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Abstract

We approached the problems of event detection, argument identification, and negation and 

speculation detection in the BioNLP’09 information extraction challenge through concept 

recognition and analysis. Our methodology involved using the OpenDMAP semantic parser with 

manually written rules. The original OpenDMAP system was updated for this challenge with a 

broad ontology defined for the events of interest, new linguistic patterns for those events, and 

specialized coordination handling. We achieved state-of-the-art precision for two of the three 

tasks, scoring the highest of 24 teams at precision of 71.81 on Task 1 and the highest of 6 teams at 

precision of 70.97 on Task 2. We provide a detailed analysis of the training data and show that a 

number of trigger words were ambiguous as to event type, even when their arguments are 

constrained by semantic class. The data is also shown to have a number of missing annotations. 

Analysis of a sampling of the comparatively small number of false positives returned by our 

system shows that major causes of this type of error were failing to recognize second themes in 

two-theme events, failing to recognize events when they were the arguments to other events, 

failure to recognize nontheme arguments, and sentence segmentation errors. We show that 

specifically handling coordination had a small but important impact on the overall performance of 

the system. The OpenDMAP system and the rule set are available at http://bionlp.sourceforge.net.
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1. INTRODUCTION

We approached the problem of biomedical event recognition as one of concept recognition 

and analysis. Concept analysis is the process of taking a textual input and building from it an 

abstract representation of the concepts that are reflected in it. Concept recognition can be 

equivalent to the named entity recognition task when it is limited to locating mentions of 

particular semantic types in text, or it can be more abstract when it is focused on recognizing 
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predicative relationships, e.g., events and their participants. A short description of our 

methodology can be found inCohen et al. (2009). Here we give additional details on the 

OpenDMAP system and the ontology that it used and include analyses of the BioNLP’09 

shared task data and of our own false positives.

1.1. The BioNLP’09 Shared Task

The event types selected for inclusion in the BioNLP’09 shared task were done so based on 

their frequency and annotation quality within the GENIA corpus, and represented biological 

events of central importance to biology and therefore research biologists. For the event 

detection and characterization task, nine molecular biology events were identified. They 

included gene-centric processes such as “expression” and “translation” (different yet related 

terms describing the process through which genes encoded in the DNA of a cell function as 

blueprints for the creation of functioning proteins), protein-centric events including “protein 

catabolism” (the biochemical process of degradation or the breaking down of a protein) and 

“protein localization” (which included where a protein resided, in addition to where a 

protein was moving from or to), as well as interaction or modification events such as 

binding (protein binding to another protein, or a protein “binding” to DNA) and 

“phosphorylation” (the process of adding a phosphate group to a protein). Event terms 

describing the control of such events were also included, and were modifiers of the previous 

six events; “regulation,” “positive regulation,” and “negative regulation.” The correct 

identification of these events required not only the identification of the core theme (i.e., 

phosphorylation) but also when the information was available, all the participants in the 

event (i.e., that Protein A was being phosphorylated and it was Protein B whose function it 

was to do the phosphorylating). It is important to note that the BioNLP’09 shared task made 

no effort to distinguish between gene and protein mentions, and in addition protein families 

and protein complexes were considered beyond the scope of the task. Such exclusions 

should not be seen as indication of lesser importance (understanding and identifying these 

entities are critical if we are to fully exploit knowledge captured in biological texts), but 

rather is indicative of the incredibly challenging nature of these concepts. The official event 

descriptions as used for this task are available at http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/

SharedTask/detail.shtml#event.

Our system was entered into all three of the BioNLP’09 (Kim et al. 2009) shared tasks:

• Event detection and characterization This task requires recognition of nine 

biological events: gene expression, transcription, protein catabolism, protein 

localization, binding, phosphorylation, regulation, positive regulation, and negative 

regulation. It requires identification of the core THEME and/or CAUSE 

participants in the event, i.e., the protein(s) being produced, broken down, bound, 

regulated, etc.

• Event argument recognition This task builds on the previous task, adding in 

additional arguments of the events, such as the site (protein or DNA region) of a 

binding event, or the location of a protein in a localization event.
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• Recognition of negations and speculations This task requires identification of 

negations of events (e.g., event X did not occur), and speculation about events (e.g., 

We claim that event X should occur).

1.2. Related Work

OpenDMAP is distinguished from a significant body of work on information extraction of 

biological events in that it uses an ontology as its organizing structure, and uses the 

declarations of classes and slots in that ontology as semantic constraints that must be 

validated during extraction. While other work in information extraction focuses on surface 

patterns (Blaschke and Valencia 2001, 2002) or syntactic structures (Yakushiji et al. 2001; 

Saetre et al. 2009), OpenDMAP is more closely aligned with work in the context of the 

semantic web that takes advantage of ontology structures in semantic markup of text (e.g., 

COHSE (Bechhofer et al. 2008) and OntoMat (Handschuh et al. 2001)), and is directly 

related to work that explicitly couples linguistic patterns with ontological constraints, such 

as the MnM system (Vargas-Vera et al. 2002) and MedScan (Daraselia et al. 2004). In the 

broadest sense, the major dividing line between our work and that of others is in whether an 

ontology is involved, as it intimately is in our work, or whether it is not.

