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Abstract

The paper describes a system that can automatically generate tree adjoining grammars from abstract

specifications. Our system is based on the use of tree descriptions to specify a grammar by separately defin-

ing pieces of tree structure that encode independent syntactic principles. Various individual specifications

are then combined to form the elementary trees of the grammar. The system enables efficient development

and maintenance of a grammar, and also allows underlying linguistic constructions (such as wh-movement)

to be expressed explicitly. We have carefully designed our system to be as language-independent as possible

and tested its performance by constructing both English and Chinese grammars, with significant reductions

in grammar development time. Provably consistent abstract specifications for different languages also offer

unique opportunities for investigating how languages relate to themselves and to each other. For instance,

the impact of a linguistic structure such as wh-movement can be traced from its specification to the descrip-

tions that it combines with, to its actual realization in trees. By focusing on syntactic properties at a higher

level, our approach allowed a unique comparison of our English and Chinese grammars.

Keywords: natural language processing, grammar development, tree adjoining grammars, tree descrip-

tions

2



1 Introduction

Grammars are valuable resources for natural language processing. A large-scale grammar may incorpo-

rate a vast amount of information on morphology, syntax, and semantics. Maintenance of grammars and

the problems posed by redundancy in grammars are issues that are always faced by developers of large-

scale grammars. The research community working in several grammatical frameworks has from the outset

addressed these issues and has worked on developing methods and meta-formalisms to properly organize

statements of grammatical principles that significantly aid in the development and maintenance of gram-

mars and alleviate problems of redundancy. For instance, the lexical redundancy rules of Lexical Functional

Grammar (Kaplan and Bresnan, 1982) represent an elegant method for stating some generalizations at the

lexical level and reducing redundancy. The meta-rules and feature co-occurrence restrictions are two ways

by which Generalized Phrase Structure Grammar (GPSG) (Gazdar et al., 1985) states grammatical gen-

eralizations. Head-driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1994) is a grammatical

framework for which considerable effort has been made to state grammatical principles in an elegant way and

eliminate redundancy. These include hierarchical organization of principles and lexical rules. In addition,

meta-formalisms for Typed Feature Structures (TFS) (Carpenter and Penn, 1999; Martin, 1994) have been

employed successfully to encode large HPSG grammars. In the ALE system (Carpenter and Penn, 1999),

grammars are encoded as definite clause grammars with typed feature structures as terms; while in the

TFS system (Martin, 1994), unification grammars are organized as inheritance networks of typed feature

structures. Such formalisms offer many advantages such as abstraction, information sharing, modularity and

reusability of grammatical descriptions. In contrast, the Lexicalized Tree Adjoining Grammar (LTAG) com-

munity has paid much less attention to to the development or maintenance of LTAG grammars for natural

languages, and the emphasis in LTAGs on tree structures rather than typed feature structures precludes a

straightforward adaptation of the generalization techniques incorporated into HPSG.

To overcome this deficiency for LTAG, we designed a grammar development system named LexOrg,

which automatically generate LTAG grammars from abstract specifications. The system is based on the

ideas expressed in (Vijay-Shanker and Schabes, 1992), for using tree descriptions in specifying a grammar by

separately defining pieces of tree structure that encode independent syntactic principles. Various individual
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specifications are then combined to form the elementary trees of the grammar. We have carefully designed our

system to be as language-independent as possible and tested its performance by constructing both English

and Chinese grammars, with significant time reductions. The system not only enables efficient development

and maintenance of a grammar, but also allows underlying linguistic constructions (such as wh-movement)

to be expressed explicitly.

One important factor that affects the design of LexOrg is the fact that most researchers working in the

LTAG community have viewed LTAG strictly as a grammar formalism and have separated the linguistic

principles behind the design of a particular grammar from the formal LTAG framework, at least to a much

larger extent than is the case with the above-mentioned other grammatical systems. In other words, the

LTAG framework is viewed somewhat similarly to context-free grammars, and just as there is no single

widely-accepted context-free grammar for a particular language, there is not necessarily a single definitive

LTAG for any language.1 This aspect of LTAG has influenced our design of LexOrg. As designers of LexOrg,

we wish to provide a similar flexibility to grammar designers so that they can express their own linguistic

intuitions in the manner that they deem most appropriate. Therefore, our task is to provide mechanisms

that we believe will be useful for the expression of a variety of grammar theories and intuitions.

The paper is organized as follows. In Section 2, after giving a brief overview of the LTAG formalism,

we outline the way that LexOrg attacks the redundancy problem in LTAG grammars. In Section 3, we

define descriptions, trees, and four classes of descriptions. In Sections 4 to 6, we describe the three main

components of LexOrg. Section 7 includes a report on our experiments using LexOrg to generate grammars

for English and Chinese. Finally, Section 8 contains our comparison of LexOrg with related work, including

Typed Feature Structures, Becker’s HyTAG system (Becker, 1994), a system by Evans, Gazdar and Weir

(Evans et al., 1995) implemented in DATR (Evans and Gazdar, 1989), and Candito’s system (Candito, 1996).

1While the XTAG grammar for English (XTAG-Group, 1995; XTAG-Group, 1998) is probably the most widely-known LTAG
grammars, it is by no means the only large-scale grammar for English. Although it slightly departs from its original linguistic
inspiration, this grammar is based on many of the linguistic ideas developed in the works of Kroch, Joshi and Frank (Kroch
and Joshi, 1985; Kroch and Joshi, 1987; Kroch, 1989; Joshi and Schabes, 1997; Frank, 2002), which themselves are largely
influenced by Chomskyan linguistics. In contrast, a large-scale grammar was developed in the Lexsys system, which differs in
its linguistic basis and also the notion of what is localized in the elementary trees of LTAG. In addition, a large-scale LTAG for
English was produced by compiling out various HPSG principles and lexicons in the form of LTAG elementary trees following
the method described in (Kasper et al., 1995).
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2 The issue of redundancy in LTAG grammars

In this section, we elaborate on the problem of ensuring consistency while scaling up large grammars, and

give an overview of how LexOrg addresses this problem. We begin the section with a brief overview of the

LTAG formalism. A more comprehensive discussion of the formalism can be found in (Joshi and Schabes,

1997) and the citations in the book.

2.1 The LTAG formalism

LTAGs are based on the Tree Adjoining Grammar (TAG) formalism developed by Joshi, Levy, and Takahashi

(1975; 1997). In the last decade, LTAGs have been widely used in many NLP tasks, such as parsing (Schabes,

1990; Srinivas, 1997; Sarkar, 2001), semantics (Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi, 1999),

lexical semantics (Palmer et al., 1999; Kipper et al., 2000), discourse (Webber and Joshi, 1998; Webber et

al., 1999), machine translation (Palmer et al., 1998), and generation (Stone and Doran, 1997; McCoy et al.,

1992).

As a constrained mathematical formalism, LTAG is more powerful than context-free grammar (CFG)

as it can generate mildly context-sensitive languages such as the language {anbncndn | n ≥ 0} and handle

cross-serial dependencies in Dutch (Joshi, 1985). This extra generative power comes from the fact that the

primitive elements of an LTAG are trees, rather than context-free rules. Each tree in an LTAG grammar

is called an elementary tree and is anchored by a lexical item. There are two types of elementary trees:

initial trees and auxiliary trees. Each auxiliary tree has a unique leaf node, called the foot node, which has

the same category as the root. In both types of trees, leaf nodes other than anchors and foot nodes are

called substitution nodes. One important property of LTAG is its extended domain of locality; that is, an

elementary tree encapsulates all and only the arguments of the anchor, thus providing extended locality over

which the syntactic and semantic constraints can be specified. Figure 1 shows an elementary tree for the

verb break, in which the V is the anchor of the tree. The arguments of the verb — the subject NP0 and the

object NP1 — are in the same tree,2 and they are substitution nodes as marked by ↓.

Elementary trees are combined by two operations: substitution and adjoining. In the substitution op-
2The subscripts in elementary trees are used to distinguish nodes with the same syntactic categories, such as NP0 and NP1

in Figure 1. They have no linguistic content.
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Figure 1: An elementary tree for the verb break

eration, a substitution node in a tree is replaced by another tree whose root has the same category as the

substitution node. In an adjoining operation, an auxiliary tree is inserted into another tree. The root and

the foot nodes of the auxiliary tree must have the same category as the node at which the auxiliary tree

adjoins. The resulting structure of the combined trees is called a parse tree or a derived tree. The history of

the combination process is recorded as a derivation tree.

In Figure 2, the four elementary trees in (a) are anchored by words in the sentence John often breaks

windows. α1 — α3 are initial trees, and β1 is an auxiliary tree. Foot and substitution nodes are marked by ∗

and ↓, respectively. To generate the derived tree for the sentence, α1 and α3 substitute into the nodes NP0

and NP1 in α2 respectively, and β1 adjoins to the VP node in α2, thus forming the derived tree in (b). The

dashed and dotted arrows between the elementary trees stand for the substitution and adjoining operations,

respectively. The history of the composition of the elementary trees is recorded in the derivation tree in (c).

In a derivation tree, a dashed line is used for a substitution operation and a dotted line for the adjoining

operation.

In the LTAG framework, a feature structure is associated with each node in an elementary tree (Vijay-

Shanker, 1987), and it consists of a top part and a bottom part. A feature structure contains information

about how nodes interact with other nodes in the tree, and is used to specify linguistic constraints, such

as the number/person agreement between a verb and its subject in English. When elementary trees are

combined by substitution and adjoining operations, the feature structures of merged nodes are unified;

and in a derived tree, the top part and the bottom part of every node must agree. For instance, the

agreement between a verb phrase V P and its subject NP0 in English can be expressed as a feature equation
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α1 : β1 : α2 : α3 :

α2[breaks]

α1[John] β1[often] α3[windows]

Figure 2: Elementary trees, derived tree and derivation tree for the sentence John often breaks windows.

V P.t :< agr >= NP0.t :< agr >, where X.t and X.b are the top part and the bottom part of the feature

structure for a node X respectively, and agr is a feature name. In Figure 1, this equation is displayed as

[arg :< 2 >] next to the NP0 and V P nodes; similarly, the equation V P.b :< agr >= V.t :< agr > is

displayed as [arg :< 1 >] next to the V P and V nodes in the elementary tree.3 From now on, for the sake

of simplicity, we shall not show the feature structures in elementary trees unless necessary.

