
Computational Intelligence, Volume xx, Number 000, 2009

Molecular event extraction from Link Grammar parse trees

in the BioNLP’09 Shared Task

Võ Há Nguyên, Jörg Hakenberg, Luis Tari, Chitta Baral,

Arizona State University, Tempe, Arizona 85281, USA

Illés Solt,

Budapest University of Technology and Economics, 1117 Budapest, Hungary

Domonkos Tikk, Quang Long Nguyen, Ulf Leser

Humbolt-Universität zu Berlin, 10099 Berlin, Germany

We present an approach for extracting molecular events from literature based on a deep parser,
using in a query language for parse trees. Detected events range from gene expression to protein
localization, and cover a multitude of different entity types, including genes/proteins, binding sites,
and locations. Furthermore, our approach is capable of recognizing negation and the speculative
character of extracted statements. We first parse documents using Link Grammar (BioLG) and store
the parse trees in a database. Events are extracted using a newly developed query language with
traverses the BioLG linkages between trigger terms, arguments, and events. The concrete queries
are learnt from an annotated corpus. On the BioNLP Shared Task test data, we achieve an overall
F1-measure of 32, 29, and 30% for tasks 1, 2, and 3, respectively.

Key words: text mining, event extraction, sentence parsing, bioinformatics

1. INTRODUCTION

Biomedical text mining aims at making the wealth of information available in publications
available for systematic, automatic studies. An important area of biomedical text mining is concerned
with the extraction of relationships between biological entities, especially the extraction of protein–
protein interactions from PubMed abstracts Krallinger et al. (2008). The BioNLP’09 Shared Task
addresses the problem of extracting nine different types of molecular events Kim et al. (2009) and
thus targets a problem that is considerable less-well studied than protein-protein interactions. Such
molecular events include statements about the expression level of genes, the binding sites of proteins,
and the up/down regulation of genes, among others. All events focus on genes/proteins and may
include only a single protein (e.g., protein catabolism), multiple proteins (e.g., binding), and other
arguments (e.g., phosphorylation site; protein location). The most complex type of event considered
in the task are regulations, which may refer to other events (negative regulation of gene expression)
and may also include causes as arguments. The task also addresses the problem that experimental
findings often are described in a defensive manner (“Our results suggest ...”) or may appear in
negated context. This meta-information about an extracted event should be taken into account
when text mining results are used in automated analysis pipelines, but recognizing the degree of
confidence that can be put into an event adds further complexity to the task. Overall, the three
tasks in BioNLP’09 are: 1) event detection and characterization, 2) event argument recognition, and
3) recognition of negations and speculations.

The approach we present in this paper addresses all three tasks. Essentially, our system consists
of three components: A deep parser, a query language for parse trees, and a set of queries that
extract specific events from parse trees. First, we use the BioLG parser Pyysalo et al. (2006) for
parsing sentences into a graph-like structure. Essentially, BioLG recognizes the syntactic structure

Address correspondence to Jörg Hakenberg at joerg.hakenberg@asu.edu

�C 2009 The Authors. Journal Compilation
�C 2009 Wiley Periodicals, Inc.

2 Computational Intelligence

Figure 1. Parse tree where constituents are connected by solid lines, linkages between terminals
shown as dotted lines. E: adverb to verb, S: subject to verb, O: verb to object.

of a sentence and represents this information in a tree. It adds links between semantically connected
elements, such as the links between a verb and its object and subject. Second, we store the result of
BioLG in a relational database. This information is accessed by a special-purpose query language Tu
et al. (2008) that matches a user-defined linguistic pattern describing relationships between terms
(the query) to the database of stored graphs. The query language thus is a powerful, scalable,
extensible, and systematic way of describing extraction patterns. Using these tools, we can solve the
BioNLP tasks by means of a set of queries, extracted from the training data set.

The Link Grammar parser is a deep syntactic parser based on the Link Grammar theory Sleator
and Temperley (1993), which consists of a set of words and linking requirements between words.
The particular implementation of Link Grammar parsing we use in our system is the BioLG parser
described in Pyysalo et al. Pyysalo et al. (2006), which modifies the original parser by extending its
dictionary and by adding more rules for guessing structures when facing unknown words. The output
of the parser is twofold: it produces a constituent tree as well as a linkage that shows the dependencies
between words. In Figure 1, solid lines indicate parent-child relationships in the constituent tree, and
dotted lines represent the linkage. Three links were detected in the sentence: S connects the subject-
noun RAD53 to the transitive verb regulates, O connects the transitive verb regulates to the direct
object DBF4, and E connects the verb-modifying adverb positively to the verb regulates.

