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Abstract 

Instance-based representations have been applied to numerous 
classification tasks with a fair amount of success. These tasks 
predict a symbolic class based on observed attributes. This 
paper presents a method for predicting a numeric value based 
on observed attributes. We prove that if the numeric values 
are generated by continuous functions with bounded slope, 
then the predicted values are accurate approximations of the 
actual values. We demonstrate the utility of this approach by 
comparing it with standard approaches for value-prediction. 
The approach requires no background knowledge. 

Keywords: incremental learning, prediction, instance-based, 
continuous functions 

1 Introduction 

Instance-based learning (IBL) strategies represent concepts 
using sets of instances and a similarity metric, where each 
instance is described in terms of a set of attribute-value 
pairs. IBL techniques have been applied to several learning 
problems, including speech recognition (Bradshaw, 1987), 
word pronunciation (Stanfill & Waltz, 1986; Stanfill, 1987), 
handwritten symbol recognition (Kurtzberg, 1987), thyroid 
disease diagnosis (Kibler & Aha., 1987), a.rid the ca.rt-pole 
balancing problem (Connell & Utgoff, 1987). In ea.ch case, 
IBL techniques were shown to be computationally inexpen­
sive methods for solving classification tasks. Most IBL ap­
plications involved the prediction of symbolic values. Con­
nell and Utgoff, however, applied their CART system to 
predict values for a. numeric domain, namely the degree 
of desirability of instances (which represent states in their 
domain). In this paper we present a method for apply­
ing instance-based techniques for predicting numeric val­
ues. Theoretical and empirical arguments are supplied to 
support our claims. · 

Most of the published work on learning from examples 
tasks involved the prediction of symbolic values (Vere, 1980; 
Mitchell, 1982; Quinlan, Compton, Horn, & Lazurus, 1986; 
Michalski, Mozetic, Hong, & Lavrac, 1986). In many cases, 
numeric attribute domains were transformed to symbolic 
domains in order to simplify the lea.ming task. This trans­
formation often required the assistance of an expert. In 

many domains, however, experts do not exist or are suf­
ficiently scarce to make the transformation task difficult. 
Some systems, such as STAGGER (Schlimmer, 1987), au­
tomatically perform this transformation process, but they 
incur computational costs and do not guarantee success. 
IBL techniques do not require these transformations. 

Instance-based techniques a.re good methods to use for sym­
bolic value-prediction tasks because they are extremely sim-. 
ple to apply, they allow for the incremental processing of 
training instances, they a.re highly tolerant of noise in the 
predictor attributes (Stanfill, 1987), and they tolerate ir­
relevant attributes (Kibler & Aha, 1987; Stanfill, 1987). 
They also are good methods for numeric value-prediction 
tasks. We can prove that instance-based prediction (IBP) 
techniques are correct when given noise-free instances (see 
Section 3) and they are applicable to a large set of value­
prediction tasks. In a sense that we will make precise, 
any continuous function with bounded slope is learna.ble 
by these techniques. 

The set of continuous functions contains a. huge class of nat­
urally occurring functions. Most physical laws are differen­
tial equations which have differentiable functions as their 
solutions. Our estimation of physical processes, and in par­
ticular, the movement and equilibrium of bodies, is required 
in such daily events as balancing, walking, eating, pouring, 
cooking, driving, throwing, catching, etc. Our ability at 
sports rests on the ability to predict, with some accuracy, 
the positions and velocities of moving bodies as well as the 
ability to coordinate and execute our own movements. Mis­
predictions, such as expecting another step while climbing 
stairs or lifting light objects which appear to be heavy, can 
yield calamitous results. 

In Section 2 we illustrate our algorithms and compare IBP 
techniques to linear regression techniques for prediction. 
The latter is an alternative prediction method that is most 
applicable to those functions expressible as a linear combi­
nation of their attributes. IBP techniques a.re more gener­
ally applicable to the class of locally linear functions. One 
advantage of linear regression is that it tolerates noise. In 
Section 2 we introduce a simple technique (later applied 
in our experiments) that allows instance-based approaches 
to tolerate noise when predicting numeric values. (General 
techniques for tolerating noise in instance-based symbolic 
classification tasks are described by Aha & Kibler (1988).) 