In practice, it is customary to store an elementary tree as a (word, template) pair. A template is an

elementary tree with the lexical item removed. The symbol @ in a template marks the place where the

lexical item should be inserted back. For instance, the elementary tree in Figure 1 is stored as a pair (break,

#1), where the template #1 is given in Figure 3. To add elementary trees for other ergative verbs such as

melt and sink, we only need to add pairs (melt, #1) and (sink, #1), and the template #1 is stored only

once. In this paper, we mainly discuss the generation of templates, rather than the generation of elementary

trees. Templates with the same subcategorization frame are grouped into a template set, called a tree family
3The values of V P.t :< agr > and V P.b :< agr > in this elementary tree do not have to agree because other elementary

trees could adjoin to this VP node and split this node into two nodes.
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(XTAG-Group, 2001). A subcategorization frame specifies the categories of a head and its arguments, the

positions of arguments with respect to the head. For instance, (NP0 V NP1) is a subcategorization frame,

where V is the head, NP0 is a left argument and NP1 is a right argument.4 Figure 3 shows some templates

in two tree families: the top four elementary trees are for the verbs with the subcategorization frame (NP0

V NP1), and the bottom three elementary trees are for the verbs with subcategorization frame (NP1 V). Of

course, these are not the only trees in the tree families associated with these subcategorization frames. In

the XTAG grammar for English, for example, there are 19 templates in the transitive verb’s tree family.5

2.2 The impact of redundancy on development and maintenance

LTAG is an appealing formalism for representing various phenomena (especially syntactic phenomena) in

natural languages because of its linguistic and computational properties such as the Extended Domain of

Locality, stronger generative capacity and lexicalized elementary trees. Because templates in an LTAG

grammar often share some common structures, manually building an LTAG grammar presents a serious

problem, as illustrated by the following example.

Figure 3 shows seven templates for ergative verbs such as break. The top four templates show the syntactic

environments for ergative verbs when they act as transitive verbs, such as break in John often breaks windows.

#1 is for a declarative sentence, #2 and #3 are for wh-questions, and #4 is for an infinitival clause.6 There

are two templates for wh-questions because the moved constituent can be either the subject (as in #2) or

the object (as in #3). The symbol ε in a template is used to mark an empty category, such as a trace in a

wh-question. The bottom three templates show the syntactic environments for ergative verbs when they act

as intransitive verbs, such as break in The window broke. The top four templates form a tree family, while

the bottom three form another.

Among these seven templates, #1, #2, #3, and #4 all share the structure in Figure 4(a), templates #2,

#3, and #6 all have the structure in Figure 4(b), templates #4 and #7 both have the structure in Figure
4Just like in elementary trees, the subscripts in subcategorization frames are used to distinguish nodes with the same syntactic

categories, such as NP0 and NP1 in the subcategorization frame (NP0 V NP1). They have no linguistic content. Also, strictly
speaking, to distinguish arguments from the head in a subcategorization frame, the head should be followed by a symbol @;
however, because the heads of all the subcategorization frames appeared in this paper are verbs, we drop the symbol @ from
our notation.

5The XTAG grammar (XTAG-Group, 1998; XTAG-Group, 2001) is a large-scale LTAG grammar for English, which has
been manually created and maintained by a group of linguists and computer scientists at the University of Pennsylvania since
the early 1990s.

6Template #4 is used to handle sentences such as “John brought a stone to break the window”, where the infinitival clause
“to break the window” modifies the verb phrase “brought a stone” in the main clause.

8



VP*

VP

VP

V@

SNP

S

VP

V@

VP

NP

VP*

V@

1

NP

S

VP

S

NP

 0 VPNP

1

VP

NPV@
NPV@

V@

VP

V@

VP

S

1

Transitive verbs: (NP0 V NP1)

#3:

NP1

NP

S

NP

1

 0

ε

S

S

#2:

NP

S

 0

#5:

Ergative verbs: (NP1 V)

#4:

ε

#1:

ε

NP

 0

ε

NP

#6:

1

S

ε

NP1

#7:

Figure 3: Templates in two tree families
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Figure 4: Structures shared by the templates in Figure 3

4(c), and so on. The dashed line in Figure 4(b) between the lower S and the node NP indicates that the S

node dominates the NP node, but it is not necessarily the parent of the NP.

As the number of templates increases, building and maintaining templates by hand presents two major

problems. First, the reuse of tree structures in many templates creates redundancy. To make a single change

in a grammar, all the related templates have to be manually checked. The process is inefficient and cannot

guarantee consistency (Vijay-Shanker and Schabes, 1992). For instance, a single change (such as the addition

of a new feature to an S node) could affect a few hundred templates in a large-scale grammar. In Figure 3, if

the analysis for wh-movement is changed, then templates #2, #3, and #6 have to be manually modified. Of

course, they will be just some of the templates in that grammar that will need to be altered. In the current

XTAG English grammar developed at the University of Pennsylvania, a change in the wh-movement rule
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will require changes to be made to 169 templates from 54 tree families.7 Second, the underlying linguistic

information is not expressed explicitly. For instance, the analysis of wh-movement is expressed implicitly

in three templates in Figure 3. As a result, from the grammar itself (i.e., hundreds of templates plus the

lexicon), it is hard to grasp the characteristics of a particular language, to compare languages, and to build a

grammar for a new language given existing grammars for other languages. LexOrg was designed to address

these problems.

2.3 An overview of LexOrg

At first sight, the problems that we just described seem to be caused by the sharing of structures among

templates. However, a closer look reveals that the problems exist only because the templates are built man-

ually. If there exists a tool that combines these common structures to generate templates automatically (as

illustrated in Figure 5), then the task of the grammar designers changes from building templates to building

these common structures, providing an elegant solution. First, one can argue that the common structures

form the appropriate level for stating the linguistic generalizations. Considering that these common struc-

tures are much smaller and simpler than templates and the number of the former is much less than that of

the latter, the grammar development time will also be reduced significantly. Second, if grammar designers

want to change the analysis of a certain phenomenon (e.g., wh-movement), they need to modify only the

structure that represents the phenomenon (e.g., the structure in Figure 5(b) for wh-movement). The modi-

fications in the structure will be automatically propagated to all the templates that subsume the structure,

thus guaranteeing consistency among the templates. Third, the underlying linguistic information (such as

wh-movement) is expressed explicitly, making it easy to grasp the main characteristics of a language and to

compare languages.

All of these advantages will be derived if the grammar designer is able to state the linguistic principles

and generalizations at the appropriate level. That is, the domain of the objects being specified must be only

large enough to state these principles. While the enlarged domain of locality in templates is touted as one of

the fundamental strengths of LTAG, it must be noted that from the grammar development point of view each

template expresses several (often independent) principles. Thus, in coming up with a template, the designer

7The numbers are based on the XTAG grammar released on Feb 24, 2001, and the grammar can be downloaded from its
web site http://www.cis.upenn.edu/˜xtag.
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has to consider the instantiation of several principles that could interact in some cases and also instantiate

the same principles multiple times (sometimes hundreds of times). We believe that this aspect makes the

grammar development process unnecessarily error-prone and cumbersome. Our aim in developing LexOrg is

to let the grammar designer define individual grammar principles within a domain that is appropriate for that

principle. (Roughly, these domains and the instantiation of principles would represent the shared structures

found among templates in existing grammars as discussed earlier.) The LexOrg system then assumes the

burden of considering what set of principles should fit together to make up a template and also considers

the interactions and consistency of such a set of principles. Thus, the process of grammar development or

prototyping can be significantly simplified, thereby speeded up and made less error-prone. Over a period of

time as the grammar is developed to further its coverage, certain principles are bound to be modified. No

matter how small the modification is, ensuring that the possible effect on all the templates already designed

is properly accounted for by manually checking the templates is an onerous task. However, with a tool such

as LexOrg, the focus is correctly placed on the principle. The propagation of this principle and ensuring the

consistency of its interactions with other principles is now mechanized. Additionally, we have argued in (Xia

et al., 1999) that LexOrg can be used to produce concise abstract specifications of individual languages which

facilitate cross-lingual linguistic comparisons.
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In LexOrg, instead of manually creating templates, a grammar designer needs to provide the following

specifications for a language: ”subcategorization” frames, lexical subcategorization rules, and four different

kinds of tree descriptions: head-projection, head-argument, modification, and syntactic variation descrip-

tions. These specifications relate closely to the different aspects of LTAG elementary trees and the notion

of tree families. The subcategorization frames associated with different lexical items will specify which argu-

ments of the lexical items that the designer intends to localize within the elementary trees. Together with

the head-projection and head-argument descriptions (where the grammar designer expresses how the lexical

heads project and how they combine with their ”subcategorized” arguments), they will cause LexOrg to

produce the basic tree structure for each subcategorization frame. Note we use the term ”subcategorization”

here to mean what the designer intends to be localized with the lexical head. Lexical items with the same

subcategorization frames can thus be understood to share the same tree family. The lexical subcategoriza-

tion rules allow the grammar designer to specify the processes that they consider to be lexical which define

related subcategorization frames. For example, the difference between the passive and active forms can be

stated using this machinery. In addition to head-projection and head-argument descriptions, there are two

additional kinds of descriptions: modification descriptions and syntactic variation descriptions. Modification

descriptions are used to describe the other kind of elementary tree in LTAG, modifier auxiliary trees (such as

β1 in Figure 2), which are used to represent the tree structures for various forms of modification. Syntactic

variation descriptions are to be used to account for the design of the rest of the elementary trees that are not

obtained from mere projections of the basic subcategorization frames or frames derived from using lexical

subcategorization rules. In the next sections, we shall define each kind of specification in more detail.

We believe that most linguistic theories in some form or the other use these different types of grammatical

mechanisms. We have separated out into the different kinds of specifications as described above because of

their relationship to the different aspects of elementary trees and tree families now familiar to the LTAG

community. Nevertheless, in spite of this connection, we make no a priori assumption about how a grammar

designer should use these types of grammatical specification methods. For example, the treatment of wh-

movement can be specified via syntactic variation descriptions or as a lexical process and hence by using

lexical subcategorization rules; the descriptions can be structured hierarchically or could have a relatively
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flat organization. Because we give grammar designers such freedom in choosing appropriate grammatical

specification methods, evaluation of one particular set of specifications (such as the ones given in Section

7) is not central to LexOrg’s evaluation. In the next few sections, we will describe pieces of a particular

specification of an LTAG grammar. However, this should be understood as an attempt to suggest the

usefulness of LexOrg and to provide examples of using the different aspects of LexOrg. Hence, by no means

do we intend for this specification to suggest any particular grammatical principle to be associated with

LTAG nor even how principles have to be stated in LexOrg.

Figure 6 shows the architecture of the LexOrg system which has three components: a Frame Generator,

a Description Selector, and a Tree Generator. The input to the system are subcategorization frames, lexical

subcategorization rules, and tree descriptions. The Frame Generator (described in Section 6) accepts the

subcategorization frames and lexical subcategorization rules and for each subcategorization frame it con-

siders all the applicable lexical subcategorization rules to produce a set of subcategorization frames in a

format that is appropriate for later stages. The Description Selector (described in Section 5) automatically

identifies the set of descriptions (used to construct the tree templates) appropriate for each template for

each subcategorization frame. Finally, the Tree Generator (Section 4) produces the templates corresponding

to the selected descriptions and subcategorization frame. In the next section, we first describe the language

used in specifying the grammatical descriptions and consider four different classes of descriptions that a

grammar designer may provide.

3 Tree descriptions

Tree descriptions (or descriptions for short) were introduced by Vijay-Shanker and Schabes (1992) in a scheme

for efficiently representing an LTAG grammar. Rogers and Vijay-Shanker (1994) later gave a formal definition

of (tree) descriptions. We extended their definition to include features and further divided descriptions

into four classes: head-projection descriptions, head-argument descriptions, modification descriptions, and

syntactic variation descriptions. This section presents the characterizations of each of these classes in detail.
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3.1 The definition of a description

In (Rogers and Vijay-Shanker, 1994), descriptions are defined to be formulae in a simplified first-order

language LK , in which neither variables nor quantifiers occur. LK is built up from a countable set of

constant symbols K, three predicates (parent, domination, and left-of relations), the equality predicate, and

the usual logical connectives (∧, ∨, ¬). We extended their definition to include features because, in the LTAG

formalism, feature structures are associated with the nodes in a template to specify linguistic constraints.

