
Market-based Approaches to Optimization

Maria Karlsson†, Fredrik Ygge‡, and Arne Andersson‡

†Uppsala University and Växjö University
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www.msi.vxu.se/~mka

Maria.Karlsson@msi.vxu.se

‡Trade Extensions and Uppsala University
Computing Science Department

Information Technology
SE - 751 05 Uppsala, Sweden

www.user.it.uu.se/~{ygge,arnea}
{ygge,arnea}@it.uu.se

Abstract. We present a general discussion of what constitutes a market-
oriented approach to optimization. We demonstrate how a general frame-
work can be used to conceptually improve two well-known approaches
from the literature, and discuss computational properties of the differ-
ent approaches. We also show how existing theory could be adjusted to
be directly applicable to the theory of the two approaches, thus proving
special theory unnecessary.

We want to bring out the pedagogical aspects of markets mechanisms,
in order to take full advantage of its potential.

1 Introduction

The use of markets has been proposed for different resource alloca-
tion/optimization problems. The main arguments found in the literature for
applying the market concept to these types of problems are:

– The numerous similarities between economic systems and distributed com-
puter systems suggest that models and methods previously developed within
the field of mathematical economics can serve as blueprints for engineering
similar mechanisms in distributed computer systems [1].

– Auction algorithms are highly intuitive and easy to understand; they can be
explained in terms of economic competition concepts, which are grounded
in everyday experience [2].

– Market approaches enable a natural decomposition, from a software engineer-
ing perspective as well as from a computational perspective [3, Chapter 15]
and [4].
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– Market approaches are very flexible in that they allow for ongoing addi-
tion and deletion of agents. No global changes are required—merely the
demand/supply relation is altered [3, Chapter 15].

– Markets are informationally efficient in terms of information dimensional-
ity [5], and the abstractions used are the most natural ones for the user [3,
Chapter 15].

– Trading resources for some sort of money enables evaluation of local per-
formance and valuation of resources, so that it becomes apparent which
resources are the most valuable and which agents are using the most of
these [3, Chapter 15].

This article focuses on the presentation of two approaches to optimization in
the literature, based on market abstractions. Kurose and Simha [1] investigate a
file allocation problem. In this approach, agents report their marginal utility (for
having a certain amount of storage) and its derivative to an auctioneer, which
reallocates the resource using a resource-oriented Newton-Raphson algorithm
until an equilibrium has been reached in which the marginal utilities of all agents
are the same. This procedure leads to an optimal allocation and is reported to
be computationally efficient.

The problem of allocating n objects to n users has been investigated by
Bertsekas [2]. Each user has a valuation of each object, and cannot be assigned
more than one object. It is reported that each user can be seen as an economic
agent, and it is shown how an auction (which essentially is an English auction)
results in an equilibrium. The assumed agent behavior is that an agent bids
for the object that is most profitable given the agent’s valuation of the objects
and the current prices. The bidding increment depends on the valuation and the
price of the most preferred object in relation to the valuation and the price of the
second most preferred object. When the equilibrium is reached, the allocation is
no more than a limited term away from being optimal.

Even though the two examples use ideas that are inspired by micro-
economics, they rely on rather unrealistic agent strategies. Therefore we argue
that neither of these approaches can be seen as fully market-oriented. For de-
veloping this argument, we give a general definition of what a market-oriented
approach to optimization is, and show how the approaches under investigation
can be conceptually improved to fit the more general framework. We also present
some general theory (which interestingly also applies to non-separable resource
allocation problems) and show how the rather ad-hoc theory of the examples
constitute special cases of the general theory. Thus, the aim of the paper is to
bring out the pedagogical advantages of markets. We want to emphasize the
concepts that support this view even though we show that this might result in
a loss of computational efficiency.

The article is organized as follows. In Section 2 we shortly describe the basic
properties of market-oriented programming. In Section 3 the two examples of
market-based applications are described in more detail. In Section 4 we generalize
the theory, while Section 5 includes discussion and conclusions.
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2 Market-oriented programming

Wellman [6] has introduced market-oriented programming as a general approach
to deriving solutions to distributed resource allocation problems by a computa-
tional economy. Based on the models introduced by Wellman, we require that,
for an optimization approach to be considered market-oriented, it must at least
fulfill the following basic requirements:

– There must be a well defined market mechanism which includes some no-
tion of prices (which often are expressed in terms of some monetary unit).
The market mechanism regulates how negotiations and trade are performed
among the participating agents and hence determines how certain commodi-
ties can be traded for certain other commodities.

– There must be some arguments for why the agent strategies are reasonably
realistic, given the market model. That is, assume we have some model of in-
formation available for the different agents and a well-defined model for how
they interact (the market mechanism). Then the strategies must be consis-
tent with the agents’ attempt to maximize utility, given bounded rationality.

We are used to different market mechanisms from our daily experience. At
least in the industrial countries, fixed price markets are the most frequent. In a
fixed price market, the customer faces preset prices for different commodities and
has only the choice whether to buy or not. This type of market is however of lim-
ited interest for application to optimization problems. Efficient market-oriented
optimization must generally be based on a dynamic price market mechanism.
In a dynamic price market the agents do not only choose which commodities to
buy/bid for, but also at what prices.

