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ABSTRACT

Bilevel decision addresses the problem in which levels of decision makers, each tries to
optimize their individual objectives under certamonstraints, and to act and react in an
uncooperative and sequential manner. Given thecdify of formulating a bilevel decision
problem by mathematical functions, a rule-sets thdmsievel decision model was proposed. This
paper presents an algorithm to solve a rule-setedbailevel decision problem. A case based
example is given to illustrate the functions of theoposed algorithm. Finally, a set of
experiments is analyzed to further show the fumstiand the effectiveness of the proposed
algorithm.

Key words Decision making model, rule sets, bilevel decisimaking, optimization

algorithm.



1. INTRODUCTION

A bilevel decision problem can be viewed as a sta#éirsion of the non-cooperative, two-
player (decision maker) game (Stackelberg 1952 d@acision maker at the upper level is
termed the leader, and at the lower level, the¥edir. In a bilevel decision problem, the control
for decision factors is divided amongst the decisiakers who seek to optimize their individual
objective functions (Aiyoshi and Shimizu 1981). feet information is assumed so that both the
leader and the follower know the objectives andsifda choices available to the other. The
leader attempts to optimize his/her objective fiorctout he/she must anticipate all possible
responses of the follower (Lai 1996). The followayserves the leader’'s decision and then
responds to it in a way that is personally optinkal example, we consider a logistic companies
decision making on how to use commission as a mianss distributors to improve product
sale volume. The company, as the leader, attenaptmaximize its benefit of product sale
through offering a highly competitive commissionite distributors. For each of the possible
commission strategies, the distributors, as thivar, will respond on product sale volume
which is based on the maximized benefit obtainedutph the product sale. Therefore, in such a
bilevel decision problem described by a bilevelgrammming (BLP) model, a subset of the
decision variables (such as ‘commission’ in thenepd&) is constrained to be a solution of a
given optimization problem parameterized by the aignng variables (such as ‘sale volume’)
(Anandalingam and Friesz 1992; Bard and Falk 1®#&#d and Moore 1992). In mathematical

terms, a BLP problem consists of finding a solufimnthe upper level problem:

max F(Yo YY)

subjectto: AY< O,



wherey, (i=1, 2,---,m), for each value ofy, is the solution of the lower level problem:

max f(yo'Y1 e ’ym)

subjectto: BY< 0
whereY =(Y,, ¥;,--+, ¥,,)' and A, B (i=1, 2,--- ,m)are matrixes.

The majority of BLP research has centered on theal version of the problem. Reference
(Candler and Townsley 1982) first discussed a finBAP problem with no upper level
constraints and with unique lower level solutiohater, references (Bard 1984; Bialas and
Karwan 1984) proved this result under the assumpti@t the constraint region is bounded.
Following these results, there have been nearlydezen approaches and algorithms proposed
for solving linear BLP problems, for example tkéh-Best approach (Candler and Townsley
1982; Bialas and Karwan 1984), and the Kuhn-Tuekgroach (Bard and Falk 1982; Bialas and
Karwan 1982; Hansen, Jaumard, and Savard 1992)eTh&ve also been some intelligent
approaches to solving linear bilevel programmingbpems (Lan et al. 2007; Calvete, Galég
Mateo. 2008), as well as Penalty function approgalgoshi and Shimizu 1981; White and
Anandalingam 1993), stability based approach (Liamgl Sheng 1992), and a globally
convergent approach for solving nonlinear bilevelgpamming problems (Wang et al. 2007).
Mathematicians, economists, engineers and otheraresers and developers have delivered
contributions to this field.

BLP is the most suitable way to model a bilevelisiea problem by assuming that: (1) both
the leader and the follower have perfect informatbout their objectives and constraints; and (2)
these objectives and constraints can be writtem mathematics functions. However, in real

situations, it is often very hard to describe thebgctives and constraints by mathematical



functions including the determination of their pagders. Let us consider the logistic company
example mentioned above. The company can only asiwvarious feasible choices taken and
various costs spent by its distributors. Therefare,establishing a BLP model for the
‘commission’ problem, we are hard-pressed to araiva formula for the objective functions and
constraint functions (including their function tgend parameters) of the leader and the
follower. Some researchers such as (Lai 1996; SakBighizaki, and Uemura 2000a; Sakawa,
Nishizaki, and Uemura 2000b; Sakawa and Yauchi 28dBawa and Nishizak 20Q01%akawa
and Nishizak 2001b, 2002; Shih, Lai, and Lee. 198tang and Lu 2005, 2006; Zhang, Lu,
Dillon 2007a, 2007b) have developed fuzzy BLP apphes to handle the difficulty in
determining the parameters in the objective andstraimt functions of a BLP. However, they
still assume that all these objective and condtriainctions can be established and only their
parameters are uncertain. Obviously, this canniMestine problem where these mathematical

functions can not be established.

We have recently observed that in many bilevel sleni problems, the leader’s attempts to
optimize his/her objectives and all the possibpomses from the follower can be described by a
number of rules (Zheng et al. 2009). Therefore,whdilevel problem cannot be formulated by
a classical BLP model, we can explore the uselefsets to describe its objective functions and
constrains. We thus proposed a rule-sets basedebitkecision (RSBLD) model. If a bilevel
decision problem is modeled by a RSBLD model, wieita RSBLD problem. We have also
developed a modeling approach to establish a RSBbbel (Zheng et al. 2009).

This study considers the challenge of developingle-sets based bilevel decision approach
for solving a RSBLD problem. We propose a transfairon based solution algorithm for the

RSBLD problems. The main idea of the algorithmasfitst transform a RSBLD model to a



single level decision model which has the samemgdtsolution as the original bilevel one, and
then obtain the optimal solution by solving theggnevel decision model.