Feature specifications, in a PATR-II like format, are added to descriptions so that when descriptions are

combined by LexOrg, the features are carried over to the resulting templates. In addition to any feature

that a user of LexOrg may want to include, there are two predefined features for each constant symbol in

K: one is cat for category, the value of which can be N (noun), NP (noun phrase), and so on; the other

feature is type, which has four possible values: foot, anchor, subst, and internal. The first three values are

for the three types of leaf nodes in a template: foot node, anchor node, and substitution node, and the last

value is for all the internal nodes in a template.

Figure 7(a) shows a description in this logical form, where �, �∗, and ≺ stand for parent, domination, and

left-of predicates, respectively; cat stands for category and is a feature. For instance, NP0.cat = ′NP ′ means

that NP0 has a feature named cat whose value is NP (i.e., noun phrase). Most descriptions used by LexOrg

can be represented in a tree-like figure. Figure 7(b) is the graphical representation for the same description.

In this graph, dashed lines and solid lines stand for domination and parent predicates, respectively. The

values of some features of nodes (such as the category of a node) are enclosed in parentheses. The graphical

representation is more intuitive and easier to read, but not every description can be displayed as a graph

because a description may use negation and disjunctive connectives. In the following sections, we shall use

the graphical representation when possible and use the logical representation in other cases.

3.2 The definition of a tree

According to (Rogers and Vijay-Shanker, 1994), a tree is a structure which interprets the constants and

predicates of LK such that the interpretation of the predicates reflects the properties of the trees. A tree

is said to satisfy a description if the tree as a structure satisfies the description as a formula in LK . As we

have extended the definition of description to include features, we also placed additional requirements on
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Figure 7: Two representations of a description
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Figure 8: A tree and the template that is built from the tree

trees with respect to features. For instance, the category of every node in a tree must be specified. For more

details about this revision, please see Section 4.3.3. of (Xia, 2001).

From each satisfiable description, we can recover a representation of a minimal model. For example,

Figure 8(a) represents a model for the description given in Figure 7. In this representation, a node has the

form {ki}({fm = vm}), where {ki} is a list of node names, and vm is the value of a feature fm. For simplicity,

we often omit from this graphical representation the curly brackets and all the features except the category

of a node. When {ki} has more than one member, it means that several nodes from different descriptions

are merged in the tree. In Figure 8(a), one such case is Obj,ExtSite(’NP’). As we shall show later, Obj

comes from a head-argument description, while ExtSite comes from a syntactic variation description. The

two names refer to the same node in the tree. In Section 4, we shall show that it is trivial to build a unique

template from such a representation.

3.3 Four classes of descriptions

In Section 4, we shall show that a component of LexOrg, namely the Tree Generator, generates templates

(i.e., elementary trees with the lexical item removed) from descriptions. Because the goal of LexOrg is
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to build grammars for natural languages, rather than any arbitrary LTAG grammar, descriptions used by

LexOrg should contain all the syntactic information that could appear in the templates for natural languages.

In this section, we identify four types of syntactic information in a template, and define a class of descriptions

for each type of information.

3.3.1 Head-projection descriptions

An important notion in many contemporary linguistic theories such as X-bar theory (Jackendoff, 1977), GB

theory (Chomsky, 1981), and HPSG (Pollard and Sag, 1994) is the notion of a head. A head determines the

main properties of the phrase that it belongs to. A head may project to various levels, and the head and its

projections form a projection chain.

The first class of description used by LexOrg is called a head-projection description. It gives the informa-

tion about the head and its various projections. For instance, the description in Figure 9(a) says that a verb

projects to a VP, and the VP projects to an S. Typically this should be straightforwardly derivable from

head projection principles as found in X-bar theory or similar intuitions expressed in GPSG or HPSG. But in

order to give the flexibility to a grammar designer to use any appropriate linguistic theory and, for example,

to use any choice in the number of projection levels and categories, we do not implement the derivations

from any specific linguistic principles, but rather expect the grammar designer to state the head-projection

descriptions explicitly.

3.3.2 Head-argument descriptions

A head may have one or more arguments. For instance, a transitive verb has two arguments: a subject

and an object. The second class of description, the head-argument description, specifies the number, the

types, and the positions of arguments that a head can take, and the constraints that a head imposes on its

arguments. For instance, the description in Figure 9(b) says that the subject — a left argument of the head

— is a sister of the HeadBar.8 In this case, the feature equation in the description, given below the tree in

Figure 9(b), specifies that the subject and the HeadBar must agree with respect to number, person, and so

on. The description in Figure 9(c) says that a head can take an NP argument, which appears as a right sister

8As a user of LexOrg, a grammar designer has the freedom to choose the linguistic theory to be incorporated in an LTAG
grammar. In the examples given in this paper (such as in Figure 9), we do not strictly follow the X-bar theory or the GB
theory. We name some nodes as HeadBar and HeadP only for the sake of convenience.
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Figure 9: Subcategorization descriptions
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Figure 10: A description for purpose clauses

of the head. Combining head-projection and head-argument descriptions forms a description for the whole

subcategorization frame, as in Figure 9(d); therefore, we use the term subcategorization description to refer

to descriptions of either class. As we shall describe in Section 5, the Description Selector is responsible for

choosing the right descriptions appropriate for a given subcategorization frame. Again, for reasons similar

to the one that we used at the end of the previous section on head-projection descriptions, for flexibility in

choosing structures for head-argument realizations, we do not include in LexOrg a reliance on any specific

linguistic principle governing descriptions of head-argument structures.

3.3.3 Modification descriptions

A syntactic phrase can be modified by other phrases. The third class of description, called a modification

description, specifies the type and the position of a modifier with respect to the modifiee, and any constraint

on the modification relation. For instance, the description in Figure 10 says that a clause can modify a verb

phrase from the right,9 but the clause must be infinitival (as indicated by the PRO subject).

The modification descriptions are expected to describe the so-called modifier auxiliary trees in the re-
9In the sentence “John brought a stone to break the window”, the infinitival clause “to break the window” modifies the VP

“brought a stone”. One may choose the analysis where the infinitival clause modifies the whole main clause “John brought a
stone”, instead of just the VP “brought a stone”. To account for this analysis, we only have to change the categories of ModRoot
and ModFoot from VPs to Ss.
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Trace(′ε′)

Figure 11: A description for wh-movement

sulting LTAG grammar, which are used to express modification in LTAG.

3.3.4 Syntactic variation descriptions

Head-projection and head-argument descriptions together define a basic tree structure for a subcategorization

frame, which forms a subtree of every template in the tree family for that subcategorization frame. For

instance, the structure in Figure 9(d) appears in every template in the transitive tree family, as shown

on the top part of Figure 3. In addition to this basic structure, a template may contain other structures

that represent syntactic variations such as wh-movement and argument drop. For example, template #2 in

Figure 3 can be decomposed into two parts: the first part, as in Figure 4(a), is the basic structure that comes

from head-projection and head-argument descriptions; the second part, as in Figure 4(b), comes from the

description in Figure 11. We call this description a syntactic variation description, as it provides information

on syntactic variations such as wh-movement. This description says that, in wh-movement, a component is

moved from a position ExtSite under HeadP to the position NewSite, as indicated by the feature equation

NewSite.t :< trace >= ExtSite.t :< trace >; NewSite is the left sister of HeadP; both NewSite and HeadP

are children of FHeadP; both FHeadP and HeadP are of the category S.

Note that LexOrg allows descriptions to “inherit” from other descriptions; that is, a grammar designer has

the flexibility of specifying a description as an instantiation or a further specification of other descriptions,

which represent more general principles (such as X-bar theory couched in this framework). For example, a

grammar designer may choose to create a description head has an arg for the head-complement structure in

X-bar theory, in which the position of the argument with respect to the head and the categories of the head

and the argument are unspecified. The description is specialized further in giving the position of the argu-
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ment, resulting in a new description head has a right arg. The latter description can be further specialized

for the case where the argument has a category of NP, yielding a new description head has a right NP arg,

and for the case where the argument is an S, yielding another description head has a right S arg. Similarly,

the description in Figure 11 can form the basis for movement specification in the grammar and can be further

instantiated to cover not only wh-movement but also relative clauses, if desired. Using the inheritance among

descriptions may reduce the redundancy among descriptions. For instance, if grammar designers later decide

to change the representation for the head-complement structure, they need to change only the description

head has an arg, not the descriptions that inherit from this description. One final note about the inheritance

relation among descriptions: while we (as the creators of LexOrg) encourage grammar designers to take

advantage of this feature of LexOrg to make their descriptions more concise and hierarchical, we still allow

a grammar designer to create all descriptions such that they are all “atomic” and there is no inheritance

among them.

To summarize, we have discussed four classes of descriptions. In Section 5, we shall show that a com-

ponent of LexOrg, namely the Description Selector, chooses descriptions according to their classes; that is,

it will create sets of descriptions such that each set includes one head-projection description, zero or more

head-argument descriptions, zero or one modification descriptions, and zero or more syntactic variation

descriptions.

4 The Tree Generator

The most complex component of LexOrg is called the Tree Generator (TreeGen), which takes a set of

descriptions as input and generates a set of templates as output. This is done in three steps: first, TreeGen

combines the input set of descriptions to get a new description; second, TreeGen builds a set of trees such

that each tree in the set satisfies the new description and has the minimal number of nodes; third, TreeGen

builds a template from each tree in the tree set. In Figure 12, the descriptions in (a) are the input to

TreeGen. Combining them results in a new description in (b).10 There are many trees that satisfy this new

description, but the two trees in (c) are the only ones with the minimal number of nodes. From these two

trees, TreeGen builds two templates in (d). In this section, we explain each step in detail.

10Notice that in Figure 12(b) the position of ExtSite with respect to Subj and HeadBar is not specified.
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Figure 12: The function of the Tree Generator
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4.1 Step 1: Combining descriptions to form a new description

The Description Selector selects a set of descriptions that might potentially form one or more templates.

TreeGen combines such a set of descriptions to form a new description. Recall that a description is a well-

formed formula in a simplified first-order language. Given a set of descriptions {φi | 1 ≤ i ≤ n}, the new

description φ, which combines {φi}, is simply the conjunction of φi; that is, φ = φ1 ∧ φ2... ∧ φn.