Comparing with other ontology-based systems, several are construed more as semantic 

annotation tools than information extraction systems. Concept recognition in COHSE, for 

instance, is limited to term and synonym lookup from source vocabularies, while we go 

beyond this to recognize relationships between concepts. Onto Mat does not support 

information extraction pattern definition, but rather is limited to (manual) semantic 

annotation using concepts from ontologies. The MnM system, however, is closer to 

OpenDMAP in that it is coupled with the Amilcare learning system (Ciravegna and Wilks 

2003) to support pattern acquisition. Amilcare induces generalized rules from a training 

corpus for tagging segments of text with a given role label, using the local context. In 

contrast, OpenDMAP is oriented towards recognizing complete relation structures in one 

step by defining the linguistic context of an event predicate along with its arguments (class 

plus slot fillers). MedScan is the closest system in terms of approach to OpenDMAP. As 

compared to MedScan, OpenDMAP allows but does not require a full syntactic analysis of a 

sentence, instead allowing patterns to be defined that specify more surface-level features in 

combination with the semantic constraints, which makes the overall approach less dependent 

on the performance of the underlying syntactic analysis.

The shared task was defined as an event extraction task. It is not clear that this definition is 

actually linguistically accurate, because by definition events occur at some time t, and the 

“events” under discussion in the molecular biology literature are closer to statements about 

probabilistic tendencies in populations of molecules. For this reason, we do not review the 

general literature on event recognition here. However, a number of systems from the shared 

task provide instructive comparisons to our own work. Most, although not all, approaches 

have involved a syntactic parse, with dependency parses predominating. Many systems have 

used rule-based approaches, although most of the top-ranking systems on this task used a 

machine learning application; the top-ranking system used two machine learning passes 

followed by the operation of a rule-based semantic processing component (Björne et al. 
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2009). The top-ranking system is representative of many alternative approaches. In an initial 

step, it performed sentence splitting, tokenization, and syntactic parsing. The parse tree was 

then transformed into an alternative graph representation. A multi-class support vector 

machine was used to identify trigger words, and then applied again to locate arguments. A 

rule-based post processing step then performed a number of operations, including pruning 

invalid edges and ensuring the correct number of arguments (Björne et al. 2009).

A detailed comparison of the various participating systems can be found in Kim et al. 

(2009).

2. OUR APPROACH

We used the OpenDMAP system developed at the University of Colorado School of 

Medicine (Hunter et al. 2008) for our submission to the BioNLP’09 Shared Task on Event 

Extraction. OpenDMAP is an ontology-driven, integrated concept analysis system that 

supports information extraction from text through the use of patterns represented in a classic 

form of “semantic grammar,” freely mixing text literals, semantically typed basal syntactic 

constituents, and semantically defined classes of entities. Our approach is to take advantage 

of the high-quality ontologies available in the biomedical domain to formally define entities, 

events, and constraints on slots within events and to develop patterns for how concepts can 

be expressed in text that take advantage of both semantic and linguistic characteristics of the 

text. We manually built patterns for each event type by examining the training data and by 

using native-speaker intuitions about likely ways of expressing relationships, similar to the 

technique described inCohen et al. (2004). The patterns characterize the linguistic 

expression of that event and identify the arguments (participants) of the events according to 

(a) occurrence in a relevant linguistic context and (b) satisfaction of appropriate semantic 

constraints, as defined by our ontology. Our solution results in very-high-precision 

information extraction, although the current rule set has limited recall.

2.1. The Reference Ontology

The central organizing structure of an OpenDMAP project is an ontology. We built the 

ontology for this project by combining elements of several community-consensus ontologies

—the Gene Ontology (GO) (The Gene Ontology Consortium 2000; Consortium 2001), Cell 

Type Ontology (CTO) (Bard, Rhee, and Ashburner 2005), BRENDA Tissue Ontology 

(BTO; Schomburg et al. 2004), Foundational Model of Anatomy (FMA; Rosse and Mejino 

2003), and Sequence Ontology (SO; Eilbeck et al. 2005)—and a small number of additional 

concepts to represent task-specific aspects of the system, such as event trigger words. 

Combining the ontologies was done with the Prompt plug-in for Protégé. A partial view of 

the ontology is shown in Figure 1.

The ontology included concepts representing each event type. These were represented as 

frames, with slots for the things that needed to be returned by the system—the trigger word 

and the various slot fillers. All slot fillers were constrained to be concepts in some 

community-consensus ontology. The core event arguments were constrained in the ontology 

to be of type protein from the Sequence Ontology (except in the case of higher-order events, 

where biological events themselves could satisfy the THEME role), while the type of the 
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other event arguments varied. For instance, the ATLOC argument of a gene expression event 

was constrained to be one of tissue (from BTO), cell type (from CTO), or cellular 

component (from GO-Cellular Component), while the BINDING argument of a binding event 

was constrained to be one of binding_site, DNA, domain, or chromosome (all from the SO 

and all tagged by LingPipe). Table 1 lists the various types.

2.2. The OpenDMAP Semantic Parser

As indicated above, a key component of the OpenDMAP system is the definition of 

semantic rules characterizing the expression of concepts in text. As in our previous 

publications on OpenDMAP, we refer to our semantic rules as patterns. These patterns are 

encoded as linguistic forms of concepts directly in the knowledge base. That is, rather than 

being constructed with a lexicon and a knowledge representation as two separate 

components, in OpenDMAP, concepts and their associated potential linguistic 

manifestations are jointly encoded. This association works out differently in the case of 

different types of ontologies. In the case of an ontology such as the Gene Ontology Cellular 

Component hierarchy (GO-CC), which has an extensive set of concepts that have associated 

terms, the terms themselves serve as the patterns. In the case of an ontology such as the 

Sequence Ontology, a different mechanism is used. In the Sequence Ontology, we have a 

protein concept (SO:000358). Unlike concepts in GO-CC, which have a high likelihood in 

many cases of showing up in the same form as their associated terms, or with minor 

variations that can be captured using linguistic rules (at least for cellular components with 

which we are most likely to be concerned, the more general concepts in the upper levels of 

GO-CC), there are many proteins that will be mentioned by a name that does not appear in 

the Sequence Ontology because it is not intended to be a catalog of all proteins or genes, but 

rather a specification of various sequence-related concepts and entity types. That is, it is not 

designed to represent specific entities, but rather classes of entities. In this case, we use a 

named entity recognizer (or, in the case of this shared task, the given annotations) to 

recognize members of the appropriate semantic class, and then map them to the appropriate 

element in the Sequence Ontology. In neither case is there a separate lexicon and knowledge 

model; rather, either linguistic patterns are directly associated with their concepts, as in the 

case of the Gene Ontology, or entities of a particular type are identified in free text through 

an alternative strategy such as a third-party named entity recognizer and their semantic type 

is mapped directly to the appropriate element in the ontology, as in the case of many 

Sequence Ontology elements.