Another important distinction is whether the commodities can be traded for
in discrete or continuous amounts. An example where only discrete amounts
make sense is an auction for flight tickets. Many other markets, however, allow
for continuous amounts to be traded. Examples of such markets are markets for
electricity, bandwidth and pollution rights.

An example of a dynamic price mechanism for discrete amounts is the English
auction. In its most simple form, the auction consists of an object to be sold,
an auctioneer (which keeps track of the currently highest/winning bid), and a
number of bidders. The auction may start at some minimum reserve price. A
bidder can place a new bid by bidding at least ε above the currently winning bid.
When no agent wants to make any further bid the auction stops. Every object is
allocated to the agent with the highest bid for that object at the price reported
by the winning bid. This type of market mechanism is very common and can,
for example, be seen at a number of Internet sites.

An example of a dynamic price mechanism for continuous amounts is equi-
librium (or clearing) markets [6]. An equilibrium market establishes a price at
which supply meets demand. Each agent then typically declares a demand/supply
function, telling how much it wants to buy/sell at different prices. The role of
the auctioneer is then to search for the price such that all demand matches all
supply. When the price is found the search terminates and the resources are
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reallocated as described by the bids and the clearing price. This type of market
is less common, but one example of a market based on these principles is the
main power market in the Nordic countries, NordPool [7].

Below we will illustrate the use of both discrete and continuous market mech-
anisms in the context of optimization problems.

In market-oriented programming the main purpose is not to prove game-
theoretic properties of the behavior of agents. Rather, we will restrict ourselves to
the weaker assumption of reasonably realistic, intuitive and understandable be-
havior based on everyday experience. This follows the trend of the AI-community.
Further, we make the simplifying assumption that agents do not speculate about
how their own behavior or that of other agents will affect the market. This is
reasonable if the market is of sufficient size and/or uncertainty is sufficiently
large [8, 9]. Thus, the only claim made in this paper is that the agent’s attempt
to maximize its utility should be reasonable, given the information available by
the mechanism. This behavior need not to be game-theoretically optimal.

Our way of reasoning is very consistent with the view of Wellman [10]. He
claims that the knowledge, preferences and abilities that must be attributed to
the agents will limit their rational behavior. This ”rationality abstraction” is
common to artificial intelligence and economics, according to Wellman.

Since we deal with the modeling of optimization problems as markets, we
assume the designer to have full control over agent strategies. This means that
in practice even unrealistic agent behavior (like in the algorithm by Bertsekas [2])
can be considered for computional reasons. However, to fulfill the requirements
of market-oriented programming, the actions of the agents should be grounded
in everyday experience. Realistic behavior will give an algorithm which is easy to
understand, and thus also easy to implement and use. This paper will show that
the conceptual gains of making the behavior more realistic can result in a loss
in computional efficiency. We consider the trade-off between these two concepts
an interesting question.

If the model is to be used in systems where the designer does not have control
over agent strategies, then in the general case computional properties etc. must
be demonstrated using game-theoretic reasoning. However, since we make the
assumption of non-speculating agents, we consider the potential use in an open
system to be another motivation for the need of realistic behavior.

Optimality properties of some basic auctions, similar to the one described
by Bertsekas [2] and the English auction described above, are discussed by De-
mange et al. [11]. More recently, auction-based algorithms for more complicated
agent preferences have been examined. Combinatorial auctions, primal-dual al-
gorithms and Vickrey-Clarke-Groves mechanisms are discussed in e.g. [12–15].
Background on basic microeconomic definitions and auction design can be found
in [16] or [17].
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3 Examples of market-based optimization

3.1 The file allocation problem

Kurose and Simha [1] consider the file allocation problem in a distributed com-
puter system. One file is fragmented into records so that it can be distributed to
the different computers in a network. The fragmentation is done in a way that
minimizes the communication costs and the average processing delay associated
with a file access.

The system consists of n nodes interconnected through a communication
network. The network is assumed to be fully connected. The processes running
at each of the nodes generate accesses (queries and updates) to the file resource. If
a process generates an access request which cannot be satisfied locally, the access
is transmitted to the node in the network that holds the requested information.

To be able to state the problem more formally, we make the following defi-
nitions:

- xi is the fraction of the file resource at node i. Since there is only a single
divisible resource,

∑n
i=1 xi = 1. Assuming accesses are made on a uniform

basis, xi also represents the probability that a file access (from anywhere in
the network) will be transmitted to node i for processing.

- λi is the average rate at which node i generates accesses to the file resource.
The networkwide access generation rate is defined λ =

∑n
i=1 λi.

- cij is the communication cost of transmitting an access from node i to node
j and transmitting the answer back to i from j. cii is taken to be zero.

- Ci is the average systemwide communication cost of making an access at
node i. We take this as the weighted sum of the individual communication
costs:

Ci =
∑
j∈N

λj

λ
cji.

- 1/µi is the average service time for an access at node i. We will assume
µi = µ for all nodes i.

- Ti is the expected time delay associated with satisfying an access at node i.
In terms of λ, xi, and µ, we have:

Ti =
1

µ− λxi
.

(µ is the average number of jobs processed at one node every time unit. λxi

is the average number of accesses to node i per time unit. Thus, µ− λxi is
the decrease in the length of the queue of waiting jobs at node i per time
unit and so 1/(µ− λxi) is the expected time a job will have to spend in the
queue at node i.)