4.2 Step 2: Generating a set of trees from the new description

In the second step, TreeGen generates a set of trees, TreeSetmin(φ), for the new description φ. Let

TreeSet(φ) be the set of trees that satisfies φ and NumNodes(T ) be the number of nodes in a tree T ,

then TreeSetmin(φ) is defined to be the subset of TreeSet(φ) in which each tree has the minimal number

of nodes; that is,

TreeSetmin(φ) = {T ∈ TreeSet(φ) | NumNodes(T ) = minT∗∈TreeSet(φ)NumNodes(T ∗)}

With a little abuse of notation, we also use NumNodes(φ) to represent the number of nodes occurring

in a description φ. According to our definition of tree, each node in a tree must have a category; therefore,

each tree in TreeSet(φ) can have at most NumNodes(φ) nodes. Because NumNodes(φ) is finite for each

φ, TreeSet(φ) and its subset TreeSetmin(φ) are finite too. As a result, TreeSetmin(φ) can be calculated by

the following naive algorithm: first, initialize i to 1; second, generate a set TS(i) that includes all the trees

with i nodes; third, put into the set TreeSetmin all the trees in TS(i) that satisfy φ; if TreeSetmin is empty,

increase i by one and repeat the second and third steps until TreeSetmin is not empty or i is more than

NumNodes(φ). Because NumNodes(φ) is finite for any φ, the algorithm will always terminate; furthermore,

when it terminates, TreeSetmin is the same as TreeSetmin(φ) because by definition TreeSetmin contains

all the trees that satisfy φ with the minimal number of nodes. However, this algorithm is inefficient because

it generates a huge number of trees which do not satisfy φ and have to be thrown away in later steps.11

11Recall that the number of possible rooted, ordered trees with n nodes is the (n − 1)th Catalan Number, where the nth

Catalan Number bn satisfies the following equation:

bn =
1

n + 1
×

(
2n
n

)
=

4n

√
π × n3/2

× (1 + O(1/n)).

As the notion of tree in LexOrg is more complicated than the notion of rooted, ordered trees, the number of TS(n) is much
larger than bn−1. Furthermore, most trees in TS(n) do not satisfy φ, and therefore are not in TreeSetmin(φ).

21



Input: a description φ
Output: TreeSetm (i.e., TreeSetmin(φ))
Notation: � and �∗ denote parent and dominance relations, respectively.
Algorithm: void GenTreesEff(φ, TreeSetm)

// a description φ ⇒ a new description φ̂
(A) build a φ̂ which satisfies the following two conditions:

(1) TreeSet(φ) = TreeSet(φ̂), and
(2) φ̂ is in the disjunctive normal form and does not use negation connectives;

that is, φ̂ = φ̂1 ∨ ... ∨ φ̂m, where φ̂i = ψi1 ∧ ψi2 ... ∧ ψin and ψij is a literal.

// a description φ̂ ⇒ a set of trees TC
(B) TC = {};
(C) for (each φ̂i)

// a description φ̂i ⇒ a graph Gi

(C1) draw a directed graph Gi. In Gi, there is a dashed edge (a solid edge, resp.)
from the node x to y iff one of the literals in φ̂i is x�∗ y (x� y, resp.).

(C2) store with the graph the left-of information that appears in φ̂i.

// a graph Gi ⇒ a tree set TCi

(C3) if (Gi has cycles)
then if (the set of nodes on each cycle are compatible)

then merge the nodes;
else TCi = {}; continue;

(C4) merge the nodes in Gi until it does not have any compatible set;
(this step may produce more than one new graph)

(C5) for (each new Gi)
build a set of trees TCi such that each tree

includes all the edges in Gi and
satisfies the left-of information;

TC = TC
⋃
TCi;

// a set of trees TC ⇒ a set of minimal trees TreeSetm
(D) a = mintr∈TCNumNodes(tr);
(E) TreeSetm = {tr | tr ∈ TC and NumNodes(tr) = a};

Table 1: A more efficient algorithm for building TreeSetmin(φ)
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Figure 13: An example that illustrates how the new algorithm works: (a) is the original description in logical
representation; (b) shows the graph built in Steps (C1) and (C2) in Table 1; (c) shows the graph after Step
(C3) when cycles are removed; (d) shows two graphs produced in Step (C4), in which compatible sets are
merged; and (e) shows the trees produced in Step (C5).
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TreeGen uses a more efficient algorithm in which it first builds a new description φ̂ such that a tree

satisfies φ̂ if and only it satisfies φ, and φ̂ is in disjunctive normal form φ̂1 ∨ ... ∨ φ̂m, where each φ̂i uses

only the conjunctive connectives. It does so by using rewrite rules that essentially capture the properties of

trees to convert a negated formula into a disjunction of tree constraints, and then uses distributive rules to

convert the formula into disjunctive normal form.12 Second, for each φ̂i in φ̂, TreeGen builds a graph Gi. Gi

is not necessarily a tree, as it might be disconnected, have loops, and so on. Third, TreeGen turns each Gi

into a tree. There may be more than one possible tree for a graph; as a result, TreeGen gets a set of trees

TCi. Last, TreeGen chooses the subset of
⋃
TCi with the minimal number of nodes.

The new algorithm is in Table 1. The major steps of the algorithm are illustrated in Figure 13. The

input description is in (a). Since the description is already in disjunctive normal form, TreeGen skips Step

(A) in Table 1. In Steps (C1) and (C2), TreeGen creates a graphical representation for the description, as

shown in Figure 13(b). A dashed edge (a solid edge, resp.) from the node x to y is in the graph if and only

if x �∗ y (x � y, resp.) is one of the literals in the description. Steps (C3) – (C5) convert the graph into a

tree. In (C3) TreeGen removes loops in the graph. If a loop contains only dashed edges, TreeGen removes

the loop by merging all the nodes on the loop.13 If a loop contains one or more solid edges, the nodes on the

loop cannot be merged; that is, the description corresponding to the graph is inconsistent, and no templates

will be created from this description. In this example, the nodes C and E are on a loop in graph #2 in

Figure 13(b), and after merging, they become one node in the new graph, as shown in graph #3 in Figure

13(c). In Step (C4), TreeGen merges nodes that are compatible. A set of nodes are called compatible if the

categories of the nodes in the set match and after merging the nodes there is at least one tree that can satisfy

the new graph. In graph #3, the nodes G and B are compatible, so are G and F . Merging G and B results

in graph #4 in (d), and merging G and F results in graph #5.14 In Step (C5), for each graph produced

12In first order logic, two formulae are equivalent if any model that satisfies one formula also satisfies the other formula and
vice versa. φ and φ̂ are not necessarily equivalent because we only require that the sets of trees (not models) that satisfy these
two formulae are identical. Recall that trees are structures with special properties. For instance, given two symbols a and b
in a tree, the formula (a ≺ b) ∨ (b ≺ a) ∨ (a �∗ b) ∨ (b � a) is always true; therefore, a rewrite rule that replaces ¬(a ≺ b)
with (b ≺ a) ∨ (a �∗ b) ∨ (b � a) will not change the set of trees that satisfy a formula. The idea of using such rewrite rules
originates from (Rogers and Vijay-Shanker, 1994). However, our goal of applying rewrite rules in this step is to get rid of

negative connectives, rather than to find trees that satisfy each φ̂i. Therefore, we use fewer numbers of rewrite rules and the
φ̂i created by our algorithm can be inconsistent; that is, it is possible that no trees satisfy φ̂i.

13When two nodes x and y are merged, in the graphic representation they become the same node after merging; in the logic
representation, let φ be the description before the merging, after the merging the new description is φ ∧ (x = y).

14A node may appear in more than one compatible set. If a graph has two compatible sets, it is possible that after merging
the nodes in one set, the other set is no longer compatible in the new graph. Therefore, if a graph has more than one compatible
set, merging these sets in different orders may result in different graphs.
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Figure 14: A tree and the template built from it

by Step (C4), TreeGen builds a set of trees that satisfy that graph. In this case, Step (C4) produces two

graphs: #4 and #5. There is only one tree, #6, that satisfies graph #4, and one tree, #7, for graph #5. So

the treeset TC after Step (C5) contains two trees: #6 and #7. Notice that without the left-of information,

the node B in graph #4 could be C’s sibling, parent, or child. But with the left-of information, B has to be

C’s left sibling. In Steps (D) and (E), TreeGen produces the final result TreeSetm, which contains only the

trees in TC that have the minimal number of nodes. In our example, the two trees in TC have the same

number of nodes, so both are kept in the final result TreeSetm.

4.3 Step 3: Building templates from the trees

In this step, TreeGen builds a unique template from each tree produced by the previous step. Recall that a

node in a tree has the form {ki}({fm = vm}), where {ki} is a list of node names, and fm is a feature and vm

is the feature value. In this step, LexOrg simply replaces {ki}({fm = vn}) with l({fm = vm}), where l is the

category of ki (i.e., l is the value of ki.cat). For a leaf node, if its type (i.e., anchor node, substitution node

or foot node) is not specified by features, TreeGen determines its type by the following convention: if the

leaf node is a head (an argument, a modifiee, respectively), it is marked as an anchor node (a substitution

node, a foot node, respectively). Figure 8 (repeated as Figure 14) shows a tree and the template built from

the tree.

5 The Description Selector

In the previous section, we showed that the Tree Generator builds templates from a set of descriptions. The

set of descriptions used by the Tree Generator is only a subset of descriptions provided by the user. The
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function of the second component of LexOrg, the Description Selector, is to choose the descriptions for the

Tree Generator; to be more specific, it takes as input a subcategorization frame and the set of descriptions

provided by the user, and produces sets of descriptions, which are then fed to the Tree Generator. This

process, illustrated in Figure 15, is described below.

5.1 The definition of a subcategorization frame

A subcategorization frame specifies the categories of a head and its arguments, the positions of arguments

with respect to the head, and other information such as feature equations. While our definition of a subcat-

egorization frame is essentially the same as the one commonly used in the literature, we can also interpret

a subcategorization frame as a subcategorization description.15 For instance, the subcategorization frame

(NP0 V NP1) can be seen as the shorthand version of the description

(leftarg ≺ head) ∧ (head ≺ rightarg) ∧ (leftarg.cat = ′NP ′) ∧ (head.cat = ′V ′)

∧(rightarg.cat = ′NP ′) ∧ (leftarg.subscript = 0) ∧ (rightarg.subscript = 1)

This interpretation allows LexOrg to treat a subcategorization frame the same way as other descriptions,

as will be shown next.

5.2 The algorithm for the Description Selector

Recall that descriptions are divided into four classes: the ones for head-projection relations, head-argument

relations, modification relations and syntactic variations. The first two classes (e.g., D1, D2 and D3 in Figure

15) are also called subcategorization descriptions since they specify structures for a particular subcategoriza-

tion frame. Because the templates in a tree family have the same subcategorization frame, the Description

Selector should put in every description set SDi all the subcategorization descriptions for that subcatego-

rization frame. In addition to subcategorization information, in its choice of including other descriptions,

the Description Selector’s guiding principle is to capture the fact that elementary trees in an LTAG grammar

reflect zero or more syntactic variations, and zero or one modification relations. Therefore, each description
15A subcategorization frame is different from other descriptions in that it cannot refer to any node other than the head and its

arguments. For instance, it cannot refer to the VP which is the parent of the verb head. Another difference is that the categories
of the nodes in a subcategorization frame must be specified. The reason for these differences is simply because we want to
adopt the same definition of subcategorization frame as the one commonly used in the literature; namely, a subcategorization
frame specifies the categories of the head and its arguments.
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Figure 15: The function of the Description Selector
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set built by the Description Selector should include all the related subcategorization descriptions, zero or

more syntactic variation descriptions, and zero or one modification descriptions.