The OpenDMAP pattern language has a number of features that allow for semantic typing of 

arguments and for flexible specification of ordering. Because the semantic typing is a major 

distinctive feature of the system, we discuss it first. Semantic typing works in conjunction 

with an ontology and a frame specified in a Protégé project. Figure 2 shows the 

representation of a representative frame from our implementation. Note that each slot is 

constrained to belong to a particular semantic class (labeled Type in the Protégé interface). 

For example, the SITE slot is constrained to be a member of the class biological_entity or 

polypeptide_region. These classes correspond directly to other ontology elements.
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Patterns are then written for each concept, referencing the names of the slots to take 

advantage of their semantic types. For example, in the following simplified pattern for the 

regulation concept:

regulation := [regulation_trigger_word] of [THEME] (by [CAUSE])?

use of the word THEME in square brackets constrains the text matching that part of the pattern 

to be a protein, a protein conjunction, or a biological process, as specified by the ontology. 

These constraints can seen in the frame specification in Figure 2. The parenthesized (by 

[CAUSE])? is made optional by the following question mark.

For the BioNLP’09 task, each event pattern has at a minimum a THEME argument and an 

event-specific trigger word. For example, {phosphorylation} := 

[phosphorylation_nominalization] [THEME], where [phosphorylization_nominalization] 

represents a trigger word. Both elements are defined semantically.

The pattern language syntax is of context-free power. One unusual operator allows for 

flexible ordering of strings. It is illustrated here:

Protein_transport := [TRANSPORTED-ENTITY] translocation @(from [TRANSPORT-ORIGIN])@(to 

[TRANSPORT-DESTINATION])

Here, the TRANSPORTED-ENTITY must precede the text literal translocation. However, the @-sign 

allows for flexible ordering of the from-phrase and the to-phrase. They may occur in any 

position relative to the ordered parts of the rule. Thus, that single rule 1 will allow for 

matching of both Bax translocation to mitochondria from the cytosol and Bax translocation 

from the cytosol to the mitochondria.

Additionally, regular expression operators are included. These include a wildcard character 

(although see below for its effect on our rules’ performance), Kleene star, Kleene plus, ? for 

zero or 1, and a conjunction operator. The various operators can be combined to build 

arbitrarily complex rules. We gave examples of some simplified rules above. An example of 

a full rule set for the protein localization event type, follows. These are relatively straight-

forward rules. They achieved precision of 0.6543, recall of 0.2046, and F-measure of 0.3118 

on the devtest data, and precision of 1.0, recall of 0.1034, and F-measure of 0.1875 on the 

official test data:

{localization_trig_word} := secretion;

{localization_trig_word} := release;

{localization_trig_word} := localization;

{localization_trig_word_translocation} := translocation;

{localization_trig_word_secretion_release} := secretion, release;

{localization} := [TOLOC] [event_action localization_trig_word] of _ [THEME];

{localization} := [event_action localization_trig_word_secretion_release] of [THEME];

1Determiners have been omitted from the rule for succinctness.
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{localization} := [THEME ] [event_action localization_trig_word_secretion_release];

{localization} := ([TOLOC])? [event_action localization_trig_word] of [THEME];

{localization} := ([TOLOC])? [event_action localization_trig_word_translocation] of 

_[THEME];

Some things to notice about these rules are that although the := operator is reminiscent of 

Prolog, these are not Prolog productions; the first five rules function purely to define 

patterns for relational concept trigger words; and comments can be included in the rule files. 

More specifically to the shared task, note that each rule minimally includes (1) a typed slot 

(indicated by square brackets) for the trigger word, which the rules required us to return, and 

(2) another typed slot (again, indicated by square brackets) for the theme.

Another example of a full rule set follows, this time for gene expression events. This rule set 

contrasts with the previous one by making extensive use of regular expression operators to 

deal with inflectional and derivational morphology when defining the trigger words. It 

achieved a precision of 0.8595, recall of 0.3643, and F-measure of 0.5117 on the official test 

data:

{expression_trig_word} := r’express.*’, r’coexpress.*’, r’co-express.*’, 

r’overexpress.*’;

{expression_trig_word} := r’produc.*’, r’resynthes.*’, r’synthes.*’;

{expression_trig_word} := r’nonproduc.*’, r’non-produc.*’, r’generat.*’, 

r’nonexpress.*’, r’non-express.*’;

{gene_expression} := [THEME] (gene—protein)? adv? be? adv? [event_action 

expression_trig_word];

{gene_expression} := [event_action expression_trig_word]prep det? [THEME];

{gene_expression} := [event_action expression_trig_word] and nominalization prep 

det?[THEME];

{gene_expression} := [THEME] [event_action expression_trig_word];

The rule elements prep and det represent prepositions and determiners and are defined in a 

separate file; the curly braces indicate that an element is defined within the ontology, rather 

than being text literals.

