : Dm belongs to the set of minimal extensions of Di
iff A .
3 Dj such that EXT(Di,Dj) and EXT(Dj,Dm)

Definition 5 : Two descriptors Di and Dj are equal iff EXT(Di,Dj)
and EXT(Dj,Di).

Theorem 2 : The empty descriptor is unique whereas the set of
maximal descriptors is finite and equal to the set of all the
possibilities of distribution of values on adequate preterminal
symbols.

Theorem 3 : for all Di : EXT(Di,Di).

Definition 6 : Two descriptors Di and Dj A-unify (noted
A-Unify(Di,Dj) for “augmented unification”) iff they unify except
"for the subtrees in Di or Dj that -are either disjunctions or
- negations. In this case, the classical notion of unification has
to be augmented . Then we say that :

- a subtree A-unifies with a disjunction of subtrees if it
A-unifies with one subtree of the disjunction.

- a subtree A-unifies with the negation of a subtree iff it
does not A-unify with this subtree.

- two disjunctions A-unify iff A-unification is a bijection
between these two sets of elements. :

- two negations A-unify iff the subtrees dominated by the
negation A-unify. :
Notice that A-unification on subtrees dominated by a negation is

computed as late as possible in order to have as less free-

variables as possible in these subtrees.

Theorem 4 : A-unification is reflexive, transitive and not
symmetric.

Theorem 5 : If Di and Dj A-unify, then the result of the
unification process is a descriptor Dk such as :

(i) EXT(Di,Dk)

(ii) EXT(Dj,Dk)

(iii) Dk is the minimal common extension of Di and Dj.

Theorem 6 : Dk, as defined above, is unique. This theorem is
essential for the coherence of the system.

5_ INSTANTIATIONS AND COMPARISONS OF DESCRIPTORS :

We now define functions for instantiations and comparisons
between descriptors. These functions are presented here, for more
convenience, as PROLOG predicates. One main feature of these
functions is that they are designed to apply on completely or
partially instantiated descriptors as well as on parts of
descriptors (proper subtrees we call sub-descriptors).

When they are used in grammar rules, some functions can be
viewed as the expression of constraints on feature values. Other
functions are wused to build the resulting descriptor of the
structure described by the rule. They quite directly encode the

6

)

9

main functions stated by Gazdar [Gazdar and al. 82] : the head
feature convention, the control agreement principle and the foot
feature principle. Up to now, in Definite Clause Grammar (DCG)
[Pereira 80], Extraposition Grammar (XG) [Pereira 82] and Gapping
Grammar (GG) [Dahl and al 84)], features were represented by
~distinct variables, and most of them in distinct arguments. The
relations between features were directly encoded in the arguments :
if two distinct symbols have the same value for a given feature,
then the same variable identifier appears in the arguments of the
respective symbols. These means of expression are insufficient and
expensive in processing time.

A very different point of view to describe relations between
features is that of [Miyoshi and Furukawa 85]. They propose an
object-oriented parsing mechanism for the logic programming
" language ESP. Each component of the parser is abstracted as a
class and access between classes is performed by a message-passing
mechanism. Features, viewed.as slots, are described as particular
instances of category classes. Another point of view is that of
[Uehara and al. 85] designed for LFG. They view parsing, and
especially control procedures, as passing messages among actors.
Each context free rule corresponds to an actor. Features are
represented by predefined structures. A distinction is made
between two kinds of schemata : defining schemata and constraining
ones, which roughly correspond to our inheritance mechanism and
expression of constraints. In both approaches, the mechanisms they
have defined are transparent to the user, but the power of
expression for feature instantiations and control and the elegance
of the ”surface * grammar remain unchanged. We view these two
works as the specification of efficient and reliable interpretors
for grammars. ' '

We now define the ‘functions we need to completely define
. grammar rules :

Union of two descriptors :

UNTON(<feature name>,<descriptor D1>,<descriptor D2>).