The algorithm is quite straightforward: given a subcategorization frame Fr, a set Subcat of subcat-

egorization descriptions, a set Synvar of syntactic variation descriptions, and a set Mod of modification

descriptions, the Description Selector’s first responsibility is to select a subset Subcat1 of Subcat according

to the arguments and category information mentioned in Fr. For instance, if Fr is (NP0 V NP1), Subcat1

will include descriptions such as head is V, head has a left NP arg, head has a right NP arg and so on. As

noted earlier, these descriptions need not be atomic and could be instantiations of more basic descriptions.

Next, for each subset Synvar′ of Synvar and each member m′ of Mod, the Description Selector creates a

set SDi, which is Subcat1 ∪ Synvar′ ∪ {Fr}, and another set SD′
i, which is SDi ∪ {m′}.16 This process

is illustrated in Figure 15. In this example, Subcat is {D1, D2, D3}, Synvar is {D4}, and Mod is {D5}.

Given the subcategorization frame Fr, which is (NP0 V NP1), the Description Selector first chooses a subset

Subcat1 of Subcat, which happens to be the same as Subcat in this case; it then creates multiple descriptions

sets, each set including Subcat1 and a subset of Synvar. Some description sets also include a member of

Mod. As a result, the Description Selector produces four description sets for Fr: SD1, SD2, SD3, and

SD4. Each SDi is sent to the Tree Generator to generate a tree set Ti. Each Ti has zero or more trees.

For instance, T2 has two trees, whereas T4 is empty because the descriptions in SD4 (i.e., D4 and D5) are

incompatible. The union of the Tis forms a tree family.

Notice the Description Selector considers different combinations of the descriptions that define the prin-

ciples underlying the grammar design. The TreeGen produces the trees that are defined by the combinations

of these principles when the combinations lead to consistent descriptions. Thus, these two components of

LexOrg together take away from the LTAG grammar designer the burden of considering which set of prin-

ciples are compatible with each other and which lead to inconsistencies. Thereby, the grammar designer

can now focus on stating the individual linguistic principles, while the system automatically oversees the

ramifications of these principles with respect to the details of the grammar.

16The number of description sets produced by the Description Selector is 2|Synvar| × (| Mod | +1). We can actually reduce
this number by not producing some description sets that are obviously unproductive. A description set is unproductive if there
exists no templates that satisfy all the descriptions in the set; as a result, the Tree Generator will produce nothing when it
takes the set as the input. For instance, if in a head-projection description the head is a verb and its highest projection is a
clause, the Description Selector will select a modification description only if the modifiee in that description is a clause.
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Figure 16: Templates in two tree families

(NP0 V NP1) => (NP1 V)

Figure 17: The lexical subcategorization rule for the causative/inchoative alternation

6 The Frame Generator

In an LTAG grammar, each word anchors one or more elementary trees. Figure 3 (repeated as Figure 16)

shows seven templates anchored by ergative verbs such as break. The templates belong to two tree families

because the subcategorization frames for them are different, but there is a clear connection between these

two subcategorization frames, and all the ergative verbs (such as break, sink, and melt) have both frames.

Levin (1993) listed several dozen alternations and classified English verbs according to alternations that

they participate in. In LexOrg, we use lexical subcategorization rules to link related subcategorization

frames.17 Figure 17 shows the lexical subcategorization rule that links the two subcategorization frames in

the causative/inchoative alternation. The function of the third component of LexOrg, the Frame Generator,

is to apply lexical subcategorization rules to a subcategorization frame and generate all the related frames.
17In our previous papers on LexOrg, we called these rules lexical rules. However, the term lexical rule is heavily overloaded.

For instance, lexical rules as defined in (Evans et al., 1995) can manipulate tree structures. They are used to account for
wh-movement, topicalization, and so on. In contrast, the rules in LexOrg can manipulate only subcategorization frames. To
avoid the confusion, in this paper we rename the rules in LexOrg lexical subcategorization rules, following a suggestion from
one of the anonymous reviewers.
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6.1 The definition of a lexical subcategorization rule

A lexical subcategorization rule is of the form fr1 ⇒ fr2, where fr1 and fr2 are just like subcategorization

frames except that the categories of the nodes in fr1 and fr2 can be unspecified, in which case we will

use a special label, XP, to represent an unspecified category. A lexical subcategorization rule fr1 ⇒ fr2

is said to be applicable to a subcategorization frame fr if fr and fr1 are compatible; that is, fr and fr1

have the same number of arguments and the features of the corresponding nodes can be unified.18 Applying

this rule to fr yields a new frame which combines the information in fr and fr2. For instance, the lexical

subcategorization rule (XP V S) ⇒ (XP V NP ) says that if a verb can take an S object, it can also take

an NP object. Applying this rule to the frame (NP0 V S1) generates a new frame (NP0 V NP ). In this

new frame, the category of the subject comes from the input frame, where the category of the object comes

from the right frame of the lexical subcategorization rule. Because the category of the subject in the lexical

subcategorization rule is not specified as indicated by the use of the label XP, the rule is also applicable to

the frame (S0 V S1).

In addition to categories, the nodes in a lexical subcategorization rule may include other features. For

instance, a lexical subcategorization rule for passivization is similar to the one in Figure 17 but the feature

voice will have the value ’active’ for the verb in the left frame, and have the value ’passive’ for the same

verb in the right frame. This feature will prevent the rule from being applied to a subcategorization frame

in which the verb is already in the passive voice, such as given in John is given a book.

Lexical subcategorization rules and syntactic variation descriptions are very different in several aspects.

First, a lexical subcategorization rule is a function that takes a subcategorization frame as input, and

produces another frame as output; a syntactic variation description is a well-formed formula in a simplified

first-order logic. Second, lexical subcategorization rules are more idiosyncratic than syntactic variations. For

instance, the lexical subcategorization rule in Figure 17 is only applicable to ergative verbs, rather than to

all the transitive verbs. In contrast, the description for wh-movement applies to all the verbs. Third, when

lexical subcategorization rules are applied to a subcategorization frame in a series, the order of the rules
18In our current implementation, a lexical subcategorization rule fr1 ⇒ fr2 has to specify the numbers of arguments in fr1

and fr2. This requirement will be relaxed in the future to allow a more general version of the passive rule (NP0 V NP1 XP ∗) ⇒
(NP1 V XP ∗), where * indicates that the argument XP is optional.
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matters. In contrast, if a set of descriptions includes more than one syntactic variation description (e.g.,

the descriptions for topicalization and argument drop in Chinese), the order between the descriptions does

not matter. Last, lexical subcategorization rules can be non-additive, allowing arguments to be removed;

descriptions are strictly additive, meaning that a description can only add information and it cannot remove

information. Notice that LexOrg does not place any constraint on which aspect of the grammar must be

specified using lexical subcategorization rules or syntactic variation descriptions, and a grammar designer

might even choose to use only one of these devices. However, because we believe that they can serve different

purposes and we also like to provide flexibility to the grammar designer, both of these methods of grammar

specification are available in LexOrg.

6.2 The algorithm for the Frame Generator

The Frame Generator takes a subcategorization frame Fr and a set of lexical subcategorization rules Rules

as input and produces as output a set FrSet of related frames. The algorithm is in Table 2: first, Fr is the

only member of FrSet; second, the Frame Generator applies each rule in Rules to each frame in FrSet, and

adds the resulting frames to FrSet.

Input: a subcategorization frame Fr and a set of lexical subcategorization rules Rules
Output: a list of related frames FrSet
Algorithm: void GenFrames(Fr, Rules, FrSet)

(A) let FrSet contain only the frame Fr
(B) for each frame f in FrSet

for each lexical subcategorization rule r in Rules
if r is applicable to f

let f’ be the new frame as r is applied to f
if f’ is not in FrSet

append f’ to FrSet

Table 2: The algorithm for generating related subcategorization frames

In this process, the Frame Generator may first apply a rule r1 to a frame f1 which generates a new frame

f2; then it adds f2 to FrSet, and apply r2 to f2 which generates f3; and so on. When that happens, we say

that a sequence [r1, r2, ..., rn] of lexical subcategorization rules is applied to the frame f1. The order of the

rules in such a sequence is important. For example, a passivization rule is applicable after the dative shift
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rule is applied to the subcategorization frame for ditransitive verbs, but the dative shift rule is not applicable

after a passivization rule is applied to the same frame. Rather than placing the burden of determining the

order of applicability of the rules on the grammar designer, the system automatically tries all possible orders

but will only succeed in producing the frames for ones with the correct ordering. Also, the set of possible

sequences of lexical subcategorization rules is finite because the set of distinct lexical subcategorization rules

is finite and in general each lexical subcategorization rule appears in a sequence at most once.19 Therefore,

the algorithm in Table 2 will always terminate.

7 The experiments

In previous sections, we have described the three components of LexOrg: the Tree Generator, the Description

Selector, and the Frame Generator. To generate a grammar, the users of LexOrg need to provide three types

of abstract specifications: subcategorization frames, lexical subcategorization rules, and tree descriptions. A

natural question arises: how does a user create such information? To address this question and to test our

implementation of LexOrg, we created two sets of abstract specifications: one for English, and the other for

Chinese. From each set of the specifications, we used LexOrg to generate a grammar. We chose English

because we wanted to compare our automatically generated grammar with the XTAG grammar, and we

chose Chinese because one of the authors was very familiar with literature on Chinese linguistics which

greatly facilitated the creation of the set of abstract specifications for Chinese. These languages also come

from two very different language families, offering interesting points of comparison and a test of LexOrg’s

language independence. This section reports the results of our grammar production experiments.

7.1 Creating abstract specifications

Any large-scale grammar development requires a thorough study of various linguistic phenomena in the

language to decide how these phenomena should be represented in the grammar, no matter whether or

not tools such as LexOrg will be used. Once grammar designers have chosen the analyses, they can either

create elementary trees by hand, or build abstract specifications and then use LexOrg to generate trees
19An arguable exception to this claim is the double causative construction in languages such as Hungarian (Shibatani, 1976).

But in this construction it is not clear whether the second causativization is done in morphology or in syntax. Even if it is
done at the morphological level, the two causativizations are not exactly the same and they will be represented as two distinct
lexical subcategorization rules in LexOrg.
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Figure 18: An elementary tree for the verb break

automatically. In Section 2.3, we have stated the advantages of using LexOrg for grammar development,

one of which we emphasize here. LexOrg not only allows but actually requires grammar designers to state

linguistic principles and generalization at the appropriate level; that is, Lexorg forces grammar designers

to state the underlying linguistic principles explicitly. For instance, Figure 1 (repeated here as Figure 18)

contains two feature equations, as indicated as the coindexes < 1 > and < 2 >. The same equations appear

in hundreds of tree templates in the XTAG grammar. If templates are created by hand, grammar designers

have to consider for each template whether such equations should be included, and there is nothing to ensure

that this process is done consistently. In contrast, if LexOrg is used to generate templates, grammar designers

need to decide which abstract specifications such feature equations should belong to. Once the equations are

added to appropriate specifications,20 LexOrg will ensure that they are propagated to all relevant templates.