The paper is organized as follows. After this idtrotion, Section 2 introduces the concepts
and notions of information tables and rule setdchviare the preliminaries in this study. Section
3 reviews our previous work including a RSBLD modeld its modeling algorithm. How to
transform a RSBLD problem into a single level oseliscussed in Section 4. Section 5 presents
a transformation based algorithm using the propdsadsformation theories. A case based
example is then shown in Section 6 for illustrataighe proposed algorithm. In Section 7, a set
of experiment results are analyzed to show theceffeness of the proposed algorithm. Finally,

the conclusion and proposals for future work aveigiin Section 8.

2. PRELIMINARIES

For the convenience of describing proposed modeds adgorithms, we will first introduce
some basic notions regarding information tablesnidas, rules, decision rule set functions and
rule trees. In addition, we will give some relatifinitions and theorems which will be used in

the following sections.

2.1.Information Tables

To present the definition of a rule, we first déserinformation table and decision table
techniques.In general, ainformation tables a knowledge expressing system which can be used
to represent and process knowledge in machineifggrdata mining and other related fields. It
provides a convenient way to describe a finiteofetbjects called the universe by a finite set of

attributes (Pawlak 1991).



Definition 1 (Information tablefPawlak 1991):An information table can be formulated as a
tuple:
S=(U, At, L, {V, |aUAt}, {1, |allAt}}),
where U is a finite nonempty set of objectaf is a finite nonempty set of attributds,is a
language defined using attributesAity V, is a nonempty set of values farlAt, I,: U - V,is an
information function. Each information functidgis a total function that maps an objectibfo

exactly one value iiVa.

A decision table is a special case of an infornmatiable. It is commonly viewed as a
functional description, which maps inputs (condisp to outputs (actions) without necessarily

specifying the manner in which the mapping is tarbglemented.

Definition 2 (Decision tablejPawlak 1991)A decision table is an information table for which
the attributes irA are further classified into disjoint sets of cdiudi attributesC and decision

attributesD, i.e. At=CUD, CNnD=9.

Decision attributes in a decision table can be wmigr not. In the later case, the decision
table can be converted to one with unique decisitimbutes (Wang 2001). Therefore, in this

paper, we assume that there is only one decisiohide in a decision table.

2.2 .Formulas and Rules

Usually, the knowledge implicated in informatiomlss is expressed by rules. As formulas are

the components of rules we first introduce therdidin of formulas.



Definition 3 (Formulas)Yao and Yao 2002)in the languagé. of an information table, an

atomic formula is given bya( v), whereal JAt andvLIV,. If ¢ andg are formulas, then so are

@, ¢, andpllg.

Here, “@, v)” is a term whera is an attribute and one of its values. The term covers objects
of the information table when the attribwten At has valuev. The semantics of the language
can be defined in Tarski’'s style (Tarski 1956rough the notions of a model and satisfiability.
The model is an information tab& which provides interpretation for symbols andriatas of

L.

Definition 4 (Satisfiability of formulag)Yao and Yao 2002)The satisfiability of a formulap
by an object, written asx |=gqo or in shortx|=¢ if Sis understood, is defined by the following
conditions:

(1) x Fa=v iff 15(x)=v,
(2) x - g iff notx kg,
(3) x Oy iff xfe andx kg,

(4) xFpOg iff xFp orxkg.
If @ is aformula, the set

mg(@)={xUU | x ¢}

is called the meaning of the formwain S If Sis understood, we simply write( @).



The meaning of a formula is therefore the set of all objects having thepprty expressed by
the formulap. In other wordsg can be viewed as the description of the set otabm(y).

Thus, a connection between the formulak ahd subsets a&f is established.

TABLE 1. An information table

Object | height hair eyes Class
01 short blond blue +
0, short blond brown

(o tall dark blue +

04 tall dark blue

Os tall dark blue

Os tall blond blue +

o; tall dark brown

Og short blond brown

To illustrate this idea, we consider an informatiahle given by Table 1 (Quinlan 1983). The
following expressions are some of the formulasheflanguagé.:
(height, tall), (hair, dark),
(height, tall) A (hair, dark),
(height, tall) \/ (hair, dark).
The meanings of the formulas are given by:
m((height, tall))={ 03, 04, 05, 0e, 07},
m((hair, dark))={04, 0s, 07},
m((height, tall) /\ (hair, dark))={ o4, 0s, 07},

m((height, tall) \V (hair, dark))={ 0z, 04, 0s, Os, O7}.
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Usually, the knowledge implicated in informatiorbles is expressed by rules which can be
formulated as follows. Aule is a statement of the form: “if an object satisfeeformula, then the
object must satisfy another formula”. The exprassid rules can be formulated as follows

(Pawlak 1991; Yao and Yao 2002)

Definition 5 (Rules)Let S=(U, At, L, {Va |alLlAt}, {14 | allAt}}) be an information table, then
a ruler is a formula with the form
p=9,
where@ and ¢ are formulas of information table, aBdor anyxIU,

xEp= ¢ iff xF-pOg.

Definition 6 (Decision Rules)et S=(U, CUD, L, {Va |alUAt}, {1, |alLJCUD}}) be a decision
table, whereC is the set of condition attributes abds the set of decision attributes. A decision

rule dr is a rule with the formp= ¢, whereg, ¢ are both conjunction of atomic formulas, for

any atomic formuladq, v) in ¢, cl1C, and for any atomic formulal(v) in ¢, dLID.

It is obvious that each object in a decision tatd@ be expressed by a decision rule. The

relationship between objects and rules can be efiry the following definition.

Definition 7 (Objects which are consistent or canflvith a rule) An objectx is said to be

consistent with a decision rute: ¢ = ¢, iff X |=qo andx |=¢; x is said to be conflict witldr, iff

xE@ andxf-¢.
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2.3.Decision Rule Set Function

We introduced the concept of decision rules inie@.2 and now we need to explore how to
make decisions based on decision rules. We firstrdee decision rule sets and then define
decision rule set functions.