Section 3 summarizes our theoretical justifications for ap­
plying these techniques to numeric value-prediction tasks. 
We provide empirical justification in Section 4. We con­
clude in Section 5 with a discussion and evaluation of IBP. 

2 Algorithms and Illustrations 

Instance-based learning and prediction algorithms have pre­
dominantly been applied to symbolic classification tasks. In 
these tasks each instance is represented as a set of attribute­
value pairs, where the values are either numeric or nominal. 
The value to be predicted is always nominal. A concept is 
a subspace of the instance space. 

The problem to be solved by symbolic classification algo­
rithms is to determine a function F that, given an instance, 
yields the concept of the instance. More precisely, let C be 
a set of concepts, I be an instance space with n attributes, 
and Vi be the set ofvalues in attribute domain i (1 .$ i .$ n). 
Then 

F( (z1, ... , Zn)) = C, 

where Vi (1 .$ i .$ n){:z:, E Vi}, and 

C, EC. 

Given a set of instances, learning algorithms typically gen­
erate a summary description or predicate for each symbolic 
concept. These predicates can be applied to a new instance 
to yield a classification. In contrast, instance-based ap­
proaches represent a concept using a set of instances and a 
similarity metric. A new instance is classified by some form 
of best-match with existing concepts. 

For example, we (Kibler & Aha, 1987) have applied sev­
eral IBL algorithms to two of Quinlan's thyroid disease 
databases (Quinlan et al, 1986). The instances were de­
scribed in terms of 26 attributes. The concepts consisted 
of the set 

{ hypothyroid, sick-euthyroid, negative }. 

Each learning algorithm was given a training 1et of in­
stances from which it derived a concept 1et, which is also a 
set of instances. The concept set was subsequently tested on 
a te6t 1et of disjoint instances. The nearest neighbor classi­
fication algorithm was used for all the learning algorithms. 
For each test instance t, it guessed that F(t) = F(n), where 
n is t's nearest neighbor in the concept set.' We measured 
each algorithm's performance by recording the percentage 
of test instances that were classified correctly by the con­
cept set. In effect, a concept deacription (concept set plus 
similarity metric) described each algorithm's guess of F 
with respect to the instances on which it was trained. 

In this paper we are concerned with instance-based methods 
for predicting numeric rather than symbolic values. More 
specifically, if we let R be a numeric domain, then we can 
describe F for predicting numeric domain values as follows: 

F((zi, ... ,zn)) =ri 

where Vi (1 .$ i .$ n){:i:1 E Vi}, and 
r; ER. 

Vt E Training Set: 

• C +- CU {normalize( t)} 
Vt +- normalize(t'), t' E Test Set: 

•Ve E O{c i= t}: calculate Similarity(t,c) 
• Let Sim ~ C be the set of N% most similar 

instances of C to t. 
•Let Sum= L Similarity(t,c) 

ceSim 

Th F . () ""Similarity(t,c) F() • en -estimate t = Li x c 
S

. Sum 
cE Im 

Table 1: The proximity algorithm experiment (C =concept set). 

n 

Similarity( t, c) = L Sim if( i( t), i( c)) 
i=l 

where Simil(z,y) = 1.0 - la: - yl, and 
i( t) yields the attribute value of instance t 
in dimension i 

Table 2: Similarity of two normalised instances (n dimensions). 

Connell and Utgoff (1987) recently applied IBP techniques 
to the cart-pole balancing problem. Their system predicted 
state desirability, which was continuous from -1 ( undesir­
able) to 1 (most desirable). Saved instances had values of 
either -1 or 1. All other instances' degree of desirability 
were derived via a weighted-similarity function of the saved 
instances' desirability values. In our case, saved numeric 
domain values can have any range and any value within 
that range. 