Now let us briefly discuss the abstract specifications that we created for English and Chinese. Only a

limited number of categories (such as verbs and prepositions) take arguments and therefore have nontrivial

subcategorization frames and lexical subcategorization rules. By nontrivial, we refer to subcategorization

frames with at least one argument. Among these categories, verbs are the most complicated ones. To create

subcategorization frames and lexical subcategorization rules for verbs, we studied the literature on verb

classes such as (Levin, 1993) which discusses alternations and classifies verbs according to the alternations

that the verbs can undergo. An alternation describes a change in the realization of the argument structure

of a verb, and is illustrated by a pair of sentences in which a verb can appear. For instance, the spray/load

alternation is illustrated by these two sentences “Jack sprayed paint on the wall ” and “Jack sprayed the
20In the two sets of specifications that we created for English and Chinese, we added the feature equation V.t :< agr >=

V P.b :< agr > to the description in Figure 9(a), and the equation V P.t :< agr >= NP0.t :< agr > to the one in Figure 9(b).
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wall with paint ”. For each alternation, if all the dependents of the verb involved in the alternation are

arguments of the verb, then each sentence in the sentence pair is abstracted into a subcategorization frame,

and the alternation is represented as a lexical subcategorization rule. As the goal of the current experiment

was to use LexOrg to create a grammar similar to the XTAG grammar, and the XTAG grammar has a

very strict definition of arguments, only a few alternations (such as the causative alternation, the dative

shift alternation, and the passive alternation) fall into this category and they are represented as lexical

subcategorization rules.21

To create the first three classes of descriptions (namely, head-projection descriptions, head-argument de-

scriptions, and modification descriptions), we adopt the following approach: in a head-projection description,

the head and its projections form a chain, and the categories of the head and its projection are specified; in a

head-argument description, the categories of the head and its argument are specified, as well as the positions

of the arguments with respect to the head; in a modification description, the categories of the modifiee, the

modifier and the head of the modifier are supplied, as well as the position of the modifier with respect to

the modifiee.

To build a syntactic variation description, we started with the definition of the corresponding phe-

nomenon. For example, wh-movement can be roughly defined as a phenomenon where a constituent in a

clause is moved from its base position to a new position. Furthermore, the new position is to the left of

the base position, the category of the parent of the new position is S, and the moved constituent includes a

wh-word. From this definition, we created the description in Figure 11 (repeated as Figure 19).

7.2 Generating grammars

Once we created two sets of abstract specifications (one for English and the other for Chinese), we used

LexOrg to generate grammars from these specifications. At that time, the XTAG grammar contained about

one thousand elementary trees. Among them, about 700 trees were anchored by verbs. Because verbs have

nontrivial subcategorization frames and lexical subcategorization rules, the goal of our experiment was to

use LexOrg to “reproduce” this subset of trees with as little effort as possible. Given a pre-existing grammar
21All the other alternations contain some components that are considered to be adjuncts in the XTAG grammar. For instance,

in the spray/load alternation, both the PP “on the wall” in the first sentence and the PP “with paint” in the second sentence
are considered adjuncts in the XTAG grammar. As a result, no lexical subcategorization rule was created for this alternation,
and the spray verbs are treated as normal transitive verbs.
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Figure 20: Two elementary trees for adjectives with sentential arguments

where the related linguistic phenomena had been well-studied, as in the English XTAG, creating a new

version with LexOrg was quite straightforward, and required no more than a few weeks of effort. A tree-

by-tree comparison of this new grammar and the original XTAG grammar allowed us to discover gaps in

the XTAG grammar that needed to be investigated. The types of gaps included missing subcategorization

frames that were created by LexOrg’s Frame Generator and which would correspond to an entire tree family,

a missing tree which would represent a particular type of syntactic variation for a subcategorization frame,

or missing features in some elementary trees. Based on the results of this comparison, the English XTAG

was extensively revised and extended.

The experiment also revealed that some elementary trees were easier to generate with LexOrg than other

elementary trees. Figure 20 shows two elementary trees where an adjective such as glad takes a sentential

argument. They differ in the positions of the S1 node: in α1 the S1 node is a sister of the A node, but in α2 it

is a sister of the AP node. As both trees can handle a sentence such as Mary was glad that John came to the

party, it is difficult to choose one tree over the other according to the set of sentences that each tree accepts.

While it is equally easy to draw these two trees by hand, α1 would be preferred over α2 if LexOrg is used to
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generate a grammar. This is because the head-argument description in Figure 21, which is used to generate

all the elementary trees anchored by transitive verbs or prepositions, can also be used to generate α1. In

contrast, the elementary tree α2 would require a different head-argument description. Because our grammar

includes the transitive verb family and one of the trees in Figure 20, choosing α1 over α2 will require a

smaller set of descriptions. This example illustrates another advantage of using LexOrg besides the ease

of creating and maintaining a grammar: the users of LexOrg are encouraged to create elegant, consistent,

well-motivated grammars by defining structures that are shared across elementary trees and tree families.

In addition to English, we also used LexOrg to generate a medium-size grammar for Chinese. The Chinese

grammar, although smaller than the English grammar, required several person-months, since many of the

linguistic principles had to be defined along the way before the structures could be generated. Note that

most of the time invested for the Chinese grammar was in linguistic analysis which would be applicable to

any style of grammar, rather than in structure generation. In designing these two grammars, we have tried

to specify grammars that reflect the similarities and the differences between the languages.

English Chinese
subcategorization frames (NP, V, NP) (NP, V, NP)

(NP, V, NP, NP, S) (V)
lexical subcategorization rules passive without by-phrase short bei-const

dative-shift ba-const
head-projection descriptions S has V head S has V head

S has P head
head-argument descriptions V has NP right arg V has NP right arg

V has 3 right arg V has PP left arg
modification descriptions NP modify NP from left NP modify NP from left

S modify NP from right S modify NP from left
syntactic variation descriptions wh-question topicalization

gerund etc arg-drop etc.
# subcategorization frames 43 23
# lexical subcategorization rules 6 12
# descriptions 42 39
# templates 638 280

Table 3: Major features of English and Chinese grammars
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To illustrate the similarities and differences between these two languages, for each language we give two

examples for each type of abstract specification in Table 3: the first example has similar content in the two

languages, while the second example appears in only one language. For example, the lexical subcategorization

rule for passive without the by-phrase in English is very similar to the rule for the short bei-construction

in Chinese, whereas the rule for dative-shift appears only in English, and the rule for the ba-construction

appears only in Chinese. Similarly, both languages have wh-movement (topicalization in Chinese), but only

English has a gerund form and only Chinese allows argument drop, as indicated by the row for syntactic

variation descriptions. The bottom part of the table shows that with a small set of specifications, a fairly

large number of templates were produced; and in the case of the English grammar, we were able to specify a

grammar with a coverage comparable to that of the then current version of XTAG: LexOrg’s English grammar

covered more than 90% of the templates for verbs that were found in XTAG.22 To maintain the grammars,

only these specifications need to be modified, and all the elementary trees will be updated automatically.

We are encouraged by the utility of our tool and the ease with which both English and Chinese gram-

mars were developed. We believe that, beginning with a pre-existing linguistic analysis and grammar design

experience, a prototype grammar for a new language can be easily and rapidly developed in a few weeks.

Furthermore, we see this approach as much more than just an engineering tool. Provably consistent abstract

specifications for different languages offer unique opportunities to investigate how languages relate to them-

selves and to each other. For instance, the impact of a linguistic structure such as wh-movement can be

traced from its specification to the descriptions that it combines with, to its actual realization in trees.

7.3 Handling free word order languages

We have just reported on our experience in creating abstract specifications for English and Chinese, and

using LexOrg to generate grammars from the specifications. Because neither of these languages is a free word

order language, which has received much attention in the literature, let us now briefly discuss how LexOrg

could be used to handle free word order languages.23

22The remaining 10% of the templates are like α2 in Figure 20 in that they require some abstract specifications which do
not quite fit with the rest of the grammar. For example, as explained before, α2 in Figure 20 would require a head-argument
description which is very different from the one used for transitive verbs or prepositions. In order to keep our set of specifications
for English elegant and well-motivated, we did not include such specification, although adding such specification will guarantee
that the resulting new English grammar would cover all the templates for verbs that were found in XTAG.

23We would like to thank an anonymous reviewer for suggesting this topic.
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Figure 22: A set of templates for dative verbs in a free word order language

In a free word order language, words can appear in different orders under certain constraints. For instance,

a ditransitive verb (such as give in English) has three arguments — let us call them NP0 (the agent), NP1

(the beneficiary), NP2 (the theme) — and there are six possible orderings of these three arguments. In

English, without the preposition to or a comma as in a topicalized sentence, only one of these six orderings,

“NP0 V NP1 NP2”, is grammatical. In contrast, in a free word order language such as Korean or German,

all six orderings are allowed because case markers make it clear which NP is the agent, the beneficiary, or

the theme. Furthermore, one or more constituents in an embedded clause in a free word order language can

move from that clause to the matrix clause and such movement can be unbounded, resulting in the so-called

long-distance scrambling phenomenon.

There has been much discussion on how to handle scrambling in the LTAG framework. For instance,

Becker (Becker, 1994) proposes two extensions of the basic LTAG framework, namely Free Order TAG (FO-

TAG) and Multi-component TAG (MC-TAG), to handle scrambling. A detailed discussion of work on free

word order languages and scrambling is beyond the scope of this paper; however, we want to emphasize

a point that we made before: whether a grammar is created by hand or by LexOrg, a thorough study of

various linguistic phenomena in the language is inevitable in order to decide how these phenomena should

be represented in the grammar; once the grammar designer has chosen linguistic analyses, in general it is

quite obvious what type of abstract specifications should be used to generate the corresponding elementary

trees, and LexOrg facilitates the creation and maintenance of the resulting grammars.

In this case, for example, a grammar designer may decide to use the templates in Figure 22 to handle all
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Figure 23: Descriptions for the templates in Figure 22

six possible orderings of the three arguments of a dative verb in Korean. Note that the three arguments in the

templates are distinguished by both the subscripts and the values of the feature case: nom for nominative,

dat for dative, and acc for accusative. To generate these templates using LexOrg, one only needs to create the

descriptions in Figure 23 and a subcategorization frame (NP0 NP1 NP2 V ): the arc in the last description

means that the precedence relation between Obj1 and Obj2 is unspecified.24 Given this subcategorization

frame, LexOrg will select all four descriptions in Figure 23 — with the third description selected twice

because a dative verb has two objects. Since the precedence relation between subject and two objects is not

specified in these descriptions, all 3! permutations of the arguments are possible and the descriptions will

yield all the six templates in Figure 22.