Given a decision tabl&=(U, At, L, {V, | alAt}, {1, | aldAt}}), where At =CU D andD={d}.
Suppose andy are two variables, whepeé X andX=V,1%...XVam YUY andY=Vy. V;; is the set
of attributea;’s valuesaLIC, i=1 tom, mis the number of condition attributd®Sis a decision

rule set generated fro®

Definition 8 (Decision rule set functianh decision rule set functiors from X to Y is a subset
of the Cartesian produetxY, such that for eackin X, there is a uniqug in Y generated with
RSsuch that the ordered pax, §) is inrs. Here,x is called a condition variablg,is called a

decision variableX is the definitional domain, andis the value domain.

Calculating the value of a decision rule set fuctis to make decisions for objects with
decision rule sets. In order to present the metifathlculating the value of a decision rule-set

function, we introduce a definition below about attg objects to decision rules.

Definition 9 (An object matching a decision rul&j objecto is said to be matching a decision

rule = ¢, if oFg.

Given a decision rule s&S all decision rules ilRSthat are matched by objextare denoted

as MRgs.
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With the definition, a brief method for calculatitige result of a decision rule set function is

described as follows:

Step 1: Calculatd/RS;
Step 2: Select a decision ruefrom MR, where
dr: A{(a, va)} = (d, va);

Step 3: Set the decision value of ob@td bevy, i.e.rs(0)=vy.

Heredr is called the final matching rule matched by obgem rule selRS In Step 2, how to
select a decision rule fromR:, is the key task of the process. For example, tisesedecision
rule setRS

1) (a 1)0(b, 2)=(d, 2),

2) (a 2)U(b, 3)=(d, 1),

3) (b, 4)=(d, 2),

4) (b, 3)U(c, 2)=(d, 3),
and an undecided object:

0= (a, 2)LI(b, 3)LI(c, 2).

With Step 1,MR3.={(a, 2 )U(b, 3)=(d, 1); (b, 3)L(c, 2)= (d, 3)}.

With Step 2, if we select the final matching rateg, 2)Li(b, 3)=(d, 1), then with Step 3,

rs(o)=1;
if select the final matching rule as, @)U(c, 2)= (d, 3), then with Step 3,
rs(0)=3.

From the above example, we know that there may dre tihan one rule MR, In this case,
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when the decision values of these rules are diftetbe result would be controlled according to

above method, known as uncertainty of a decisiteset function. The method of selecting the
final rule from MR, is thus very important, and is called the uncaetyesolution method. In our

research, we use AID-based rule trees (Def. 1die#&d with the problem.

2.4 Rule Trees

A rule tree is a compact and efficient structunedrpressing a rule set. We first introduce the
definition of rule trees in (Zheng and Wang 2004)fallows. We use it in this paper as the

expression form of rule sets for a bilevel decisioodel.

Definition 10 (Rule tree)

(1) A rule tree is composed of one root node, someriedés and some middle nodes;

(2) The root node represents the whole rule set;

(3) Each path from the root node to a leaf node repteserule;

(4) Each middle node represents an attribute testingh ppossible value of an attribute in a
rule set is represented by a branch. Each branuérages a new child node. If an attribute
is reduced in some rules, then a special brancheaded to represent it and the value of the
attribute in this rule is supposed as “*”, whichdiéferent from any possible values of the

attribute.

Figure 1 gives an example of a rule tree, wheree”AdEducational level (Edulevel)”,
“Seniority”, and “Health” are its conditional atbates, and “Grade” is its decision attribute. The

values of these attributes are noted beside thncbes.
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We define the number of nodes between a branchhenbot node as the level of the branch

(including the root node) in the path. For eacle tide, we make two assumptions as follows:

Assumption 1. The branches at the same level represent thebbmsslues of the same

attribute.

Here, an attribute is expressed by the level olatree.

Assumption 2: If a rule tree expresses a decision rule set, thadhes at the bottom level

represent the possible values of the decisiorbatti

Based on Def.10 and the two assumptions, we camrowapthe rule tree structure by

considering the two constraints described in D&f. 1

Definition 11 (Attribute importance degree (AlD)deal rule tree)An AlD-based rule tree is a
rule tree, which satisfies the following two adadiital conditions:
(1) The conditional attribute expressed at the uppeal is more important than that expressed

at any lower level;

(2) Among the branches with the same start node, the wvapresented by the left branch is
more important (or better) than represented byrayhg branch. And each possible value is

more important (or better) than the value “*”.

In the rule tree illustrated in Figure 1, if we pope
» ID(a) is the importance degree of attribateand

ID(Age)>ID(Edulevel)>ID(Seniority)>ID(Health);
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* (Age, Young) is better than (Age, Middle), and (Alyeddle) is better than (Age, Old);

* (Seniority, Long) is better than (Seniority, Shordhd (Health, Good) is better than

(Health, Poor),

then the rule tree illustrated by Figure 1 is aDAlased rule tree.

2.5. Rules Comparison and Confliction

Definition 12 (Comparison of rulesBuppose the condition attributes are ordered by the
importance degrees as, ... ,a,. Ruledry: U{(&;, Va1)} = (d1, V1) is said to be better than rule
dro: O{(a, Vazi)} = (da, Vi), if there exists an indek1{1, ..., p} that satisfies:

(1) vaikis better thamv,, or the value o0&y is deleted from ruléry;
(2) If k=1, then for eacixk, Vai=Vaz;.
If for each attributey;, vaii is with the same importance (or evaluation) degieey;, ruledr; has

the same importance (or evaluation) degree adrple

For example, we have two rules as follows:
dry: (Age, Middle)\ (Working Seniority, Long}s 2,
dr,: (Age, Middle)\ (Working Seniority, Short}s 3,
and the value “Long” is better than the value “S$hor the attribute “Working Seniority”, with

Def. 12 we knowdr; is better thanir,.

