
UC Irvine
ICS Technical Reports

Title
A computational theory of motor learning

Permalink
https://escholarship.org/uc/item/6zp370nj

Authors
Iba, Wayne
Langley, Pat

Publication Date
1987
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6zp370nj
https://escholarship.org
http://www.cdlib.org/


Notice: This Material 
may be protected 
by Copyright Law 
(Title 17 U.S.C,) 

A Computational Theory of 
/ 

Motor Learning 

Wayne JJ>~>e 
Pat Langley 

/ 

Irvine Computational Intelligence Project 
Department of Information & Computer Science 

University of California, Irvine, CA 92717 

Technical Report 87-25 

October 1, 1987 

We would like to thank John Gennari for helpful comments on an earlier draft of this paper. 
We would also like to thank the members of the UCI World Modelers project - David 
Benjamin, John Gennari, Kevin Thompson, and Patrick Young - for numerous discussions 
leading to the ideas reported herein. Maggie and Kirsten Iba provided many insights into 
early childhood motor control. 

This research was supported by Contract MDA 903-85-C-0324 from the Army Research Insti­
tute and by a gift from Hughes Aircraft Company. Approved for public release; distribution 
unlimited. Reproduction in whole or part is permitted for any purpose of the United States 
Government. 

1 





Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entel'IJd) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1. REPORT NUMBER 

Technical Report No. 2 
12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 

4. TITLE (and Subtitle) 

A Computational Theory of Motor Learning 

7. AUTHOR(•) 

Wayne Iba and Pat Langley 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 

Department of Information & Computer Science 
University of California, Irvine, CA 92717 

11. CONTROLLING OFFICE NAME AND ADDRESS 
Army Research Institute 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 

14. MONITORING AGENCY NAME & ADDRESS (if different from Control/int Office) 

16. DISTRIBUTION STATEMENT (of this Report) 

Approved for public release; distribution unlimited 

5. TYPE OF REPORT & PERIOD COVERED 

Annual Report 7 /86-6/87 

6. PERFORMING ORG. REPORT NUMBER 

UCI-ICS Technical Report 87-2~ 
8. CONTRACT OR GRANT NUMBER(s) 

MDA 903-85-C-0324 

10. PROGRAM ELEMENT, PROJECT, TASK 
AREA & WORK UNIT NUMBERS 

12. REPORT DATE 
October 1, 1987 

13. NUMBER OF PAGES 
27 

15. SECURITY CLASS. (of this report) 

Unclassified 

15a. DECLASSIFICATION/DOWNGRADING 
SCHEDULE 

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 

18. SUPPLEMENTARY NOTES 

To appear in Computational Intelligence. 

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 

machine learning 
motor behavior 
skill improvement 
speed-accuracy trade-off 

hill dim bing 
motor schemas 
motor programs 

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 

OVER 

DD FORM 
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified 

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

20. ABSTRACT 

In this paper we present a computational theory of human motor performance and learn­
ing. The theory is implemented as a. running AI system called MAGGIE. Given a de­
scription of a desired movement as input, the system generates simulated motor behavior 
as output. The theory states that skills are encoded as motor schemas, which spec­
ify the positions and velocities of a limb a.t selected points in time. Moreover, there 
exist two natural representations for such knowledge: viewer-centered schemas describe 
visually perceived behavior, and joint-centered schemas a.re used to generate behavior. 
When the model acts upon these two representational formats, they exhibit quite differ­
ent behavioral characteristics. MAGGIE performs the desired movement within a feed­
back control paradigm, monitoring for errors and correcting them when it detects them. 
Learning involves improving the joint-centered schema over many practice trials; this 
reduces the need for monitoring. The model accounts for a number of well-documented 
motor phenomena., including the speed-accuracy trade-off and the gradual improvement 
in performance with practice. It also makes several testable predictions. We close with 
a discussion of the theory's strengths and weaknesses, along with directions for future 
research. 

Unclassified 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



A THEORY OF MOTOR LEARNING PAGE 1 

1. Introduction 

The ability to generate skilled movements is shared by experts in such diverse domains 
as professional basketball and concert music. Although skilled performance attracts one's 
attention, the acquisition of such expertise is even more intriguing. Many years of practice 
go into such improvement, and motor learning never completely halts; the old saying that 
"practice makes perfect" oversimplifies the process greatly. Our long-term goal is to develop 
a computational theory of motor skills and their acquisition. This theory should account for 
known aspects of human motor behavior, and ideally it should predict unobserved phenomena 
as well. In this paper, we describe the progress we have made by limiting our attention to 
one aspect of motor behavior - the task of refining an existing motor skill through practice. 

Most research on motor behavior has focused on either very high-level or very low-level 
aspects of motor control. High-level work (e.g., Fikes, Hart, & Nilsson, 1972; Segre, 1987) 
has addressed issues of planning: generating a sequence of abstract operators that produce 
complex motor behavior. The low-level work in robotics has addressed the generation of 
appropriate torques and voltages (e.g. Swartz, 1984) and in the case of neuro-physiology 
has considered the excitation levels of various neurons (e.g. Arbib, 1982; Davis, 1976). Our 
main concern lies with neither of these levels; Instead, our work focuses on an intermediate 
level at which torques and voltages need not be specified, but where the operators are still 
rather primitive. 

There are two basic approaches to studying motor behavior that are orthogonal to these 
three levels of focus. The engineering approach, represented by robotics, has developed algo­
rithms that control the movement of an arm, but which lack psychological plausibility. The 
'natural organism' approach, represented by neuro-physiology, physiology, and psychology, 
has devised theories that account for observed phenomena, but often these theories are not 
computational in nature. 1 In our work on motor behavior, we have addressed both of these 
concerns: our theory is computational and also accounts for findings about human motor 
skills. In this respect, our results narrow the gap between robotics research and psychological 
work on motor control. 

In this paper we introduce MAGGIE, a computational model of human motor behav­
ior. We begin by reviewing some results from research on human motor skills. In section 
3 we present a detailed description of MAGGIE's performance system, along with experi­
mental results on the system's behavior. In section 4 we describe the learning mechanism 
together with results from experiments on learning motor skills. We conclude by discussing 
the model's successes and failures in explaining various psychological phenomena, and by 
outlining our plans for further research in this area. 

1 Some psychologists have presented 'computational' models that consist of mathematical equations, but 
that are not implemented as a coherent computer simulation. 
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2. Background on human motor behavior 

We do not have the space to present a complete review of the relevant research in motor 
behavior. We have selected material that will help motivate and justify claims made later 
in the paper. We first consider the basic structure of the human motor system at the level 
of the nervous system. After this, we review a number of motor phenomena that have 
been observed in both humans and animals. See Kelso (1982) for a more comprehensive 
introduction. 