2.3. OpenDMAP Pattern Match Scoring

Previous versions of our OpenDMAP system utilized a simple scoring algorithm for ranking 

competingmatches beginning at a given span of text. This algorithm prefers matches that 

cover every word of the span to those that have intervening words (the span score). For 

BioNLP’09, the algorithm was refined to include two other factors, a pattern score that 

penalizes matches to patterns which have optional pattern elements that are uninstantiated in 

the match, and a concept score that penalizes matches that do not fill all slots associated 

with a concept in the ontology. The final score is then calculated based on a weighted 

average of the three component scores. This adjusted algorithm was found to improve the 
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selection of the correct pattern match in cases where there were multiple patterns that 

matched a span of text.

2.4. Named Entity Recognition

For proteins, we used the gold standard annotations provided by the organizers. For other 

semantic classes, we constructed a compound named entity recognition system which 

consists of a LingPipe GENIA tagging module (LingPipe,2 Alias-i (2008)), and several 

dictionary lookup modules. The dictionary lookup was done using a component from the 

UIMA (IBM 2009); Ferrucci and Lally 2004) sandbox called the ConceptMapper.

We loaded the ConceptMapper with dictionaries derived from the relevant ontologies 

identified in Section 2.1. The dictionaries contained the names and name variants for each 

concept in each ontology, and matches in the input documents were annotated with the 

relevant concept ID for the match. The only modifications that we made to these 

community-consensus ontologies were to remove the single concept cell from the Cell Type 

Ontology and to add the synonym nuclear to the Gene Ontology Cell Component concept 

nucleus.

The protein annotations were used to constrain the text entities that could satisfy the THEME 

role in the events of interest. The other named entities were added for the identification of 

noncore event participants for Task 2, generally to characterize varying semantic constraints 

for Site arguments of the different event types as indicated in Table 1, based on input from a 

biological expert.

2.5. Handling of Coordination

Coordination was handled using the OpenNLP 3 constituent parser along with the UIMA 

wrappers that they provide via their code repository. We chose OpenNLP because it is easy 

to train a model, it integrates easily into a UIMA pipeline, and because of competitive 

parsing results as reported by Buyko (Buyko et al. 2006). We built a new model for the 

parser using 500 abstracts from the beta version of the GENIA treebank and 10 full-text 

articles from the CRAFT corpus (Verspoor, Cohen, and Hunter 2009) as training data. From 

the constituent parse, we extracted coordination structures into a simplified data structure 

that captures each conjunction along with its conjuncts. These were provided to downstream 

components. The coordination component achieves an F-score of 74.6% at the token level 

and an F-score of 57.5% at the conjunct level when evaluated against GENIA. For both 

measures the recall was higher than the precision by 4% and 8%, respectively.

We utilized the coordination analysis to identify events in which the THEME argument was 

expressed as a conjoined noun phrase. These were assumed to have a distributed reading and 

were postprocessed to create an individual event involving each conjunct, and further 

filtered to only include given (A1) protein references. So, for instance, analysis of the 

sentence in the example below should result in the detection of three separate gene 

expression events, involving the proteins HLA-DR, CD86, and CD40 respectively.

2http://alias-i.com/lingpipe/
3http://opennlp.sourceforge.net/
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NAC was shown to down-regulate the production of cytokines by DC as well as 

their surface expression of HLA-DR, CD86 (B7-2), and CD40 molecules . . . 

(PMID 10072497)

2.6. Software Infrastructure

2.6.1. Core Text Processing Infrastructure—We took advantage of our existing 

infrastructure based on UIMA (The Unstructured Information Management Architecture, 

IBM (2009); Ferrucci and Lally (2004)) to support text processing and data analysis. Our 

tools are available from http://bionlp.sourceforge.org.

2.6.2. Development Tools—We developed a visualization tool to enable the linguistic 

pattern writers to better analyze the training data. This tool shows the source text one 

sentence at a time with the annotated words highlighted. A list following each sentence 

shows details of the annotations.

The tool is implemented as a UIMA Analysis Engine and reads annotations inserted into the 

CAS (Common Analysis Structure) data structure for a document within UIMA, which in 

turn was created based on a UIMA module for loading the provided A1 (protein) and A2 

(gold standard event) annotations. The tool generates static HTML files to leverage the 

graphics capabilities of a browser.

For in-house testing, we were able to take advantage of a previously developed UIMA 

annotation comparator which would compare the annotations loaded from the A2 files with 

the annotations added in our processing and output an analysis of Precision/Recall/F-score. 

We similarly utilized an annotation printer for outputting and reviewing annotations in the 

CAS.

3. PATTERN DEVELOPMENT STRATEGIES

3.1. Corpus Analysis

Using the tool that we developed for visualizing the training data (described in Section 

2.6.2), a subset of the gold-standard annotations were grouped by event type and by trigger 

word type (nominalization, passive verb, active verb, or multiword phrase). This 

organization helped to suggest the argument structures of the event predicates and also 

highlighted the variation within argument structures. It also showed the nature of more 

extensive intervening text that would need to be handled for the patterns to achieve higher 

recall.

Based on this corpus analysis, patterns were developed manually using an iterative process 

in which individual patterns or groups of patterns were tested on the training data to 

determine their impact on performance. Pattern writers started with the most frequent trigger 

words and argument structures.

3.2. Trigger Words

In the training data, we were provided annotations of all relevant event types occurring in 

the training documents. These annotations included a trigger word specifying the specific 
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word in the input text which indicated the occurrence of each event. We utilized the trigger 

words in the training set as anchors for our linguistic patterns. We built patterns around the 

generic concept of, e.g., an expression trigger word and then varied the actual strings that 

were allowed to satisfy that concept. We then ran experiments with our patterns and these 

varying sets of trigger words for each event type, discarding those that degraded system 

performance when evaluated with respect to the gold standard annotations.