We chose to use the simplest instance-based learning algo­
rithm, called the prozimity algorithm, for the experiments 
in this paper. The proximity algorithm simply sa..ves all 
training instances in the concept set. The IBP method 
employed in the experiments is detailed in Table 1. The 
normalization algorithm maps each attribute value into the 
continuous range 0-1, ensuring that all attributes are as­
signed equal classification salience. Assuming that each at­
tribute counts equally is not necessarily correct, but is, at 
least, fair. The problem of finding the appropriate weights 
for attributes is another example of the unsolved credit as­
signment problem. The estimate F(t) for test instance t 
is defined in terms of a weighted-similarity function of t's 
nearest neighbors in the concept set. The similarity of two 
normalized instances is defined in terms of their Euclidean 
distance, as detailed in Table 2. 

The classification algorithm employed in the experiments 
is a variant of Shepard's function (Connell & Utgoff, 1987) 
that, instead of using all concept instances to assist in clas­
sifying a new instance, uses only the subset of the neigh­
boring concept instances for numeric value prediction. The 
underlying assumptions of the linear regression model is 
that F is approximately linear. In contrast, using only a 
few neighboring instances for classification assumes that the 
concept function is locally linear, a much weaker assump­
tion. Unfortunately, our techniques become more sensitive 
to noise as fewer instances are used. 



F(x) = (:z: -2)(:z: + l)(:z: -3) = :z: 3 -4:z: 2 + z + 6 
36...-~~~~~~~~~~~~~~ 

-- Function to be Approximated 
- - IBP Approximation 

24 ------ Linear Regression Result 
o Instance 

12 

0 
I 

-12 

-24+-~-+-~-+-~-+-~+-~+-~..J.----I 

-2 -1 0 1 2 3 4 5 
(Both approximations were derived from 

the 10 instances shown above.) 

Figure 1: Approximating a typical non-linear function. 

If' the function is linear and without noise, then our function 
produces the same effect as interpolation. For example, if 
the domain is the real numbers, then the predicted value 
of a test instance is the weighted average of the F values 
of its two closest observed instances. Figure 1 illustrates 
an application of our techniques where F is a polynomial 
function. 1 Included in Figure 1 are two approximations of 
F, one by IBP using 10 training instances and the other by 
a linear regression model derived from the same training 
set. Linear regression techniques, of course, are not meant 
to be applied to nonlinear functions. This simply demon­
strates a case where IBP methods are applicable and linear 
regression methods are not. 

In the general case where there are n attributes one might 
expect to use then+ 1 nearest neighbors. Instead we choose 
to use N3 of the nearest values. This allows us to tolerate 
some noise and yet does not demand that we assume the 
function is globally linear. We take an "average" hyper­
plane defined by these instances to predict the value of the 
unknown. 

3 Theoretical Justification 

The goal of this section is to demonstrate that instance­
based techniques can learn to predict the value of any con­
tinuous function with bounded derivative. To do this we 
first establish that a sufficiently large random sample of 
values presents a good sampling of instances. Then we 
demonstrate that, given a good sample of instances and 
values, a piecewise linear function can be generated which 
will closely approximate the unknown function. 

1 We uae • modified ddlnition of IBP approximation for one-dimemional appli­
catio11.1. Inatead of malting prediciiom from a nt of neareat neighbon, the IBP 
approximation baaea approximatiom on the two "aurroundinl" aample imtancea 
and Wlea the neare1t nei1hbor approach for imtancea that are not surrounded. See 
Theorem 1 for detaila. 

3.1 Coverage Lemma 

Here we establish that a large-enough sample gives a good 
coverage of the domain. 

We start by reviewing some basic material from advanced 
calculus. An e-ball about a point :z: of the real line R is 
the set of points {y : IY - :z:I < e}. (Note that the size of 
a.n e-ball ib. 1 dimensional space is approximately 2e.) The 
same definition is valid in n-dimensional Euclidean space 
R", if we interpret lz - YI as the distance function in R". 

Definition: Let X be a subset of an m-dimensional space. 
A subset S of X is an e-net for X if, for all x in X there 
exists an s in S such that Is - :z:I < e. 