2.1 Results from neuro-physiology 

The muscle structure in the higher mammals consists of two basic components. The 
muscle fiber constitutes the main part of the muscle; this includes the alpha neuron, which 
controls the degree to which the fiber contracts. This neuron is controlled by signals from 
higher centers of the nervous system via the spinal cord. Running through the center of the 
muscle fiber is the muscle spindle, a tiny sensory organ that sends afferent signals back to the 
spinal cord in proportion to its level of tension. If a load is placed on a limb, stretching the 
muscle fiber, the muscle spindle is stretched as well, sending signals to the spinal cord. The 
spinal cord sends return signals, causing the alpha neuron to fire more rapidly and increasing 
the contraction force in the main muscle so as to relieve the tension in the muscle spindle 
(Kelso, 1982b ). 

This local configuration of the alpha neurons and the muscle spindles may explain the 
low-level stability observed in natural organisms. Pairs of muscles work in opposition to form 
a servo-like mechanism, which maintains the necessary forces of contraction in the respective 
muscles. For example, when a horse is sleeping standing up, this servomechanism cycle keeps 
the horse from falling over in a gust of wind. Note that this low-level feedback cycle does not 
involve higher-level processing, but instead operates directly through the spinal cord. This 
means that organisms are able to set their limbs in a desired position relatively independent 
of loads and without higher-level sensory feedback. This observation will play an important 
role in our theory of motor behavior. 

2.2 Results from experimental psychology 

Experimental psychology provides an additional set of constraints on theories of human 
motor performance and learning. Below we summarize a number of well-established motor 
phenomena that have influenced the development of our theory. 

One of the most robust findings is that performance improves with practice, and that 
this improvement occurs gradually. We also know that motor learning follows the power law 
of practice. This principle states that, if a given amount of practice p leads to an increment 
i in the the quality of performance, then another increment of improvement i will require 
an order of magnitude more practice p2 • This phenomenon rules out models that learn too 
quickly or too slowly. 
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The literature on motor behavior also distinguishes between closed-loop and open-loop 
modes of behavior. Movements performed in closed-loop mode can be altered while in 
progress as a result of feedback. This feedback indicates when errors have occured and need 
to be corrected. Closed-loop mode is commonly associated with relatively slow movements. 
Movements performed in open-loop mode can not be altered while in progress because feed­
back is either unavailable or unincorporated. Such movements are generally of a much faster 
nature (on the order of 200 msec.) and once initiated, are carried out to completion without 
changes resulting from the detection of errors. Since there is evidence for both modes of 
performance (Stelmach, 1982; Schmidt, 1982a), a complete model of human motor behavior 
should account well for both. 

Another well-established motor phenomenon is the trade-off between speed and accuracy. 
In many cases, a subject can perform a skill reasonably well at a relatively slow rate, but 
performance deteriorates if he carries out the skill at a rapid rate. Fitts' law (Fitts & Peter­
son, 1964) indicates a logarithmic relation between speed and accuracy, whereas Schmidt, 
Zalaznik, Hawkins, Frank, and Quinn (1979) and Meyer, Smith, and Wright (1982) report 
linear speed-accuracy trade-offs. Regardless of the quantitative results, any plausible model 
of human motor behavior must' explain this deterioration of performance with increased 
speed. 

Yet another well-documented result is that humans have a required delay before they 
are able to incorporate sensory feedback and initiate an alteration in their motor behavior. 
This delay has been found to be approximately 200 msec. (Schmidt, 1982a). For example, 
a subject might be told to perform a motor task but to watch for a signal indicating that 
he should perform a different task. On the average, it will take 200 msec. from the onset of 
the signal to the initiation of the new motor task. This result places a clear restriction on 
the minimum cycle time for conscious modification of behavior in models of human motor 
behavior. 

A final phenomenon involves the transfer of skill between limbs or effectors. This is 
notably demonstrated by comparing handwriting generated with the dominant hand, the 
dominant hand on a blackboard, the opposite hand, a foot, and the mouth. The similarities 
between the resulting scripts are so strong that they can be easily recognized as being gen­
erated by the same person (see Hollerbach, 1979). This indicates the presence of invariants 
in the human motor system, which any successful theory of motor behavior must explain. 

3. A Model of Motor Performance 

Skill learning cannot occur in the absence of some performance task, and in this section 
we describe MAGGIE, a running system that implements our theory of motor performance. 2 

2 A more detailed description of MAGGIE's performance mechanisms can be found in Iba and Langley 
(1987). 
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Moreover, any performance task requires some environment in which to perform. Thus our 
model operates within a simulated environment that mimics the movement of jointed limbs. 
We begin by describing the specific performance task we are addressing - to carry out a 
well-specified motor skill with as little error a.s possible. We then introduce the inputs that 
are given to the model: the environment, the simulated arm, the sensorimotor interface, and 
the desired behavior. Next we consider the abstract data types and operators used by the 
performance system. Finally, we describe the details of MAGGIE's performance component, 
deferring discussion of learning issues until section 4. 

3.1 The Task of Feedback Control 

In a broad sense, our research goal is to develop a general computational model of 
human motor behavior. The performance component addresses only a small part of this 
task; specifically a simple form of feedback control (Wiener, 1948). In this task, an agent 
is given some desired action sequence; it then manipulates its effectors to carry out this 
sequence as accurately as possible, using its sensors to detect differences between the desired 
and actual movement. 3 The agent's sensors measure certain variables in the environment, 
which are then compared with the desired behavior. This comparison produces an error 
signal, which the agent uses to determine future effector applications. These in turn lead to 
changes in the environment. 

For example, consider the task of painting the trim around a window. The desired 
behavior, or end result, is a coating of paint on the wood around the window but not on the 
glass itself. In this case, the brush can be viewed as the effector and the painter's eyes are 
the sensors. Here the significant variable measured in the environment is the gap between 
the edge of the paint and the glass window, measured at the point where the brush has most 
recently been applied. The error signal is obtained by observing this gap. If the paint is not 
reaching the edge of the window, commands are issued that move the brush closer to the 
glass as the stroke is in progress. Conversely, if paint begins to get on the glass, the brush 
is moved away from the window. 

3.2 Inputs to the Model 

MAGGIE's performance component incorporates only very general assumptions about 
the nature of the agent and its environment. This generality requires one to provide addi­
tional constraints in the form of four inputs: 

3 Powers (1973) uses a somewhat different terminology. For instance, our 'sensors' and 'effectors' corre­
spond to his 'sensory functions' and 'effector functions.' Similarly, our 'desired action sequence' is the same 
as his 'reference signal.' 
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• a. simulated environment in which to operate, along with a set of objects existing 
in this environment ;4 

e an effector(s} or arm, which can be manipulated by the agent and which has 
well-specified relations with other objects in the environment; 

e a sensorimotor interface, which handles communication between the agent and 
the environment; 

• a. desired behavior, against which to compare actual effector movement. 

The simulated environment. Rosenbaum (1985) has argued that motor behavior implies 
purposes and that purposes necessitate an a.gent. However, it makes no sense to refer to an 
agent in the absence of the environment in which it operates. One can conceive of alternative 
environments that obey different physical laws than operate in the real world, but since we 
are interested in human motor behavior we will consider a "standard" environment. 

