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Abstract

Current research on qualitative spatial representation and reasoning mainly
focuses on one single aspect of space. In real world applications, however,
multiple spatial aspects are often involved simultaneously.

This paper investigates problems arising in reasoning with combined
topological and directional information. We use the RCC8 algebra and
the Rectangle Algebra (RA) for expressing topological and directional
information respectively. We give examples to show that the bipath-
consistency algorithm Bipath-Consistency is incomplete for solving even
basic RCC8 and RA constraints. If topological constraints are taken from
some maximal tractable subclasses of RCC8, and directional constraints
are taken from a subalgebra, termed DIR49, of RA, then we show that
Bipath-Consistency is able to separate topological constraints from di-
rectional ones. This means, given a set of hybrid topological and direc-
tional constraints from the above subclasses of RCC8 and RA, we can
transfer the joint satisfaction problem in polynomial time to two indepen-
dent satisfaction problems in RCC8 and RA. For general RA constraints,
we give a method to compute solutions that satisfy all topological con-
straints and approximately satisfy each RA constraint to any prescribed
precision.

1 Introduction

Originating from Allen’s work on temporal interval relations [1], the qualitative
approach to temporal as well as spatial information is popular in Artificial In-
telligence and related research fields. This is mainly because precise numerical
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information is often unavailable or not necessary in many real world applications
[4, 5].

Typically, the qualitative approach represents temporal and spatial infor-
mation by introducing a (binary) relation model on the universe of temporal
or spatial entities, which contains a finite set of binary relations defined on the
universe. Finding a proper relation model, or a qualitative calculus, is the key
to the success of the qualitative approach to temporal and spatial reasoning.
This is partially justified by the great success of Allen’s Interval Algebra (IA),
which is the principal formalism of qualitative temporal reasoning.

As for spatial reasoning, dozens of spatial relation models have been devel-
oped in the past twenty years. Since relations in the same model are ideally ho-
mogenous, most spatial calculi focus on one single aspect of space, e.g. topology,
direction, distance, or position. When representing spatial direction, distance
and position, it is convenient to approximate spatial entities by points. But this
is inappropriate as far as spatial topological information is concerned: topology
concerns sets of points, i.e. regions.

Topological relations are invariant under homeomorphism such as scale, ro-
tation, and translation. It is widely acknowledged that topological relations are
of crucial importance, and the slogan is “topology matters, metric refines [9].”
An influential formalism for topological relations is the Region Connection Cal-
culus (RCC) [31]. RCC represents spatial entities as arbitrary plane1 regions,
which may have holes or have multiple connected components. Based on one
primitive binary connectedness relation, a set of eight jointly exhaustive and
pairwise disjoint (JEPD) relations can be defined in RCC. The Boolean algebra
generated by this set is known as the RCC8 algebra. A similar formalism is
the 9-Intersection Method (9IM) of Egenhofer [8], where the same eight rela-
tions are defined on simple plane regions (regions homeomorphic to a closed
disk). This relation model, called the Egenhofer model in [23], is widely used in
geographical information science.

The RCC8 algebra and the Egenhofer model only represent the topological
information between spatial objects. But in many practical applications and
particularly in natural language expressions, topological relations are used to-
gether with other kinds of spatial relations. For example, when describing the
location of Titisee, a famous tourist sight in Germany, we might say “Titisee
is in the Black Forest and is east of the town of Freiburg.” In order to provide
a more expressive formalism for spatial information, it is necessary to combine
different kinds of spatial information.

The major obstacle to the combination is how to reason with combined
information efficiently. An important reasoning problem is the joint satisfaction
problem (JSP). Suppose A andB are two relation models over the same universe.
Given two networks of constraints over A and B, respectively, decide if there
exists a common solution to both networks.

In order to solve the joint satisfaction problem over A and B, one natural

1RCC can in fact be used to reason about regions of any dimension, providing they are all
of the same dimension, but here we focus on 2D regions.
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Figure 1: Illustrations of a bounded region a and its minimum bounding rect-
angle MBR(a), where a contains a hole and has two connected components.

way is to define a hybrid relation model C which is the smallest Boolean algebra
containing both A and B and to reason with C by the usual composition-based
reasoning techniques. Although the (weak) composition table of the hybrid
model can be established as usual, composition-based reasoning is often incom-
plete for deciding if a constraint network is satisfiable. Moreover, it will be
difficult to make use of the techniques already developed for the two component
models.

Instead of developing a new hybrid calculus, this work deals with the joint
satisfaction problem directly. We concern ourselves with the combination of
topological and directional relations, since these are the two most important
kinds of spatial relations.

We represent extended spatial objects as bounded plane regions and adopt
the RCC8 Algebra to model topological relations. To represent directional infor-
mation, we need to define a direction relation model. One natural requirement
for such a relation model is that it should support definitions of cardinal di-
rections over extended objects. Unlike topological relations such as partially
overlap and non-tangentially proper part, which have unambiguous semantics,
researchers have no agreement on the definitions of cardinal directions such as
west, east, north, and south. Several different interpretations of cardinal direc-
tions over extended objects have been given in the literature [14, 30, 39, 41].

This paper, following Sistla, Yu, and Haddad [39], takes the projection-based
definition of cardinal directions. For an extended object a, we project a to the
two predefined orthogonal basis in the real plane (see Figure 1), and write Ix(a)
and Iy(a) for the smallest convex intervals which contain the projections of a
on the x- and y-axis, respectively. For two extended objects b and c, we say b is
west of object c if Ix(b) is before Ix(c), i.e. the right endpoint of Ix(b) is smaller
than the left endpoint of Ix(c). The other cardinal directions are defined in a
similar way.

A more expressive representation of direction relations can be obtained by
using an extension of the Rectangle Algebra (RA) [15], which is the two di-
mensional generalization of IA. For an extended object a, we write MBR(a) =
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Ix(a)× Iy(a) for the minimum bounding rectangle of a (see Figure 1). The ex-
tended rectangle relation between b, c is defined by the IA relation λx between
Ix(b) and Ix(c) and the IA relation λy between Iy(b) and Iy(c). For convenience,
we write λx ⊗ λy for the extended rectangle relation between b and c. In what
follows, we call this model of relations on bounded plane regions the Extended
Rectangle Algebra (ERA).

We now have two relation models — RCC8 and ERA — defined on the same
universe of bounded plane regions. The next step is to find efficient and com-
plete methods for solving the joint satisfaction problem (JSP). Recall that the
two independent satisfaction problems over RCC8 and ERA are NP-complete
and large tractable subclasses of RCC8 and ERA have been found [34, 2]. The
JSP over RCC8 and ERA is more difficult than the two independent satisfac-
tion problems. This is because different aspects may interact with each other,
and two independently satisfiable networks may be jointly unsatisfiable. For
example, suppose a, b, c, d are four spatial objects, and the only topological in-
formation we know is that a partially overlaps c, and b partially overlaps d.
Somehow, an outdated map also suggests that a is west of b, and c is east of
d. The two topological (directional) constraints are apparently satisfiable. But
when combined the four constraints are unsatisfiable.