It is common for grammar designers to change analyses while developing a large-scale grammar. In this

case, one might later decide to use the analysis in which the two NP objects are base generated as children

of the VP, and then moved up and become children of the S. As a result of the new analysis, the template

α1 should be changed to the template in Figure 24, and the other five templates need to be modified in

a similar way. When LexOrg is used, instead of changing the six templates manually, one only needs to

modify the last two descriptions in Figure 23 to the ones in Figure 25, and LexOrg will ensure that the

changes are propagated to all the related templates. In summary, the scrambling phenomenon in a free word

order language requires thorough linguistic study; once a grammar designer chooses an appropriate analysis,

LexOrg will greatly reduce the work of creating and maintaining the templates.
24The users of LexOrg should decide whether the values of the feature case for the three arguments in Figure 22 (e.g.,

“case=nom”) should come from the subcategorization frame for the verb that anchors these templates or from the descriptions
in Figure 23. Therefore, we do not mark these features in Figure 23. Also, as stated before, LexOrg allows languages to
be compared at the specification level, rather than at the elementary tree level. In this case, comparing the descriptions in
Figure 23 for free word order languages with the descriptions in Figure 9 for English will reveal some differences between these
languages. First, the positions of the object are different (see (c) in both figures). Second, the precedence relation of two
objects is not specified in the description for free word order languages (as indicated by the arc in Figure 23), but it is specified
for English (the description is not shown in Figure 9, but it is identical to Figure 23(d), except that it does not have the arc
between two objects).
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8 Comparison with other work

It has been long observed that the templates in an LTAG grammar are related to one another and could

be organized in a compact way for efficient development and maintenance. In this section we first explain

why we use tree descriptions in LexOrg, instead of (typed) feature structures. Then we compare LexOrg

with three alternative approaches to LTAG organization: Becker’s HyTAG system (Becker, 1994); a system

by Evans, Gazdar and Weir (Evans et al., 1995) implemented in DATR (Evans and Gazdar, 1989); and

Candito’s system (Candito, 1996).25 These three systems and LexOrg differ in how they handle two basic

relations: the grouping into tree families of templates that share tree structures which describe the same

subcategorization frame; and the organization of the tree families themselves into hierarchies, either manually

or automatically. The differences with respect to the first relation will be discussed later. Here, we shall

point out the differences with respect to the second relation.

In a lexical hierarchy, a class inherits attributes from its superclasses as illustrated by Figure 26. (For a

detailed example of a verb subcategorization frame hierarchy adhering to strict inheritance properties, see

(Copestake and Sanfilippo, 1993; Briscoe et al., 1994).) Although the hierarchy seems intuitive, building

25For more details of these systems and the comparisons, see Chapter 4 of (Xia, 2001).
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TRANSITIVE BQUI INTRANSITIVE

PP-IOBJ NP-IOBJ

DITRANS-1 DITRANS-2 OBJ-BQUI SIMPLE-TRANS

IOBJ

VERB

eatgive donate

Figure 26: The lexical hierarchy given in (Vijay-Shanker & Schabes, 1992)

it manually is by no means a trivial task. Grammar designers have to answer questions such as should the

hierarchy be a tree or a network? If it is a network, how should the conflicts between multiple superclasses be

resolved? Can a subclass overwrite attributes that are inherited from its superclasses? If some verb classes

share certain structures, is it necessary to create an abstract superclass for them — such as the node VERB in

Figure 26? What information should be included in the definition of what class? Answers to these questions

may vary, resulting in different hierarchies.

LexOrg differs from all the other approaches in that LexOrg does not need to use a pre-defined hierarchy

at all. The inheritance relation between tree families is implicit. For instance, the description set selected

by LexOrg (as in Section 5) for the ditransitive verb family is a superset of the descriptions selected for

the transitive verb family. Therefore, the ditransitive family implicitly “inherits” all the information from

the transitive family without referring directly to an explicit hierarchy or the transitive family at all. If one

wishes to make explicit this implicit inheritance hierarchy, he can simply build the hierarchy by adding an

inheritance link between every tree family pair that satisfies the following condition: the subcategorization

description set selected for one family is a superset of the subcategorization description set selected for the

other family.

8.1 Tree description vs. Feature structure

The focus in this paper on the use of tree descriptions in LexOrg is directly related to the fact that gram-

marians using LTAG focus more on tree structures than on the feature structures associated with nodes of

these trees. LexOrg’s use of tree descriptions rather than feature description logic reflects this bias.

We stated above that with LTAG, like CFG, there is more of a separation between the formalism and the
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linguistic theories used to instantiate grammars. Yet, there is one aspect that is almost universally adopted

in the design of LTAG grammars for natural languages. It concerns the localization of dependencies within

the elementary trees of LTAG. This means that nodes that can be correlated with respect to some form

of dependency (e.g., a head and its arguments, or even the so-called long-distance dependency between the

filler and the gap) co-occur within the same elementary tree. We also stated that LTAG is viewed as a

tree-rewriting system, with much of the focus of grammar design on capturing the phrase structure trees

(with the feature structures associated with the nodes almost treated as syntactic sugar). Hence much of

the grammar design focuses on the specification of the tree structure relations between nodes that co-occur

because of dependencies. Furthermore, in cases of long-distance dependencies, the relation between the

filler and the gap nodes is often one of c-command, a relation which itself is normally defined in terms of

unbounded dominance. As shown in Figure 11, the structural description for such a long-distance dependency

(but localized in LTAG) is stated succinctly using unbounded dominance. In addition to this relation

(between nodes of trees), immediate-dominance (parent-child relation) and precedence (left-of) relations are

also desirable for describing the phrase structure representation of other forms of dependencies (such as the

structural relationship between a head and its arguments).

The above discussion motivates our choice of using these three primitives (dominance, immediate domi-

nance, precedence) for describing the different aspects of elementary trees in an LTAG. When such descrip-

tions are used, clearly a system like LexOrg has to confirm whether a given set of descriptions is consistent,

and if so it should obtain the elementary trees of the LTAG being described as minimal models of such sat-

isfiable descriptions. We believe that description languages developed for (typed) feature structures are not

immediately suitable for our purpose. As the underlying logic behind these grammar development systems

take the models to be essentially directed acyclic graphs, the logics would need to be extended to capture

those constraints that define when a directed acyclic graph is also a tree. Thus, for example, we would need

to in some form enforce that the dominance relation is the reflexive, transitive closure of the immediate

dominance relation, that dominance and precedence relations are mutually exclusive, and that the prece-

dence relation inherits through the dominance relation, and so on. Such properties are needed to verify

satisfiability and for deriving the minimal models. The use of transitive closure of attribute paths have been

42



proposed in the context of functional uncertainty (Kaplan and Zaenen, 1988) and specialized algorithms to

deal with the use of regular expression in paths have been developed by (Kaplan and Maxwell, III, 1988;

Backofen, 1996). However, the addition of negation makes the satisfiability-checking problem undecidable

(Baader et al., 1993).

In LexOrg, we keep separate the constraint solving for tree descriptions and for attribute value struc-

tures.26 For the former, LexOrg borrows from the quantifier-free language for tree descriptions introduced

in (Rogers and Vijay-Shanker, 1994). Much of the original motivation for the development of this language

derived from LTAG considerations and for describing LTAG elementary trees and the adjoining operation

as discussed in (Vijay-Shanker, 1992; Vijay-Shanker and Schabes, 1992). We not only base our work on this

language but also use the associated machinery for satisfiability checking and the formulation of minimal

models developed in (Rogers and Vijay-Shanker, 1994). Thus, the description language and the associated

constraint solving mechanisms already exist and we adapt them here for our purpose. For the latter (i.e., the

constraint solving for attribute value structures), given the localization of dependencies in the elementary

trees (Kroch, 1987), features such as SLASH are unnecessary in LTAG,27 and with LTAG, one doesn’t need

to use more than flat attribute value pairs. We believe that the use of full scale typed feature structures is

unnecessary given the extent to which feature structure constraints are used in LTAG.

8.2 Becker’s HyTAG

A metarule in general consists of an input pattern and an output pattern. When the input pattern matches

an elementary structure in a grammar, the application of the metarule to the structure creates a new

elementary structure. Metarules were first introduced in Generalized Phrase Structure Grammar (GPSG)

(Gazdar et al., 1985). Later, Becker modified the definition of metarules in order to use them for LTAG in his

HyTAG system (Becker, 1994). In addition to metarules, Becker’s HyTAG system also uses an handcrafted

inheritance hierarchy such as the one just discussed.

In HyTAG, the input-pattern and the output-pattern of a metarule are elementary trees with the ex-

ception that any node may be a meta-variable. A meta-variable describes part of a template that is not
26In one sense, a common aspect in LTAG grammars developed so far is that the association of feature structures with nodes

of the trees are like the mapping between the c-structure nodes and f-structures in LFG and the two types of structures are not
represented with an uniform representation.

27One of the original motivations for the work on compiling HPSG into a LTAG was to investigate the extent to which any
of such features with unboundedly large feature structures as values are necessary after the LTAG is obtained.
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(a) a metarule
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(b) two templates for intransitive verbs

χ
χ

Figure 27: Applying metarules to templates

affected if the metarule is applied. If a template matches the input-pattern, the application of the metarule

creates a new template which could be added to the grammar. In Figure 27, (a) shows a metarule that links

a declarative template and a wh-movement template, where χ is a meta-variable. Applying this metarule

to the template #1 in (b) results in the template #2, as the meta-variable χ matches the whole VP in #1.

More specifically, metarules can

• erase structures from the input template.

• specify dominance relations between nodes (but unlike LexOrg, precedence relations in metarules

cannot be left unspecified and disjunction and negation cannot be expressed.)

• produce more than one template.

• be applied to a template in a series. Without any constraints, a metarule sequence can be infinitely

long, and the application process may never terminate unless additional restrictions are applied.28

28One such restriction is called the finite closure constraint, which requires a metarule to appear in a sequence at most once.
Becker proposed a different restriction which requires that the output trees of metarules must be smaller than a given limit
M of a grammar. However, he did not define what he meant by smaller, nor did he elaborate on where the M comes from.
Furthermore, having a limit on the size of output trees can guarantee that the application process will terminate, but it may
not guarantee that all the output trees that are smaller than the limit are linguistically sound.
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LexOrg Comparison A major difference between HyTAG and LexOrg is that HyTAG uses metarules to

describe both lexical and syntactic rules, whereas LexOrg uses two mechanisms: lexical subcategorization

rules and descriptions. Aside from the linguistic debate that argues for different treatments of lexical and

syntactic rules, using different mechanisms results in LexOrg having a small number of lexical subcatego-

rization rules which are simpler than metarules because they do not contain meta-variables. This makes

it easier to ensure the termination of the application process. It also allows for more modular encoding of

constraints such as feature agreements.

Another difference between HyTAG and LexOrg is the way that templates are related. To relate the

templates in the same tree family, the users of HyTAG first build one template as the basic tree, and then

create metarules that link the basic tree and other trees in the family. The input and the output patterns

have to specify exactly what information is in one tree but not in the other. In contrast, the users of LexOrg

provide a subcategorization frame and a set of descriptions; the rest is done automatically. The trees are

related implicitly by the descriptions that they share, rather than by rules that link them explicitly.

Explicitly specifying input and output patterns is also necessary for metarules that link two related tree

families. For instance, when relating a transitive tree with its corresponding ergative tree in HyTAG, the

agreement features between the surface subject and the VP have to be explicitly detailed on both sides of the

tree, since on one side the surface subject is NP0 and on the other it is NP1. In contrast, to relate templates

in two tree families, LexOrg uses a simpler lexical subcategorization rule to link the two subcategorization

frames, and a description that includes the feature agreement will automatically be selected.