We now prove that a sufficiently large random sample from 
the unit interval will probably be an e-net. 

Lemma 1. Let e and S be fized positive numbers leaa than 
1. A random sample S containing m > 1 / € x ln( 1 / eS) in­
stances from [O, 1] will form an e-net with confidence greater 
than 1 - S. 

Proof: We prove this lemma by partitioning the unit 
interval into k equal-sized sub-intervals, each with size less 
thane. We also ensure that, with high probability, at least 
one of the m sample instances lies in each sub-interval. · 

Let k > 1/ e. The probability that arbitrary instance i E 
[O, 1] will lie in some selected sub-interval is 1 - 1/k. The 
probability that none of the m sample instances will lie in 
a selected sub-interval is (1 - 1/k)m. The probability that 
a.ny sub-interval is excluded by all m sample instances is 
k x (1-1/kr. Since (1- 1/kr < e-m/1c, then 

k x (1 - 1/kr < k x e-m/lc. 

We ensure that this probability is small by forcing it to be 
less than S. We solve form as follows: 

k X e-m/lc < s 
e-m/lc < S/k 
-m/k < ln(S/k) 

m > -k x ln(S/k) 
m > k x ln(k/S) 

Consequently, with probability greater than 1-S, each sub­
interval contains some sample instance of S. Since each 
instance of [O, 1] is in some sub-interval, then, with this 
same probability, an arbitrary instance of I is within e of 
some instance of S. • 

The proof of Lemma 1 generalizes to any bounded region 
in ~ (i.e. it guarantees that by picking enough random 
samples, we can ensure that we will probably get a good 
coverage of any nice domain). 

3.2 Instance-based Prediction Theorems 

Here we prove that, given a good sample of instances, IBP 
can generate a piecewise linear function that is a good ap­
proximation to a.n unknown continuous function. 



Definition: A function f is an €-approximation of a func­
tion g if they have the same domain, and for all instances 
z in their common domain lf(z) - g(z)I < €. 

The following definition is motivated by Valiant's (1984) 
work on learnability theory. 

Definition: A function f is learnable by IBP techniques 
when, for 1 > 8, € > O, the function j generated by IBP is 
an €-approximation off with probability greater than 1-8. 

Note that our definition does not specify how long learning 
might take, only that it usually converges to approximately 
the right answer. 

Definition: The slope of a function f is bounded on X by 
B if 

The following theorem demonstrates that continuous, real­
valued functions with bounded slope in the unit interval 
[O,l] are learna.ble. Extensions to multi-valued functions of 
multiple arguments is standard, requiring only a working 
knowledge of advanced calculus. 

Theorem 1. Let f be a continuous, real-valued function 
on [O, 1] with slope bounded by B. Then f is learnable by 
IBP techniques. 

Proof: Let f be a continuous function on [O, 1]. Let 
8 and e. be arbitrary positive numbers less than 1. We will 
guarantee that f does not vary much on a small interval by 
using the bound on the slope of f. In particular, we apply 
Lemma 1 with €

1 = €/2B. (We assume, without loss of 
generality, that B ~ 1.) The lemma guarantees that, if m 
is large enough, then we will have an e./2B-net for (0, 1] with 
confidence greater than 1 - 8. More specifically, we let S be 
a random sample of [O, 1] with size m > 2B/e. x ln(2B/e.8). 

We define the approximation function i( z) of f ( :z:) as fol­
lows. For each of the m sample points, let j be defined as 
the sample value. On non-sample points, let j be defined 
as the linear interpolation of its surrounding nei_ghbors. If a 
non-sample point p is not surrounded, then let f (p) = f ( :z: ), 
where z is the closest neighbor in the sample. 

Now we must show that j is an e.-approximation off. Let 
z be an arbitrary point in [O, 1]. We shall consider first the 
case where z is surrounded by sample instances z' and z" 
in S, where z' is the nearest neighbor of :z: in S. Note that 

f(z) = f(z') + s(z',z) x (:z: -:z:') 
i(z) = i(:z:') + s(z', z") x (:z: - z') 

where .s( :z:', z) is the slope off between z' and z and.;( z', z") 
is the slope of j between :z:' and z". 