- K is the relative importance of communication costs and access delays. K
is here taken to be 1, meaning that communication costs and access delays
are equally important.
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Now, the problem can be described as follows. Let xi be the fraction of the file
resource stored at node i. The goal is then to find the optimal (x1, x2, . . . , xn).
The overall expected cost of access to the file system is given by

C =
∑
i∈N

(cost of access to xi)prob(accessing xi)

=
∑
i∈N

(Ci + KTi)xi

=
∑
i∈N

(
Ci +

K

µ− λxi

)
xi.

In order to adapt to microeconomic theory, Kurose and Simha choose the equiv-
alent problem formulation of maximizing the negative of the cost function. Thus,
the utility function U = −C is to be maximized.

Kurose and Simha present two approaches to the problem. The first approach
starts with an arbitrary initial feasible allocation. Each node i computes its
marginal utility, evaluated at the current allocation. Then each node transmits
this value to a central node, which computes the average value. The result is
broadcast back to the individual nodes and the file resources are reallocated.
Nodes with marginal utility below average utility gets a proportional decrease in
file resource, while nodes with marginal utility above average gets a proportional
increase. These steps are iterated until the termination condition is met, i.e. the
algorithm terminates when the difference between the marginal utilities of two
nodes is below some ε for every pair of nodes. At each reallocation the algorithm
must make sure that no node gets a negative allocation.

Let U ′
i be ∂U(x1, . . . , xn)/∂xi. Furthermore, let A be the set of nodes that

could participate in a reallocation without getting a negative allocation. (For a
description on how the set A is constructed, see below.) Now, we can state this
algorithm more formally:

1. Initialization. An arbitrary feasible allocation xi, i ∈ N is made.
2. Iteration.

DO - Each node i ∈ N calculates U ′
i evaluated at the current allocation

and sends U ′
i and xi to the designated central agent.

- The central agent computes the change in allocation for each node
by:

∆xi = α
(
U ′

i −
1
|A|

∑
j∈A

U ′
j

)
, ∀i ∈ A (1)

where α is the stepsize parameter. ∀i /∈ A ⇒ ∆xi = 0.
- Each node i ∈ A, sets xi = xi + ∆xi.

UNTIL |U ′
i − U ′

j | < ε,∀i, j ∈ A.

The construction of the set A is required to ensure that no node’s allocation
goes below zero in the reallocation process. The algorithm for computing A at
each iteration:
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1. For all i sort U ′
i .

2. Set A′ = {i|node i has largest U ′
i}.

3. Do step 4. for each j, j /∈ A′ in descending order of U ′
j .

4. If j would receive a positive allocation xj as a result of the reallocation
defined by Equation (1) with A = A′ ∪ {j}, then set A′ = A′ ∪ {j}.

5. Set A = A′.

An alternative approach is to let the reallocation depend on the second partial
derivatives. Then equation (1) in the algorithm and the construction of A above
is replaced by

∆xi = αki

(
U ′

i −
∑

i∈A kiU
′
i∑

i∈A ki

)
, ∀i ∈ A (2)

where ki = 1/|∂2U/∂x2
i |.

Theorem 1. Both algorithms have the following properties:

- When the algorithm converges the allocation is optimal.
- For sufficiently small values of the stepsize parameter, α, the algorithm con-

verges to the optimal file allocation.
- Each iteration of the algorithm results in a strict increase of the systemwide

utility.
- The algorithm maintains a feasible file resource allocation at each iteration.

The two first properties were proved by Heal [18] while the two remaining ones
were proved by Kurose and Simha [1].

Conceptual improvements Despite the title of their paper (“A Microeco-
nomic Approach to Optimal Resource Allocation”) Kurose and Simha’s approach
is—apart perhaps from the notions of utility and marginal utility—not very
microeconomic. First, the algorithm of computing an allocation such that the
marginal utility of each agent is the same for all agents cannot really be called
a market mechanism. To motivate a similar behavior the concept of money is
needed. Secondly, there is no motivation for why an agent should truthfully re-
port its marginal utility to the auctioneer.1 As we will see below, there is a very
natural way to formulate this approach as a proper market, giving a number of
conceptual improvements.

Market mechanism We use a clearing or equilibrium market as market mecha-
nism, cf. [6, 3]. In an equilibrium market, a price is established such that supply
meets demand. This computation is based on a demand function, z(p), which
represents an agent’s requested change in allocation at different prices, further
described below. (A supply is represented by a negative demand.) Given the

1 Admittedly, we also made mistakes similar to the ones made by Kurose and Simha
in some of our earlier work, e.g. [19]
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demand function for each agent, zi(p), the clearing (or equilibrium) price is the
solution to

n∑
i=1

zi(p) = 0, (3)

where zi(p) is the demand function of agent i.
We now turn our attention to how zi(p) is determined.

Agent strategy Let Ui(xi) represent U ’s dependency on xi, i.e. U as a function
of xi given some allocation to all nodes except i. Given Ui(xi), we introduce a
utility function for each agent defined by

ui(xi,mi) = Ui(xi) + mi, (4)

where mi represents some “money”. In microeconomics, xi denotes the allocation
after a trade. The initial allocation (called endowment) is denoted e, and the
difference between the initial and the final allocation is denoted z, i.e. z =
x−e. The local optimization problem of an agent is then to maximize ui(xi,mi)
subject to the constraint that what is bought (zi) must be paid for in mi. Since
the monetary term is linear we can hence write the optimization problem for an
agent as

max
zi

Ui(ei + zi)− p · zi.