The JSP over RCC8 and ERA has been investigated to some extent by
several researchers. Sharma [37] discussed the problem where at most three
variables are involved. Sistla et al. [39, 38] established a complete decision
method for the small set of relations that consists of the four cardinal directions
and part-whole relations inside, outside, and overlaps.2 Therefore, more work
is needed to solve the JSP over RCC8 and ERA.

We introduce the notions of bi-closure and bipath-consistency to process hy-
brid spatial constraints locally. These two notions are similar to the well-known
arc- and path-consistency in constraint solving (cf. [6]). Bi-closure concerns the
satisfiablity of constraints defined on any two variables, while bipath-consistency
concerns the satisfiablity of constraints defined on any three variables. Apply-
ing the bipath-consistency algorithm Bipath-Consistency introduced in [12],
we can transfer a joint network of RCC8 and ERA constraints in cubic time
to another bipath-consistent (bi-closed, resp.) joint network that has the same
solutions.

Ideally, we would hope Bipath-Consistency provides a complete solving
technique for the whole RCC8 Algebra and ERA. Examples show, however, this
is not true. In the absence of such a result, we turn to finding large subclasses of
RCC8 and ERA. In this paper, we introduce a subalgebra —DIR49— of ERA,
which contains forty-nine basic relations and supports the definition of cardinal
direction relations. DIR49 is the two dimensional counterpart of the interval
algebra IA7, proposed in [13], where each basic relation of IA7 is the union of
several ‘similar’ basic IA relations.

We then show that Bipath-Consistency can be used to solve RCC8 and

2These correspond to the RCC8 relations part of (P), disconnected from (DC), and par-

tially overlaps (PO).
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DIR constraints simultaneously. Recall that Ĥ8 is one of the three maximal
tractable subclass of RCC8 that contains all the basic relations [33]. Let Ntop be

an RCC8 network over Ĥ8, and let Ndir be an RA network over DIR49. Suppose
(N ′

top,N
′
dir) is a bipath-consistent network that has the same solutions with

(Ntop,Ndir). Then we show (Theorem 6.4) (Ntop,Ndir) is satisfiable if and only
if both the RCC8 network N ′

top and the RA network N ′
dir) are independently

satisfiable. The JSP of an arbitrary RCC8 network and a DIR49 network can
then be determined by backtracking RCC8 constraints over Ĥ8. This means
that reasoning with DIR49 and RCC8 is an NP problem.

The general JSP over RCC8 and ERA can also be tackled in an approx-
imate sense. Suppose V = {vi}ni=1 is a set of variables, and suppose Ntop =
{viθijvj}ni,j=1 and Ndir = {viδijvj}ni,j=1 are two networks of constraints over
RCC8 and ERA, respectively. If Ntop ∪ Ndir is satisfiable, then we can find a
solution {ai}

n
i=1 of Ntop that almost satisfies each constraint δij in Ndir with

any prescribed precision. This means, a slight change (e.g. by translating or
enlarging ai) may make (ai, aj) an instance of δij for any i, j.

The remainder of this paper proceeds as follows. Section 2 introduces basic
notions and well-known examples of qualitative calculi, including IA, RCC8,
RA etc. Section 3 extends the universe of Rectangle Algebra from rectangles to
general bounded regions. The resulted calculus is termed ERA. We also define
the subalgebra DIR49 of ERA. Section 4 proposes the combination problem
of two qualitative calculi. The notions of bi-closure and bipath-consistency are
introduced in this section. In this section we also show by examples that the
bipath-consistency algorithm is not complete for determining the joint satis-
faction problem over RCC8 and ERA. We then describe how to compute the
bi-closure for a pair of RCC8 and ERA constraints in Section 5, and prove how
Bipath-Consistency separate Ĥ8 from DIR49 in Section 6. Section 7 exploits
this separation theorem to cope with the general JSP over RCC8 and ERA.
Section 8 discusses the related work and Section 9 concludes the paper.

This work greatly extends an earlier paper reported at IJCAI-07 [21], where
separation theorems were obtained for a quite small subalgebra of DIR49 and
all maximal tractable subclasses of RCC8.

2 Qualitative Calculi

The establishment of a proper qualitative calculus is the key to the success of the
qualitative approach to temporal and spatial reasoning. This section introduces
basic notions and important examples of qualitative calculi (see also [25]).

2.1 Basic Notions

Let D be a universe of temporal or spatial or spatial-temporal entities. We use
small Greek symbols for representing relations on D. For a relation α on D and
two elements x, y in D, we write (x, y) ∈ α or xαy to indicate that (x, y) is an
instance of α. For two relations α, β on D, we define the complement of α, the
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intersection, and the union of α and β as follows.

−α = {(x, y) ∈ D ×D : (x, y) 6∈ α}

α ∩ β = {(x, y) ∈ D ×D : (x, y) ∈ α and (x, y) ∈ β}

α ∪ β = {(x, y) ∈ D ×D : (x, y) ∈ α or (x, y) ∈ β}.

We write Rel(D) for the set of binary relations on D. Clearly, the 6-tuple
(Rel(D); −,∩,∪,∅, D × D) is a Boolean algebra, where ∅ and D × D are,
respectively, the empty relation and the universal relation on D.

A finite set B of nonempty relations on D is jointly exhaustive and pairwise
disjoint (JEPD) if any two entities in D are related by one and only one relation
in B. We write 〈〈B〉〉 for the subalgebra of Rel(D) generated by B, i.e. the
smallest subalgebra of the Boolean algebra Rel(D) which contains B. Clearly,
relations in B are atoms in the Boolean algebra 〈〈B〉〉. We call 〈〈B〉〉 a qualitative
calculus on D, and call relations in B basic relations of the calculus.

We write idD for the identity relation on D. For two relations α, β on D,
we define the converse of α and the composition of α and β as follows.

α∼ = {(y, x) ∈ D ×D : (x, y) ∈ α}

α ◦ β = {(x, y) ∈ D ×D : (∃z ∈ D) [(x, z) ∈ α and (z, y) ∈ β]}.

Remark 2.1. Our definition of a qualitative calculus is more general than the one
given by Ligozat and Renz [25], where the set B is required to be closed under
converse and contain the identity relation idD. There are several relation models
that do not satisfy these conditions. One example is the cardinal direction
calculus (CDC) [14], another is the Extended Rectangle Algebra (ERA) (to be
introduced in Section 3.1).