A complete specification of an environment entails listing all the objects and their as­
sociated attributes. Interactions between objects must be defined, such as collisions. For 
the purposes of developing and testing our model, we have developed a simple environment 
that contains objects with position, length, and velocity, but that ignores mass, friction, and 
force. In the experiments reported below, the only objects in the world are the components 
of the a.gent's arm. 

The arm. Since we are interested in human motor behavior, we will only consider jointed 
effectors, which we will call arms. Although the components or links of the arm are specified 
as ordinary objects in the environment, the arm merits special treatment here because of 
additional attributes inherently necessary for jointed movement. A joint is a relation that 
exists between two objects that are attached to each other. 

In a more realistic world, a joint's attributes would include the type of joint, its friction 
coefficient, its maximum force and velocity, and its range of movement. However, we have 
restricted ourselves to a. simplified type of ball-and-socket joint having only two attributes 
- the maximum velocity and rotational limits. Currently, we restrict each joint's range of 
motion to a hemisphere. In addition, rotation about the axis of a link is prohibited. 

The sensorimotor interface. An agent will have difficulty interacting with its environment 
unless it can perceive that environment and control its effectors. In our simulation, both 
of these are accomplished through a sensorimotor interface. The 'motor' component of the 
interface lets the a.gent control the motion of its arm. The 'sensory' component relays sensory 
information to the a.gent about the location of objects, including the arm. 

The transfer of sensory information can be viewed as a filtering operation. Essentially, the 
sensory filter takes a complete description of the world and passes a subset of this information 
to the agent. MAGGIE accepts two forms of sensory input: visual information giving the 

4 Some of these objects will correspond to the agent's effectors, which it can use to manipulate the 
environment. 
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absolute positions and velocities of objects; and proprioceptive information giving the relative 
positions and velocities of the arm's joints (with respect to the previous joint5 ). Visual 
information is given in a. viewer-centered representation, whereas proprioceptive information 
is provided in a. joint-centered representation. We describe both of these coordinate systems 
in more detail later. 

The motor interface can also be viewed as a filter, since not all possible motor commands 
are legal in the simulated world. For instance, if the agent specifies an arm movement that 
would take the arm outside the allowed ranges, the interface "clips" the movement so that 
the resulting movement is within the allowed limits. Except for such cases, motor control 
amounts to simply setting the relative positions of arm components to the values specified by 
the agent in the joint-centered representation. We believe this is a reasonable simplification 
in light of the motor behavior literature indicating that humans can "set" the positions of 
limbs without feedback (Kelso, 1982b ). 

Desired behavior. Finally, an agent must be able to determine how well it is performing. 
The sensorimotor interface provides the position of the arm during a motion, but this must 
still be compared against some desired behavior. This comparison can be made easily if 
both the sensory information and the desired behavior are in the same representation. In 
MAGGIE, desired behavior is given as a sequence of sensory-level descriptions specifying 
the positions and velocities of the joints in viewer-centered coordinates. Associated with 
each description is a time value indicating when, with respect to the start of the movement, 
the sensory-level description should match the sensory input from the environment. This 
approach lets MAGGIE directly compare the desired behavior to the descriptions generated 
by the sensory filter. 

3.3 Representations and data structures 

Any computational model of motor skills requires some representation, and we will use 
the term motor schema for the memory structure that encodes the information necessary to 
carry out a particular movement. This is similar in spirit to Schmidt's {1982b) use of the 
term. Unlike Schmidt however, we use the term motor program not in reference to a stored 
memory structure, but for a sequence of motor commands generated dynamically from the 
motor schema. We will return to the distinction between the motor schema and the motor 
program shortly. 

To be more specific, we will define a motor schema as a sequence of ordered pairs, or data 
points (DP1, DP2, ... , DPn), where each data point, DPi =(ti, { (J1c, p, v), ... } ), contains a 
time value ti and a set of 3-tuples. The data. points, DPi, a.re ordered such that the time 
values, ti, are in an increasing sequence: ti < tj for i < j. Each 3-tuple is a set that contains: 
a joint name Jk, which identifies the joint described by the 3-tuple; a position p, which is 

5 We define the previous joint of a particular joint to be the adjacent joint which is closer to the base of 
the arm in the kinematic chain. 
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the expected position of the joint in three-space at time ti; and a velocity vector v, which 
describes the desired velocity of the joint upon reaching the position p. Each data point 
contains a set of such 3-tuples; each describes a different one of the effector's joints, though 
not all joints need be specified. The exceptions are the first and last data point in the schema, 
which must specify a 3-tuple for every joint. We assume that for any pair of unique 3-tuples 
in this set, Jk -:f J1. Because a motor schema specifies arm positions at only selected points 
in time over the course of a. movement, we refer to a schema. as a sparse representation over 
time. 

Let us further define two different types of motor schemas. The first type, a viewer­
centered schema, represents the position and velocity vectors using Cartesian three-space 
coordinates with the origin centered at the agent. In contrast, a joint-centered schema 
represents all positions and velocities in local joint-centered coordinates, where each local 
coordinate system is defined in terms of the previous joint. 

In the viewer-centered representation, all joints are described in terms of a single Carte­
sian coordinate system. We assume this information is available as visual feedback during 
execution of a skill; it can also be used to describe another agent's actions. Thus, this 
framework can be used for both recognition and monitoring purposes. In this scheme, the 
common coordinate system is defined by an origin, set at the base (the first joint) of the 
effector, and the z, y, and z axes. Given a more complete description of the agent, one can 
imagine other origins for a viewer-centered schema, such as the agent's eyes. We do not 
believe the choices of origin and axes will affect performance, assuming a linear translation 
from the chosen origin to the base of the effector. 

In a joint-centered representation, the rotation of each joint is described in terms of 
its own spherical coordinate system. We assume this form of information is available as 
proprioceptive feedback during execution; this representation can also be used to actually 
generate motor behavior. MAGGIE uses a modified spherical coordinate scheme to represent 
joint rotations in each associated coordinate frame. 6 That is, for each joint and its reference 
coordinate system, a triple (Ba:, By, p) consists of two angles of rotation, Bz and By, from the 
z axis about the z and y axis respectively, and a distance p from the origin 7 • 

The coordinate system for a particular joint is defined in relation to the previous joint. 
For instance, the position and orientation of the coordinate system for an elbow, would be 
described in the reference frame of its associated shoulder joint. Likewise, the wrist joint's 

6 Our convention for orienting a coordinate frame is noticeably different from the Denavit-Hartenberg 
notational convention commonly used in robotics work. We have developed our own convention to allow 
spherical joints, whereas the Denavit-Hartenberg system allows only revolute joints. 

7 This modified spherical coordinate scheme should not be confused with the standard spherical coor­
dinates using triples of (p, 8, </> ). The details of this method would introduce unwanted complexity to the 
current discussion but can be found in Iba and Langley (1987). 
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coordinate system would be described in relation to the elbow joint. The convention we use 
to fix the coordinate system of joint Ji relative to that of joint Ji-1 is as follows: the origin 
is placed at the end of the Ji-1th link; the Zi axis is made colinear with the Ji-1th link; 8 

the placement of the Zi axis determines the normal for the ZYi plane; the Zi axis is placed 
within this plane such that the ZZi plane perpendicular to the ZYi-1 plane; and the Yi axis 
is fully constrained by the placement of the other two. Initially, when all joint rotations are 
zero, the respective z and y axis for each joint are parallel while the respective z axis are 
all colinear. As any particular joint is rotated, an equivalent rotation (with respect to our 
convention) is applied to successive coordinate frames. Any set of rotations applied to the 
joints will always result in the Ji-1th link determining the normal to the ZYi plane and the 
direction of the Zi axis. 