1.1. Related work

We focus our discussion on approaches to information extraction that also use LinkGrammar.
Evaluations of other deep parsers for information extraction in the life sciences may, for instance,
be found in Miyao et al. Miyao et al. (2009) and Pyysalo et al. Pyysalo et al. (2008). Note that
most other systems based on deep parsing convert IE into a classification problem, often using some
kind of convolution kernels, for example, Kim et al. Kim et al. (2008); instead, we employ a pattern-
matching approach where patterns are expressed as queries. A similar approach is described in Fundel
et al. Fundel et al. (2007), where three rules are defined to extract protein-protein interactions from
an aggregated form of dependency graphs. These rules could in fact easily be expressed as queries
in our language.

Ding et al. Ding et al. (2003) studied the extraction of protein-protein interactions using the
Link Grammar parser. After some manual sentence simplification to increase parsing efficiency, their
system assumed an interaction whenever two proteins were connected via a link path; an adjustable
threshold allowed to cut-off too long paths. As they used the original version of Link Grammar, Ding
et al. argue that adaptations to the biomedical domain would enhance the performance. Pyysalo et
al. Pyysalo et al. (2004) extracted interaction subgraphs, spanning all predicates and arguments at
the same time, from the Link Grammar linkage of known examples. Failure analysis revealed that
34% of the errors were due to unknown grammatical structures, 26% due to dictionary issues and a
further 17% due to unknown words.

An adaption of Link Grammar that handles some of the failure cases is BioLG Pyysalo et al.
(2006). BioLG includes additional morpho-guessing rules, lexicon expansion, and disambiguation
using a POS tagger. Adding morpho-guessing rules and using a domain-specific POS tagger for
disambiguation resulted in an increase from 74.2 to 76.8% in recall; it also increased parsing efficiency

Molecular event extraction from Link Grammar parse trees 3

+---------------Jp------------+

| +----------CH-------------+

| | +---------CH----------+

+----Mp----+ | | +----CH----+

| | | | | |

expression of P53, Rb, and Bcl-xL proteins

Figure 2. Linkage in a gene expression evidence. Mp: prepositional phrase modifying a noun; Jp:
connects preposition to object; CH: noun modifier.

by 45%. Szolovits Szolovits (2003) adapted the Link Grammar parser by expanding the lexicon with
data from UMLS Specialist. This expansion consisted of 200k new entries (including 74k phrases),
resulting in a 17% increase in coverage on a corpus of 495k words.

The main differences between the cited previous works and our approach are: 1) we extract only
pairwise subgraphs (e.g., from a trigger term to a single protein) and then attempt to construct
events based on such small components; 2) we consider link types, predicates, prepositions, and
other nodes as requirements for a valid linkage with respect to event argument recognition; 3) we
use a query language to query persistently stored parse trees instead of parsing each sentence and
then comparing it to known link paths; 4) we combine subgraph matching with extensive pre- and
post-processing rules using regular expressions and other filtering rules.

2. METHODS

Our detection of arguments for events is based on Link Grammar linkages obtained from training
data. Essentially, we automatically extract all shortest link paths that connect event trigger terms
to themes, themes to sites, themes to locations, and so on. We describe these examples as queries
against a parse tree, and evaluate these queries on the test data to extract and assemble events. An
example for a linkage in a gene expression evidence is shown in Figure 2. It illustrates that the event
trigger term ‘expression’ is connected to the three proteins ‘P53’, ‘Rb’, and ‘Bcl-XL’ in exactly the
same way.

Our method for event argument recognition is based on three components. The first parses
training as well as test data using the BioLG parser, and stores the result in a relational database.
The second component is a query language to search the databases for known linkages. The third
component extracts these linkages from training data and rewrites into such queries. These compo-
nents are detailed in Sections 2.1 to 2.3. Section 2.4 explains our methods for context identification
with respect to negations and speculations. Sections 2.5 and 2.6, finally, explain how we handle
anaphora and enumerations, respectively.