Definition 13 (Rule confliction)Ruledr; is said to be conflict with ruldrs, if

for Ox kdry, x - dr..
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From Section 2.3, we know there are some unceigainthen make a decision with decision
rule sets. The uncertainty can be eliminated thmoagrocess of rule selection. We can select a
rule rightly only when related information is knowin other words, we are said to be informed
only when we can select rules rightly and defigitdéh this paper, we present a rule-tree based
model to deal with these kinds of uncertaintiesteAthe ordering of importance degrees and
attributes’ possible values, a rule tree (Def. 80jmproved to become an AlD-based rule tree
(Def. 11). It can be proved that the following thems hold from the definition of AlD-based

rule trees (Zheng et.al 2009).

Theorem 1In an AID-based rule tree, the rule expressedhiyleft branch is better than the

rule expressed by the right branch.

Theorem 2After being transformed to an AlD-based rule trtbe rules in a rule set are totally

in order, that is, every two rules can be compared.

Therefore, we can use an AlD-based rule tree teestble uncertainty problem of decision rule
set functions. For example, we can order the rexgsessed by the rule tree shown in Figure 1 as

follows:

1) (Age, Young)/\ (Edulevel, High) 2,

2) (Age, Middle)\ (Working Seniority, Long}s 2,

3) (Age, Middle) /A (Working Seniority, Short}> 3,

4) (Age, Old)= 4,

5) (Edulevel, Short) 4,
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where ruld is better than ruletl,i =1, 2, 3, 4.

3. ARULE-SETSBESED BILEVEL DECISION MODEL AND A

MODELLING APPROACH

This section will introduce our previous relatedriwancluding a RSBLD model and an

approach for modeling bilevel decision problemsuig sets.

3.1A RSBLD Model

In principle, after emulating all possible situatsoin a decision domain, all objective functions
can be transformed into a set of decision tablesywk as objective decision tables. As decision
rule sets have stronger knowledge expressing walilgn decision tables, we use decision rule-
set function to represent the objectives of thddeand follower of a bilevel decision problem in
the proposed RSBLD model.

Similarly, after emulating all possible situatiomsa constraint field, the constraints can be
formulated to an information table. When the infation table is too big to be processed, it can
be transformed to rule sets using the “Agrawal” hmods provided by references (Agrawal,
Imielinski, and Swami 1993; Agrawal and Srikant 4R9

By using rule sets, we have the following defimti@bout constraint functions.

Definition 14 (Constraint FunctionSuppose is a decision variable arRiSis a rule set, then

a constraint functionf (x, RS is defined as

True, if forOrORS, xd nf |
f RS = 1
of (xR {False, else @)
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The meaning of the constraint functioffx, RS is whether variablex belongs to the region
constrained bRRS

Now, we can describe a RSBLD model as follows (ghetnal 2009).

Definition 15 (RSBLD model)
mxin f (x,y)
subject to cf (x, G ) =True
myin fe (%,y)
subject to cf (y, G- ) =True 2)

wherex andy are decision variables (vectors) of the leadertaedollower respectivelyfy and
fr are the objective decision rule set functions (Bgbf the leader and the follower respectively;
cf is the constraint functior;. andG_ are the objective decision rule set and constraiet set
of the leader; andrr and Gr are the objective decision rule set and constnailg set of the

follower respectively.

3.2An Approach for Modeling Bilevel Decision Probleimg Rule Sets

In Zheng et al. (2009) we proposed an approachtateling a bilevel decision problem by rule

sets as follows.

Algorithm 1(An approach for modeling bilevel decision probléjsule sets
Input: A bilevel decision problem;

Output: A RSBLD model;
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Step 1: Transform the bilevel decision problem witle sets (information tables are as special
cases);
Step 2: Pre-proce$s, such as delete reduplicate rules from the rukg séminate noise, etc.;
Step 3: IfF_ needs to be reduced,
then using a reduction algorithm to redége
Step 4: Pre-process, such as delete reduplicate rules from the rukg séminate noise, etc;
Step 5: IfG_ needs to be reduced,
then using reduction algorithm to reduge
Step 6: Pre-proce$s:, such as delete reduplicate rules from the ruke séminate noise, etc.;
Step 7: IfFe needs to be reduced,
then using a reduction algorithm to redége
Step 8: Pre-proce$3:, such as delete reduplicate rules from the ruke séminate noise, etc.;
Step 9: IfGr needs to be reduced,
then using a reduction algorithm to red@ge
Complete
In the algorithm, Step 1 is the key step of the elind process. Decision makers (or experts)
complete this step by transforming a bilevel decigproblem to a set of information tables or
related rule sets. This transformation can be donéaying out all possible situations of the
bilevel decision problem.
In Steps 2, 4, 6 and 8, four sets of decision seles are pre-processed respectively. As data
incompleteness, noisy, and inconsistency are tharamn characters for a huge real data set, we
need to use related techniques to eliminate thes@gms before using the rule sets to model a

bilevel decision problem (Han and Kamber 2001).
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In Steps 5, 7, and 9 of Algorithm 1, related ruédssare reduced by applying a reduction

algorithm. It is because of at least one of thiofaihg three reasons:

(1) When modeling a real-world bilevel decision probjehe rule sets in the model are often in
a large scale, which is not convenient to be psedsand cannot be easily interpreted and

understood.

(2) The rules in the rule sets are lack of adaptabilitythis case, the rule sets cannot adapt new

situations well, so it is unable or has poor aptiit support decision making.