If the subtrees sl and s2 of <descriptor D1> and <descriptor D2>
with root node <feature name> A-unify, then <descriptor Dl> is
rewritten into a new descriptor where sl is replaced by the minimal .
common extensions to - sl and s2. The remainder of <descriptor Dl>
remains unchanged. If the A-unification 1is not possible, then the
predicate UNION is evaluated to false and the rule. is not
applicable. This predicate is used to build the descriptor of a
structure from the descriptors of the subtrees it is composed of.
~As we explain in section 6, this resulting descriptor is not always
a strict extension of the descriptors from which it is built.
Classical compositionality applied to features has to be extented
so as it takes into account ”contextual syntactic information”, in
other terms, informations about the syntactic structure of other
constituents in the sentence and on the position of constituents in
the sentence itself. . .

Coordination of two descriptors

COORD(<descriptor DI>,<descriptor D2>,<{descriptor D3>).

This function, - lariguage dependent, is specifically designed for
coordination. COORD has not to be confused with the intersection
(or generalization) process defined in [Pereira and al 84] which
is, in our terminology, the most instantiated descriptor containing
all the elements the two descriptors have in common. This
operation is not directly useful in itself for our purpose, it has
rather to be considered as a by-product of COORD.

When COORD is applied, <descriptor D3> is the result of the
partial functions applied on specific features of <descriptor Dl>
and <descriptor D2>. If at least one of these functions cannot be
applied then COORD is evaluated to false. Some of these partial
functions are conditions of A-unification. For example, two
structures that have a proper semantic feature have to A-unify for
this feature (or, more generally, to be in relation if there exists
an hierachy of semantic features). Another function is the
construction of the intersection of two disjunctions. Finally, the
last class of functions are those of the form :

Fct(f1,f2,f3)

where the fi represent subdescriptors or simply values of

preterminal features. f3 is the result of the application of the
function Fct. A very simple example is coordination in french,
where masculine prevails on feminine. Thus, we have :

Fct(masc, fem, masc).

This predicate is used to make feature checking in coordination as
well as to build the resulting descriptor of the structure that
dominates the coordination.

For coordination, L. Karttunen [Karttunen 84] proposes a
mechanism based on generalization, linguistically sound for
english, but not for other languages, such as arabic, that justify
the complex apparatus developed here. He uses artifices (negative
constraints) for the generalization process to work properly, these
artifices make the system less clear and more specific to english.
In addition, generalization cannot be applied directly on semantic
features because there exists an hierarchical relation between
semantic feature values. For instance, from human + animate it
?geﬁlnogl result any feature (a variable) but the feature animate

ahl 77].

Transformation of features :

TRANSF (<feature>, <{DI1>,<new-subtree>,<D2>).

where Di are descriptors. This predicate is always evaluated to
true. D2 is equal to Dl except for the subtree with root node
<{feature> which is equal to <new-subtree>. This function is used
fortmodifications of features when constituents are ”“moved” in a
sentence.

Equality :
AUNTF(<featured>,<D1>,<D2>).

This function is evaluated to true if the sub-descriptors of D1 and

8

»

0

D2 dominated by the node <feature> A-unify. This funet1on is often
used for feature agreement. Dl has to A-unify with D2 or
conversely.

Inclusion :

INCL(<feature f1>(D1),<feature f2>(D2)).

This function is used for features agreement. It is evaluated to
true if the subdescritor with root node <feature fl1> of Dl
A-unifies with the subdescritor with.root node <feature f2> of D2.

6 HUH TO WRITE GRAMMAR RULES WITH DESCRIPTORS :

In this section, we give examples of rules for french What
we want to show is that the functions we have defined above can be
used in the spirit of a declarative programming language, which is
really convenient for grammar rule writers. The main pr1n01ple is
modularity in rules, thus, we have the following parts in a rule :

- the derivation part itself,

- the agreement control,

- the construction of the resulting descriptor(s).
The same principle remains valid for other aspects, not mentioned
here, such as the construction of the output representation. The
programming style is that of logic programming. Finally, the use
of the type of functions defined above allows the grammar writer to
make a distinction between descriptors of symbols that appear in
the left and in the right hand part of the rule. Thus, this makes
easier to make the system of rules applicable forward -as well as

backward, for natural language ' synthesis. Descriptors are
represented by logical variables which make the grammar independent
of the parsing strategy. The rules are here classical DCG,

“augmented by an argument that represents the descriptor .