2.1. Parse Tree Database and Query Language

A fundamental component of our approach is a parse tree database (PTDB) for storing and
querying parse trees Tu et al. (2008). PTDB is a relational database for storing the results of the
BioLG parser on arbitrary texts. For the task, we parsed all texts from the training, development
and testing data set. Recognition of entity types (gene etc.) of word tokens relied on the provided
annotation. Each abstract is represented in a manner that captures both the document structure
(such as title, sections, sentences) and the parse trees of sentences.

Parse trees in PTDB are accessed by means of a special purpose query language, called PTQL.
PTQL is an extension to LPath Bird et al. (2006), which itself is an adaptation of XPath Bird et al.
(2006) to linguistic structures. Essentially, a PTQL query is a hierarchical pattern that is matched
against a set of constituent trees together with additional requirements on linkages between matches.
More specifically, a PTQL query consists four components delimited by colons: 1) tree pattern, 2)
link conditions, 3) proximity conditions, and 4) return expression. A tree pattern describes the
hierarchical structure and the horizontal order between the nodes of a parse tree, a link condition
describes the linking dependencies between nodes, a proximity condition specifies words that are

4 Computational Intelligence

//S{ //N[value=‘expression’](e) -> //PRP[value=‘of’](a)

=> //?[tag=‘gene’](t) -> //N[value=‘gene’](h) }

: e !Mp a and a !Jp t and t !CH h : : e.value, t.value

Figure 3. PTQL query for the extraction of some gene expression event. It searches for a sentence
S that contains a noun ‘expression’, followed by a preposition ‘of’, which is then followed by a noun
phrase (2nd line) that contains a gene name (‘//?’, any node with tag=gene) and has ‘gene’ as head
noun. The link types are specified in the 3rd line using the variables each node is bound to (e,a,t,h):
‘expression’ has to be connected to ‘of’ with an ‘Mp’ link, the link from ’of’ to the head noun has to
be ’Jp’, and the ‘CH’ link specifies ‘gene’ as head noun. The return values of the query are the values
of nodes ’e’ and ’t’, which are bound to the event trigger ‘expression’ and the gene, respectively. This
query would return all three event/theme pairs from the phrase in Figure 2.

within a specified number of words in the sentence, and the return expression defines which variables
should be returned as query result. An example PTQL query is shown in Figure 3.

PTQL queries are evaluated on a PTDB using a two step process. A query is first translated
into an IR-style keyword query to efficiently filter out irrelevant sentences. This step is performed
outside the database using an inverted index built with Lucene 1. In the second step, the query is
translated into a complex SQL command which is restricted to the sentence IDs that passed the
first step. This query is evaluated on the database, and the results are projected onto the return
expression.

2.2. Extracting PTQL queries

From all events in the training data, we searched for the shortest link paths that connected
event triggers to themes, themes to sites, themes to locations, and so on. For each of the different
event classes, we obtained a set of link paths connecting the event trigger to the theme. Links from
themes to sites (required for phosphorylation, binding, and regulation events) where extracted from
all three and then joined into one set. We transformed all linkages into PTQL queries, and ran these
queries on the development and test data sets, respectively. Note that this entire process is performed
automatically. As many link paths are identical expect for their event trigger terms, we manually
grouped similar terms together; queries were then expanded automatically to allow for either one.
An example is the following group of inter-changeable terms that could replace ‘expression’ in gene
expression events (see Figure 3):

expression ≡ {expression, overexpression, coexpression, production, overproduction, generation,
synthesis, biosynthesis, transfection, cotransfection}

For evaluation on the development data, we extracted all queries from the training data; for
evaluation on the test set, queries originate from training and development data together.

2.3. Regular expressions for regulation events

Regarding regulation events, we concentrated on the recognition of events with only the theme
slot filled. In the training data, 73.8% of the regulations (incl. positive and negative regulation) do
not have any site, cause, or cause-site arguments/participants. We addressed this task using regular
expressions that were matched against the annotated sentences in the PTDB. Therefore, we sought
for trigger expressions of regulation events that immediately precede or follow an annotation (protein
name or event trigger). For all four possible combinations (precede/follow and protein/trigger) we
created regular expressions that were able to recognize the given patterns, for example:
• (NOUN:trigger) (of) (PROTEIN) finds [up-regulation]Trigger:Pos reg of [Fas ligand]Protein

• (PROTEIN) (NOUN:trigger) finds mediate [IL-8]Protein [induction]Trigger:Pos reg

• (VERB:trigger) (EVENT:trigger) finds [inhibit]Trigger:Neg reg [secretion]Event:Loc

• (EVENT:trigger) (VERB:trigger) finds TNF-alpha [release]Event:Loc [peaked]Trigger:Pos reg

The actual patterns also allowed some event class specific prepositions (of, with, to, etc.) and

1Lucene — see http:// ...