Most often a trigger word was removed from an event type trigger list because it was also a 

trigger word for another event type and therefore reduced performance by increasing the 

false positive rate. For example, the trigger words “level” and “levels” appear in the training 

data trigger word lists of gene expression, transcription, and all three regulation event types.

An analysis of the trigger words in the training data was performed to determine the extent 

of trigger word ambiguity. For each event type, trigger words were collected from the gold 

standard data files, lemmatized, and counted, removing any triggers that occurred less than 

three times for a single event type. The counts for each trigger word were normalized to a 

value between 0 and 1, which represents the relative frequency of a trigger word across 

event types. The frequencies were then compared across event types. Table 3 shows this 

comparison. The larger bubbles represent higher frequency of occurrence of a trigger word 

with an event type. The darker bubbles represent those trigger words whose relative 

frequency falls within the range 22–78%. These medium-range trigger words will be more 

challenging to disambiguate because their frequency is more evenly distributed across event 

types. Another outcome of this analysis to note is that some event types rely on many 

ambiguous trigger words, e.g., Positive Regulation.

The analysis of ambiguity among trigger words is important for future disambiguation 

efforts. There is an interplay between the lexical and the semantic components of a sentence. 

A trigger word of little or no ambiguity can signal an event type even if the arguments of the 

event are ambiguous, underspecified, or not explicitly stated in the sentence, and can, 

subsequently, help to disambiguate said arguments using the event definition in the 

ontology. On the other hand, a trigger word that signals multiple event types will require 

stated arguments that are semantically specific enough to disambiguate the event type 

selection. In the case of the shared task events, because the semantic constraints on themes 

for all event types include proteins, the event types with patterns that used ambiguous trigger 

words were effectively indistinguishable. For example, OpenDMAP cannot discriminate 

between a gene expression event and a positive regulation event if the only clue it has is the 

phrase “elevated IgE levels,” which satisfies a pattern constraint for both event types. 

Patterns that use the high ambiguity trigger words discovered in this analysis will need 

further specification, whether that is in the form of tighter semantic restrictions on the 

arguments, or more contextual clues matched in text for disambiguation.

The selection of trigger words was guided by this frequency analysis. In a post hoc analysis, 

we find that a different proportion of the set of trigger words in the training data was finally 

chosen for inclusion in the list of trigger words used in the runtime system for each different 

event type. Between 10% and 20% of the top frequency-ranked trigger words were used for 

simple event types, with the exception that phosphorylation trigger words were chosen from 
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the top 30%. For instance, for gene expression all of the top 15 most frequent trigger words 

were used (corresponding to the top 16%). For complex event types (the regulations) better 

performance was achieved by limiting the list to between 5% and 10% of the most frequent 

trigger words. This difference is explicable through the data in Figure 3; the most ambiguous 

trigger words are the least discriminating clues for the various event types, and the complex 

event types are characterized by the more ambiguous trigger words, as well as having 

substantially more variability in the relevant trigger words.

In addition, variants of frequent trigger words were identified and included. For instance, the 

nominalization “expression” is the most frequent gene expression trigger word and the 

verbal inflections “expressed” and “express” are also in the top 20%. The verbal inflection 

“expresses” is ranked lower than the top 30%, but was nonetheless included as a trigger 

word in the gene expression patterns.

3.3. Patterns for Complex Events

The methodology for creating complex event patterns such as regulation was the same as for 

simple events, with the exception that the THEMEs were defined in the ontology to also include 

biological processes to allow for the second-order relations. Iterative pattern writing and 

testing was a little more arduous because these patterns relied on the success of the simple 

event patterns, and hence more in-depth analysis was required to perform performance-

increasing pattern adjustments.

3.4. Nominalizations

Nominalizationswere very frequent in the training data; for seven out of nine event types, 

the most common trigger word was a nominalization. In writing our patterns, we focused on 

these nominalizations. To write patterns for nominalizations, we capitalized on some of the 

insights from Cohen, Palmer, and Hunter (2008). Realized arguments of nominalizations can 

occur in three basic positions:

• Within the noun phrase, after the nominalization; typically in a prepositional phrase

• Within the noun phrase, immediately preceding the nominalization

• External to the noun phrase

The first of these is the most straightforward to handle in a rule-based approach. This is 

particularly true in the case of a task definition like that of BioNLP’09, which focused on 

themes, because an examination of the training data showed that when themes were 

postnominal in a prepositional phrase, then that phrase was most commonly headed by of.

The second of these is somewhat more challenging. This is because both agents and themes 

can occur immediately before the nominalization, e.g., phenobarbital induction (induction 

by phenobarbital) and trkA expression (expression of trkA). To decide how to handle pre-

nominal arguments, we made use of the data on semantic roles and syntactic position found 

in Cohen et al. (2008). That study found that themes outnumbered agents in the prenominal 

position by a ratio of 2.5 to 1. Based on this observation, we assigned pre-nominal 

arguments to the theme role.
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Noun-phrase-external arguments are the most challenging, both for automatic processing 

and for human interpreters; one of the major problems is to differentiate between situations 

where they are present but outside of the noun phrase, and situations where they are entirely 

absent. An example of a phrase with a difficult structure is “EWS/FLI-1 antagonists induce 

growth inhibition of Ewing tumor cells.” This phrase could be paraphrased as EWS/FLI-1 

antagonists inhibit growth of Ewing tumor cells, but the addition of the verb “induce” 

increases the complexity of the sentence by pushing the agent outside of the primary event 

noun phrase. Because the current implementation of OpenDMAP does not have robust 

access to syntactic structure, our only recourse for handling these arguments was through 

wildcards, and because they mostly decreased precision without a corresponding increase in 

recall, we were not able to capture these external arguments.