Note that the composition of two relations in 〈〈B〉〉 is not necessarily in 〈〈B〉〉.
For α, β ∈ 〈〈B〉〉, the weak composition [7, 24] of α and β, written as α ◦w β,
is defined to be the smallest relation in 〈〈B〉〉 which contains α ◦ β. We say a
qualitative calculus 〈〈B〉〉 is closed under composition if the composition of any
two relations in 〈〈B〉〉 is still a relation in 〈〈B〉〉. This is equivalent to saying
that the weak composition operation is the same as the composition operation.

An important reasoning problem in a qualitative calculus 〈〈B〉〉 is the sat-
isfaction problem. Let A be a subset of 〈〈B〉〉. A constraint over A has the
form (xγy) with γ ∈ A. For a set of variables V = {vi}ni=1, and a set of con-
straints N involving variables in V , we say N is a constraint network if for
each pair (i, j) there exists a unique constraint (xiγxj) in N . A network N is
said to be over A if each constraint in N is over A. We say a constraint net-
work N = {viγijvj}ni,j=1 is satisfiable (or consistent) if there is an instantiation
{ai}

n
i=1 in D such that (ai, aj) ∈ γij holds for all 1 ≤ i, j ≤ n. In this case, we

call {ai}ni=1 a solution of N . The satisfaction problem over A is the decision
problem of the satisfiability of constraint networks over A.

For two constraint networksN = {viγijvj}ni,j=1 andN
′ = {viγ′

ijvj}
n
i,j=1 over

〈〈B〉〉, we say N and N ′ are equivalent if they have the same set of solutions,
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Table 1: The set of basic interval relations Bint, where x = [x−, x+], y = [y−, y+]
are two intervals.

Relation Symb. Conv. Meaning
before b bi x+ < y−

meets m mi x+ = y−

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di x− < y− < y+ < x+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

and say N ′ refines N if each constraint γ′
ij is contained in γij . If N ′ refines N

and each γ′
ij is a basic relation in B, then we call N ′ a scenario of N .

The consistency of a network can be approximated by using a cubic path-
consistency algorithm (PCA). A network N = {viγijvj}ni,j=1 is path-consistent
if every subnetwork containing at most three variables is consistent. The essence
of a PCA is to apply the following updating rule for all i, j, k until the network
is stable [1, 22].

γij ← γij ∩ γik ◦w γkj (1)

If the empty relation occurs during the process, then the network is inconsistent,
otherwise the resulting network is path-consistent.

2.2 Interval Algebra

The Interval Algebra (IA) [1] is generated by a set Bint of 13 basic relations
between time intervals (see Table 1). We call relations in IA interval relations.
Two basic interval relations in Bint are conceptual neighbors [10] if they can
be directly transformed into one another by continuous deformation. Different
kinds of deformations may give rise to different conceptual neighborhood graphs
(CNGs). Figure 2 shows the CNG induced by fixing three of the four endpoints
of two events while moving the fourth.

A set of basic interval relations is called a conceptual neighborhood [10] if its
elements are path-connected in the CNG. By Figure 2, we know m is a neighbor
of o, and s and f are two neighbors of d. As a consequence, {m, o} and {s, d, f}
are two conceptual neighborhoods.

Each neighborhood corresponds to an interval relation. The following non-
basic interval relations are all induced by some neighborhoods:

(mo) = m ∪ o

(sfd) = s ∪ f ∪ d

(sfdeq) = s ∪ f ∪ d ∪ eq

⋓ = m ∪ o ∪ s ∪ f ∪ d ∪ eq ∪ di ∪ fi ∪ si ∪ oi ∪mi.
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Figure 2: The conceptual neighborhood graph of Interval Algebra [10], where
ellipses (boxes, resp.) represent basic relations in IA7 (IA3, resp.).

These non-basic relations, as well as their converses, are frequently used in this
paper. Let

B3
int = {b,⋓, bi} (2)

B7
int = {b, (mo), (sfd), eq, (sfd)∼, (mo)∼, bi} (3)

It is clear that both B3
int and B

7
int are JEPD sets of interval relations. Moreover,

relations in B3 and B7 are all conceptual neighborhoods in the sense of Freksa
[10]. Write IA3 and IA7 for the Boolean algebras generated by these two sets,
respectively. These two algebras, first introduced by Golumbic and Shamir [13],
provide two coarser versions of IA. Moreover, they also proved that IA3 and IA7

are intractable, and

H3 = {b,⋓, bi, b ∪ ⋓,⋓ ∪ bi,⊤} (4)

is a maximal tractable subclass of IA3 [13], where ⊤ is the universal relation.
Nebel and Bürckert [28] identified a maximal tractable subclass H of IA,

called the ORD-Horn subclass, and showed that applying PCA is sufficient for
the satisfaction problem over H. It is straightforward to show that H3 is the
intersection of H and IA3. Let H7 ≡ H ∩ IA7. As a subset of H, H7 is also a
tractable subclass of IA7.

Remark 2.2. While IA is closed under composition, the two subalgebras IA3 and
IA7 are not. Therefore, they are not coarser calculi of IA in the sense of [36].
For our purposes this is not a problem. For a subalgebra like IA3 or IA7, the
most important thing is that it provides an abstraction for relations in IA at a
reasonable granularity.

As for the reasoning aspect, the (weak) composition-based reasoning tech-
niques are incomplete for these subalgebras. But other efficient and complete
reasoning techniques exist. For example, Golumbic and Shamir [13] proposed a
graph-theoretic approach for solving the constraint satisfaction problem of IA3,
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which determines the satisfiability of a constraint network overH3 in polynomial
time.

Moreover, complete reasoning techniques for IA, e.g. the path-consistency
algorithm, can be applied to solving the satisfaction problem of any subalgebra
of IA. This clearly provides a complete reasoning method for the subalgebra. But
when restricted to the subalgebra, the reasoning method may be not efficient
even for solving constraint problems that only involve basic relations in the
subalgebra. This is because basic relations of the subalgebra may be outside
the ORD-Horn subclass H of IA. But for IA3 and IA7, we know B3 and B7 are
contained in H. Therefore, the path-consistency algorithm developed for IA can
be applied to solving reasoning problems over H3 and H7 efficiently.

2.3 RCC8 Algebra

A plane region (or a region) is a nonempty regular closed subset of the real
plane. A region is bounded if it is contained in a disk. In this paper, we only
consider bounded regions. Let U be the set of bounded regions. The relations
defined in Table 2 and the converses of TPP and NTPP form a JEPD set of
relations on U . These are the RCC8 basic relations. Write Btop for this set. The
RCC8 Algebra [31] is the subalgebra of Rel(U) generated by Btop. We write P

and PP, resp., for TPP ∪NTPP ∪EQ and TPP ∪NTPP.

Table 2: The set of RCC8 basic relations Btop, where a, b are two bounded
regions and a◦ and b◦ are, resp., their interiors.