Molecular event extraction from Link Grammar parse trees 5

determiners between the regulation trigger and the protein or event trigger. However, care has to be
taken as regulation events often are embedded in nested structures which are not properly recognized
by regular expressions. Therefore, whenever a regulation event pattern had been identified, we also
constructed another event candidate with the appropriate subexpression as the trigger, such as:

[[IkappaBalpha]Protein induction]]Event:Pos reg was completely [inhibited]Trigger:Neg reg.

2.4. Context identification to find negations and speculations

We identified negative context of events by simultaneously applying four different methods. In
the first three methods, we identified candidate negation trigger expressions (NTEs) by means of
regular expressions that were created based on the analysis of surface patterns of negation annotation
in the training set. The fourth method uses the parse trees of sentences including negated event using
a set of queries for the identification of candidate NTEs. To fine tune the combined prediction, we
used some manually encoded exceptions.

(1) NTEs inside the trigger of an event: these expressions are partly or entirely event triggers and
usually suggest negative context, such as inability and undetectable. In the training set, some-
times an NTE indicated negation for some event classes but not for others; we added exceptions
to exclude such NTE–event class combinations (e.g., deficient with a negative regulation).

(2) NTEs immediately preceding an annotation (protein name or event trigger), e.g., no(t), lack of,
minimal, absence of, cannot, etc.

(3) NTEs in the span of all the annotation related to an event (triggers, attributes recursively): these
NTEs can span over multiple sentences. Starting with a hand-crafted dictionary of negation
context triggers Solt et al. (2009), we selected those dictionary items that had a positive effect
on overall F1-measure.

(4) NTEs from parse tree patterns: We identified on the training data parse tree patterns including
NTEs (using hand-made NTE dictionary) and protein names or event triggers. Candidate pat-
terns, e.g., regulate*⇒in⇒but→not⇒in, were then formulated as queries against the PTDB
and filtered via optimization.

We also applied the parse tree based method to identify speculation context (details not shown).
We observed that some apparently speculative contexts were, to our surprise, considered as facts
by the annotators if the pattern occurred in the last sentence of the abstract, such as: These data
suggests. . . . To counteract such situations, we developed a pattern-location heuristic by dividing
the abstract into title, body, and conclusion part. Frequent speculation candidate patterns were
evaluated separately on each part and filtered via optimization.

2.5. Resolving anaphora

Almost 8% of all events in the training set span multiple sentences. Our solution outlined so far
works at the sentence level and is therefore unable to correctly recognize such events. To overcome
this deficiency, we developed a baseline method for anaphora resolution, which is implemented as a
pre–processing step. First, we identified all events spanning multiple sentence in the training set and
collected typical anaphora expressions for proteins (e.g., this gene, these proteins, both factors). For
each anaphora occurrence in development and test sets, we searched the closest preceding protein(s);
here we also took into account if the anaphora was singular or plural. We also expected that resolved
anaphora would generate additional PTQL queries and would thus improve the overall recall twofold.
Unfortunately we could not analyze the results of our resolution approach on the train set (due
to lack of time) and could hence not take full advantage of this idea. So far, we only addressed
anaphora referring to protein(s). Once an anaphora and its referenced expression(s) were recognized,
we effectively duplicated the original sentence with referenced expressions substituting the anaphora;
PTQL queries would thus run on the original sentence as well as on the resolved version.