As Ui is a concave function, the demand as a function of the price, zi(p), is
obtained from2

∂Ui(ei+zi)−p·zi

∂zi
= 0 ⇔

U ′
i(ei + zi) = p ⇔

(U ′
i)
−1(p) = ei + zi ⇔

zi(p) = (U ′
i)
−1(p)− ei.

(5)

In the Kurose and Simha case we get (with variables as defined above)

zi(p) =
1
λ

(
µ−

√
µK

−Ci − p

)
− ei.

Discussion From Equation (3) and Equation (5) we see that the competitive
equilibrium is equivalent to the outcome of the Kurose and Simha algorithm.
Hence, by formulating the problem properly we have arrived at an approach
(with equivalent allocations), which rightfully can be called market-oriented; it is
based on a well-defined market mechanism and assumed realistic agent strategies
given the mechanism. This gives some conceptual advantages. For example, it is
fairly easy for most people to understand the principles: a number of agents make
a trade-off between their usage of a file resource and money, and the resource
is reallocated among the agents in such a way that supply meets demand. The
2 This formulation takes the price as given, even though an agent’s choice actually has

an impact on the prices.
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introduction of money will promote truthful bidding. Misreporting might result
in an agent having to pay more than it gains in utility or, conversely, it might
not be allowed to buy as much as it had wanted to maximize its utility.

Computational considerations The most straightforward way to implement
the above mechanism is to let every agent submit a (sampled) demand function
(z(p) from Equation (5)), compute the clearing price (p from Equation (3)),
and assign the resource in accordance with the bids. For example, if agent one
submits z(p) = 1/p− 4 and agent two submits z(p) = 1/p, the clearing price is
1
2 and 2 units is sold by agent one to agent two for 1 (p · z) unit of money.

The search for the clearing price can be performed in many different ways of
which the bisection method [20] (or binary search) is among the simplest, but
often sufficiently fast in comparison to e.g. communication delays. More efficient
algorithms include standard Newton-Raphson methods [20], e.g.

pit+1 = pit − α
z(pit)
z′(pit)

, (6)

where it is an iteration index and α is a step size. In heavily distributed en-
vironments it often also pays off to use some hierarchical algorithm [21]. One
important design issue of all Newton-Raphson methods is the management of
the step-size, here denoted α. Kurose and Simha derive a step-size for which
the algorithm converges. This is however unnecessary since there are algorithms
that automatically adjust the step-size through standard backtracking [20]. This
does not only have the advantage of relieving the developer from determining
the step-size at design time, but it also speeds up convergence significantly when
the algorithm approaches the solution.

In the formulation above, the price was used as the free search parame-
ter. This is commonly referred to as a price-oriented method. However, as seen
from Equation (1) and Equation (2), Kurose and Simha use a different method,
commonly referred to as a resource-oriented method. In the Kurose and Simha
algorithms the allocations (i.e. resources) are updated until all marginal utilities
are equal. There is also a natural market interpretation of these algorithms: at
the current allocation, ask the agents how much they are willing to pay for an
additional infinitesimal amount of resource. Then the auctioneer tries different
reallocations until the price that every agent is willing to pay for an infinitesimal
amount of resource is the same. A standard resource-oriented Newton-Raphson
approach [20] formulated in market terms looks like [22]

zit+1
i = zit

i − α

p(zit
i )−

∑n
j=0

p(zit
j )

p′(zit
j

)∑n
j=0

1
p′(zit

j
)

p′(zit
i )

, (7)

where—as before—it is an iteration index and α is a step-size. As we see from
Equation (5), p(zi) = U ′

i(ei + zi), and hence Equation (7) is equivalent to Equa-
tion (2).
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A detailed comparison between price-oriented and resource-oriented ap-
proaches can be found elsewhere [3], but some pros and cons of these two methods
are outlined here:

- The price functions are closely related to the agents utility functions, and
therefore the price function, p(z), can be computed faster than the demand
function, z(p), in cases where the demand function cannot be analytically
derived.

- As resource-oriented algorithms merely reallocates the existing resource in
each step, the reallocation of each iteration is feasible. Hence, gradually bet-
ter allocations can be performed during the search for the optimal allocation.
However, since for most networks the number of messages is more critical
than the size of the messages, it is typically preferable to send the demand
function as a sample vector. With such an approach, no (communication)
iterations are required for computing the solution and the optimal solution
will be very rapidly computed compared to the communication delays, and
therefore there is no point in sending allocation updates to the agents during
the search for the optimal solution.

- For resource-oriented algorithms the management of boundaries is a cum-
bersome issue. For each iteration, the auctioneer needs to make sure that no
agents are assigned an allocation that is outside their boundaries. (This is
often the result when the Newton-Raphson algorithms are used, particularly
early in the search.) If the resource of one agent is outside its boundaries the
excess (or shortage) must be reallocated among the other agents to obtain
a feasible allocation.

- The resource-oriented algorithms are more complicated, cf. Equation (6) vs.
Equation (7).

- Constant factors are higher for resource-oriented algorithms and therefore
price-oriented approaches are significantly faster if the demand functions can
be derived analytically.

The conclusion for the Kurose and Simha example is that—since the demand
can be analytically derived—a price-oriented approach is highly preferred to a
resource-oriented approach (such as the one used by Kurose and Simha).