Relation Symb. Meaning
equals EQ a = b

disconnected DC a ∩ b = ∅

externally connected EC a ∩ b 6= ∅ ∧ a◦ ∩ b◦ = ∅

partially overlap PO a◦ ∩ b◦ 6= ∅ ∧ a 6⊆ b ∧ a 6⊇ b
tangential proper part TPP a ⊂ b ∧ a 6⊂ b◦

non-tangential proper part NTPP a ⊂ b◦

The satisfaction problem over the whole RCC8 Algebra is NP-complete, but
three maximal tractable subclasses of RCC8 have been found [33]. These sub-

classes, denoted by Ĥ8, C8,Q8, are the only maximal tractable subclasses which
contain all basic relations. For these subclasses, applying PCA is sufficient for
deciding the satisfiability of a network. Moreover, for a path-consistent network
over one of the three maximal tractable subclasses, we can find a satisfiable
scenario in O(n2) time [33].

2.4 Qualitative Size Calculus

A qualitative size calculus [12] can be defined on the set U of bounded regions.
For two bounded regions a, b, the size of a is said to be smaller than that of b,
denoted by a <s b, if the area of a is smaller than that of b. The definitions
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of a =s b and a >s b are similar. Write QS for the qualitative calculus on
U generated by the JEPD set of relations {<s,=s, >s}. It is clear that QS is
another representation for the well-known Point Algebra [29].

2.5 Rectangle Algebra

The Rectangle Algebra (RA) [15, 2] is a qualitative calculus defined on the set
of all rectangles in the plane, where we assume that the two sides of a rectangle
are parallel to the axes of some predefined orthogonal basis in the Euclidean
plane.

For a rectangle r, write Ix(r) and Iy(r) as, resp., the x- and y-projection of
r. The basic rectangle relation between two rectangles r1, r2 is defined by the
basic IA relation between Ix(r1) and Ix(r2) and that between Iy(r1) and Iy(r2).
More precisely, if (Ix(r1), Ix(r2)) ∈ α and (Iy(r1), Iy(r2)) ∈ β, then we write
α ⊗ β for the basic rectangle relation between r1 and r2. In other words, for
any basic IA relations α, β,

(r1, r2) ∈ α⊗ β ⇔ (Ix(r1), Ix(r2)) ∈ α & (Iy(r1), Iy(r2)) ∈ β. (5)

Write Brec for the set of these rectangle relations, i.e.

Brec = {α⊗ β : α, β ∈ Bint} (6)

RA is then the qualitative calculus generated by Brec on the set of rectangles.

Remark 2.3. If S is a tractable subclass of IA, then S ⊗S = {α⊗ β : α, β ∈ S}
is also tractable in RA. This is because, a basic RA network N = {viαij ⊗
βijvj}ni,j=1 (αij , βij ∈ Bint) is satisfiable iff both of its component IA networks
Nx = {viαijvj}ni,j=1 and Ny = {viβijvj}ni,j=1 are satisfiable. A tractable sub-
class of RA larger than H ⊗ H is obtained in [2], where H is the ORD-Horn
subclass of IA.

In the next section, we will introduce several qualitative direction calculi.

3 Cardinal Direction Calculus

RA can be adapted for representing directional information. To this end, we
first extend the universe of RA from the set of rectangles to the set of bounded
regions, and then formalize the four cardinal directions, and lastly introduce
two coarser direction calculi.

10



3.1 The Extended Rectangle Algebra ERA

We begin with the notion of a minimum bounding rectangle (MBR). For a
bounded region a, define (see Figure 1)

sup
x

(a) = sup{x ∈ R : (∃y)(x, y) ∈ a}, (7)

inf
x
(a) = inf{x ∈ R : (∃y)(x, y) ∈ a}, (8)

sup
y

(a) = sup{y ∈ R : (∃x)(x, y) ∈ a}, (9)

inf
y
(a) = inf{y ∈ R : (∃x)(x, y) ∈ a}. (10)

Write Ix(a) = [infx(a), supx(a)] and Iy(a) = [infy(a), supy(a)] for the x- and y-
projection of a. We call Ix(a)× Iy(a) the minimum bounding rectangle (MBR)
of a, denoted by MBR(a).

For two bounded regions a, b, we define the extended rectangle relation be-
tween a, b as the rectangle relation between MBR(a) and MBR(b). To avoid
introducing new notation, we use the same relation symbol, i.e. for a rectangle
relation α,

aαb⇔ MBR(a)αMBR(b). (11)

In this way, we extend the universe of RA from the set of rectangles to U , the
set of bounded regions. We call this calculus the Extended Rectangle Algebra,
written ERA.

Clearly, a network N = {viδijvj}
n
i,j=1 of constraints over ERA could also

be interpreted as a constraint network over RA. This will cause no trouble since
{ai}ni=1 is a solution to the ERA network N iff {MBR(ai)}ni=1 is a solution to
the RA network N . Moreover, if {ri}

n
i=1 is a solution to the RA network N ,

then it is also a solution to the ERA network N . In this case, we also call
{ri}ni=1 a rectangle solution of N .

Lemma 3.1. A network N of ERA constraints is satisfiable if and only if N
is satisfiable as an RA constraint network. In other words, N has a solution in
U if and only if it has a rectangle solution.

ERA provides a natural representation for directional information among
extended regions. In particular, the four cardinal directions can be represented
as (non-basic) relations in ERA. To show this, we first formalize the four car-
dinal directions.

Definition 3.1. For two bounded regions a, b, if supx(a) < infx(b), then we say
a is west of b and b is east of a, written as aWb and bEa; and if supy(a) < infy(b)
then we say a is south of b and b is north of a, written as aSb and bNa.

Then, take W as an example (see Figure 3). It is clear that W is the union of
all rectangle relations b⊗α with α ∈ Bint, and therefore a relation in ERA. Note
that other well-known directional relations such as northwest can be defined as
the intersection of cardinal directions north and west.
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Figure 3: Illustrations of the cardinal direction West : (a, b) ∈ b ⊗ b (left),
(a, b) ∈ b⊗ di (center), (a, b) ∈ b⊗ oi (right).

3.2 Two Simpler Direction Calculi: DIR9 and DIR49

Although ERA provides a very expressive formalism for directional relations, it
is perhaps too complicated to use in practical applications. In these situations,
simplified versions are more desirable. In this subsection, we introduce two
coarser calculi of ERA.

Recall that ⋓ stands for the union of all basic interval relations other than
b and bi. It is easy to see that the relations in

B9
rec = {b⊗ b, b⊗ ⋓, b⊗ bi,⋓⊗ b,⋓⊗ ⋓,⋓⊗ bi, bi⊗ b, bi⊗ ⋓, bi⊗ bi} (12)

are atoms of the Boolean algebra generated by N,S,W,E. We write DIR9 for
this subalgebra of ERA. Although it is very simple, DIR9 is sufficient for
expressing directional information in many situations. Moreover, all direction
relations which appeared in [38] can be expressed in DIR9.