2.6. Handling enumerations

In most cases, PTQL queries were able to correctly recognize events that involve enumerated
entities. However, when the enumeration included some special characters (brackets, slashes) or led

6 Computational Intelligence

Event class: arguments Unique Total

Localization: event-theme 120 237
Localization: theme-atloc 39 56
Localization: theme-toloc 28 43
Binding: event-theme 578 996
Binding: theme-site 64 130
Gene expression: event-theme 447 1507
Transcription: event-theme 208 498
Protein catabolism: event-theme 42 98
Phosphorylation: event-theme 59 153
Phosphorylation: theme-site 34 60

Regulation: event-theme 178 267
Regulation: protein-site 11 40
Regulation: event-csite 2 2
Regulation: event-cause 35 54

Sum 1845 4141

Table 1. Number of link paths per event class and pair of arguments (based on the training
data). Themes are proteins for the first block of events, and proteins or other events for the three
regulation types. atloc: at location, toloc: to location.

to incorrect parse trees, our queries were not able to extract all annotated events. We applied post-
processing to solve this problem, which was applicable when at least one protein in the enumeration
was annotated as a part of an event. Post-processing was based on regular expressions searching
for additional proteins occurring in the neighborhood of an initial one, separated from it only by
an enumeration separator. If found, the original event was replicated by substituting the original
protein with the new ones.

3. RESULTS

Statistics concerning event classes and number of instances per event class can be found in the
overview paper for the shared task, see Kim et al. (2009). All in all, we extracted 1845 different link
paths from the training data (2197 from training plus development) that connect two constituents
each (event trigger term to protein, or protein to site, for instance), corresponding to as many PTQL
queries. Table 1 shows the number of link paths per event class and argument type. From Table 2,
which lists the top query per event class according to support in the training data, it becomes
obvious that most events are described in fairly simple ways (“gene expression” or “phosphorylation
of gene”). Adding the development data increased the number of events by 20.8% and the number
of unique link paths by 19.1%. This might indicate that adding more data in the future will produce
less and less new link paths, but we still observe a decent amount of link paths yet not covered. Per
link path type, the increase rate ranged from only 9% (localization: theme to atloc) over 11-15%
for basic events (gene-expression or transcription trigger term to theme) to almost 27% (regulation:
theme to site).

On the BioNLP’09 Shared Task test set, the method achieved an F1-score of 45.6% for the
basic types, 9% on regulation events, with a total of 29.3% for Task 2 (see Table 3). On Task 3, the
F1-score was 8.6%. For Task 1, which was handled by us implicitly with Task 2, the F1-score was
32.1%. The combined F1-score for all tasks was 29.6%. Precision was significantly higher than recall
in all cases (overall: 60% precision at 20% recall).

Concerning regulation events, since we only aimed to recognize the simplest ones with this
method, not surprisingly the recall of the method is very low, but the precision is on par with the
ones of other events (for positive and negative regulation). The precision gets diminished because
only a partial event was submitted, accounting for a false positive and false negative.

Molecular event extraction from Link Grammar parse trees 7

Pair Query with node variables Links Support

Localization GENE(t1) => localization(e1) t1→CH→e1 36/237

Binding GENE(t1) => association(e1) t1→CH→e1 42/996

Gene expression GENE(t1) => expression(e1) t1→CH→e1 347/1507

Transcription GENE(t1) => gene(a1) => transcription(e1) t1→CH→a1 and a1→CH→e1 72/498

Protein catab. proteolysis(e1) => of(a1) => GENE(t1) e1→M→a1 and a1→J→t1 32/98

Phosphorylation phosphorylation(e1) => of(a1) => GENE(t1) e1→M→a1 and a1→J→t1 48/153

Table 2. PTQL queries per argument pair (event↔theme) that have the highest support
in the training data. All nodes are bound to variables (round brackets) that are re-used in the
Links column to depict connections between nodes. Note that event trigger terms given here are
placeholders for alternatives (see text): ‘expression’ also refers to instances that used the terms ‘co-
expression’, ‘synthesis’, ‘production’, etc. GENE: wildcard for any gene name. CH: connects head
noun with modifying noun; M: connects nouns to post-nominal modifiers; J: connects prepositions
to objects.