Table 1. Two representations of motor schemas for the straight-line task 

Desired 

( ( 1, { ( J 1 ' ( 100' 0' 0) ' ( 0' 0' -10)) ' ( J 2 ' ( 200' 0' 0) ' ( - 2' 0' 2))}) ' 
(6, {(Ji, (95, o, -31)' (-0.6, o, -2) ), (J2' (180, o, 20), (-2, o, 2))} ), 
(20, {(J1, (100, o, 0), (0, o, 1)), (J2, (100, o, 100), (-2, o, 2))}), 

(39, { (J1' (0, 0, 100), (-8.63, o, 0))' (J2' (0, o, 200)' (-2, o, 2))})) 

Joint-centered 

( (1, { (J0 , (0, 1.571, 100), (0, 0.1, O)), (J1 , (O, o, 100), (0, -0.018, 0))}), 
(6, { ( J0, (O, 1.886, 100), (O, 0.021, 0)), ( Jl, (0, -0.856, 100), (O, 0.02, 0))}), 

(20, { ( J 0 , (0, 1.571, 100), (0, -0.01, 0)), (J1, (0, -1.571, 100), (0, 0.01, 0))}), 

(39, {(Jo, (0, O, 100), (0, -0.086, 0)), (J1, (0, O, 100), (0, 0.065, 0))})) 

Table 1 shows an example of both types of schemas. The viewer-centered representation 
example is the specification for the desired behavior given to MAGGIE for the experiments 
reported later in the paper. The joint-centered example is a direct translation of the desired 
behavior into the alternate representation scheme. While these numbers may be incompre­
hensible, the underlying differences become evident when considering the movements they 
each respectively describe. Figure 1 presents the paths traced by MAGGIE's arm for the 
respective motor schemas shown in table 1. Each picture shows the the arm in the positions 
specified by the data points given in the schema. One can see that the joint-centered schema, 

8 In cases where one of. the arm's link components is not straight, we use the endpoints of the link to 
determine the z axis. 
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Figure 1. Traces of the behavior defined by a viewer-centered and joint-centered 
motor-schema.. The a.rm is shown a.t the appropriate positions for the 
times specified by the data points in the schemas (table 1). 

yields quite different results from the desired behavior although it specifies the same data 
points as the other. 

Although at first glance this dual representation might seem unnecessary, it lends consid­
erably to the model's explanatory power. We propose that humans often acquire an initial 
motor skill in viewer-centered terms by observing another person performing that skill. The 
person then translates this description into a joint-centered schemas when he attempts to 
execute the skill himself. It is important to note that these two representations have quite 
different behavioral characteristics. Each framework is able to specify any point in three­
space, but when used by MAGGIE during the generation of behavior, they can produce quite 
different results. There are two factors acting in conjunction to cause this effect: the sparse 
representation used to represent motor schemas, and the method used by MAGGIE to gen­
erate the positions for the intervening times. As a result, some motions can be much more 
easily described in one scheme that the other. For instance, the viewer-centered framework 
can represent a straight line with only two points, whereas a joint-centered schema would re­
quire an infinite number of points. This differential power of the two representations predicts 
that some tasks will be more difficult to perform than others. 

The sparse representation of a motor schema seems plausible for storing motor skills in 
long-term memory, but to actually generate motor behavior one must specify the missing 
points. We will use the term motor program to refer to such a dense representation for a 
skill. A motor program can be viewed as a mathematical function that takes a time value 
as an argument. As output, it returns a set of triples defining, in local joint coordinates, 
the position for each joint at the given time. It is important to distinguish motor programs 
from joint-centered schemas. The latter specify the rotations and velocities of joints only at 
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selected times; in contrast, motor programs specify joint rotations at every point in time. 
Such information can be generated dynamically from a joint-centered schema, as we discuss 
in the next subsection. 

3.4 The Performance Component 

Given a viewer-centered schema that describes some desired behavior, MAGGIE's per­
formance system attempts to carry out this behavior using a specified limb. This involves a 
number of processes. First, the viewer-centered schema must be translated to a joint-centered 
representation. The resulting schema must then be 'run' by generating an executable motor 
program and carrying out the specified actions. Simultaneously, the agent must monitor 
the resulting states, comparing actual positions with the intended positions as given in the 
viewer-centered schema. Execution and monitoring proceed in parallel until an error is de­
tected. At this point, the system initiates an error correction process to return the limb to 
the desired path. Below we consider each of these processes in more detail. 

From viewer-centered to joint-centered schemas. We assume that the agent begins with 
a viewer-centered description of a motor skill, presumably learned by observing another's 
actions or through problem solving. The first step in carrying out a motor skill involves 
applying an inverse kinematic transform 9 to the viewer-centered schema resulting in a joint­
centered representation that can be directly executed. This transformation must be done 
serially across the joints of a limb, starting with the base joint and considering each suc­
cessive joint in turn. This process can be time-consuming, and we believe it is one of the 
factors contributing to the slow and awkward nature of newly acquired skills. With practice, 
the joint-centered schema becomes fixed in long-term memory. At this point, one can exe­
cute the skill without invoking the transformation process; thus one could perform the skill 
more smoothly. MAGGIE does not currently model the acquisition stage for joint-centered 
schemas, but transforms a viewer-centered description into a joint-centered one initially and 
saves it. 

Executing the joint-centered schema. Joint-centered schemas only specify the positions and 
velocities of the joints at selected points in time. Within our framework, the simulation of 
actual motor behavior requires the specification of either the relative locations or velocities for 
every joint at every simulated time step. Our motor program, as described above, satisfies this 
requirement since it generates the respective joint positions for every time value. MAGGIE 
does not store motor programs in memory; the system creates them in real time as it executes 
the skill. In our theory, this is accomplished by generating a spline for each joint between 
successive pairs of the points specified in the joint-centered schema. 10 During a movement, 

9 The details of this transformation are not important to this discussion but can be found in Wylie {1975). 

10 We assume that low-level neural circuitry can take relatively sparse inputs from a schema and generate 
such a motor program in real time. 
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when the limb reaches the end of the spline segment between two data points, D Pi-1 and 
DPi, the latter becomes the source and the next point in the sequence, DPi+1, becomes the 
target for the next spline. This method yields a smooth, continuous curve throughout the 
execution of the schema. 