DIR9 is the two-dimensional counterpart of IA3 — the subalgebra of IA
generated by B3

int = {b,⋓, bi}. A more expressive cardinal direction calculus can
be obtained by using IA7 — the subalgebra of IA generated by B7

int = {b, (mo),
(sfd), eq, (sfd)∼, (mo)∼, bi}. We define

B49
rec = {α⊗ β : α, β ∈ B7

int}. (13)

Clearly, B49
rec is a set of JEPD rectangle relations. We write DIR49 for the

Boolean algebra generated by B49
rec. As a qualitative calculus, DIR49 is coarser

than ERA but finer than DIR9. Later, in Section 7.2, we will show that DIR49
provides a reasonable approximation of ERA.

Remark 3.1. One natural requirement for a direction calculus is that it should
support definitions of the above four cardinal directions. DIR9 and DIR49
are the two-dimensional counterparts of B3 and B7 (see Remark 2.2). These
directional calculi do support definitions of the four cardinal directions.

It is worth stressing that these directional calculi — DIR9, DIR49, ERA —
are all defined over U , the set of bounded regions, where a bounded region may
have multiple pieces.
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4 Combination of Two Qualitative Calculi: The

General Case

In this section we consider reasoning problems concerning the combination of
two different calculi. The major obstacle is that different kinds of relations may
interact with each other. For example, the fact that a is a part of b and the
fact that a is larger than b cannot both be true at the same time.

Suppose A,B are two qualitative calculi defined on the same universe D,
and suppose Ba and Bb are the sets of basic relations in A and B, respectively.
These two calculi describe different kinds of qualitative information of entities
in D.

Instead of developing a new hybrid calculi, we deal with the reasoning prob-
lem directly. Let Na and Nb be two networks of constraints over A and B

which involve the same set of variables. One fundamental reasoning problem
for combining A and B is deciding whether Na ∪ Nb is satisfiable. We call this
decision problem the joint satisfaction problem (JSP) over A and B.

To stress that Na and Nb are defined on the same set of variables, in what
follows we write Na ⊎Nb, instead of Na ∪ Nb, for the union of Na and Nb.

We next introduce two local constraint propagation techniques in order to
provide partial solution to the joint satisfaction problem.

4.1 Bi-Closure of Joint Networks

We start with the simplest case where only two variables are involved in Na and
Nb.

Definition 4.1. For a relation α in A and a relation β in B, we say α and β
are consistent if the joint network {xαy}⊎{xβy} has a solution in D, i.e. there
exist a, b ∈ D s.t. aαb and aβb.

Remark 4.1. In this paper we do not distinguish between a relation and its
model or interpretation in a universe. This is because in most cases we only
consider calculi defined on the same universe. Two relations from different
calculi interact if they have common instances. The interaction between a basic
relation in A and a basic relation in B is measured in a yes/no fashion. The
interaction between a (non-basic) relation in A and a (non-basic) relation in B

will be measured by the notion of bi-closure (see Definition 4.2).

The next lemma follows directly. Note that as relations defined on the same
universe, α and β may intersect.

Lemma 4.1. For α in A and β in B, α and β are consistent iff α ∩ β 6= ∅.

Clearly, the universal relation ⊤ is consistent with any nonempty relation
α in A. Moreover, for each nonempty α in A, there is a smallest relation in B

which contains α. This relation is the largest one in B such that α∩β 6= ∅ but
α ∩−β = ∅, where −β is the (relation) complement of β.

13



Lemma 4.2. Let α be a relation in A. Then there exists a smallest relation β
in B such that α is consistent with β but not consistent with −β.

We denote B(α) for this relation, and call it the α-induced relation in B.
Recall that Bb is the set of basic relations (or atoms) in B. The α-induced
relation B(α) can be computed as follows.

Lemma 4.3. For a relation α in A, its induced relation in B is the union of
all basic relations in B that are consistent with α, i.e.

B(α) =
⋃
{β ∈ Bb : α ∩ β 6= ∅}. (14)

Moreover, since Ba is the set of basic relations (or atoms) in A, we have

Lemma 4.4. The α-induced relation B(α) is the union of all B(α′) with α′ ⊆ α
and α′ ∈ Ba, i.e.

B(α) =
⋃
{B(α′) : (α′ ∈ Ba) & (α′ ⊆ α)} (15)

=
⋃
{β ∈ Bb : (∃α

′ ∈ Ba)[(α
′ ⊆ α) & (α′ ∩ β 6= ∅)]} (16)

Given a joint network {xαy} ⊎ {xβy}, no information will be lost if we
subtract from β (α, resp.) those basic relations that are not consistent with α
(β, resp.). Recall we say two (joint) networks are equivalent if they have the
same set of solutions.

Proposition 4.1. For a relation α ∈ A, and a relation β ∈ B, {xαy} ⊎ {xβy}
is equivalent to {xα[β]y} ⊎ {xβ[α]y}, i.e. α[β] ∩ β[α] = α ∩ β, where

α[β] ≡ α ∩ A(β), β[α] ≡ β ∩B(α).

Proof. To show α[β]∩β[α] = α∩β, we need only show α∩β ⊆ A(β)∩B(α). Take
(u, v) ∈ α∩β. Suppose α∗ and β∗ are the atomic relations in A and, respectively,
B that contain (u, v). Since (u, v) ∈ β∗ ∩ α 6= ∅, by the definition of B(α),
we know β∗ ⊆ B(α). Hence (u, v) ∈ B(α). Similarly, we know (u, v) ∈ A(β).
Therefore, (u, v) is an instance of A(β) ∩B(α). Because (u, v) is an arbitrary
instance of α ∩ β, we know α ∩ β ⊆ A(β) ∩B(α) holds.

In case that {xα′y} ⊎ {xβ′y} is equivalent to {xαy} ⊎ {xβy}, we also say
〈α′, β′〉 is equivalent to 〈α, β〉. The following lemma shows that 〈α[β], β[α]〉 is
the smallest pair of constraints which is equivalent to 〈α, β〉.

Lemma 4.5. For α, α′ ∈ A and β, β′ ∈ B, if 〈α′, β′〉 is equivalent to 〈α, β〉,
i.e. α′ ∩ β′ = α ∩ β, then α[β] ⊆ α′ and β[α] ⊆ β′.