Event class TP FP FN Rec Prec F1

Localization 42 28 132 24.14 60.00 34.43
Binding 69 86 280 19.77 44.52 27.38
Gene expr. 373 99 349 51.66 79.03 62.48
Transcription 22 30 105 16.06 42.31 23.28
Protein cat. 7 5 7 50.00 58.33 53.85
Phosphoryl. 31 57 108 22.30 35.23 27.31
Sub-total 544 305 991 35.44 64.08 45.64

Regulation 1 12 291 0.34 7.69 0.66
Positive reg. 70 146 917 7.09 32.41 11.64
Negative reg. 14 14 365 3.69 50.00 6.88
Reg. total 85 172 1573 5.13 33.07 8.88

Task 2 total 629 477 2564 19.70 56.87 29.26

Negation 9 24 218 3.96 27.27 6.92
Speculation 13 33 195 6.25 28.26 10.24
Task 3 total 22 57 413 5.06 27.85 8.56

Overall 710 475 2907 19.63 59.92 29.57

Table 3. Official results for the BioNLP’09 Shared Task tasks 2 and 3, approximate span,
recursive matching.

The post-processing improved the F1-score of Task 2 slightly (1.2%) for the first 6 events at
3% better recall and 6% worse precision. For regulation events its impact was higher since for those
no BioLG based solution was applied. Its overall effect on Task 2 was almost a 4% improvement in
F1-score and recall, at 15% decreased precision.

Identification of negative contextTable 4 shows the effectiveness of each method for the identifica-
tion of negative context on the development set. Searching for the negation inside the event trigger
had little effect on the final results, since a specific word was rarely identified as being the trigger
of more than one event classes. The most reliable spot to look for negation was immediately before
the term that triggered the event (lack of expression of . . .).

8 Computational Intelligence

Method TP FP FN P R F1

Inside trigger 15 8 92 65.2 14.0 23.1
Before trigger 62 17 45 78.5 57.9 66.7
Span-based 6 3 101 66.7 5.6 10.3
Parse tree query 4 1 103 60.0 5.6 10.7

(I∪B∪S) 79 27 28 74.5 73.8 74.2
(I∪B∪S∪P) 82 28 25 76.6 74.6 75.6

I∪B∪S∪P no F 84 79 23 50.9 75.7 60.9

Table 4. Performance for negation context identification on the development set. The last
row indicates the importance of fine tuning (F): when event class–trigger pair exceptions and NTE
exceptions are not applied, the precision decreases considerably with only a small increase in recall.
See text for details in each method.

Method TP FP FN P R F1

w/o location hrst. 53 47 42 53.0 55.8 54.4

with location hrst. 52 34 43 60.5 54.7 57.5

Table 5. Performance of parse tree based speculation identification, with or without location
heuristics; evaluated on the development set.

Identification of speculationTable 5 shows the effectiveness of our parse tree based method for the
identification of speculation context on the development set. With the use of location-based heuristic
we could improve the F1-score of our method by 3%, at 7% better precision and 1% worse recall.
The parse tree based method worked significantly better for speculative context than for negation,
because speculations are expressed in less multifarious way, and trigger words are more specific for
the context.

3.1. Error analysis

An analysis of false positives (FP) and false negatives (FN) revealed the following main types of
errors (in order of decreasing gravity). Our system produced much better precision than recall, which
is reflected in dominance of FNs over FPs. Note that, as we used parse trees on training and test
data, parse errors result both in incorrect queries and wrongly extracted results. Some of these errors,
mainly due to missing or incorrect parse trees or links, could be recovered by the post-processing if
the surface patterns were simple.

(1) FNs: no corresponding link path query
(2) FNs: there exists a corresponding yet slightly different link
(3) FNs: query links to a (pre or post) modifier of the gene, but not the actual gene name
(4) FNs: query misses one argument
(5) FPs: wrong event categorization (mostly gene expression vs. transcription)
(6) FNs: unseen event trigger term, location, or site
(7) FPs: wrong despite perfect match wrt. a link path from the training data
(8) FNs, FPs: incorrect or partial parse tree
(9) FNs: problems with anaphora, brackets, or enumerations

We discuss these error classes in more detail. The first problem may be attributed to the small
size of the training data, but is also a general property of pattern-based methods in NLP. The
second class stems from the current inability of our query language to deal with morpho-syntactical
variation in language (see next Section). A large portion (3) of false negatives was due to link paths
that went to the gene/theme in the training data, but to the head of a noun phrase that contained
a gene/theme in the test data (or vice versa); or the link went to a noun pre-modifier. An example

Molecular event extraction from Link Grammar parse trees 9

is the following, where the first phrase originates from the training data and gene is placeholder for
the actual gene/protein name:

“... phosphorylates gene ...”
“... phosphorylates gene protein ...”
“... phosphorylates X domain of gene ...”