(3) The rule sets in the model are just original data,ghe patterns in such data sets are needed

to be extracted, and the results are more gendes.r

The detailes of the algorithm can be obtained foamprevious work (Zheng et al. 2009). Now
we give some analysis about the complexity of Althon 1. Obviously, it can be estimated as the
integration of the complexity of Step 1, Steps,%,48 and Steps 3, 5, 7, 9 respectively.

Suppose,. andper are the numbers of the rules in the objectivediecirule sets of the leader
and the follower generated in Step 1 respectiyily,andpcr are the numbers of the rules in the
constraint rule sets of the leader and the follogererated in Step 1 respectively, amdandme
are the numbers of the condition attributes of leder and the follower. For Step 1, the
complexity is

o((m+m)(p+p+n+ n).
For Steps 2, 4, 6, 8, different pre-process metltadscause different complexities. For above

mentioned pre-process methods, the complexity iwéeno((m + m) p ando((m +m) §),

wherep=p,. for Step 2p= por for Step 4p=p.. for Step 6, ang= p.r for Step 8.
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For Steps 3, 5, 7, and 9 the time complexity depemtthe sizes of the processed rule sets.
Using the methods mentioned above, it has complexit
O((m + m)0p( p-1)),
where p=p,_ for Step 3p=por for Step 5p=p._ for Step 7, ang=p.r for Step 9.

Therefore, Algorithm 1 has the maximal time comfiex

2

of(m+m)(n’+ p+ '+ 87)).

In Section 6, we will use a case based examplbBustrate the modeling process of a bilevel
decision problem by using the proposed algorithm.Section 7, a set of experiments are

designed to test the complexity of the algorithm.

4. TRANSFORMATION THEOREM FOR RSBLD PROBLEMS

In this section, we explore how to transform a RBRiroblem to a single level one, where the
two problems have the same optimal solution. Adi@amation theorem will be proposed to

show the solution equivalence for the two problefRist, we give a definition below.

Definition 16 (Combination rule of two decision es} Supposedr;: ¢ = (d,,v;) and
dry: ¢ = (dz, v2) are two decision rules and they are not conftleén the combination rule of
them are denoted as; (1 dr, with the form

90 = (d, (v, ). (3)
whered;, d,, andd are the decision attributes arf;, dr, anddr respectivelyy,, v» and {1, \») are

the decision values alfr; anddr, anddr respectively.

Here,vi, v, are called the leader decision and the followersign ofdr respectively.
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For example, suppose
dri: (Age, Young) 2,
dro: (Working Seniority, Long) 2,
then the combination of the two rules is
dr: (Age, Young).l(Working Seniority, Long} (d, (2, 2)).
Suppose the objective rule sets are expressedbAsed rule trees, then the transformation

process can be presented as follows.

Step 1(Initialization): LeCT be an empty attribute importance degree basedrade
Step 2 (Construct a new rule tree):
For each rulelr, in FT,
For each decision rulgre in FTe
{If dr_are not conflict withdrg, then
Add ruledr . drg to CT;}

Complete

Suppose the combined rule set is noted-athen the single level rule-sets based decision

problem can be formulated as:
min f (x,y)
X,y
s.t.cf (x G )=True

cf (y,G.)=True, (4)
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wherex andy are variables of the leader and the follower retbpelg; f is the objective decision
rule-set functionicf is the constraint functiorf-, G, Gg are the objective decision rule set,
leader’s constraint rule set and follower’s coristreule set respectively.

With the following theorem, we can prove the sauatequivalence of the original problems

and the transformed problem.

Theorem 3The RSBLD model presented in Equation (2) hasgtimal solution X, y), iff (X,
y) is an optimal solution of its corresponding sentgvel decision model presented in Equation
(7).

Proof. Supposex andy are variables of the leader and the follower retypalyg, f andfr are
the objective rule-set functions of the leader enadfollower respectively in Equation (2), aing
the objective rule set function in Equation ().andFg are the objective rule sets of the leader
and the follower in the RSBLD model, akds the objective rule set in the single level detis
model.

(=)

If the optimal solution of the RSBLD model presehte Equation (2) isxX, y), and

fL(x, y)= v andfe (X, y)=Vr.

Suppose the final matching rules (Section 2)»fyf in rule setsF. and Fr aredr. anddrg
respectively. Then, from the process of transfoimnatve know the rulelr, (] drg belongs to the
combined rule seft.

BecauseX y) is the optimal solution of the RSBLD moddf, anddre must be the best rules
having the minimal decision values f and Fr respectively. Thusgr=dr_ () drr must be the

best rules matched by, {y) in F. Besides, becauskg, §) is the best object satisfyirdy. anddrg
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both, thus X, y) is the best object satisfyirdy. Thus, &, y) is the optimal solution of the single
level decision model presented in Equation (7).

The sufficient condition of the theorem is proved.

(0)

If the optimal solution of the single level decisimodel presented in Equation (7)xsy), and

f(x, y)=(d, (via, V).
Suppose the final matching rule af, (y) in rule setF is dr, then from the process of
transformation, there must be two decision rdgsin F. anddrg in Fg thatdr= dr_ (N dre. If
there is more than one rule pdit anddrg satisfying thadr= dr_ (1 drg, then select the best one
among them.

Because y) is the optimal solution of the single level demmsmodel,dr must be the best
rules having the minimal decision valueRnThus,dr_ anddr: must be the best rules matched
by (X, y) in FL andFg respectively. Besides, becauggyj is the best object satisfyimy, thus &,

y) is the best object satisfyirdy. anddrg both. So, X, y) is the optimal solution of the bilevel
decision model.