Monitoring. As we have seen, there is no guarantee that behavior generated by the joint­
centered schema will correspond to that specified in the viewer-centered description. Thus, 
MAGGIE must have some means of detecting divergences, and this is the role of the moni­
toring process. In order to make the necessary comparisons, the monitoring component uses 
the viewer-centered schema to generate a 'pseudo' motor program. This program cannot 
be executed by effectors, but it specifies the desired position at each time during execution. 
When the difference obtained from this comparison becomes noticeable (i.e., exceeds a pa­
rameterized threshold), the monitor interrupts execution and invokes the error correction 
process. MAGGIE monitors for errors at a constant rate; this limits the speed at which it 
can execute a skill accurately, as we shall see shortly. 

Error Recovery. Once MAGGIE detects a significant divergence, it must still recover from 
that error. When invoked by the monitoring process, the error recovery mechanism applies a 
'burst of force' in a direction that will reduce the size of the error. 11 Error recovery involves 
generating a correction function 12 that modifies the velocity of the arm for a short period of 
time. In the default condition, this function is generated such that the area under the curve_ 
is the same as the amount of error detected. This means that if the error remains constant, 
the path of the limb would return to the desired path after error correction has ended. The 
proportion of the area under the correction function to the size of the error can be adjusted 
by a compensation parameter. 

Depending on the circumstances, the adjustment of this parameter can produce under­
corrections or overcorrections. The former occurs in cases where the uncorrected behavior 
was about to begin reconverging with the idealized path, but had barely exceeded the er­
ror detection threshold before this occurred. Since the original motor program would have 
returned to the desired path on its own, an overcorrection will result. In contrast, undercor­
rections will occur if the uncorrected behavior is still diverging from the desired path. Such 
cases will require multiple calls to the error recovery process. 

Figure 2 shows successive snapshots of MAGGIE's arm during the execution of the 
straight-line schema. Each snapshot was taken at constant intervals so that one can perceive 

11 This process models the type of corrections that result from error detection at the brain level of the 
nervous system, and not corrections resulting from servomechanisms at the spinal level. 

12 We use an inverted U type correction function (sin, parabolic, or absolute value) causing a gradual 
change in the limb's actual movement over the lifetime of the correction process. Note that this introduces 
another parameter - the type of correction function. Along with this, MAGGIE also allows the duration of 
the correction process to be adjusted. 
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Figure 2. Successive snapshots taken at regular intervals showing the move­
ment of MAGGIE's arm during the execution, monitoring, and 
error-correction of the straight-line schema. 

the velocity of the arm at different stages of the movement. Notice that with the monitoring 
and error-recovery processes, performance approximated the desired behavior more closely 
than the joint-centered specification alone (right hand side of figure 1). Further improve­
ments can be achieved by learning but we will return to this after quantitatively testing the 
performance mechanism. 

3.5 Behavior of the performance system 

We have implemented our model of motor behavior as a running FranzLisp program. 
Although the theory is independent of a particular arm instantiation, we have tested MAG­
GIE using a two-jointed arm with roughly human characteristics. Thus, the arm includes 
an upper arm and a forearm, the former rotating at a shoulder joint and the latter at an 
elbow joint. MAGGIE has been implemented to model motor behavior in three dimensions 
as described in the previous sections, but our tests to date have been run in two dimensions. 

Initial studies have focused on a skill that involves moving the hand through a straight 
line. We have already seen that such motions are easy to describe in viewer-centered co­
ordinates, but that they are are extremely difficult for a jointed arm to execute except in 
trivial cases (Hardy, 1984). In a joint-centered representation, every joint must trace the 
path of an arc. Thus, MAGGIE can never completely achieve straight-line motion; it can 
only approximate such a path by stringing together a sequence of many small arcs, closely 
spaced in time. However, this requires learning, and in the current section we will limit our 
attention to performance phenomena. 

In section 2, we noted that one of the most robust :findings about human motor behavior 
involved a trade-off between speed and accuracy. Since MAGGIE can run motor schemas 
at different speeds, we can test the model's ability to predict this trade-off. Figure 3 shows 
the results with the 'straight-line' skill represented by the motor schemas of table 1. Clearly, 
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executing this schema at higher speeds leads to greater deviations from the desired motion, 
i.e., to lower accuracy. The relation is approximately linear for the range examined, repli­
cating the results reported by Schmidt et al. (1979). This effect emerges naturally from the 
constant rate of monitoring. The more quickly the system runs a joint-centered schema, the 
fewer times it is able to check for errors and the larger they grow before correction. 

We believe that this trade-off demonstrates the continuum between open and closed 
loop behavior. This continuum represents the amount of monitoring occurring during move­
ments. When performing a skill slowly, one can make frequent adjustments, thus operating 
in a closed-loop mode. As the speed of the skill is increased, the performer can do fewer 
monitorings thereby moving the performance towards open-loop mode along this continuum. 
We address a number of other issues related to this in Iba and Langley (1987). 

We have also noticed another intriguing regularity in MAGGIE's behavior. Recall that 
the implementation contains a parameter for scaling the amount of correction applied to a 
given error. Different settings of this parameter lead to different responses to error. Fre­
quently the model detects an error as the deviation is becoming progressively greater, and 
radical corrective action is in order. However, such a remedy can also result in overcompen­
sation, leading the model to 'overshoot' the desired position or trajectory. 

Figure 4 presents the effects on the model's behavior as one alters the value of this 
parameter. When the schema is run quickly (making monitoring infrequent), increasing the 
amount of correction may lead to a reduction in the average deviation from the desired path. 
However, even higher settings can actually produce worse performance at a given speed. For 
instance, when attempting to follow a straight line, the hand may instead follow a jagged 
line that cuts back and forth across the desired path. Although we did not plan the model 
to behave in this fashion, we believe it makes sense. When monitoring occurs frequently, the 
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system makes only minor errors and needs only minor corrective action. A high setting for 
the correction parameter will cause the system to overcompensate, and this can lead to wild 
oscillations. 

MAGGIE also accounts for the transfer of motor skill between limbs. The model stores 
each joint-centered schema without reference to the particular limb involved. Thus, the 
system could take a schema designed for shoulder, elbow, and wrist joints and execute it on 
a different arm or even on a hip, knee, and ankle. However, to the extent that learning has 
fine tuned the schema for a given set of joints, performance will degrade drastically when it 
is run on limbs with different physical characteristics. We have not yet run tests to show the 
model predicts this behavior, but this is one of our priorities for future research. 

In summary, MAGGIE explains a number of well-known phenomena relating to motor 
performance. However, our main concern is with learning. In the following section we de­
scribe the model's learning components, along with its empirical behavior on this dimension 
and its relation to human motor learning. 

4. Improving joint-centered motor schemas 

Motor learning involves both the acquisition and the improvement of motor schemas. 
We envision a three-stage process: acquiring an initial viewer-centered schema through ob­
servation or problem solving; storing a joint-centered schema by repeatedly transforming the 
viewer-centered representation; and improving the joint-centered schema through repeated 
practice. Although we ultimately plan to model each of these processes, our main results 
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involve the final stage of improvement and we will focus on that process in the remainder of 

the paper. 

Let us reiterate the learning task we are attempting to model. Given an initial joint­
centered schema that represents a motor skill, along with a viewer-centered schema for the 
same skill, modify the joint-centered schema. so its behavior diverges from the viewer-centered 
description as little as possible. MAGGIE employs two interacting learning mechanisms to 
improve its joint-centered schemas. In this section we describe these mechanisms, along with 
their behavior on the line-drawing task discussed earlier. 