Since B is the upper bound on the slope between any two 
points for f ( z ), it is also an upper bound on the slope 
between any two points for j ( z). Therefore, 

lf(z) - f(z')I = js(z',z) X (z - z')I <Bx e./2B = e./2 

and 

li(z) - i(z')I = !s(z',z") x (z - z')I <Bx e./2B = e./2. 

Since i(z') = f(z'), we have, by triangular inequality, 

l/(z) - i(z)I < €/2 + 0 + €/2 = €. 

The second case, where :z: is not surrounded by sample in­
stances in S, can be handled similarly. This proves that the 
piecewise linear approximation j is an €-approximation of 
f. 1111 

Using an extension of Lemma 1 and a proof similar to that 
used for Theorem 1, we can prove Theorem 2. 

Theorem 2. If f is a continuous function on a closed and 
bounded n-dimensional space with derivative bounded by B, 
then f is learnable by IBP techniques. In particular, for 
given positive valueJ of E and 6, m > 2B/€n x ln(2B/€n8) 
Jamples will suffice. 

Note that any piecewise linear curve and any function with 
a continuous derivative has a bounded slope. 

This result indicates that, given an open domain, one needs 
to require some constraints on the "wildness" of the func­
tion in order to ensure that the time to learn is polyno­
mially bounded. In particular, we compensate for looser 
constraints on the domain of the function by tightening the 
constraints on how fa.st the function can change its value 
over a small interval. That is, we require that the derivative 
of the function exist and be uniformly bounded. · 

The requirement for the bound on the derivative is illus­
trated by the function sin(l/:z:) on the open interval (0,1]. 
Note that as :z: approaches O, the derivative (slope) of the 
function is unbounded. As is easily seen, for any E between 
0 and 1, there is no piecewise linear €-approximation of this 
function. 

While these results establish the appropriateness of IBP 
for noise-free functions, real world data requires attention 
to noise. A standard method for tolerating noise is to use 
some form of averaging. In particular, we believe that the 
following change to the algorithm yields a method which 
works for noise in the function value, but the proof eludes 
us. 

Instead of constructing a piecewise linear approximation 
based on a single E-net, consider forming m €-nets, each net 
yielding a piecewise linear approximation h, We define j 
to be the (pointwise) average of these h, Clearly j is still 
piecewise linear. We believe that, the resulting j will be a 
good approximation. We demonstrate the appropriateness 
of this method with an empirical study. 

4 Empirical Justification 

In this section we describe our experiments and show how 
the results support our conjecture. In particular, we note 
that instance-based learning techniques achieve the same 
accuracy as linear regression methods. We note that if the 
underlying function was exactly linear then both linear re­
gression and IBP would yield perfect predictions. The value 
of IBP is that it requires that the function be only locally 
linear while linear regression requires that the function be 
globally linear. Also, IBP requires no ad hoc adjustments 
to the underlying method, which are often ma.de when ap­
plying linear regression models. 



j Acronym j Attribute Name Unit 

MCYT Machine Cycle Time Nanoseconds 

MMIN Minimum Main Memory Kilobytes 

MMAX Maximum Main Memory Kilobytes 

CACH Cache Memory Size Kilobytes 

CHMIN Min Number of 1/0 Channels Channels 

CH MAX Max Number of 1/0 Channels Channels 

Table 3: Predictive attributes of the central processing units database. 

Vendor/Model MCYT MMIN MMAX CACH 
CHMIN CH MAX PRP 

IBM 4341-12 185 2000 16000 16 
1 6 76 

DEC-Vax-11/750 320 512 8000 4 
1 5 40 

Sperry 1100/94 30 8000 64000 128 

12 176 1150 

Table 4: Example instances of the CPU characteristics database. 