3.5. Negation and Speculation

Corpus analysis of the training set revealed two broad categories each for negation and 

speculation modifications, all of which can be described in terms of the scope of 

modification.

3.5.1. Negation—Broadly speaking, an event itself can be negated or some aspect of an 

event can be negated. In other words, the scope of a negation modification can be over the 

existence of an event (first example below), or over an argument of an existing event 

(second example).

• This failure to degrade IkappaBalpha . . . (PMID 10087185)

• AP-1 but not NF-IL-6 DNA binding activity . . . (PMID 10233875)

Patterns were written to handle both types of negation. The negation phrases “but not” and 

“but neither” were included within event patterns to catch those events that were negated as 

a result of a negated argument. For event negation, a more extensive list of trigger words 

was used that included verbal phrases such as “failure to” and “absence of.” In this case, the 

THEME of a negation event is defined to be a biological event, and the negation of the event 

can be recognized with a simple pattern such as negation := [THEME] 

{negation_trigger_word}.

The search for negated events was conducted in two passes. Events for which negation cues 

fall outside the span of text that stretches from argument to event trigger word were handled 

concurrently with the search for events. A second search was conducted on extracted events 

for negation cues that fell within the argument to event trigger word span, such as

...IL-2 does not induce I kappa B alpha degradation (PMID 10092783)

This second pass allowed us to capture one additional negation (6 rather than 5) on the test 

data.

3.5.2. Speculation—The two types of speculation in the training data can be described by 

the distinction, originally made by Frege, between “de dicto” and “de re” assertions. The “de 

dicto” assertions of speculation in the training data are modifications that call into question 

the degree of known truth of an event, as in
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. . . CTLA-4 ligation did not appear to affect the CD28-mediated stabilization (PMID 

10029815)

The “de re” speculation address the potential existence of an event rather that its degree of 

truth. In these cases, the event is often being introduced in text by a statement of intention to 

study the event, as in

. . .we investigated CTCF expression . . . [10037138]

To address these distinct types of speculation, two sets of trigger words were developed. 

One set consisted largely of verbs denoting research activities, e.g., ‘research,’ ‘study,’ 

‘examine,’ ‘investigate,’ etc. The other set consisted of verbs and adverbs that denote 

uncertainty, and included trigger words such as ‘suggests,’ ‘unknown,’ and ‘seems.’

3.6. Errors in the Training Data

In some cases, there were discrepancies between the training data and the official problem 

definitions. This was a source of problems in the pattern development phase. For example, 

phosphorylation events are defined in the task definition as having only a THEME and a SITE. 

However, there were instances in the training data that included both a THEME and a CAUSE 

argument. When those events were identified by our system and the CAUSE was labeled, they 

were rejected during a syntactic error check by the test server.

4. RESULTS

4.1. Official Results

We participated in the challenge as Team 13. Table 2 shows our results on the official 

metrics. Our precision was the highest achieved by any group for Task 1 and Task 2, at 

71.81 for Task 1 and 70.97 for Task 2. Our recalls were much lower and adversely impacted 

our F-measure; ranked by F-measure, we ranked 19th of 24 groups.

In the evaluation, several different matching metrics were utilized for comparing submitted 

results to the gold standard data. These took into consideration various aspects of the 

predicted events: the event type, the identified event triggers, the event participants, and in 

turn the correctness of the entities and events that these participants refer to. In the exact 

matching (or strict equality), all of these aspects need to be identical for a prediction to count 

as a true positive. For approximate boundary matching, the text spans of the identified 

trigger words and entity participants are allowed to vary from the gold standard spans by one 

word to the right and/or left of the gold standard span. An additional variant, called 

approximate recursive matching, is like exact matching but relaxes the event participant 

match constraint to only consider THEMEs, allowing non-THEME arguments to differ. Note that 

the official system results presented in Table 2 use both approximate boundary matching and 

approximate recursive matching.

We noted that our results for the exact match metric and for the approximate boundary 

match metric were very close, suggesting that our techniques for named entity recognition 

and for recognizing trigger words are doing a good job of capturing the appropriate spans.

Cohen et al. Page 13

Comput Intell. Author manuscript; available in PMC 2015 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2. Bug Fixes and Coordination Handling

In addition to our official results, we also report in Table 3 the results of a run in which we 

fixed a number of bugs. This represents our current best estimate of our performance. The 

precision drops from 71.81 for Task 1 to 67.19, and from 70.97 for Task 2 to 65.74, but 

these precisions are still well above the second-highest precisions of 62.21 for Task 1 and 

56.87 for Task 2. As the table shows, we had corresponding small increases in our recall to 

17.38 and in our F-measure to 27.62 for Task 1, and in our recall to 17.07 and F-measure to 

27.10 for Task 2.

We evaluated the effects of coordination handling by doing separate runs with and without 

this element of the processing pipeline. Compared to our unofficial results, which had an 

overall F-measure for Task 1 of 27.62 and for Task 2 of 27.10, a version of the system 

without handling of coordination had an overall F-measure for Task 1 of 24.72 and for Task 

2 of 24.21.

4.3. Impact of Cascading Errors on Higher-Order Events

To assess the performance of our system on higher-order events (the regulation, negation, 

and speculation events) under the assumption of perfect recognition of the basic event types, 

we constructed a test case for our system in which all events corresponding to the basic 

event types (localization, binding, gene expression, transcription, protein catabolism, and 

phosphorylation)were extracted from the gold standard data and used as input to the 

detection of the complex event types. This allows us to get a sense of the impact of the 

limited recall of our system on the basic event types for the extraction of the more complex 

events that depend on their recognition.