NP(xD) ---> Det(*D1) Adj(#d2) Noun(xD3)

AUNIF (FR, #D1, *DJ) (Notice that FR is the roat node
AUNIF(FR,*DZ,*DJ) of the whole descriptor)
UNION(FR,xD, *D3).

VP(xD) ---> V(*D1) NP(xD2) PP(*D3)
INCL (D1 (sem-cpt),»D2(sem-pr))
INCL (#d1(sem-cpt),*xD3(sem-pr))
UNION(R, *D1,+D).
For state verbs followed by a verb in the infinitive form in french,
we have the rule : :
V(FR(*d3 *d4)) ---> V¥ ETAT(*DJ) V(xD2)
AUNIF(nature-verb,nature-verb(state),*Dl)
AUNIF (mode,mode (infinitive), *D2)
AUNIF (sem-pr,xD1,*D2) (The 2 verbs have the same semantic
UNIUN(Synt,*dJ,*Dl) feature for an acceptable subject)
UNION(Sem, xd4,*D2). (The VP inherits of the syntactic
features of V_ETAT and the semantic features of V it
dominates.)

7 FEATURES AND LONG DISTANCE DEPENDENCIES :

~ We now consider the problem of the transmission and, in some
cases, of the variation of features when constituents are ”moved”
in a sentence, depending on the new position occupied by these
constituents. Although the terminology used here is often that of
the transformational theory, what we present here is applicable to
non-transformational theories as well, since the formalism of the
logic-based grammar we consider is that of Gapping Grammars. In
the remainder of this section, we first present Gapping Grammars,
then consider the problem of feature tranmissions and modifications
in long distance dependencies, and finally show how features may
intervene to limit the freedom of expansion of gaps.

7.1 Gapping Gremmars :

Gapping Grammars (GG) are a generalization of the
Metamorphosis Grammars (MG) [Colmerauer 78], [Dahl 77], Definite
Clause Grammars (DCG) [F. Pereira 80] and Extraposition Grammars
(XG) [F. Pereira 83]. A GG rule allows one to ”indicate where
intermediate, unspecified substrings can be skipped, left
unanalysed during one part of the parse and possibly reordered by
the rulés application for later analysis by other rules” [Dahl and
Abramson 84], [Dahl 84]. The left hand part of a GG rule is
composed of a non-terminal symbol followed by any string of non
terminal and terminal symbols and gaps. PROLOG calls can also be
used. The right hand side of a GG rule is a string of non terminal
and terminal symbols, of gaps in any position and PROLOG calls. GG
are a powerfull formalism that can be used to describe in a elegant
and concise way complex natural language sentences as well as
formal languages. A Gapping rule is of the form :

o, gep(x4) Yy gop(Xe) ---- ol —7 B
where :

oA € Wy

o, ieldn] ,dieVn UV
XL € \/:' | |
6={ gped) , A&2<n]

pe (Wuvrua)™

10

b

0

For example, the left extraposition of an adjective in french:
"Cette JDlle demeure agreable s ”
(this nice, pleasant home ...) whlch becomes : »Agréable, cette
jolie demeure ... ” -
is represented by the following GG rule :

Det Gap(X) Adj ---> Adj [,] Det Gap(X).

The basic form appears in the left hand part of the rule while the
form with the movements appears in the right hand part. In fact,
the arrow ---> has to be thought of as : <{---.

Gapping Grammars are a notational tool to express movements of
constituents or 1long distance dependencies. They are not
transformational grammars. We can say, in fact, that the explicit

-constituents of a GG rule are in relation and that the type of.
" relation involved is directly expressed by the GG rule. Gaps in

Gapping Grammars has not to be confused with gaps or trace in
linguistics. The term gap represents here variable that abbreviate
symbols in grammar rules.