In all three cases, there is a link from the verb to its object, but in the lower two examples, that
object is ‘protein’ and ‘domain’, respectively. Only for a few such cases, all three link paths were
contained in the training data.

For 5% of the false positive events (5), we predicted the wrong event class, while all trigger
terms/arguments were correct. Half of those were mix-ups of positive regulation, predicted as gene
expression; another group has gene expression predicted as localization. 13% of FPs were a result of
both: the prediction was part of a corresponding FN (but some argument was missing), and at the
same time we predicted the wrong type. For a small fraction (1.5%) of false negative events on the
development set, we found a corresponding false positive event where one argument (ToLoc, Cause,
Site, Theme2) was missing; 11 of those were binding events (comprising 9% of FNs for binding).

A relatively small portion of false negatives were due to non-existing linkages (8) for a sentence.
We stopped parsing after 30sec per sentence; this yields partial linkages in some cases, which we
could still use for extraction of link paths (training data) or querying against (test data); sometimes,
no linkage was available at all. This timeout also influences the quality of linkages, which result in
false positives as well as false negatives.

As for context identification, our approach performed significantly weaker on the test set, since
over 70% of negations and speculations were related to regulation events (measured on the joined
train and development sets), for which we applied a coarse baseline method, i.e., here a large part
of the base events were missing.

4. DISCUSSION

“We presented a method for extraction of molecular events from text. We distinguished nine
classes of events and identified arguments associated with them. We also characterized each event
for either being speculative or negated. The underlying method extracts link paths between all
relevant pairs of arguments involved in the event from a Link Grammar parse (BioLG, see Pyysalo
et al. Pyysalo et al. (2006)). These link paths connect, for instance, an event trigger term to its
theme, or a protein theme to a binding site. We query the graph formed by these linkages using a
dedicated query language for parse trees Tu et al. (2008) which allows us to very quickly implement
large sets of rules. We combine queries with extensive pre- and post-processing using a mixture of
different techniques. For the BioNLP’09 Shared Task, we focused on all event classes but the three
types of regulation. For the other six, we obtain an overall F1-score of 45.6%, for all nine it was 29.3%
(task 2). Including speculation and negation (task 3), the overall total on all nine event classes was
29.6%. All in all, we found that link paths connecting constituents of known types (e.g., event trigger
term, gene) as extracted from training data yield a precise way for event argument detection. Using
a specialized query language on pre-processed data (NER; parsing) greatly enhances the utility of
such extracted rules to put together more complex events. Still, our current approach lacks in overall
recall (20–52%, depending on event class), often due to slight variations that include, for instance,
alternative nodes along a link path that were not observed in training data.”

“Our approach could be improved in various ways. First, we currently extract queries from
the training corpus and use them directly as they are. We see that to improve recall, queries
need to be generalized further. In previous work Hakenberg et al. (2008) we showed that such
generalized rules may be learned automatically (from much larger corpora), which helped to increase
recall considerably at a modest precision penalty. Second, our query language currently performs
exact matching, while it would be more advantageous to implement some form of fuzzy semantics,
producing a ranked list of hits. This could include wildcards, alternative nodes, alternative sub-
paths, optional nodes etc. An example is discussed in Figure 4. Finally, we also believe that it would
be rather easy to include more sophisticated ways of performing anaphora resolution to properly
address events spanning multiple sentences and referential phrases within sentences.’

10 Computational Intelligence

+----Js----+ +--Js-+

+--Mp--+ +--CH--+ +--Mp--+ |

| | | | | | |

expression of c-Fos gene expression of c-Fos

Figure 4. Example for alternative structures / optional nodes. In this case, the linkage should
reflect the connection from ‘expression’ to a noun that refers to a gene, independent of its head. The
‘Mp’ and ‘Js’ links would be required, the ‘CH’ link from head to actual gene optional.