Thus, the necessary condition of the theorem igguto 0

From Theorem 3, we know the solutions of the RSRitBblem presented in Equation (2) and
its transformed problem shown in Equation (7) ayeiwalent. Therefore, we can transform any
RSBLD problem into a single level decision problamd get a solution through solving the
single level decision problem. We need to indidhig although the original bilevel decision
problem and the transformed one level problem thaeesame optimal solution, they are not

equivalent. However, the transformation can achmweaim, that is, to generate a model which



25

can be easily solved but has the same optimalisolutith the original bilevel decision model.

5. ATRANSFORMATION BASED SOLUTIONALGORITHM FOR

RSBLD PROBLEMS

Based on the transformation theory proposied section gives a transformation basetlition
algorithm for RSBLD problems. To describe the aildpon clearly, we first give some important

definitions.

Definition 17

(a) Constraint region of a bilevel decision problem
S={(x,y): cf (x G )=True,cf(y,G )=True} (5)
(b) Feasible set for the follower for each fixed

S)={y: % yuS (6)
(c) Projection ofSonto the leader’s decision space:

SX)={x: Ly, (x, y)US (7)

(d) Follower’s rational reaction set frir] S(X):
PX)={y: yDargmyin[ fe(x,¥):yDO S >§]} (8)

(e) Inducible region:

IR={(x, y): (x, Y)US yOP(x)} 9)
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From the features of the bilevel decision problé@ns obvious that once the leader selects a
value ofx, the first term in the follower’'s objective funati becomes a constant and can be
removed from the problem. In this case, we replgcey) with fx(y).

To ensure that a RSBLD model is well posed it mewn to assume th&tis in nonempty and
compact, and that for all decisions taken by tlaelde, the follower has some room to respond,
i.e. P(x)# @ . The rational reaction s&(x) defines the response while the inducible regi®n
represents the set over which the leader may aggeiniihus in terms of the above notation, the
bilevel decision problem can be written as

min { f_(x, y): (x, Y)OIR}.

Now, we can give a description of the new algoritirhe algorithm has two stages. It first
transforms a bilevel decision problem describe@ BRSBLD model to a single level one. It then
solves the single level problem to get a solutitime solution obtained is of the original RSBLD
problem. For simple description, we suppose thgontance degrees of the leader’s condition
attributes are more than those of the followerkatTmeans, the branches representing the
possible values of the leader’'s condition attribuee at higher levels of AlD-based rule trees

than those of the follower’s. The detail of thensBormation based algorithm is as follows.

Algorithm 2(A transformation based solution algorithm for RSBblems:

Input: The objective decision rule d&t={dr.4, ... ,drp} and the constraint rule s€& of the
leader, the objective decision rule Bet{drgy, ... ,drgg} and the constraint rule s€
of the follower;

Output: An optimal solution of the RSBLD probleoby;

Step 1: Construct the objective rule tFék of the leader by ;
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Step 1.1: Arrange the condition attributes in adoemn order according to the
importance degrees. Let the attributes be the whidide attributes of levels from the top
to the bottom of the tree;
Step 1.2: Initializé=T, to an empty AID-based rule tree;
Step 1.3: For each rukRof the decision rule sé&_{
Step 1.3.1: le€EN=root node of the rule tre€T;
Step 1.3.2: For=1 tom/*m is the number of levels in the rule tree*/
{ Ifthere is a branch a@N representing theh discernible attribute value of
ruleR, then
let CN=nodel; /*nodel is the node generated by the branch*/
else {Create a branch GIN to represent theh discernible attribute value;
According to the value order of thil discernible attribute, put the
created branch to the right place;
Let CN=nodeJ /*nodeJ is the end node of the branch*/}}}
Step 2: Construct the objective rule tFeg: by F;
The detail of Step 2 is similar to that in SteWihat needs to be done is to repl&dg with
FTr and replacé&_ with Fr in the sub-steps of Step 1.
Step 3: Transform the bilevel decision problem single level one, and the resultant objective
rule tree iCT;
Step 4: Use the constraint rule sets of both thédeand the follower to prurGzT,
Step 4.1: Generate an empty new AlD-based ruleGfiég
Step 4.2: For each rutlr in G andGg,

Add the rules irCTto CT that are consistent witlr to FT,";
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Delete the rules i€T andCT that are conflict with ruedr;
Step 4.3: Le€T=CT;
Step 5: Search for the lefmost raein CT whose leader decision and follower decision are
both minimal;
Step 6: Ifdr does not exist, then
There isn’t an optimal solution for the problem;
Go to End;
Step 7:0B={ob| ob kdr and fora rIG_U G, obfr };
Step 8: If there is more than one objecDiB, then
According to Def. 12, select the best or most ingrarobjecob;
else
ob=the object inOB;
Step 9:.0bis the optimal solution of the RSBLD problem.

Complete

The flow chart of the algorithm is illustrated imgEre 2. By this algorithm, we can obtain a
solution for a bilevel decision problem throughvéing the transformed single level problem. The

time complexity of the new algorithm is

o(n.n.(n +n)(m+ m)),

whereng., Nor are numbers of the rules in the objective rule sétthe leader and the follower,
NcL, N @are numbers of the rules in the constraint rute sethe leader and the followen, and

me are the numbers of the condition attributes ofi¢laeler and the follower respectively.
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6. ACASEBASED EXAMPLE

A factory’s human resource management system tghiiged into two levels. The upper level
is the factory executive committee and the lowethes workshop management committee. For
the recruitment policy, the executive committee mhyaiconsiders how to meet the overall
business objectives with a long term developmerminpland the workshop management
committee concentrates on the current daily ne¢dsookers. Obviously, their objectives are
different. However, their objectives are transpaeneach other though they may operate in
separate ways. A recruitment action will ultimatelyerge that is the optimal result for the
company as a whole but will also consider currenltycheeds. This is a typical bilevel decision
problem, in which the company executive committeeas the leader, and the workshop
management committee, the follower.