The results of this analysis on the devtest data are shown in Table 4, with the system results 

under normal circumstances in the top section, and the system results using the gold 

standard data for the basic event types in the bottom section. As we might expect, we see a 

significant increase in the performance of the system on the negation and speculation events, 

from an F-score of 6.93 to 25.13 for negation and from 5.03 to 11.95 for speculation. The 

smaller improvement for speculation is a result of the more limited number of speculation 

patterns that we wrote for the shared task; the coverage of our negation patterns is simply 

broader.

Interestingly, for all three regulation event types, we see a drop in performance when using 

the gold standard basic events. This can be attributed to the tension between regulation 

events that have proteins as their THEME, and those that have a basic event as their THEME. 

When both analyses are available, for instance in a clause such as regulation of CAT 

expression which would be matched by OpenDMAP as both regulation of [CAT] and 

regulation of [CAT expression], the system will make a choice between the two analyses. 

The inclusion of the gold standard events means that the system will be faced with this 

ambiguity more often; the performance on this test suggests that the system is making the 

incorrect choice in many of those instances.
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4.4. Error Analysis

4.4.1. False Negatives—To better understand the causes of our low recall, we performed 

a detailed error analysis of false negatives using the devtest data. (Note that this section 

includes a very small number of examples from the devtest data.) We found four major 

causes of false negatives:

• Intervening material between trigger words and arguments

• Coordination that was not handled by our coordination component

• Low coverage of trigger words

• Anaphora and coreference

Intervening material For reasons that we detail in the Discussion section, we avoided the 

use of wildcards. This, and the lack of syntactic analysis in the version of the system that we 

used (note that syntactic analyses can be incorporated into an OpenDMAP workflow), 

meant that if there was text intervening between a trigger word and an argument, e.g., in to 

efficiently [express] in developing thymocytes a mutant form of the [NF-kappa B inhibitor] 

(PMID 10092801), where the bracketed strings are the trigger word and the argument, 

respectively, our pattern would not match.

Unhandled coordination Our coordination system only handled coordinated protein names. 

Thus, in cases where other important elements of the utterance, such as the trigger word 

transcription in transcription and subsequent synthesis and secretion of galectin-3 (PMID 

8623933) were in coordinated structures, we missed the relevant events.

Low coverage of trigger words As we discuss in the Methods section, we did not attempt 

to cover all trigger words, in part because some less-frequent trigger words were involved in 

multiple event types, in part because some of them were extremely low-frequency and we 

did not want to overfit to the training data, and in part due to the time constraints of the 

shared task.

Anaphora and coreference Recognition of some events in the data would require the 

ability to do anaphora and coreference resolution. For example, in Although 2 early lytic 

transcripts, [BZLF1] and [BHRF1], were also detected in 13 and 10 cases, respectively, the 

lack of ZEBRA staining in any case indicates that these lytic transcripts are most likely 

[expressed] by rare cells in the biopsies entering lytic cycle (PMID 8903467), where the 

bracketed text is the arguments and the trigger word, the syntactic object of the verb is the 

anaphoric noun phrase these lytic transcripts, so even with the addition of a syntactic 

component to our system, we still would not have recognized the appropriate arguments 

without the ability to do anaphora resolution.

We return to a discussion of recall and its implications for systems like ours in the 

Discussion section.

4.4.2. False Positives—Although our overall rate of false positives was low, we sampled 

90 false positive events from the devtest data, out of a total of 412, distributed across the 
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nine event types. These were reviewed with a biologist to better understand the causes of 

this type of error.

We randomly selected 10 documents for each event type from the training data; the biologist 

then examined all events scored as false positives in those documents. An interesting finding 

was that the biologist judged 17% of them (15/90) as actually being true positives. We give 

the breakdown of true positives and false positives in these putative false positives in Table 

5.

We found a number of cases in which a protein was listed in the A1 file, but a trigger word 

was apparently missed by the annotators, causing a false positive to be assigned when our 

system did find the trigger word. Examples of this are Tax-expressing (10090947), 

expression of CAT (10229275), RelA protein expression (10415057), fos gene expression 

(1712226), interleukin 2 production (7506531), and expression of the GM-CSF (7605990). 

In other cases, both the protein and the trigger word were in the gold standard, but there was 

no annotated event linking the two together. Examples of this include expression of vascular 

cell adhesion molecule 1 (10403270), where the expression trigger word and the protein 

name were both in the gold standard, but the expression event was not.

Because we had a relatively small number of actual false positives compared to other 

groups, we give examples of some of them.

We noted two main causes of false positive errors. The most common was that we 

misidentified a slot filler or were missing a slot filler completely for an actual event. The 

other main reason for false positives was when we erroneously identified a (non)event. For 

example, in coexpression of NF-kappa B/Rel and Sp1 transcription factors (PMID 

7479915), we mistakenly identified Sp1 transcription as an event.

Failing to recognize embedded events while recognizing protein themes was one contributor 

to our poor results for the regulation event types. For example, where the intended output 

was [induction] of [I kappa B alpha phosphorylation] (7499266), we recognized only the 

protein portion of the theme and output [induction] of [I kappa B alpha] phosphorylation. 

Another cause of false positives was recognizing a theme, but not the associated cause, for 

regulation events. For example, where the intended output was [induction] of [IL-10 

production] by [gp41] (10089566), we output [induction] of [IL-10 production] by gp41. 