7.2 Feature transmissions and modifications :

Gapping Grammars adopt a classical approach to account for a
"missing” constituent X in a position P which is to posit that at

- some other level, X is in this position P. These two levels are

respectively represented by the right and the left hand parts of a
GG rule. Thus, such a representation can account for feature
transmissions without positing an additional abstract derivational
level. This is sufficient (1) since a GG rule contains a symbol X
of an appropriate type in the ”extraction site” position and (2)
since features, like- case-functions, are not only considered as
being properties of specific nodes but as being properties of all
the nodes dominated by these specific nodes. For instance, if an
adjective belongs to an NP subject, then it inherits of the
function SUbJeCt Conversely, features of terminal symbols may
percolate up in the derivational tree. 4

In GG, it is possible to represent transﬁissions of

features, modifications and inheritance mechanisms, by the
functions defined above which can apply on any two descriptors. In

11

addition, inherited features can percolate in other GG rules when
several ”transformations” are involved. This gives a little more
power to GG than to classical GPSG. In GPSG, the dependence
between the ”extracted” node and the extraction site is captured by
derived categories. One problem is that it has never been made
explicit how features interact with the rule deriving machinery.

Let’s now consider the main phenomena that arise when
constituents are moved in a sentence. The first phenomenon is
direct transmission of features. This is done in GG rules by using
the same variable to denote the descriptor of the “moved”
constituent in the right and in the left hand part of the GG rule.
It is also possible to use, for more clarity, the function UNION.
Thus, the left extraposition of an object NP is represented by the
following GG rule :

'NP(%¥D1) V(xD2) gap(X) NP(#D3) ---> NP(#D3) NP(xD1) V(«D2) gap(X).

Next, inheritance mechanisms are expressed in GG rules by the
same means and for the same reasons than in rules without gaps.
Inheritance mechanisms can operate on any two partial or complete
descriptors. An interesting example that illustrates _the use of
inheritance mechanisms is what P. Jacobson [Jacobson 82] calls the
strong connectivity. Strong connectivity occurs “when properties
of material dominated by the extracted node are determined by the
position of the extraction site. »” She gives the following
example, where the case marking on the fronted pronoun is
determined by the position of the extraction site :

* ”Who did John see ?”

”Whom did John see ?”

”Who did John say was coming ?”
* ”Whom did John say was coming ?”

The use of ”who ” or "whom” is accounted for by the NP’s
case-marking. When it has the case "obj”, ”whom ” is generated and
when it has the case "subj”, who " is produced. The way how to
represent this phenomenon by a GG rule rises an interesting, well
known, methodological problem. The question is to what extend
should one use features to describe properties of constituents. If
we consider, in the example above, the way how to represent the
fact that an explicit NP has been transformed into a wh-pronoun, we
can express this in two distinct ways in GG:

- by a new symbol, "wh-pronoun”, that inherits of the features
of the NP it represents:

NP(xD1) V(%¥D2) gap(X) NP(*D3) --->

wh-pro(*D3) Aux(xD4) V(¥D1) gap(X)

UNION(Synt, D4, *D5)

UNION(FR,*D5,%D2)

TRANSF (mode, ¥D5, (mode=infinitive)). _

(Notice that, in addition, Aux inherits of the syntactic features
of V, and V is itself put in the infinitive form.)

12

)4

v

[

- by a feéture “expression” with possible values: explicit,

wh-pronoun, ... Pronominalization” is here considered as a

feature. The GG rule is then:

NP(¥D1) V(¥D2) gap(X) NP(xD3) --->

NP(xD6) Aux(xD4) V(xD5) NP(xD1) gap(X)
UNION(Synt,xD4,xD5)

UNION(FR,*D5, *02)

UNION(FR, *06,*03)

TRANSF(modb,*D5 (mode=infinitive))
TRANSF(expresszon,*Dé (expresszon-wh-pra))

This rule is equ1valent to the previous one. However, the mean of
expression illustrated by this latter rule has several pract1cal
and theoretical advantages for GG. First, we think that it is
closer to the linguistic reality and easier to understand. Next,
and most importantly, it permits to express with much more clarity
and efficiency constraints on long distance dependencies
[Saint-Dizier 85] in GG with a higher economy in non terminal
symbols. Finally, we will see in the next section that features
may be used to limit the freedom of expansion of gaps, whereas
symbols may not.