Proof. Take (u, v) ∈ α[β] = α∩A(β). By the definition of A(β), there exists an
A atom α∗ such that (u, v) ∈ α∗ and α∗ ∩ β 6= ∅. There must exist a B atom
β∗ such that β∗ ⊆ β and α∗ ∩ β∗ 6= ∅. By (u, v) ∈ α, we know α∗ is contained
in α. So we have α∗ ∩ β∗ ⊆ α ∩ β. Because 〈α, β〉 is equivalent to 〈α′, β′〉, we
have α∗ ∩ β∗ ⊆ α′ ∩ β′. Note that α∗ ∩ α′ 6= ∅. We know α∗, as an A atom, is
also contained in α′. This shows (u, v) is also an instance of α′. Therefore, we
have α[β] ⊆ α′. Similarly, we can show β[α] ⊆ β′.
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We say a pair of constraints 〈α, β〉 is bi-closed if α = α[β] and β = β[α]. It
is straightforward to see that 〈α[β], β[α]〉 is bi-closed. By Lemma 4.5, it is clear
that 〈α[β], β[α]〉 is the only bi-closed pair which is equivalent to 〈α, β〉. We call
〈α[β], β[α]〉 the bi-closure of 〈α, β〉.

The notion of bi-closure can easily be generalized to arbitrary constraint
networks.

Definition 4.2 (bi-closure). For two networks Na = {viαijvj}ni,j=1 and Nb =

{viβijvj}ni,j=1 over the same n variables, define N a = {viαij [βij ]vj}ni,j=1 and

N b = {viβij [αij ]vj}ni,j=1. We call N a ⊎ N b the bi-closure of Na ⊎ Nb, and

say Na ⊎ Nb is bi-closed if N a = Na and N b = Nb, i.e. if αij = αij [βij ] and
βij = βij [αij ] for each pair (i, j).

The following lemma shows that Na ⊎ Nb and its bi-closure are equivalent,
i.e. they have the same set of solutions.

Lemma 4.6. Let Na,Nb and N a,N b be as in Definition 4.2. Then N a ⊎ N b

and Na ⊎ Nb are equivalent.

Proof. Since αij [βij ] ⊆ αij and βij [αij ] ⊆ βij , we know each solution to the
bi-closure is also a solution to Na ⊎ Nb. On the other hand, suppose {ai}ni=1

is a solution to Na ⊎ Nb. By Proposition 4.1, {viαij [βij ]vj} ⊎ {viβij [αij ]vj} is
equivalent to {viαijvj}⊎{viβijvj}. Therefore (ai, aj) is also an instance of both
αij [βij ] and βij [αij ]. This shows that {ai}ni=1 is a solution to N a ⊎ N b.

It is clear that the bi-closure of a joint network can be computed in O(n2)
time. In what follows, we also call N a the bi-closure of Na w.r.t. Nb, and call
N b the bi-closure of Nb w.r.t. Na.

4.2 Bipath-Consistency

Gerevini and Renz [12] proposed a cubic local constraint propagation algo-
rithm, termed Bipath-Consistency, which is a modification of Allen’s path-
consistency algorithm (PCA) [1]. Bipath-Consistency operates on a graph of
constraints, where each edge is labeled by a pair of relations. In our notation,
the key updating rules used in Bipath-Consistency are

αij ← αij [βij ] ∩ αik[βik] ◦w αkj [βkj ] (17)

βij ← βij [αij ] ∩ βik[αik] ◦w βkj [αkj ] (18)

The next lemma characterizes the output of Bipath-Consistency.

Lemma 4.7. For an input joint network Na⊎Nb, suppose Bipath-Consistency

returns succeed and N ′
a ⊎ N

′
b is its output. Then N ′

a ⊎ N
′
b is bi-closed and N ′

a

and N ′
b are path-consistent. On the other hand, if the input Na ⊎ Nb is bi-

closed and Na and Nb are path-consistent, then Bipath-Consistency returns
succeed and the output joint network is Na ⊎Nb itself.
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✒

❘✲
v1

v2

v3

DC
EC

EC

✒

❘✲

m ⊗ m

m ⊗ m

eq ⊗ eq

v1

v2

v3

Figure 4: RCC8 network N 1
top and ERA network N 1

dir, where {a1, a2, a3} is a
solution to N 1

top, and {b1, b2, b3} is a solution to N 1
dir, where b2 contains two

connected components.

This justifies the rationality of the following definition.

Definition 4.3. A joint network Na ⊎ Nb is called bipath-consistent if it is
bi-closed and both Na and Nb are path-consistent.

Clearly, any satisfiable joint network can be transferred to an equivalent
bipath-consistent joint network in cubic time using Bipath-Consistency. The
next subsection shows that there exists a bipath-consistent joint network of basic
RCC8 and ERA constraints that is inconsistent.

4.3 Bipath-Consistency Is Incomplete for RCC8 and ERA

Suppose Ntop = {viθijvj}ni,j=1 andNdir = {viδijvj}ni,j=1 are, resp., a topological
(RCC8) and a directional (ERA) constraint network over V = {vi}ni=1. Without
loss of generality, in the remainder of this paper we assume

(i) θii = EQ for all i, and θij 6= EQ and θij = θ∼ji for all i 6= j; and

(ii) δii = eq⊗ eq and δij = δ∼ji for all i, j.

The following examples show that a bipath-consistent joint network may be
unsatisfiable.

Example 4.1. Take V = {v1, v2, v3},N 1
top = {viθijvj}3i,j=1 andN

1
dir = {viδijvj}3i,j=1

are, respectively, the following two networks (see Figure 4):

• θ12 = θ13 = EC, θ23 = DC;

• δ12 = δ13 = m⊗m, δ23 = eq⊗ eq.

Since {a1, a2, a3} and {b1, b2, b3} are, resp., solutions to N 1
top and N 1

dir (see
Figure 4), we know these two basic networks are satisfiable and path-consistent.
Note that all relations in the two networks are defined over the set of bounded
regions. For α ∈ {DC,EC} and β ∈ {m ⊗ m, eq ⊗ eq}, it is easy to show
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DC

DC

✲

v1

DC
v4

v2

v3

✲

❄ ❄⑦❂

DC

EC

EC

m ⊗ eq

eq ⊗ mi

✲

v1

m ⊗ eqv4

v2

v3

✲

❄ ❄⑦❂

eq ⊗ mi
m ⊗ mi

mi ⊗ m

Figure 5: RCC8 network N 2
top and ERA network N 2

dir, where {c1, c2, c3, c4} is
a solution to N 2

top, and {d1, d2, d3, d4} is a solution to N 2
dir.

that α ∩ β is nonempty (cf. Lemma 5.2). Therefore, the combined network is
bi-closed, hence bipath-consistent by definition. But it is impossible to find a
solution to N 1

top ⊎N
1
dir. This is because, if {a

∗
i }

3
i=1 is a solution of N 1

top ⊎N
1
dir,

then by δ23 = eq ⊗ eq and δ12 = m ⊗ m we know MBR(a∗2) = MBR(a∗3) and
(MBR(a∗1),MBR(a∗2)) ∈ m ⊗ m. Write P for the common point of MBR(a∗1)
and MBR(a∗2). Clearly, a∗1 ∩ a∗i ⊆ {P} (i = 2, 3). By a∗1ECa∗i (i = 2, 3) we
know a∗1 ∩ a∗i = {P}. This shows P ∈ a∗2 ∩ a∗3 6= ∅, which contradicts with the
topological constraint θ23 = DC. Therefore, N 1

top ⊎ N
1
dir is bipath-consistent

but unsatisfiable.