Discussion Above we have studied the file allocation approach by Kurose and
Simha and described how this approach could be improved both conceptually
and computationally.

The conversion from an approach that aims at finding an allocation such
that all partial derivatives are equal is replaced by a market mechanism that
establishes a price such that supply meets demand. It is also described how
the agents can be assigned proper utility functions, with which they make a
natural trade-off between money and resource. Furthermore, given the market
mechanism and the utility functions, an agent strategy leading to a globally
optimal solution is realistic from an economics point of view (in bright contrast
to the original approach, which gave no arguments for why the agents should
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report their true marginal utility). It is our belief that this type of improvement
makes the system easier to understand and implement (as well as giving a number
of other advantages as described in Section 1).

It was also shown that since the demand function can be derived analyti-
cally, a price-oriented approach can be used (instead of the resource-oriented
approach proposed by Kurose and Simha). Since, price-oriented approaches are
less complicated and more computationally efficient, they are typically highly
preferable [3], and are recommended for the application at hand.

3.2 The assignment problem

Bertsekas [2] studies the symmetric assignment problem; matching n persons
and n objects on a one-to-one basis, in such a way that the total benefit is
maximized.

Original model The market mechanism is not explicitly given by Bertsekas [2].
However, there is one price pj per object j, which is public to all bidders. Hence,
the mechanism is most reasonably interpreted as an open bid English auction,
i.e. an auction in which the current winning bid for each object is public and the
winner, at termination, pays pj for object j.

The agent strategy is to bid the current running price of the most preferred
object (given the market prices) plus the surplus (i.e. the agent’s valuation of
having the object minus the current running price) of the most preferred object
minus the surplus of the second most preferred object. Somewhat more formally:
Let A be the set of agent-object pairs (i, j) that can be matched. For each
person i, the set of objects that can be matched with i is A(i) = {j|(i, j) ∈ A}.
Furthermore, let aij be the benefit of matching person i with object j. Then the
surplus of matching object j to person i is aij − pj , (i, j) ∈ A. The surplus of
the most preferred object, vi is

vi = max
j∈A(i)

{aij − pj} (8)

and the surplus of the second most preferred object, wi, is3

wi = max
k∈A(i),k 6=j

{aik − pk}.

Hence, in each iteration an agent bids for object j (of Equation (8)) at price
pj + vi − wi.

The auction is run in iterations and, in each iteration, every object is assigned
to the agent that make the highest bid for that object. When every agent has been
assigned an object the algorithm terminates. Unfortunately, this naive auction
algorithm does not always work. If more than two objects offer maximum value

3 If j is the only object in A(i), then wi is defined to be −∞ (i.e. in practical computer
implementations some large negative constant).
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for the bidder i, the bidding increment is zero. Thus, several persons could
compete for some objects without raising their prices and the algorithm would
be trapped in an infinite loop.

The solution to this problem is to let every agent bid for its most preferred
object, but at price pj + vi − wi + ε.

With this protocol, the following theorem holds.

Theorem 2. A feasible assignment according to the auction algorithm together
with some price vector is within nε of being optimal [2].

This means that when the algorithm stops the cost of the final assignment is
within nε of being optimal. An immediate conclusion is that if all benefits aij are
integers and if ε < 1/n then the auction algorithm terminates in a finite number
of iterations with an optimal assignment. This is true because if nε < 1 then any
assignment within nε of being optimal must be optimal. (This generalizes in a
straightforward manner to any discretization, not only integers.)

With the mechanisms described above, if the problem is infeasible, the al-
gorithm never terminates (since termination only occurs with a feasible assign-
ment). When problems are not known to be feasible, detection of infeasibility is
crucial. Bertsekas [2] shows several ways of handling this.

The aim of Bertsekas was to create a highly efficient and close to optimal algo-
rithm, based on an auction interpretation of a primal-dual algorithm. However,
from the viewpoint of market-oriented programming, it has one main concep-
tual flaw: the agent strategy is not realistic given the market mechanism. Hence,
it is not possible to view each person as an economic agent acting in its own
best interest. The rational (dominant) strategy for a self-interested agent for the
given market mechanism would be to bid pj plus some minimal increment for
the most preferred object (given the prices). For example, assume that we have
two agents with valuations a11 = 800 and a12 = 100 for agent one and a21 = 400
and a22 = 300 for agent two. Then with the (sequential variant of) the above
scheme, agent one first bids 700 for object one, and agent two then bids 600 for
object two. However, with rational agent strategies for the given mechanism, the
prices would have become 100 (optionally plus some minimal bid increment) for
object one and zero for object two. (They would have only marginally overbid
each other for object one until the price reached 100 and then agent two would
bid for object two.) This algorithm would of course be very computionally inef-
ficient. In the next sections we will discuss how a more realistic mechanism and
more realistic strategies can be introduced at different computational expenses.

Mechanism variant 1 For every object, let there be two public prices, p1
j

and p2
j , which reflect the highest and the second highest bids for the object

respectively. Further, require that a new bid for an object is accepted only if it
is at least p1

j + ε. Bids cannot be withdrawn. When no more bids are received
assign the objects to the highest bidder of the respective objects, but charge only
p2

j . (That is, use a second price auction [23].)
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Now, with one exception that we return to below, the above agent strategy
(with p1

j instead of pj) is very realistic. An agent does not gain anything by
bidding below p1

j +vi−wi, since it own bidding price does not affect what it will
be charged. The only result of bidding too low is that there is a greater chance
of losing the object.