When determining whether a person could be reduie a particular position, the factory
executive committee mainly considers the following factors, the “age” and “education level
(edulevel)” of the person, and the workshop managgmommittee mainly considers another
two factors, “seniority” and “health”. Suppose tleendition attributes in ascending order
according to the importance degree are “age”, ‘®lif, “seniority”, and “health”.

Obviously, it is hard for the two committees to Begs the conditions of the workers whom
they want to recruit to linear or nonlinear funaso But they have the data of the workers having
already been recruited in their databases. Welwefore build two decision tables as shown in
Tables 2 and 3, and then generate decision rute femh these two tables to represent the
objectives of the two committees. The conditioniladtes of the two decision tables are the

factors; the decision attributes of the two decidiables are acceptance grades of the workers.
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The constraints of the two committees are expressedimple rule sets (Equations 13, 14),
which define the constraint regions.

Now, we use algorithm 1 to establish a RSBLD mdeh the problem.
Alg. 1-Step 1: Transform the problem with decision rule sets.

As indicated above, the objective rule sets andsttamt rule sets of the leader and the

follower are described in Tables 2, 3 and Equatii)sl4 respectively.

TABLE 2. Objective rule set of the leader

Age Edulevel Seniority Health Grade
Young High Middle Good 2
Middle High Long Middle 2
Young Short Short Poor 4
Young Middle Middle Middle 2
Middle Middle Short Middle 3
Middle Middle Long Middle 2

old High Long Middle 3
Young Short Middle Poor 2
Middle Short Short Middle 4

Old Short Middle Poor 4
Middle Short Long Good 3
Middle Short Long Middle 2

old High Middle Poor 3

old High Long Good 2

old Short Long Good 4
Young High Long Good 4
Young Short Long Middle 3

The constraint rule set of the leader is:

G.= {True= (Age, Young).I(Age, Middle)}

TABLE 3. Objective decision table of the follower

Age Edulevel | Seniority | Health |Grade
Young High Long Good 2

Old Short Short Good 4
Young High Short Good 2

Old High Long Middle 3
Young Short Long Middle 4
Middle High Middle Poor 3

(10)



Middle Short Short Poor 4
Old Short Short Poor 4
Old High Long Good 2

Young Short Long Good 2

Young Short Middle Middle 3

Middle Short Middle Good 3
Old High Long Good 2

Middle High Long Good 2

Middle High Short Poor 4

Theconstraint rule set of thefollower is;

Gr={True= (Seniority, Long)I(Seniority, Middle)}
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(11)

Because the scale of the data is very small, tbperpcess steps (Steps 2, 4, 6 and 8) are passed

over. Besides, the constraint rule sets of thedeatd the follower are brief enough, so the

reduction steps db. andGg (Step 5 and Step 9) can be ignored.

Alg. 1-Step 3 and Step 7: Reduce the objective rule sets of the leader amdoifower.

After reducing the decision tables based on rowjtireory, we can get the reduced objective

rule sets of the leader and the follower as shawkduations (15) and (16). Here, we use the

decision matrices based value reduction algoritdrarko 1996) in the RIDAS system (Wang,

Zheng, and Zhang 2002).

Therefined objectiverule set of the leader is:

FL.={(Age, Young)LI(Seniority, Middle)= (Grade, 2)

(Age, Middle)t(Edulevel, High) (Grade, 2)

(Edulevel, Short)!(Seniority, Short}> (Grade, 4)

(Edulevel, Middle) I(Seniority, Short}> (Grade, 3)

(Edulevel, Middle) I(Seniority, Long)= (Grade, 2)

(Age, Old)l(Health, Middle)= (Grade, 3)

(Age, Old)L(Edulevel, Short)> (Grade, 4)
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(Age, Middle)LI(Health, Good}> (Grade, 3)

(Age, Middle)(Seniority, Long)1(Health, Middle)= (Grade, 2)
(Age, Old)LI(Edulevel, High) I(Health, Good}- (Grade, 2)
(Edulevel, High)l(Health, Poor)> (Grade, 3)

(Age, Young) !(Edulevel, High)I(Seniority, Long)> (Grade, 4)

(Age, Young)l(Edulevel, Short)l(eniority, Long)= (Grade, 3)} (12)

Therefined objectiverule set of thefollower is:
Fr={ (Edulevel, High)(Health, Good}- (Grade, 2)
(Edulevel, Short)(Seniority, Short}> (Grade, 4)
(Age, Old)I(Health, Middle)= (Grade, 3)
(Age, Young)l(Seniority, Long)I(Health, Middle)= (Grade, 4)
(Seniority, Middle)> (Grade, 3)
(Seniority, Long)l(Health, Good}» (Grade, 2)

(Seniority, Short)(Health, Poor)> (Grade, 4)} 13)
With above steps, we get the RSBLD model of thesitmt problem as follows:
mxin fo(x,y)
subject tocf (x G ) =True (17)
myin fr (X,y)

subject tocf (y, G- ) =True,

wheref,, fr are the corresponding decision rule set functadts, Fr respectively.
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Now, we use the Alg. 2 to solve the RSBLD probl&e suppose the four condition attributes
are ordered as ‘age’, ‘edulevel’, ‘seniority’, ahealth’.