Thus, we think that the use of features should be pushed to
its limits for all the factors that may changed when constituents
are moved. What is then crucial to notice is that nodes whose
features differ are not nodes of the same type.

A more complex case is the agreement of a verb conjugated with
the auxiliary ”avoir” (to have) in french. This verb agrees with
the object NP gender and number only if the object complement
occurs before it, otherwise the verb is not agreed, i.e. it is in.
the neutral form. Example :

”»J’ai vu des personnes. ” (I saw people)

which becomes:

”Les personnes que j’ai vugs]) ,
A solution to this problem is to consider that, depending on the
position of some constituents, some of the features of other
constituents (or of these very constituents) are inhibited. - This
can be realized by adding an argument to nodes of a descriptor
which specifies if the features dominated by this node are
inhibited or not. If they are inhibited, then the constituents
involved are in the neutral form. The function TRANSF is used here
with a slightly different role : it transforms a subtree into the
same subtree except that the ”inhibition” argument is changed. The
corresponding GG rule is:

”

NP(#DJ) V(*D2) gap(X) NP(*D3) --->
NP(xD3) Rel_pr NP(xD1) V(xD4) gap(X)
UNION(FR,*D4,xD2) :
TRANSF(mode,*DZ (modb(lnhzblted) 11)) etc...

13

(This example is given for anlysis, i.e., the rule should apply in the
opposite side of the arrow --->) _
(11 specifies that the subtree dominated by mode remains unchanged.)

Finally the case argument can also be used to constrain the »
application of a rule so as to prevent incorrect derivations. This
adjunction is necessary, for instance, to allow the elision of the
relative pronoun ”"who ” in a sentence such as :

”The student I saw left., ”
but not in :
¥ ”The student saw me left. ”
where ”who ” is obligatory :
»The student who saw me left. ”

. This means that only relative pronouns that replace NP
complements may be elided. The corresponding GG rules, where we
only make appear the case argument, are : .

Rel-marqueur gap(X) NP(xcase) --->
Rel-pronoun(xcase) gap(X).

Rel-pronoun(subj) ---> [who].

Rel-pronoun(obj) ---> [who] / [].

(Terminal symbols are written between square brackets.)

?

7.3 Using the case argument as a restriction on the expansion of
gaps:

It may be convenient to add a descriptor argument to gap
variables themselves. If we consider gap(X) as an element of the
non-terminal vocabulary, we can then add arguments to it. We will
here focus on the case argument of descriptors. Adding a case
argument to gaps implies that gaps represent any string of symbols
that have a specific case-function, or that belong to a set of
specific case-functions, if the case-argument may be a list.

"

The semantics of a case arqument in a gap is that the nearest
symbol, up in the tree, which dominates entirely the gap and to
which a case function is assigned, has to have the function stated
in the case argument of that gap.

~ We can express that a given gap has a specific function, i.e,
the case argument is instantiated. We can also say that a gap has
an unknown function but which is equal (or different) to that of ,
another constituent or another gap. This can be done because the

-

variables we use are logical variables [Palmer 83]. A gap is then
noted :

gap(X(xcase))
(For more clarity, we only represent the case feature.)

An illustration of this point is the extraposition of an
adjective in a subject NP in french :

»Cette belle maison confortable est 1’orgueil de ses proprietaires. ”

(This nice, comfortable house is the pride of its owners.)
which becomes ::

»Comfortable, cette belle maison est 1’orgueil des ses proprietaires. ”

To prevent the extraposition of adjectives in object NPs, we
can then write the following rule : -

Det Gap(X(subj)) Adj(subj) --->
- Adj(subj) f,] Det gap(X(subj)).

It is important to note that, even if we allow the case
argument of a symbol to be a list (of functions it can or it cannot
be), we do not describe ipso facto the complement of the language
expressed by the rules. We only add an argument that plays the
role of a restriction. The approach presented here can be extended
to all the other features and, thus, we can use GG rules, for
instance, for the reconstitution of quasi-elliptical constructions
in a sentence. - : :

7_ CONCLUSION :

In this paper, we have breifly presented a complete system for
the description of features and features assignment functions in
logic-based grammars. The tools defined here are presented in the
spirit of a declarative programming language. We have also shown
how features are used in long distance dependency relations and how
they can limit the expansion of gaps in Gapping Grammars.