The exception mentioned above is that an economic agent can be assumed to
bid p1

j +max(vi−wi, ε), rather than p1
j +vi−wi+ε, i.e. it will not increase the bid

more than can be motivated by its preferences and the market mechanism—the
latter saying that a bid must be an increase by at least ε. However, this typically
has a relatively small effect on algorithm performance.

Hence, we have derived a new mechanism that better conforms to the market-
oriented view, while making small sacrifices in terms of algorithm efficiency. This
is in bright contrast to the original model, which has been referred to as an
auction algorithm, motivated by the fact that it can be explained in competi-
tive economics terms couched in our everyday experience, but where the agent
strategies do not reflect our everyday experience of how people bid in standard
auctions.

Though the new market mechanism indeed has made the assumed strategy
much more realistic, it could still be in an agent’s best interest to deviate from the
above strategy. The problem is that if an agent with sufficiently high probability
predicts that no other agent places a simultaneous bid, it can be beneficial to
bid too high. For example, assume that the sequential mechanism suggested by
Bertsekas [2] is used. Then only one agent bids at the time, and it is a dominant
strategy to bid ∞ for the most preferred object, as you then get to pay the
current price for it and no other agent can outbid you. Of course, if agents can
place simultaneous bids, there is an enormous risk in doing this—if another agent
uses the same strategy it could be fatal. So if, for example, all agents update
their bids synchronously in parallel, this need not be a problem.

In the next section we introduce an algorithm that eliminates this problem
but has lower computational efficiency.

Mechanism variant 2 For every object, let there be one public price, p2
j , which

reflects the second highest bid for the object. Further, require that a new bid
for an object only is accepted if it is at least p2

j + ε. When putting in a bid, the
agent is told whether it is winning the object or not. When no more bids are
received, assign the objects to the highest bidder of the respective objects, but
charge p2

j .
Then it is very realistic to assume that every agent bids p2

j + vi − wi for
its most preferred object j, since any price between p2

j and p2
j + vi − wi will

maximize agent i’s surplus. There is no point for the agent to put in a higher
bid than p2

j + vi − wi. If the unknown p1
j is higher than p2

j + vi − wi then the
agent will have to pay p1

j and thus it will be more profitable for him to bid for
another object.
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Theorem 3. In our variant 2, when an agent is allocated an object, this object is
the optimal object for the agent, given the final prices. Furthermore, the algorithm
will terminate.

Proof. Let i be any agent. Set v2
i = maxj∈A(i){aij − p2

j} and w2
i =

maxk∈A(i),k 6=j{aik − p2
k}.

Let x be arg maxj∈A(i){aij − p2
j}. Let y be any other object. Agent i bids

p2
x + v2

i − w2
i for object x. Now assume that p2

x + v2
i − w2

i > p1
x, which means

that agent i gets object x. The surplus of agent i will then be vi = aix − p1
x >

aix − (p2
x + v2

i − w2
i ) = aix − (p2

x + aix − p2
x − w2

i ) = w2
i ≥ aiy − p2

y > aiy − p1
y.

Thus arg maxj∈A(i){aij − p2
j} = arg maxj∈A(i){aij − p1

j}, i.e. the agent would
have preferred the object it is winning even with complete information available.

Clearly, it will also prefer the object it is winning given the highest bids on
all objects.

The algorithm will terminate since a new bid has to be at least p2
j + ε, and

p2
j of this scheme cannot be above p1

j of the above scheme. 2

In section 4 we will show how this theorem will imply the optimality of this
variant of the mechanism.

This approach has lower computational efficiency than the one above. This
is not surprising: Generally we cannot expect mechanisms that are based on the
assumption that the agent only reveals the information that is most profitable for
them to be as efficient as mechanisms where the agents’ preferences are publicly
available knowledge.

Discussion In this section we have discussed different aspects of Bertsekas’
auction algorithm. We first discussed the fact that no mechanism was originally
given that motivated the proposed agent strategies. Then we introduced a new
scheme (with slightly lower computational efficiency) that made the strategies
more realistic and therefore made the entire approach more intuitive from an eco-
nomics point of view. We showed that under certain circumstances we needed
to modify the mechanism and agent strategies further to obtain an economically
realistic model. The different mechanisms were implemented and tested for com-
putational efficiency. The results, shown in Fig 1, indicates that methods that
are more realistic (like realistic and variant 2 ) are less effective than the less
realistic methods (original and variant 1 ).

The main conclusion from this exercise is that there sometimes is a trade-
off between computational efficiency and economic realism. In the case of a
standard optimization problem with publicly available information, economic
realism (with associated conceptual advantages) can of course be sacrificed for
computational efficiency, by imposing more or less unrealistic strategies on the
agents. However, if we assume that we are to assign the objects to real self-
interested persons, we must on the other hand assume that they act in their own
best interest. Then we cannot generally hope to obtain efficient methods.
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Fig. 1. Test of the computional efficiency of the different algorithms, comparing n,
the number of agents, with the time of the computation, t, divided by n3. Original
is Bertsekas original model with bidding increment vi − wi + ε, realistic has bidding
increment ε, variant 1 has bidding increment max(vi − wi, ε) and finally in variant 2
the new bid is p2

j + max(vi −wi, ε). The agents valuations for the respective items are
(independently) drawn from a rectangular distribution.