4.1 Motivations for learning 

Before describing the learning processes themselves, let us review the motivations for 
improving joint-centered schemas. Recall that MAGGIE's mechanisms for monitoring and 
error recovery let it execute a joint-centered schema with a moderate level of accuracy. Given 
this ability, why should the system bother to alter its schemas? 

One obvious reason is that one prefers increased accuracy (with speed and attention held 
constant). That is, the overall error during the performance of a skill at a given speed should 
be smaller after learning has occurred. The error recovery process alone can not accomplish 
this, but with sufficient learning, MAGGIE is able to mimic its viewer-centered schemas with 
arbitrary accuracy. 

A second reason is the desirability of executing a skill either more quickly or with less 
attention (i.e., in open loop mode). As stated above, our theory assumes that there is a.n 
upper limit on the rate at which monitoring can occur. Similarly, our theory assumes that 
monitoring is a conscious process requiring scarce attentional resources. However, improving 
a given joint-centered schema. should lessen reliance on monitoring and error correction. This 
should have two beneficial effects. Learning should let one carry out a skill more rapidly 
without losing accuracy. It should also let one execute a skill with less attention, freeing 
resources to carry out other tasks in parallel. 

Although monitoring and error correction give immediate aid in carrying out desired 
behaviors, learning provides a longer-term solution. We have said that viewer-centered and 
joint-centered representations lead to different interpolated behavior, but learning lets the 
latter approximate the former. For instance, one can simulate straight-line behavior with 
a joint-centered schema by adding a number of more densely spaced points to the schema, 
creating a. sequence of very small arcs. 

Thus, our learning model relies heavily on the distinction between viewer-centered and 
joint-centered schemas and the different representational powers of these two frameworks. 
It also relies on the performance assumptions covered in the last section, specifically the 
mechanisms for monitoring and error recovery. This seems desirable; a learning system 
should not be independent of assumptions about representation and performance. 
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4.2 Assumptions and learning operators 

The model makes a. number of basic assumptions about the nature of the learning process. 

The main claims are: 

e The model learns only when the errors are detected in the execution of a schema; 
MAGGIE is driven by failures rather than successes. 

e Learning occurs after the trial during which errors occurred; this implies some 
memory for arm positions and velocities during the trial. We will call this the 
motor buff er. 

e MAGGIE retains only one version of each joint-centered schema in its long-term 
memory; thus, it carries out a form of hill-climbing learning (Langley, Gennari, 
& Iba, 1987). 

With these constraints in mind, let us consider the model's two operators for schema im­
provement. 

Recall that MAGGIE specifies a motor schema as a sequence of points, each describing 
the locations and velocities of a set of joints. This suggests two natural approaches to 
modifying joint-centered schemas: 

e modifying one of the fields in an existing point for a particular joint; or 

e removing an existing point from the schema or adding an entirely new point. 

The first of these seems the less drastic action, since it leaves the basic structure of the schema 
unaltered. However, there may be limits to what can be accomplished by modifying numeric 
values; in such cases, one may need to revise the schema structure by adding or removing 
points. To review, each data point consists of a time value, and a set of 3-tuples. Each 3-tuple 
consists of a. joint identifier, a position vector, a. velocity vector, and a velocity magnification 
factor. In principle, any of the values in a data point, except the joint identifier, may be 
modified; however, our experiments to date have only considered adjusting the velocities. 
Nor have we examined the deletion of points from schemas; in its current form, MAGGIE 
only adds points. 

4.3 MAGGIE's learning algorithm 

We have seen that error detection invokes the error recovery process, but it also triggers 
learning. Whenever the pa.th of a joint diverges noticeably from the desired path, the monitor 
stores this 'failure point' along with the currently desired point into the motor buffer. This 
lets MAGGIE delay learning until after the execution has been completed. 

Table 2 presents the model's basic learning algorithm. Since a number of errors may occur 
in a given trial, the first step involves selecting a failure point on which to base modification. 
In principle, one could use all errors noted in the trial to alter the schema. However, this 
would lead to much more rapid learning than observed in humans, so we limit the model to 
a single point. One explanation for this limit is that motor memory decays before additional 
points can be accessed. In any case, MAGGIE selects that failure point in the motor buffer 
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with the largest error. We assume that larger errors require more processing than smaller 
ones a.nd therefore a.re most easily available since they decay less rapidly. Thus, larger errors 
a.re reduced before smaller ones, giving a learning curve roughly similar to the power laws 

d . h k'll . 't' 14 observe m uman s l acqu1s1 ion. 

Table 2. The learning algorithm 

1. Select the failure point in motor-STM with the largest error. 
2. Find the best possible modification to the point values. 
3. Find the percentage improvement over the current form of the schema. 
4. If improvement > bias [should reflect density w.r.t. time], 

(a) Then alter the schema with best (velocity) alteration found in step 2; 
(b) Else add the selected failure point to the schema. 

Once MAGGIE has selected a failure point, it must decide between its two basic learn­
ing operators. One could simply add a new point wherever an error was detected. Since 
points specified in the schema are generally guaranteed to be reached at their respective 
times, performance would improve. Furthermore, the time between respective points would 
decrease, giving less occasion for deviating from the desired path. We have run experiments 
with this strategy and achieved good results (Langley et al., 1987). However, adding a point 
to a schema is a more radical operation than modifying the values of an existing data point. 
Therefore, MAGGIE incorporates a bias factor that discourages the addition of new data 
points in favor of modifications to existing points. 

The current model only considers adjusting the values of velocity vectors. Furthermore, 
MAGGIE considers modifying only the two data points delimiting the segment of the schema 
containing the time of failure. That is, for the straight-line schema of table 1, if the selected 
failure point was at time 11, then the second and third data points would be considered for 
modifications and would be said to 'contain' the failure point. However, selecting among real 
valued modifications still leads to an infinite branching factor, so we require some simplifying 
assumptions to help reduce the effective search space. We employ both an intelligent next 
state generator to propose a. small number of possible alterations, and an evaluation function 
to select among the alternative modifications generated. 

For two data points, DP;, and DPj containing the failure-point, the amount of adjustment 
A applied to each, is inversely proportional to their respective distances (in time) from the 
failure-point. That is, the closer the failure point is to DP;,, the larger the adjustment 
made to D Pi 's velocity. Although this does not guarantee an optimal modification, it is a 
reasonable alteration based upon the limited information available from the motor buffer. 

14 This is certainly not the only explanation of power laws; we direct readers to Rosenbloom and Newell 
(1987) for an alternative computational theory. 
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The amounts of adjustment that are considered are A;, = Em;, to DP;, and A j = Emj to 
DPj, where mi and m; are computed by the following: 

tp - t;, t1c - tp 
m;, = and m1e = , 

t le - t;, t le - t;, 

for failure point tp, error vector E, and the associated time values for DP;, and DPj, t;, and 

tj. 