4.1 Experimental Data 

We chose to experiment with the database published by 
Ein-Dor and Feldmesser (1987) in the April 1987 issue of 
the Communications of the ACM. The authors described 
a stepwise multivariate linear regression technique for pre­
dicting the published relative performance (PRP) of cen­
tral processing units. Each of the 209 cpu data instances is 
represented with six predictive attributes (described in Ta­
ble 3). The other attributes included the vendor, the model 
name, and its published relative performance. Three exam- -
ple instances are show~ in Table 4. 

The purpose of their article was to describe a predictive 
model for computer systems that was simpler than queue­
ing networks. Our purpose here is to demonstrate that IBP 
techniques can be used to describe models of equal simplic­
ity and accuracy for approximating the published relative 
performance function. 

We chose to experiment with this data set for several rea­
sons: 

1. The authors presented a case study that allowed us to 
contrast a linear regression model with an IBP model 
on the same data set. 

2. We wanted to show that IBP models support predic­
tive behavior for natural databases (as opposed to be­
ing restricted to carefully crafted artificial databases). 

3. We were interested in investigating the predictive qual­
ity of IBP techniques when both the input and output 
attributes were numeric. 

Range of Number •;. Average Deviation 
Relative of Linear IBP 

Performance Instances Regression Raw Tuned 

0-20 31 72.17 81.38 55.62 
21-100 121 28.64 27.88 29.64 
101-200 27 28.57 27.91 31.60 
201-300 13 23.93 19.16 22.21 
301-400 7 21.49 22.12 27.14 
401-500 4 18.72 16.80 16.20 
501-600 2 17.35 11.86 30.49 

600+ 4 10.34 43.69 33.35 

I All 209 I 33.91 I 35.02 I 33.02 I 

Table 5: Average deviation of relative performance predictions. 

4.2 Experiment and Results 

We carried out two experiments with the cpu performance 
data. In each case, the function F to be predicted was PRP. 
The results of both our own experiments and the original 
linear regression experiment a.re displayed in Table 5. All 
results are in terms of the average deviation of the predicted 
and actual cpu performance values.2 · 

Ein-Dor and Feldmesser (1987) calculated the linear regres­
sion equation for cpu performance and then used it to pre­
dict each instance's relative cpu performance. Since re­
gression minimizes the square of the absolute error, it will 
appear to be more accurate for large values when evaluated 
in terms of relative error. 

In our first experiment (see column Raw in Table 5), each 
instance was described in terms of the 6 given attributes. 
The training and test sets were identical; they contained all 
209 instances. We set the value for N to 3%, meaning that 
the IBP prediction of a test instance's relative cpu perfor­
mance was based on its 3% most similar instances in the 
concept set (excluding the test instance itself). The prox­
imity algorithm fares relatively well in each range except 
the first and last. The values of the first (smallest-valued) 
range were sensitive to small absolute errors and thus pro­
duced the greatest relative error. The last range contains 
the highest values, which were few in number and highly 
scattered. Actually it would be easy to assign some mea­
sure of confidence with IBP which would suggest that the 
predicted value was tenuous, at best, for the high range. 

The overall average deviation of predicted and actual values 
for the first experiment is surprisingly similar to that of the 
linear regression experiment, which was only slightly better. 

What differed between the experiments is of greater im­
portance. The regression experiment required a great deal 
of application-dependent knowledge while the first IBP ex­
periment employed none. Ein-Dor and Feldmesser analyzed 
the data and subject domain and reviewed the linear corre­
lations of the PRP values with the 6 independent attributes. 
They concluded that transformations of the independent 

2The publiahed value for overall average deviation of the linear regreuion model 
i.a 34.10 (Ein-Dorll: Feldmeuer, 1987), which diu.pes with our calculation of 33.91. 
Otherwise, our calculatiom are in asnement. 