4 Generalizing the theory

The theory of the two examples [1, 2] examined in this article is very specific to
the examples. In this section we show that properly formulating the optimization
problems as market problems not only has conceptual advantages; it also allows
us to use a more general theory. The needed theory exists in the literature of
economics and linear programming. Thus, the specialized theory of the examples
is unnecessary. One of the main advantages of market-oriented programming was
stated in section 1 as the ability to use theories from economics in distributed
computer systems. By using the general theory, this advantage could be applied
to the examples. This brings out the close connection to economic theory, which
was not clear from the original papers.

In this section the existing theory is adjusted to exactly suit the examples. We
also show that some of the theory applies to the case of non-separable allocation
problems (as the one by Kurose and Simha).
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We first define a type of optimization problems to which the theory of this
section can be applied.

Definition 1. The maximization problem MP is given by

maxx

∑n
i=1 fi(x)

s.t.
∑n

i=1 xi = X,

xi = [xi1, xi2, . . . , xik], xij ∈ Sij, Si = [Si1, Si2, . . . , Sik], x = [x1,x2, . . . ,xn],
S = [S1,S2, . . . ,Sn], X = [X1, X2, . . . , Xk], fi : S 7→ <, Sik is any set of reals
(e.g., all reals, all positive integers or {1.25, 2.77, 4 1

3}) and Xi is the total avail-
able amount of commodity i. The problem is interpreted as a resource allocation
problem with n agents and fi(x) as agent i’s valuation of the allocation x.

Next we give a proper market definition corresponding to the optimization
problem of definition 1.

Definition 2. With the notation from MP , the market M is a market of n
agents and k commodities. All agents want to maximize their utility function
defined by

ui(x,mi) = fi(x) + mi, (9)

mi ∈ <, i.e. ui(x,mi) is quasi-linear with respect to mi.
X is distributed as endowment among the agents. Let the endowment be e =

[e1, e2, . . . , en], ei = [ei1, ei2, . . . , eik] and let the endowment of m be m◦ =
[m◦

1,m
◦
2, . . . ,m

◦
n]. Let the market price of m be 1, i.e. let

mi = m◦
i −

k∑
j=1

(xij − eij)pj

where pj ∈ < denotes the respective market price for the k commodities.

Then we can state the following theorem.

Theorem 4. Any Pareto-optimal allocation in M is a solution to MP .

Proof. Let ∆f =
∑n

i=1 fi(xb) − fi(xa),
∑n

i=1 xa
i = X, and

∑n
i=1 xb

i = X.
For any allocation 〈xa,ma〉 in M , 〈xb,mb〉 (where mb

i = ma
i + u(xa,ma

i ) −
u(xb,ma

i ) + ∆f
n ) is a Pareto-improvement if ∆f > 0. (

∑n
i=1 mb

i =
∑n

i=1 ma
i ,

because
∑n

i=1 ui(xa,ma
i )− ui(xb,ma

i ) = −∆f .) In other words: if an allocation
is not a solution to MP it is not Pareto-optimal in M . Thus, if an allocation is
Pareto-optimal in M it is a solution to MP . 2

Hence, Theorem 4 implies that if we can devise a market mechanism that exploits
all possible profitable reallocations, it will lead to a globally optimal solution.
An important remark is of course that even though it is sometimes possible to
find such a mechanism, the reallocation problem in general is NP-hard [24],
i.e. can be computationally intractable. Furthermore, the conditions that make
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problems hard to solve with markets also tend to make them hard to solve by con-
ventional means. As an example, concave objective functions (i.e. the functions
fi(x) above) ensure the existence of an equilibrium and enable straightforward
market implementation. If the functions are non-concave, however, the problem
is less straightforward to formulate in market terms and at the same time harder
to solve conventionally [24].

Non-separable functions A utility function is said to be separable if the utility
of one agent only depends on the same agent’s allocation. The definitions and
theorems above also capture the case of non-separable functions. This deserves
some further discussion.

Starting with Theorem 4, the notion of Pareto optimality is commonly dis-
cussed in the context of separable functions. However, the concept of Pareto
optimality makes perfect sense also with non-separable functions. With separa-
ble functions Theorem 4 captures the fact that if there is another allocation with
higher total utility, then there is always some agent (or set of agents) that is so
much better off by changing its allocation, that it can compensate the agent
(or set of agents) that gets worse off. With non-separable functions Theorem 4
instead tells us that if there is another allocation with higher total utility, then
there is always some agent (or set of agents) that is so much better off by chang-
ing its or any other agent’s allocation, that it can compensate the agent (or set
of agents) that gets worse off.

In a corresponding manner, also Theorem 5 below (and its corollaries) has a
straightforward interpretation in the non-separable case.

When generalizing the theory for the optimality of the assignment problem
of Section 3.2, we have made the following interesting observation: When gener-
alizing the problem to a high enough level, it becomes trivial. When having the
general theorem, the theory of the investigated assignment problem (as well as
some other theory from the literature) is obtained as trivial corollaries.