The next example further shows that, even if all sub-networks involving three
variables are satisfiable, the joint network may still be unsatisfiable.

Example 4.2. Take V = {vi}
4
i=1, N

2
top and N 2

dir are, respectively, the following
networks (see Figure 5).

θij =

{
EC, (i, j) = (1, 3) or (i, j) = (2, 4);
DC, otherwise.

• δ12 = m⊗ eq, δ13 = m⊗mi, δ14 = eq⊗mi;

• δ23 = eq⊗mi, δ24 = mi⊗mi, δ34 = mi⊗ eq

It is straightforward to verify that all sub-networks of the joint network N 2
top ⊎

N 2
dir which involve three variables are satisfiable.
Since {c1, c2, c3, c4} and {d1, d2, d3, d4} are, resp., solutions to N 2

top and N 2
dir

(see Figure 5), the two basic networks are satisfiable and path-consistent. It is
also easy to check that EC and DC are consistent with all rectangle relations
which appear in N 2

dir (cf. Lemma 5.2). Therefore the joint network is bi-closed.
But it is impossible to find a solution toN 2

top⊎N
2
dir. This is because by θ13 = EC

and δ13 = m⊗mi, we know v1 and v3 must share a unique point P . Similarly,
v2 and v4 also share a unique point Q. It is also clear that P should be identical
with Q. This suggests that v1 and v2 are externally connected. A contradiction
with θ12 = DC.

The above examples show that Bipath-Consistency is incomplete for solv-
ing the JSP over RCC8 and ERA. In the following sections, we turn to the
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coarser calculus DIR49. We first show how Bipath-Consistency separates
topological constraints in some maximal tractable subclasses of RCC8 from di-
rectional constraints in DIR49, and then exploit this separation theorem to ap-
proximately solve the JSP over RCC8 and ERA. Before this, the next section
is devoted to investigating the pairwise interaction between RCC8 and ERA

relations.

5 Pairwise Interaction between RCC8 and ERA

Relations

Given an RCC8 relation θ and an ERA relation δ, we now consider how to
compute {v1θ[δ]v2}⊎ {v1δ[θ]v2}, the bi-closure (see Definition 4.2) of {v1θv2}⊎
{v1δv2}.

We write ERA(θ) for the θ-induced ERA relation and write RCC(δ) for the
δ-induced RCC8 relation. This means, ERA(θ) is the smallest ERA relation
which contains θ, and RCC(δ) is the smallest RCC8 relation which contains δ
(cf. Lemma 4.2). By Lemma 4.3, we know ERA(θ) is the union of all ERA(θ′),
where θ′ is a basic RCC8 relation contained in θ. A similar conclusion holds
for RCC(δ). Furthermore, by Proposition 4.1, we know θ[δ] = θ ∩ RCC(δ)
and δ[θ] = δ ∩ ERA(θ). So to compute θ[δ] and δ[θ] for arbitrary θ and δ, we
first consider the special case when θ and δ are basic, and then compute for the
general case by using Lemma 4.3 and Proposition 4.1.

Since ERA contains 169 basic rectangle relations, it will be convenient to
classify these relations into groups. One natural way is by introducing the
following rectangle version of RCC8.

Definition 5.1 (MRCC8). We say two bounded regions a, b in U are related
by MDC (MEC, MPO, MEQ, MTPP, MNTPP, MTPP∼, MNTPP∼,
resp.) if DC (EC, PO, EQ, TPP, NTPP, TPP∼, NTPP∼, resp.) is the
basic RCC8 relation between MBR(a) and MBR(b), the minimum bounding
rectangles of a and b. We call the qualitative calculus on U generated by

Bmtop ≡ {MDC,MEC,MPO,MEQ,MTPP,MNTPP,MTPP
∼

,MNTPP
∼}
(19)

the MRCC8 Algebra.

Proof of the following lemma is straightforward.

Lemma 5.1. Each basic relation in ERA is contained in one and only one
basic MRCC8 relation. Precisely, for a basic ERA relation α⊗ β, we have

1. if α⊗ β = eq⊗ eq, then α⊗ β = MEQ;

2. if α⊗ β = d⊗ d, then α⊗ β = MNTPP;

3. if α⊗ β = di⊗ di, then α⊗ β = MNTPP∼;

4. else if α, β ∈ {s, d, f, eq}, then α⊗ β ⊂MTPP;
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Figure 6: Amalgamation of basic rectangle relations, where Q, T, Ti, N, Ni
represent MEQ, MTPP, MTPP∼, MNTPP, and MNTPP∼, respectively.

5. else if α, β ∈ {si, di, fi, eq}, then α⊗ β ⊂MTPP∼;

6. else if α ∈ {b, bi} or β ∈ {b, bi}, then α⊗ β ⊂MDC;

7. else if α ∈ {m,mi} or β ∈ {m,mi}, then α⊗ β ⊂MEC;

8. else α⊗ β ⊂MPO.

Take the first and the last items as examples. For two bounded regions a, b,
item 1 is equivalent to saying that (MBR(a),MBR(b)) is an instance of eq⊗eq iff
it is an instance ofMEQ, i.e. MBR(a) = MBR(b). Item 8 states that if the basic
ERA relation between MBR(a) and MBR(b) does not satisfy the precondition
of items 1-7, then MBR(a) must partially overlap MBR(b). In what follows, we
call a basic ERA relation an MDC relation, if it is contained in MDC, and
similarly for relations contained in MEC, MPO, etc.

The next lemma summarizes the θ-induced ERA relations, ERA(θ), for all
basic RCC8 relations θ. Recall that ERA(θ) is, by definition, the smallest ERA

relation which contains θ.

Lemma 5.2. For a basic RCC8 relation θ, the θ-induced ERA relation ERA(θ)
is as follows:

1. ERA(EQ) = eq⊗ eq;

2. ERA(NTPP) = d⊗ d;

3. ERA(NTPP∼) = di⊗ di;

4. ERA(TPP) = (sdfeq)⊗ (sdfeq);

5. ERA(TPP∼) = (sdfeq)∼ ⊗ (sdfeq)∼;

6. ERA(DC) is the union of all ERA basic relations, i.e. ERA(DC) = ⊤;
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Figure 7: Illustrations of two connected regions p, q and their minimum bound-
ing rectangles.