8.3 The DATR system

Evans, Gazdar and Weir (Evans et al., 1995) discuss a method for organizing the trees in a TAG hierarchically,

using an existing lexical knowledge representation language called DATR (Evans and Gazdar, 1989). In

the DATR system, an elementary tree is described from its lexical anchor upwards as a feature structure

using three tree relations: the left, right, and parent relations. Like HyTAG, the DATR system uses an

inheritance hierarchy to relate verb classes. For instance, the VERB+NP class inherits the structure from

the VERB class and adds a right NP complement as the sister of the anchor. The system uses lexical rules

to capture the relationships between elementary trees. A lexical rule defines a derived output tree structure
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in terms of an input tree structure. Since the lexical rules in this system relate elementary trees rather than

subcategorization frames, they are more similar to metarules in HyTAG than to lexical subcategorization

rules in LexOrg.

In addition to topicalization and wh-movement, lexical rules in the DATR system are also used for passive,

dative-shift, subject-auxiliary inversion, and relative clauses.29 In the passive rules, instead of stating that

the first object of the input tree is the subject of the output tree, the lexical rule simply discards the object.

As a result, the relationship between the object in an active sentence and the subject in the corresponding

passivized sentence is lost.

LexOrg Comparison Similarly to HyTAG, the DATR system requires a hand-crafted hierarchy and does

not distinguish between syntactic rules and lexical rules, in contrast with LexOrg which can generate its

hierarchy automatically and which clearly separates syntactic rules and lexical subcategorization rules. There

are two other major differences: (1) the descriptions used by LexOrg are constrained to be strictly monotonic,

whereas the DATR system allows non-monotonicity in its application of rules; (2) the DATR system can

only directly capture relations between nodes in a tree (such as the parent-child relationship or precedence),

and must use feature-equations to simulate other tree relations. This means that an abstract concept like

dominance can only be specified by spelling out explicitly all of the different possible path lengths for every

possible dominance relationship. For instance, in wh-movement, the moved NP is dominated by the S in

the input tree. The NP can be the subject, the object of the verb, or the object of a PP where the PP is

an object of the verb. In the DATR system, three distinct lexical rules are needed to specify these three

possibilities. In contrast, since descriptions used by LexOrg are more expressive, only one description is

needed to cover all three cases.

8.4 Candito’s system

Like LexOrg, Candito’s system (Candito, 1996) is built upon the basic ideas expressed in (Vijay-Shanker

and Schabes, 1992) for the use of descriptions to encode tree structures shared by several elementary trees.

Her system uses a hand-written hierarchy which has three dimensions. In the first dimension, canonical
29In LexOrg, passive and dative-shift are handled by lexical subcategorization rules. A parse tree for a subject-auxiliary

inversion sentence is created by adjoining an auxiliary tree (anchored by an auxiliary verb) to an elementary tree (anchored by
the main verb). LexOrg uses descriptions to express the information in topicalization, wh-movement, and a relative clause.
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subcategorization frames are put into a hierarchy similar to the ones in HyTAG and the DATR system.

The second dimension includes all possible redistributions of syntactic functions. The third dimension

lists syntactic realizations of the functions. It expresses the way that the different syntactic functions are

positioned at the phrase-structure level. The definitions of classes in these dimensions include descriptions

and meta-equations.

A terminal class is formed in two steps. First, it inherits a canonical subcategorization from dimension

1 and a compatible redistribution from dimension 2. This pair of super-classes defines an actual subcat-

egorization frame. Second, the terminal class inherits exactly one type of realization for each function of

the actual subcategorization from dimension 3. A terminal class is actually a description. Elementary trees

are the minimal trees that satisfy the description. For instance, a terminal class inherits the ditransitive

frame (NP0 V NP1 NP2) from dimension 1 and the passive redistribution from dimension 2; this yields

the actual subcategorization frame (NP1 V NP2). It then inherits subject-in-wh-question and object-in-

canonical-position realizations from dimension 3. The resulting elementary tree is anchored by a passivized

ditransitive verb whose surface subject (i.e., the indirect object in the active voice) undergoes wh-movement,

such as given in who was given a book?

A terminal class inherits one class from dimension 1, one from dimension 2, and one or more from

dimension 3. These superclasses may be incompatible. For instance, in English, only one argument of

a verb can undergo wh-movement; therefore, the classes subj-in-wh-question and obj-in-wh-question from

dimension 3 are incompatible. To ensure that all the superclasses of a terminal class are compatible, the

system provides several ways for its users to express compatibility constraints.30 The users can mark a class

C in the hierarchy as a disjunctive node, meaning that a terminal class cannot inherit more than one subclass

of C. The user can also specify positive or negative inheritance constraints. A positive constraint (A,B)

requires that any class that inherits from A must also inherit from B. A negative constraint (A,B) requires

that any class that inherits from A cannot inherit from B. Another type of constraint is called constrained

crossing. A constrained crossing is a tuple (A,B,C), meaning whenever a class inherits from A and B, it

has to also inherit from C.
30The content of this paragraph comes from the handout of the talk that Candito gave at the University of Pennsylvania in

1997.
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LexOrg Comparison There are many similarities between these two systems as both use descriptions

to encode tree structures shared by several elementary trees, and there is a separation of lexical rules

and syntactic rules. There is an obvious parallel between Candito’s subcategorization dimension and our

subcategorization descriptions, between her redistribution dimension and our lexical subcategorization rules,

and between her realization dimension and our syntactic variation/modification descriptions. However, there

are also several major differences.

The first difference is that Candito’s system requires a hand-written hierarchy whereas LexOrg does not.

Candito’s system also requires that each terminal class should select exactly one class from dimension 2. This

means that if two lexical subcategorization rules can be applied in a series (such as passive and causative)

to a subcategorization frame, a node that represents that sequence must be manually created and added to

dimension 2. In other words, dimension 2 should have a node for every rule sequence that is applicable to

some subcategorization frame. LexOrg does not need users to build this dimension manually because the

Frame Generator in LexOrg automatically tries all the rule sequences when given a subcategorization frame.

The two systems also differ in the way that syntactic variations are represented. In Candito’s third

dimension, each argument/function in a subcategorization frame requires an explicit representation for each

possible syntactic realization. For example, the subject of a ditransitive verb has a different representation for

the canonical position, for wh-extraction, and so on. So do the direct object and indirect object. To generate

templates for wh-questions of ditransitive verbs, Candito’s system needs to build three separate terminal

classes. In contrast, LexOrg does not need descriptions for the various positions that each argument/function

can be in. To generate the template for wh-questions, LexOrg only needs one wh-movement description.

Combining this description with the set of subcategorization descriptions will yield all the templates for

wh-questions.

Another difference between the two systems is that Candito’s system requires its users to specify con-

straints on the selection of superclasses. For instance, the user has to build a class for wh-movement and

a subclass for each position from which a constituent can be moved (e.g., subj-in-wh-position, indobj-in-wh-

question, and dobj-in-wh-question). The users then have to mark the extraction class as a disjunctive node,

so that the system will not choose more than one of its children for a terminal class. In LexOrg, only one
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description for wh-movement is needed, which covers all possible cases. There is no need to write constraints

to rule out illegal combinations.

9 Summary

In LTAG there is a clear distinction made between a grammar and the grammatical principles that go into

developing this grammar. Arguments have been made on linguistic and computational grounds that the use

of a suitably enlarged domain of locality provided by the elementary trees and the operations of substitutions

and adjoining provide many advantages. But it is clear that these elementary trees, especially given that

they have an enlarged domain of locality, are themselves not atomic but rather encapsulate several individual

independent grammatical principles. Although this fact is widely understood in the LTAG context, most

of the large scale grammar development efforts have directly produced the elementary trees, thereby in

essence manually compiling out subsets of independent principles into elementary trees. Of course, with

such manual efforts, the larger the grammar, the more prone to errors it becomes and the harder it is

to maintain. The emphasis on tree structure rather than typed feature structures in LTAG precludes the

adaptation of generalization techniques incorporated into HPSG, as discussed in detail in Section 8.1.

LexOrg is a computational tool that alleviates such problems in grammar design for LTAGs. It takes

three types of abstract specifications (i.e., subcategorization frames, lexical subcategorization rules, and

descriptions) as input and produces LTAG grammars as output. Descriptions are further divided into four

classes according to the information that they provide. In grammar development and maintenance, only the

abstract specifications need to be edited, and any changes or corrections will automatically be proliferated

throughout the grammar.

LexOrg has several advantages over other similar semi-automated approaches to LTAG grammar de-

velopment and maintenance that are also based on a more abstract grammar perspective, as discussed in

detail in Section 8. First, unlike HyTAG, the DATR system and Candito’s system, not only does LexOrg

not require its users to construct a hand-crafted lexical hierarchy, but it can actually produce a hierarchy

automatically by checking the descriptions selected by subcategorization frames. Second, unlike HyTAG

and the DATR system, LexOrg distinguishes lexical subcategorization rules from syntactic rules and uses
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two different mechanisms to represent these rules resulting in simpler rules that are easier to encode. Third,

unlike Candito’s system, LexOrg does not require users to provide various kinds of constraints manually to

ensure that a terminal class inherits the correct combinations of superclasses from three dimensions. LexOrg

automatically detects illegal combinations. Finally, unlike the DATR system and Candito’s system, LexOrg

needs only one description, which is generally applicable, to specify the information for wh-movement.

Given a pre-existing linguistic analysis, a new grammar can be developed with LexOrg in a few weeks,

and easily maintained and revised. This provides valuable time savings to grammar designers, but, perhaps

even more importantly, the reuse of descriptions encourages a comprehensive and holistic perspective on the

grammar development process that highlights linguistic generalizations. The users of LexOrg are encour-

aged to create elegant, consistent, well-motivated grammars by defining structures that are shared across

elementary trees and tree families.

In addition to greatly shortening grammar development time and lightening the more tedious aspects

of grammar maintenance, this approach also allows a unique perspective on the general characteristics

of a language. The abstract level of representation for the grammar both necessitates and facilitates an

examination of the linguistic analyses. The more clearly the grammar designer understands the underlying

linguistic generalizations of the language, the simpler it will be to generate a grammar using LexOrg. In

using LexOrg to create an English LTAG, we demonstrated that this process is very useful for gaining an

overview of the theory that is being implemented and exposing gaps that remain unmotivated and need

to be investigated. The type of gaps that can be exposed include a missing subcategorization frame that

might arise from the automatic combination of subcategorization descriptions and which would correspond

to an entire tree family, a missing tree which would represent a particular type of syntactic variation for

a subcategorization frame, and trees with inconsistent feature equations. The comparison of the LexOrg

English grammar with the pre-existing XTAG grammar led to extensive revisions of XTAG, resulting in

a more elegant and more comprehensive grammar. Provably consistent abstract specifications for different

languages offer unique opportunities to investigate how languages relate to themselves and to each other.

For instance, the impact of a linguistic structure such as wh-movement can be traced from its specification to

the descriptions that it combines with, to its actual realization in trees. By focusing on syntactic properties
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at a higher level, our approach allowed a unique comparison of our English and Chinese grammars.
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