Derived Attribute I Attribute Transformation 

Average Memory Size (MMIN + MMAX)/2 x 10-3 

Cache Memory Size CACH x 10-1 (or 0 if none) 

Channel Capacity (CHMIN + CHMAX)/2+1 
x(l/MYCT) x 10 

Table 6: Transformations of the 6 independent attributes. 

and dependent attributes were needed to enhance the re­
gression model's predictiveness. First, they chose to employ 
a square-root transformation of the dependent attribute. 
They then chose to employ 3 "tuned" attributes to be used 
as independent attributes for prediction of the square-root 
of the published relative performance values. The tuned at­
tributes are average memory size, 1/lOth of the cache size, 
and channel capacity. The transformations are listed in 
Table 6. 

The problem they faced is a typical one when using linear 
regression. What do you do when the dependent variable is 
not a linear combination of the attributes? In their case, by 
appealing to domain knowledge, specifically Grosch's law, 
they reasoned that the &quare root of the performance would 
be a linear combination of measured attributes. Finding 
this particular transformation requires a model of the do­
main. IBP does as well without introducing domain exper­
tise. 

In our second experiment (see column Tuned in Table 5), we 
used the same tuned input attributes for the IBP method 
as thosed used by the linear regression technique. This 
was done by calculating the values for the three tuned at­
tributes and representing the instances in terms of them. 
The effect of tuning attributes is to give a better weight 
to each individual attribute. The average deviation results 
for this experiment also appear in Table 5. In this case, 
we find that the IBP predictions are slightly better than 
those given by the linear regression model, again measured 
in terms of average deviation. 

5 Discussion 

Continuous functions are an extremely large class of func­
tions. In particular, they can represent the behavior of 
physical systems. Our ability to interact successfully with 
the world depends, in part, on our ability to predict the 
continuously changing environment. Given a sufficiently 
large sample size, we have shown that IBP is guaranteed 
to yield a good approximation for continuous functions. In 
the presence of noise, we demonstrated that IBP yields re­
sults equivalent to that of linear regression, but without 
having to make ad hoc assumptions. Moreover, the tech­
nique is incremental. In short, IBP is a. simple, general, ef­
ficient technique which yields high quality predictions. As 
we have illustrated, the quality of predictions by IBP can be 
improved if one has appropriately weighted features. Find­
ing computationally efficient means for calculating these 
weights, however, requires further research. 

One of the criticisms of IBL techniques is that they have 
high storage requirements. Recent results, however, have 

suggested that simple learning algorithms can be applied 
that greatly ease storage requirements. Bradshaw's (1987) 
disjunctive-spanning algorithm uses an averaging technique 
in an effort to reduce storage requirements while maintain­
ing high classification accuracies. Kurtzberg (1987) de­
scribed an algorithm that, when trained on 288 instances 
(four copies of 72 handwritten symbols), saved only 121 in­
stances and still achieved a 99.03 classification accuracy 
on a same-sized, disjoint set of test instances. Kibler and 
Aha (1987) showed that the same algorithm, when applied 
to Quinlan et al's (1986) hypothyroid disease data, saved 
an average of only 10 of the 220 training instances and still 
achieved a 973 accuracy on a disjoint set of 500 test in­
stances. We (Kibler & Aha, 1988) have shown that the 
upper bound on the number of instances required for ap­
proximating concepts is proportional to the lengths of the 
boundaries separating concepts. IBL techniques do not ap­
pear to have large storage requirements for symbolic clas­
sification tasks. We anticipate that similar storage-saving 
techniques can be used to assist numeric value-prediction 
tasks. 

A more severe criticism of instance-based representations 
is that they do not yield concise encapsulations of the data 
that can easily be understood and reasoned about by hu­
mans or machines. For example, BACON (Langley, 1981) 
discovers the ideal gas law (pV/nT = c, where c is a con­
stant) given numerically-valued data. IBP techniques can­
not represent, let alone find, this relationship. BACON 
heuristically searches through a space of functional expres­
sions to find this formula. Similarly, linear regression meth­
ods search through the space of linear equations to find 
an easily understood relationship between the independent 
and dependent attributes. IBP does not yield comprehen­
sible summaries of the data.. The compensating value of 
IBP is that it does not require that the data satisfy some 
predefined model. 
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