We think that this formalism is adaptable to other grammar
systems, different of those presented here, with minor adaptations.
Unification on terms that contain logical variables is the basic
operation, from which all the operations we have described may be
defined. Once this level of specification defined, the next stage
is to develop efficient mechanisms for the execution of the grammar
rules.

15

2

REFERENCES

[Colmerauer 78] A. COLMERAUER Metamofphosis Grammars. In Bolc Edt
Natural language communication with computers. Springer Verlag.

[Dahl 77] V. DAHL Un systéme déductif d’interrogation de banques
de données en espagnol. Thése Université , Marseille-Luminy. GIA.

[Dahl.and Abramson 84] V. DAHL, H. ABRAMSON On Gapping Grammars.
Proc of the 2nd logic programming conf. Uppsala Univ.

[Dahl 84] V. DAHL More on Gapping Grammars. Conf. on Fifth
Generation Computer systems 1984, Tokyo.

[Gazdar 82] G. GAZDAR Phrase Structure Grammars, in ”The nature of
syntactic representation” Jacobson and Pullum Edts, D. Reidel
Pub.Co. v

[Gazdar and al. 82] G. GAZDAR, G.K. PULLUM Generalized Phrase
Structure Grammar : a Theoretical Synopsis. Research Report, Univ
0f Sussex

[Gross 84] M. GROSS Lexicon Grammars, Proceedings of COLING-84.

[Jacobson 82] P. JACOBSON Evidence for gaps. In P. JACOBSON and
G.K. PULLUM Edts ”The nature of syntactic representation ”
Jacobson and Pullum Edts. D Reidel Pub.Co.

[Kaplan 82] KAPLAN R. M. LFG : A formal system for grammatical
representation. In The mental representation of grammatical
relations, J. Bresnan Edt. MIT Press.

[Karttunen 84] L. KARTTUNEN Features and Values. In Proceedings
COLING-84. :

[Kay . 85] M. KAY Unification in Grammar. In “Natural language
understanding and logic programming. ” V. DAHL and P.
SAINT-DIZIER Edts. North-Holland pub. co.

[Le Ny 80] J.F. LE NY La sémantique psychologique. PUF, Paris.

[Miyoshi and Furukawa 85] H. MIYOSHI and K. FURUKAWA Object
oriented parser for the logic programming language ESP. In
"Natural language understanding and logic programming. V. DAHL
and P. ST-DIZIER Edts. North Holland Pub. Co.

[Pereira and Warren 80] F. PEREIRA, D. WARREN Definite clause
grammars for natural language analysis. A survey of the formalism

~and a comparison with ATN. Artificial intelligence no 13.

[Pereira 83] F. PEREIRA Logic for natural language analysis. SRI
international technical note no 275. : ‘

17

[Pereira and al. 84) F. PEREIRA, S. M. SHIEBER The Semantics of
Grammar Formalisms Seens as Computer Languages. In Proc.

COLING-84.

[saint-Dizier 85] - P. SAINT-DIZIER Long distance dependency
constraints in Gapping Grammars. Research report INRIA-IRISA Univ.
of Rennes 1.

[Shieber and al. 83] S.H. SHIEBER, H. USZKOREIT, F. PEREIRA, J.
ROBINSON, M. TYSON The formalism and implementation of PATRII.

SRI report 1894.

[Uehara and al. 85] K. UEHARA, R. OCHITANI, O. MIKAMI, J.
TOYODA An integrated parser for texte understanding: viewing
parsing as passing messages among actors. in ”Natural language
understanding and logic programming. ” V. DAHL and P. ST-DIZIER
Edts. North Holland Pub. Co.

Imprimé en France
par
I'Institut National de Recherche en Informatique et en Automatique

)

Y

W
i
1

[t e >

s,
o