Theorem 5. With basic definitions from Definition 1, assume that we have a
resource reallocation problem, where the current allocation e, is to be reallocated
to a new allocation x. Furthermore, let there be a cost (that may be positive
or negative) for each agent associated with moving from e to x. Call this cost
ci(e,xi). Define the objective of the resource allocation as

maxx

∑n
i=1 fi(x)− ci(e,xi)

s.t.
∑n

i=1 xi = X.

An upper bound on the objective is

maxx

∑n
i=1 fi(x)− ci(e,xi)

s.t.
∑n

i=1 xi = X ≤
∑n

i=1 maxx fi(x)− ci(e,xi)
s.t.
∑n

i=1 xi = X,

Proof. The theorem is obvious; the maximized sum is clearly smaller than or
equal to the sum of the maximized terms. 2



18

Corollary 1. If ci(e,xi) = p(xi − ei), then

maxx

∑n
i=1 fi(x)

s.t.
∑n

i=1 xi = X ≤
∑n

i=1 maxx fi(x)− p(xi − ei)
s.t.
∑n

i=1 xi = X,

since
∑n

i=1 p(xi−e) = 0 (i.e. all payments sum to zero, everything is transferred
between the agents). In other words, if the only costs are the payments between
the agents, the optimal solution is smaller than or equal to the sum of the utilities
of the optimal choice for the respective agents, for any given price vector.

Corollary 2. By adding
∑n

i=1 fi(e) to the expression in Corollary 1, we get

maxx

∑n
i=1 fi(x)− fi(e)

s.t.
∑n

i=1 xi = X ≤
∑n

i=1 maxx fi(x)− fi(e)− p(xi − ei)
s.t.
∑n

i=1 xi = X.

That is, the total improvement can not be greater than the sum of the desired
improvements of the respective agents at a given price vector.

Corollary 3. Our version of the Kurose and Simha file allocation problem is
optimal.

Corollary 4. Theorem 2, the proof for upper bound on distance to global op-
timality for the assignment problem, is a consequence of Corollary 2. So is the
theorem on upper bound on distance to optimality by Walsh and Wellman [25].

Corollary 5. Our version 2 of the assignment problem is optimal.

Proof. This follows directly from Corollary 2 and Theorem 3. 2

There is another interesting comment to make about Corollary 2. If we
generalize the notion of competitive equilibrium to properly incorporating non-
separability, we directly see that the competitive equilibrium is globally optimal.
So, we generalize the definition of competitive equilibrium from “a price vector
and allocation such that supply meets demand and at the given prices, no agent’s
utility can be increased with respect to those prices by changing its allocation
(i.e. buy or sell the different commodities)” to “a price vector and allocation
such that supply meets demand and at the given prices, no agent’s utility can be
increased with respect to those prices by changing its or any other agent’s allo-
cation”. We observe that Corollary 2 captures the optimality of the generalized
equilibrium.

Hence, we see that we have arrived at a very general theory, and that for-
mulating the applications of Kurose and Simha and Bertsekas in proper market
terms make them fit into a broader theoretical framework.

5 Discussion and Conclusions

In this article we have discussed market-oriented approaches to optimization.
We have presented some general definitions of what a market-oriented approach
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to optimization is and argued that the basic requirements are that it should
rely on some well-defined market mechanism and some agent strategies that are
reasonably realistic given the market mechanism.

To illustrate the general framework for market-oriented approaches to opti-
mization, two examples from the literature—the microeconomic approach to the
file allocation problem by Kurose and Simha [1] and the auction algorithm for
the assignment problem by Bertsekas [2]—have been analyzed. Some theory from
the literature was reformulated to match the examples, thus showing specialized
theory unnecessary.

It was shown that a number of conceptual improvements could be made
to the Kurose and Simha approach, making the model more market-like from
the perspective of how people generally understand markets. Some computa-
tional discussions showed that the file allocation problem could be managed by
a price-oriented approach rather than the resource-oriented approach presented
by Kurose and Simha. Generally, price-oriented approaches are simpler (easier
to implement) and more computationally efficient when the demand functions
can be derived analytically (as could be done in the analyzed case).

With respect to the auction algorithm for the assignment problem, different
mechanisms were discussed and reasonable strategies introduced. It was shown
that the original approach does not reflect agent behavior in real auctions (as
suggested by the motivation of the algorithm), but that there are more reason-
able mechanisms and agent strategies with high computational efficiency. These
mechanisms are hence also better suited for applications in real markets (i.e.
when the different agents truly represent different interests).

In the case of the file allocation application, we showed that one could de-
fine market mechanisms and reasonable agent strategies that are highly efficient.
However, there is a catch preventing straightforward application of these meth-
ods to real markets. The problem is the utility function. In Equation (4) and just
above that equation, we simply assigned a utility function to each agent. How-
ever, in a market setting, this would not be the utility function of a self-interested
agent (since the current utility function is based on the notion of global utility).
The main problem is that the utilities are non-separable, i.e. dependent on the
allocations of the other agents. In Section 4 we show that existing theory could
be generalized to capture even this case.

One of the most interesting results from the comparison between different
auction mechanisms for the assignment problem is that we found a trade-off
between computational efficiency and economic realism. Whereas the econom-
ical efficiency aspects of strategic behavior are relatively well understood and
described (see e.g. [26, 27] for good introductory overviews), the computational
aspects of strategic behavior are much less so. The different variants above sug-
gest that there may be an interesting connection that seems interesting to look
into further.
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