Based on this calculation, MAGGIE considers four possible ways of pairwise incrementing 
and decrementing the two data. points discussed above by their respective amounts. 15 

(DPi +Ami, 
(DP;, -Ami, 

DPj + Amj) 
DPj + Amj) 

(DP;,+ Ami, 
(DP;, -Ami, 

DP· -Am·) J J 

DPj -Amj) 

It may seem more straightforward to select the appropriate combination of adjustments 
by inspection of the error vector alone, but this is much more complicated than it appears. 
This results from the nature of the interpolation process used by the performance component 
and is considered elsewhere (Iba & Langley, 1987). 

Once the four combinations are generated, MAGGIE evaluates each alternative by gener­
ating a partial motor program for each case. The system examines the predicted performance 
of each program at the failure point, selecting the combination that minimizes error .16 If 
MAGGIE would proceed to compare this new partial motor program with the result of 
adding a. completely new data point, it would always favor the creation of new points. This 
is because the comparison is made at the same point that the new data point would be 
added, therefore revealing no error. It is for this reason that we have included a bias against 
this response. As long as the best of the four possible modifications results in a percentage 
improvement greater than the bias factor, the modification is preferred. Only when none 
of the modifications considered can sufficiently improve the schema (at the time of failure), 
will a new data point be added to the schema. This bias factor has the effect of knocking 
the system out of local minima. 

4.4. Behavior of the learning system 

MAGGIE's learning methods are independent of a limb's dimensions and rotational 
constra.ints, but we have tested the system with the same arm described in section 3. We 
have examined the system's learning behavior by running a number of experiments, again in 

15 Here we use + and - loosely for notational convenience. We assume that appropriate velocity vectors 
in the data point structure are accessed and .updated according to the arithmetic operator indicated. 

16 Another method would involve executing all four revised schemas in their entirety and comparing their 
resulting overall deviations. However, this would be very expensive computationally and we find it unlikely 
that humans carry out such computations unconsciously. 
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two dimensions. We describe the results below, along with their relation to data on human 
motor learning. 

Naturally, we would expect that as MAGGIE detects errors and modifies its joint­
centered schema, its performance will improve on later executions. Figure 5 shows the 
model's average divergence from the desired path on eight successive trials with the 'straight­
line' schema. The figure indicates that the system's performance gradually improves with 
practice, modeling the basic phenomenon in human motor learning. 

As we mentioned before, improvement over time is not sufficient for a psychologically 
plausible model of motor learning. The nature of MAGGIE's learning mechanism theoret­
ically leads to a power law learning curve. This should arise from attending to the largest 
errors first, causing the most dramatic improvements in performance during early stages of 
practice. However, our preliminary results are inconclusive. A problem we face is that the 
reported human learning curves have measured performance either as the number of units 
produced per unit time, or as the average time to completion of task. We must find new 
ways to test MAGGIE since our results are given as average error and therefore are not 
directly comparable. We also need to be able to run learning sessions over many more trials 
than we have to date. While we are not able to make strong claims at this time, the results 
displayed in the figure are encouraging. 

Our model of performance accounted for another robust finding: the trade-off between 
speed and accuracy. However, it seems natural to expect learning to affect this relation, 
and Figure 6 shows how MAGGIE's speed-accuracy trade-off changes with practice on the 
straight-line schema. As the skill level improves, the trade-off curve becomes flatter and 
eventually disappears entirely. That is, modifications to the schema allow the system's 
behavior to approximate the desired behavior even without monitoring. This means that 
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Figure 6 Speed vs. accuracy after one, two, and four learning trials 

MAGGIE can execute the schema at a higher speed - even though there are fewer chances 
for monitoring - without seriously decreasing its accuracy. 17 

Another experiment considered the effect of MAGGIE's practice speed upon its learning 
rate; Figure 7 shows the results. When learning at a high speed, performance improves for 
several trials and then stabilizes, but at a high error level. In contra.st, slower practice leads 
to almost immediate asymptotic behavior but at a much lower error rate. 18 The slope of the 
learning curves for all speeds tested are approximately the same; the difference between them 
are how quickly they stop improving and at what error level this occurs. This is a. result 
of the practice speed on the number of possible monitorings. Since MAGGIE's learning is 
triggered by the monitoring process, there a.re fewer opportunities for improvement. This 
suggests both an upper and lower limit on the effect, determined by the maximum and 
minimum number of possible monitorings. The lower limit occurs when the movement is so 
slow that the arm barely moves at all between moni torings; no learning would occur here 
because performance is already at the threshold of detectable errors. The upper limit arises 
when the speed of execution is so fa.st that the agent never gets a chance to monitor during 
movement; no learning would occur here either, since no failures would be detected. 

We have already discussed MAGGIE's two learning mechanisms and the bias parameter 
that determines which one will be applied in a given situation. This parameter suggested 
a final experiment, in which we examined the model's learning behavior for different values 

17 This constitutes an untested second prediction of the learning theory: the speed-accuracy trade-off 
should disappear with practice. Actually, it implies a third prediction as well: learning should produce a 
transition in skills from closed-loop processing to open-loop mode, in which feedback is unnecessary and a 
motor skill can be carried out accurately with little attention. To our knowledge, neither of these behaviors 
have been reported in the psychological literature. 

18 This constitutes a fourth interesting and testable prediction about human motor learning: the speed at 
which a skill is practiced influences both the learning rate and the limit of possible improvements. 
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Figure 7 Average error plotted as a function of practice speed and learning 
trial. 

of the parameter. Figure 8 shows the set of learning curves that result on the straight-line 
task. At one extreme, we set the bias very small; this led MAGGIE to learn exclusively by 
altering velocities. At the other extreme, giving the bias a large value led the model to learn 
only by adding points_. Intermediate biases led to mixed learning strategies. 

Naturally, MAGGIE begins at the same level of error regardless of the bias factor. The 
figure also reveals that the system arrives at essentially the same performance level after 
eight learning trials, but that the learning rates vary according to the bias. However, the 
relation is definitely not monotonic. Note that a 'medium' bias yields a trough or canyon in 
which the learning rates are greater than for either high or low biases.19 

This behavior can be explained by supposing that overly conservative and overly rash 
learning strategies each have drawbacks. When the system is too reluctant to add new points, 
velocity changes give only minor improvement; when the system adds points too eagerly, it 

19 We do not see how this aspect of MAGGIE's learning behavior leads to any testable predictions about 
human motor learning. However, it. does help us understand the workings of the model itself. 
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has little chance to fine tune the altered structure. The medium bias level led MAGGIE to 
add a new point every two or three trials, causing change in structure when needed but also 
giving the system time to fine tune the restructured schema. 

In section 2.2, we discussed a number of phenomena in the psychological literature that 
constrain plausible models of human motor behavior. Here we have presented the results 
from a number of experiments used to test MAGGIE. These results support the psychological 
plausibility of our theory although not all are conclusive. We have also presented a number 
of predictions made by the theory. We are continuing to look for results in the literature 
that would confirm or falsify these predictions. We are encouraged to further develop and 
test our system in light of these results and predictions. 