Another cause of false positives was misrecognition of trigger words. In some cases this was 

due to words that were trigger words for events in some contexts, but merely parts of 

complex nominals in others, e.g. our incorrect output upstream of the [GM-CSF] 

[transcription] initiation site (7478534). In other cases, we failed to resolve cases of 

polysemy, such as the general English use of the word association, which can be a trigger 

word for binding in its biomedical use, in effects of [IL-11] were [associated] with reduced 

[NF-kappaB] activation (10411003). This also occurred when tokenization errors caused us 

to confuse regulation types, as in our incorrect output up-[regulation] of [CD80 Ag] 

(8690900). Finally, sentence segmentation errors from the incorporated OpenNLP sentence 

detector were an occasional contributor of false positives, as in our incorrect output 

for ...was suppressed by [alpha B2]. [Coexpression] of . . . (7605990).
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5. DISCUSSION

Our results demonstrate that it is possible to achieve state-of-the art precision over a broad 

range of tasks and event types using our approach of manually constructed, ontologically 

typed rules—our precision of 71.81 on Task 1 was ten points higher than the second-highest 

precision (62.21), and our precision of 70.97 on Task 2 was 14 points higher than the 

second-highest precision (56.87). It remains the case that our recall was low enough to drop 

our F-measure considerably. Will it be the case that a system like ours can scale to practical 

performance levels nonetheless? Four factors suggest that it can.

The first is that there is considerable redundancy in the data; although we have not 

quantified it for this data set, we note that the same event is often mentioned repeatedly, but 

for knowledge base building and other uses of the extracted information, it is only strictly 

necessary to recognize an event once (although multiple recognition of the same assertion 

may increase our confidence in its correctness).

The second is that there is often redundancy across the literature; the best-supported 

assertions will be reported as initial findings and then repeated as background information.

The third is that these recall results reflect an approach that made no use of syntactic 

analysis beyond handling coordination. There is often text present in the input that cannot be 

disregarded without either using wildcards, which generally decreased precision in our 

experiments and which we generally eschewed, or making use of syntactic information to 

isolate phrasal heads. Syntactic analysis, particularly when combined with analysis of 

predicate-argument structure, has recently been shown to be an effective tool in biomedical 

information extraction (Miyao et al. 2009). There is broad need for this—for example, of the 

thirty localization events in the training data whose trigger word was translocation, a full 

eighteen had intervening textual material that made it impossible for simple patterns like 

translocation of [THEME] or [TOLOC] translocation to match.

Finally, our recall numbers reflect a very short development cycle, with as few as four 

patterns written for many event types. A less time-constrained pattern-writing effort would 

almost certainly result in increased recall. Some evidence for this comes from recent work 

by Hakenberg et al. (2009), who used our OpenDMAP parser with a set of 4,774 

automatically learnt rules and produced the winning entry in the BioCreative II.5 protein-

protein interaction information extraction competition.

We also note that there are users and use cases for which high precision is more important 

than high recall (Alex et al. 2008). For example, the analyst whose work on the Hanalyzer 

system is reported inLeach et al. (2009) never wanted to see any incorrect assertions in the 

system. Other such users may be model organism database curators, as suggested by Alex et 

al. (2008). Nonetheless, we continue to pursue methods to increase recall.

6. CONCLUSION

The results from the shared task indicate that systems like OpenDMAP, which takes 

advantage of semantic constraints defined in a background ontology coupled with linguistic 
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patterns to identify text that corresponds to particular event types and identify the event 

participants, are reasonable approaches to problems like those defined by the BioNLP’09 

challenge. In this case, the approach resulted in high-precision performance, as compared to 

other systems that participated in the challenge. It was found that “higher-order” events, in 

which one (or more) participant in the event is itself an event, are handled seamlessly in the 

OpenDMAP approach, but are harder to recognize due to their dependency on the 

performance of the base event recognition. Several challenges for the linguistic rules of our 

system were identified; we intend to improve on our handling of them in future versions of 

our system, including improved handling of syntactic structure (both to identify syntactic 

dependencies and to handle coordination more effectively), and treatment of coreference.
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Figure 1. 
A partial view of the central organizing ontology for our system. Biological Concept, 

Anatomical Part, and Biological Entity were added to organize other elements of the 

ontology, but the other elements are community-consensus, independently constructed 

ontologies.
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Figure 2. 
Representation of the regulation frame in Protégé, showing semantic constraints on slot-

fillers.
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Figure 3. 
Columns are event types. Rows represent ambiguous lemmata with frequency greater than 

three. Circle size represents relative frequency of the lemma for the given event type. Black 

circles represent lemmata that are especially difficult to disambiguate because their 

frequencies are distributed relatively evenly across different event types.
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Table 1

Semantic Restrictions on Task 2 Event Arguments. Ontology abbreviations are defined in the text.

Event Type Site AtLoc ToLoc

Binding protein domain (SO),
   binding site (SO),
   DNA (SO),
  chromosome (SO)

Gene expression gene (SO), biological,
   entity

tissue (BTO), cell type
  (CTO), cellular
  component (GO)

Localization cellular component
  (GO)

cellular component (GO)

Phosphorylation amino acid (FMA),
  polypeptide region
  (SO)

Protein catabolism cellular component
  (GO)

Transcription gene (SO), biological
   entity
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Table 5

Analysis of Events Marked as False Positive in the Training Data.

Event class Analyzed TP FP

Localization 4 1 3

Binding 21 1 20

Gene expression 11 7 4

Transcription 4 0 4

Protein catabolism 1 0 1

Phosphorylation 3 1 2

Regulation 14 1 13

Positive regulation 19 3 16

Negative regulation 13 1 12

Totals 90 15 75

TP is the number of events that were false positives according to the gold standard but that our biologist judged as true positive. FP is the number 
of events that were judged as false positives according to the gold standard and that our biologist agreed were false positives.
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