Alg. 2-Step 1: Construct the objective rule trd€l of the leader by, and the result is
illustrated by Figure 3;

Alg. 2-Step 2: Construct the objective rule tréd of the follower byFg, and the result is
illustrated by Figure 4;

Alg. 2-Step 3: Transform the RSBLD problem to a single level ca@l the resulted objective
rule treeCT is illustrated by Figure 5;

Alg. 2-Step 4: Use the constraint rule sets of both the leadérfalfower to pruneCT, and the
result is illustrated by Figure 6;

Alg. 2-Step 5: Search for the leftmost ruldr in CT whose leader decision and follower
decision are both minimal, and the result is

dr: (Age, Young)l( Edulevel, High)(Seniority, Middle)_I(Health, Good} (d, (2, 2));
Alg. 2-Step 6: OB={ob] ob is the object satisfying:
(Age, Young)l( Edulevel, High)I( (Seniority, Middle)_l(Health, Good) };
Alg. 2-Step 7: ob=(Age, Young)l(Edulevel, High}I(Seniority, Middle)(Health, Good);
Alg. 2-Step 8: obis the final solution of the RSBLD problem.

In Figures 3 - 6, these attribute values are retes by its first letter.

7. EXPERIMENTSAND ANALYSIS

In order to test the effectiveness of the proposeéd-sets based bilevel decision problem
modeling algorithm (Algorithm 1) and solution algbm (Algorithm 2), we implemented these

two algorithms within Matlab 6.5. We then used sarf@ssical data sets from the UCI database
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to test them by a set of experiments. UCI databagetp://www.ics.uci.edu/

~mlearn/MLRepository.htnplconsists of many data sets that can be usedebgetision systems

and machine learning communities for the empiraellysis of algorithms.

For each data set we chosen, we first select haldata set as the original objective rule set of
the leader, and the remaining as the original d¢ivjecule set of the follower. We assume that
there are no constraints, which means all objemtisistent with the objective rule sets are in the
constraint region. Besides, we suppose the firdtdighe condition attributes are the ones for
the leader and the others for the follower. Theartemce degrees of the condition attributes are
descending order from the first condition attribute the last condition attribute. The two
experiments are processed on a computer with 2.23GRAU and 2G memory space. We

describe these two experiments respectively asvisll

Experiment 1Testing of Algorithm 1 with the data sets in thelld@tabase.

Step 1. Randomly choose 50% of the objects fromdtta set to be the original objective
decision rule set of the leader, and the remaibidip of the objects to be the original
objective decision rule set of the follower;

Step 2. Apply Algorithm 1 to construct a rule-sb&sed bilevel decision model by using the
chosen rule sets. Here, we use the decision matbased value reduction algorithm
(Ziarko, Cercone, and Hu 1996) in the RIDAS sys{&ang, Zheng, and Zhang 2002)

to reduce the sizes of original rule sets.

Experiment 2Testing of Algorithm 2 with the data sets in thelld@tabase.

Following Steps 1 and 2 in Experiment 1, we have
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Step 3. Apply Algorithm 2 to get a solution fronetgenerated rule-sets based bilevel decision

model in Experiment 1.

The complexity of the two algorithms (algorithmsadd 2) is also tested through conducting
these two experiments. As showed in Tabl@gdt, and por are the numbers of objects in the
original decision rules of the leader and the folo respectively (Refer to Step 1 of Algorithm
1), m_ andmg are the condition attribute numbers of the |leaohel the follower respectivelpo,
andnor are the numbers of the rules in the reduced abgdecision rule sets of the leader and

the follower respectively; andt; are the processing times of Algorithms 1 and peesvely.

TABLE 4. Testing results of Algorithms 1 and 2

Alg. 1 Alg. 2
Data Sets PoL Por | M| Me | NoL Nor
ti(sec.) t, (sec.)
LENSES 12 12| 2 3 6 3 <0.01 0.03
HAYES-ROTH 50 50| 2 3 21 24 <0.01 0.09
AUTO-MPG 199 | 199| 4 4 80 76 0.08 0.39
BUPA 172 | 172| 3 3 159 126 0.06 3.10
PROCESSED _
151 | 151| 6 7 11§ 127 0.28 5.20
CLEVELAND
BREAST-
CANCER- 349 | 349| 5 5 47 47 0.51 0.63
WISCONSIN

From the results shown in Table 4 we can find that
1) The processing time of Alg. 1 highly relateshwihe numbers of the rules in the original

objective decision rule sets and the conditionlaite numbers of the leader and the follower

respectively, expressed by the symhglspor, m andme.
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2) The processing time of Alg. 2 highly relateshMibe numbers of the rules in the reduced
objective decision rule sets and the conditionlaite numbers of the leader and the follower
respectively, expressed by, nos, m. andme.

These are consistent with our complexity analysssiits in Sections 3 and 5.

8. CONCLUSIONAND FUTURE WORK

Bilevel decision making is a common issue in orgational management activities. As many
bilevel decision problems are difficult to modekkvimathematical functions, RSBLD models are
proposed, in which all objective functions and d¢aaiat functions are expressed by rule sets.
Based on our previous research, this paper preaemésformation based algorithm to solve a
RSBLD problem. Some experiments have proved thetiums and the effectiveness of the
proposed solution algorithm.

In the traditional BLP model, Kuhn-Tucker condit®oriBard and Falk 1982; Bialas and
Karwan 1982; Hansen, Jaumard, and Savard 1992isackto transform a BLP model to a single
level one. The basic idea of the transformatiorppsed in this paper is different from the Kuhn-
Tucher condition based transformation. In the smtutlgorithm of traditional BLP problems,
the follower’s problem is transformed to constrajnthile in the solution algorithm proposed for
RSBLP problems, the objective functions of the &aand the follower are combined to one.
Besides, the most important issue is that the maastormations solve different models of
bilevel problems, as one is a RSBLD problem andreras a bilevel linear programming.

Further study will include the development of ammiwes for multi-objectives or multi-
followers RSBLD problems. A comprehensive bilevetcidion support system is being

developed to implement the proposed techniquesdpporting real decision makers to solve
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their bilevel decision problems effectively.
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FIGURE 3. Rule tree of the leader’s objective rule set
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