4.1. — Extensions to PTQL —

• search for nodes that contain other nodes; example: search for an NP node that contains a gene
• linkages between intermediate constituents, not just leaf nodes; parents (especially NPs) inherit

all links from their children
• ⇒ search for an NP that contains a GENE and {the gene or NP} has an MVp link to another

node
• include proper POS tags, possible from the Stanford parser, in PTDB

4.2. — Extensions to generating linkage-patterns —

• for pairs given from the training data (protein(s), trigger term, site, etc.), search PubMed for
similar sentences and get the linkages from these sentences as additional linkage-patterns

• → parse (a relevant chunk of) PubMed with BioLG, new Banner, etc.
• pre-selection of sentences using a multi-class classifier (set up as 8 one-vs-all classifiers)
• pairwise alignment of linkages (linear encoding) to generate more general patterns (a la YAPPIE)

REFERENCES

Bird, S., Chen, Y., Davidson, S. B., Lee, H., and Zheng, Y. (2006). Designing and evaluating an
xpath dialect for linguistic queries. In ICDE , page 52, Washington, DC, USA. IEEE Computer
Society.

Ding, J., Berleant, D., Xu, J., and Fulmer, A. W. (2003). Extracting biochemical interactions from
medline using a link grammar parser. In 5th IEEE International Conference on Tools with
Artificial Intelligence, pages 467–471.

Fundel, K., Küffner, R., and Zimmer, R. (2007). Relex—relation extraction using dependency parse
trees. Bioinformatics, 23(3), 365–371.

Hakenberg, J., Plake, C., Royer, L., Strobelt, H., Leser, U., and Schroeder, M. (2008). Gene mention
normalization and interaction extraction with context models and sentence motifs. Genome
Biology , 9(S2), S14.

Kim, J.-D., Ohta, T., Pyysalo, S., Kano, Y., and Tsujii, J. (2009). Overview of bionlp’09 shared
task on event extraction. In Proceedings of the BioNLP 2009 Workshop Companion Volume for
Shared Task , pages 1–9, Boulder, Colorado. Association for Computational Linguistics.

Kim, S., Yoon, J., and Yang, J. (2008). Kernel approaches for genic interaction extraction.
Bioinformatics, 24(1), 118–126.

Krallinger, M., Valencia, A., and Hirschman, L. (2008). Linking genes to literature: text mining,
information extraction, and retrieval applications for biology. Genome Biol , 9 Suppl 2, S8.

Miyao, Y., Sagae, K., Sætre, R., Matsuzaki, T., and Tsujii, J. (2009). Evaluating contributions
of natural language parsers to protein–protein interaction extraction. Bioinformatics, 25(3),
394–400.

Pyysalo, S., Ginter, F., Pahikkala, T., Boberg, J., Järvinen, J., Salakoski, T., and Koivula, J.
(2004). Analysis of link grammar on biomedical dependency corpus targeted at protein-protein
interactions. In N. Collier, P. Ruch, and A. Nazarenko, editors, COLING 2004 Interna-
tional Joint workshop on Natural Language Processing in Biomedicine and its Applications
(NLPBA/BioNLP) 2004 , pages 15–21, Geneva, Switzerland. COLING.

Pyysalo, S., Salakoski, T., Aubin?, S., and Nazarenko, A. (2006). Lexical adaptation of link
grammar to the biomedical sublanguage: a comparative evaluation of three approaches. BMC

Molecular event extraction from Link Grammar parse trees 11

Bioinformatics, 7(Suppl 3), S2.
Pyysalo, S., Airola, A., Heimonen, J., Bjorne, J., Ginter, F., and Salakoski, T. (2008). Comparative

analysis of five protein-protein interaction corpora. BMC Bioinformatics, 9 Suppl 3, S6.
Sleator, D. and Temperley, D. (1993). Parsing english with a link grammar. In Third International

Workshop on Parsing Technologies, Tilburg, NL, and Durbuy, B.
Solt, I., Tikk, D., Gál, V., and Kardkovács, Z. T. (2009). Semantic classification of diseases in

discharge summaries using a context-aware rule based classifier. J Am Med Inform Assoc, 16(4
– i2b2 Obesity NLP Challenge), 580–584.

Szolovits, P. (2003). Adding a medical lexicon to an english parser. In AMIA Annu Symp Proc,
pages 639–643, Washington DC, USA.

Tu, P. H., Baral, C., Chen, Y., and Gonzalez, G. (2008). Generalized text extraction from molecular
biology text using parse tree database querying. Technical Report TR-08-004, Department of
Computer Science and Engineering Arizona State University, Tempe, Arizona, USA.