5. Discussion 

Now that we have described our theory of motor behavior and its implementation in 
MAGGIE, let us turn to its evaluation. We begin on a positive note, considering the the-
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ory's successes in terms of both explained and predicted phenomena. We then examine its 
limitations, a.long with directions for future work that these suggest. 

5.1 Successes of the Theory 

MAGGIE and the theory it implements make up a coherent computational theory ~f 
human motor skills. To our knowledge, it constitutes the only such theory in existence that 
accounts for observed phenomena. Roboticists have proposed a variety of computational 
methods for motor control, but these were never intended as models of human behavior. 
Similarly, psychologists have developed theories of motor behavior, but for the most part, 
these have not been instantiated in computational terms. The theory provides the first com­
putational explanation of motor performance and learning; this is its most basic contribution 
to cognitive science and artificial intelligence. 

Let us briefly review the phenomena that MAGGIE successfully models. These are: 

• the trade-off between speed and accuracy; 

• the distinction between closed-loop and open-loop behavior; 

• the transfer of motor skills across limbs; and 

• the gradual improvement of motor performance with practice. 

In the model, these behaviors emerge from representational differences between the two types 
of motor schemas combined with the limited rate at which monitoring can occur. Learning 
improves the joint-centered descriptions and thus reduces reliance on monitoring and error 
correction. 

The same mechanisms lead to several predictions about human motor behavior. These 
include: 

• a reduction in the speed-accuracy trade-off with practice; 

• a gradual transition from closed-loop behavior to open-loop behavior; 

• an effect of practice speed on learning rate and asymptotic performance. 

Each of these predictions should be simple to test, and we look forward to feedback from 
experimentalists along these lines. If the predictions are accurate, this will be convincing 
evidence in favor of the theory. If not, then the manner in which they are disconfirmed will 
suggest directions in which to modify the model. 

We evaluate the relative worth of a theory based upon both the phenomena that it 
explains as well as the predictions that it makes. The predictions should not be a part of 
the phenomena to be explained. That is, one should take a set of phenomena and develop 
a theory to account for these. Then the designers should step back and ask "what other 
predictions of phenomena does the theory make?" Additionally, the complexity of a theory 
in terms of constraining parameters helps determine its value or promise. While our theory 
will not be the last word on motor behavior, it rates highly with respect to all three of these 
criteria. 
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5.2 Limitations of the Theory 

Whether or not the above predictions are borne out, the existing theory has a number of 
limitations that require extensions. For instance, there is mounting evidence for a preparation 
stage prior to the onset of movement (Kelso, 1982b ). This suggests that motor program,s 
are generated before motion is initiated, whereas our current theory assumes it is generated 
dynamically. Another problem involves the componential transfer of motor skills, which 
suggests that such skills are organized hierarchically. The current theory only handles skills 
at a single level and makes no proposal for their integration into larger structures. 

We have also focused on motor skills that involve no objects other than the agent. This 
includes a wide class of skills, but much of human motor behavior involves interactions with 
other objects. In some cases, the agent has direct influence over the object during only part 
of the schema. For instance, in the first stages of throwing a ball one has immediate control 
over the ball's location. However, once the ball is released, its trajectory is almost entirely a 
function of the arm's earlier motion. In such cases, improvement requires taking into account 
knowledge of results (e.g., the quality of the ball's flight), and the current theory makes no 
statment about this aspect of learning. 

Nor must all motor learning involve modification of joint-centered schemas; there are 
undoubtedly cases in which the initial viewer-centered schema can be improved as well. 
For example, suppose the agent acquires a viewer-centered description by observing another 
agent perform some task. There are a number of ways such learning by imitation can lead 
to inaccurate schemas: attentional limitations may cause important details to be omitted 
from the learned schema; the imitated agent's limbs may differ in important ways from the 
learner's limbs; or the imitated agent may simply execute the skill poorly itself. In each 
of these cases, the learner would need to improve its viewer-centered description, either by 
observing the other agent many times or by reasoning from knowledge of results. 

Even in terms of joint-centered learning, we have limited our treatment to the transfer 
of skill from viewer-centered descriptions, but other approaches are possible. One might also 
create joint-centered schemas from proprioceptive sense data. For instance, one might use 
problem-solving methods to generate a sequence of motor schemas for achieving some goal. 
Information in the motor buffer (section 4.2) resulting from the execution of this sequence 
could then be used as the basis for a new joint-centered description. Initially, this schema 
might not even have an associated viewer-centered schema, so the improvement techniques 
currently implemented in MAGGIE would not find much use. 

We mentioned earlier the process of translation between viewer-centered and joint­
centered schemas, and that MAGGIE did not model this process in a satisfactory fashion. 
Nor have we explained the manner in which "mental practice" can improve performance 
without explicit practice. Finally, conscious experimentation may also play a role in human 
motor learning. We have seen that adding new points can knock a schema out of a local 
maximum, and extreme perturbations on locations or velocities might have a similar effect. 
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These all seem fruitful directions for further research, and we plan to address them in future 
versions of MAGGIE. 

Most important, we must test the model's behavior on additional motor skills so we 
can evaluate it's generality. The computational results described earlier in the paper were 
obtained with runs on the straight-line schema. We anticipate analogous results on other 
schemas, but we must test this prediction and carefully examine any differences that arise. 
Such differences need not invalidate the theory, since they may also arise in human behav­
ior. But we must clearly run MAGGIE on a wide variety of motor skills and attempt to 
understand the full range of its behavior. 

5.3 Summary 

In this paper we have presented a computational theory of human motor behavior and its 
implementation in MAGGIE. The model assumes that two distinct representations underly 
motor skills, one based on viewer-centered coordinates and the other using joint-centered de­
scriptions. Each type of schema consists of a sequence of 'points' that describe the locations 
and velocities of relevant joints at successive points in time. Motor behavior involves trans­
lating from the viewer-centered scheme to the joint-centered scheme, and then interpolating 
intermediate points to produce actual behavior. 

We found that these two frameworks have different representational capabilities, each 
describing some motions better than the other. For this reason, the translation process 
is inherently imperfect and MAGGIE must continually monitor its behavior for deviations 
from the desired path. When errors become noticeable, the system invokes an error recovery 
process that attempts to put the movement back on track. The model assumes a. lower 
limit on the frequency of monitoring, and this limitation led naturally to the speed-accuracy 
trade-off and the distinction between closed-loop and open-loop behavior. 

MAGGIE learns only in response to a detected error. In some cases, the system alters 
the velocity of a point in the schema; in others, it actually adds a new point. Both learning 
methods ultimately lead to improvements in performance, letting the joint-centered schema 
more closely approximate the viewer-centered description. This learning process accounted 
for a number of observed behaviors and predicted additional phenomena that have not been 
reported in the literature. 

Our initial tests of the model have been encouraging, but more work remains to be done. 
We need to study MAGGIE's behavior on a variety of motor skills, and we need to extend 
the system along a number of dimensions. We feel that MAGGIE is a good initial model, 
but we have far to go before achieving a truly general and robust theory of human motor 
performance and learning. 
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