7. ERA(EC) is the union of all ERA basic relations that are not MDC

relations;

8. ERA(PO) is the union of all ERA relations that are neither MDC nor
MEC relations.

Proof. We take the case when θ = TPP as an example; the others are similar.
Suppose a, b are two bounded regions such that aTPPb. We show (MBR(a),
MBR(b)) ∈ (sdfeq) ⊗ (sdfeq). Write Ix(a) and Ix(b) for the x-projections (cf.
Figure 1) of a and b, resp. By aTPPb, we know a ⊂ b. It is clear that
Ix(a) ⊆ Ix(b). This is equivalent to saying that the interval relation between
Ix(a) and Ix(b) is (sdfeq). The same IA relation also holds for the y-projections
of a and b. Recall that MBR(a) = Ix(a)×Iy(a) and MBR(b) = Ix(b)×Iy(b). We
have (MBR(a),MBR(b)) ∈ (sdfeq) ⊗ (sdfeq). By the definition of the extended
rectangle relations, (a, b) is an instance of the ERA relation (sdfeq) ⊗ (sdfeq).
Therefore TPP is contained in (sdfeq) ⊗ (sdfeq). We next show this is also
the smallest ERA relation which contains TPP. To this end, we need to show
TPP is consistent with each rectangle relation α ⊗ β with α, β ∈ {s, d, f, eq}.
Take d ⊗ d and eq ⊗ eq as examples. Figure 7 shows two connected regions p
and q. Let r = p∪ q. Then MBR(r) = MBR(q), and (MBR(p),MBR(r)) ∈ d⊗ d.
In other words, (p, r) is an instance of the ERA relation d ⊗ d, and (q, r) is
an instance of the ERA relation eq ⊗ eq. It is also clear that p and q are two
tangential proper parts of r, i.e. pTPPr, qTPPr.

As a corollary, we have

Corollary 5.1. For any RCC8 relation θ, we have

• If θ ∩DC = ∅, then ERA(θ) contains no MDC relation.

• If TPP ⊆ θ ⊆ P, then ERA(θ) = (sdfeq)⊗ (sdfeq),

where P is the union of TPP, NTPP, and EQ.

Proof. This is because ERA(θ) is the union of all ERA(θ′), where θ′ is a basic
RCC8 relation that is contained in θ. The conclusions then follow directly from
Lemma 5.2.
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Just like Lemma 5.2, the next lemma summarizes the δ-induced RCC8 re-
lations, RCC(δ), for all basic ERA relations δ. Recall that RCC(δ) is the
smallest RCC8 relation which contains δ.

Lemma 5.3. For a basic ERA relation δ, the δ-induced RCC8 relation RCC(δ)
is as follows:

1. RCC(δ) = DC if δ is an MDC relation;

2. RCC(δ) = DC ∪EC if δ is an MEC relation;

3. RCC(δ) = DC ∪EC ∪PO if δ is an MPO relation;

4. RCC(δ) = DC ∪EC ∪PO ∪TPP if δ is an MTPP relation;

5. RCC(δ) = DC∪EC∪PO∪TPP∪NTPP if δ is an MNTPP relation;

6. RCC(δ) = DC ∪EC ∪PO ∪TPP∼ if δ is an MTPP∼ relation;

7. RCC(δ) = DC ∪ EC ∪ PO ∪ TPP∼ ∪ NTPP∼ if δ is an MNTPP∼

relation;

8. RCC(δ) = DC∪EC∪PO∪EQ∪TPP∪TPP∼ if δ is the MEQ relation.

The proof of this lemma is straightforward. We only give some explanation
here. The first item states that if aMDCb, i.e. MBR(a)DCMBR(b), then we
should also have aDCb; the last item states that if aMEQb, i.e. MBR(a) =
MBR(b), then a and b could be related by any basic RCC8 relation other than
NTPP and its converse.

6 Combining Topological and Directional Con-

straints

We continue our discussion of the combination of RCC8 and ERA. Recall
that we have shown in Section 5.2 that Bipath-Consistency is incomplete for
determining the joint satisfaction problem (JSP) over RCC8 and ERA. In this
section, we adopt DIR49 as our constraint language for directional information,
and show Ĥ8 is separable from DIR49, where Ĥ8 is the maximal tractable
subclass of RCC8 found in [35]. In this case, we even do not need to call the
full Bipath-Consistency algorithm.

Given Ntop = {viθijvj}
n
i,j=1 and Ndir = {viδijvj}

n
i,j=1, we first compute the

bi-closure of Ntop⊎Ndir. For convenience, we set θij = θij [δij ] and δij = δij [θij ],
and let N top = {viθijvj}ni,j=1 and N dir = {viδijvj}ni,j=1. We stress that δij may
be an ERA relation outside DIR49. For example, set δij = (sfd) ⊗ (sfd) and
θij = NTPP. Then δij = d ⊗ d is outside DIR49. On the other hand, if

Ntop is over Ĥ8, then each constraint in N top is in Ĥ8. This is because (see

Lemma 5.3) RCC(δ) is in Ĥ8 for any ERA relation δ, and that Ĥ8 is closed
under intersection.

By Lemma 4.6, we know Ntop ⊎Ndir and its bi-closure are equivalent.
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Lemma 6.1. For an RCC8 network Ntop and an ERA network Ndir, the joint
network Ntop ⊎ Ndir is satisfiable if and only if its bi-closure N top ⊎ N dir is
satisfiable.

In the remainder of this section, we show that if Ntop is a path-consistent

RCC8 network over Ĥ8 and Ndir is a DIR49 network, then Ntop ⊎ Ndir is
satisfiable if and only if N top and N dir are, independently, satisfiable. To this
end, we choose an appropriate scenarioN ∗

top ofN top and an appropriate scenario

N ∗
dir of N dir, and show that N ∗

top⊎N
∗
dir is satisfiable. Recall a scenario of N top

(N dir, resp.) is a basic RCC8 (ERA, resp.) network that refines N top (N dir,
resp.)

Before constructing N ∗
top and N ∗

dir, we set a condition that they should
satisfy.

6.1 Compatible Rectangles

Given an RCC8 basic network Ntop = {viθijvj}
n
i,j=1, we know Ntop is satisfi-

able if it is path-consistent. Moreover, a solution by bounded regions can be
constructed in cubic time [32, 20]. Suppose {ri}ni=1 is a collection of rectangles.
We are interested in knowing if there is a solution {ai}ni=1 for Ntop such that
each ai is exactly bounded by the rectangle ri. We find a sufficient condition
for this question.

Definition 6.1. A collection of rectangles {ri}ni=1 are compatible with an RCC8
basic network Ntop = {viθijvj}ni,j=1 if for any i, j we have

• If θij 6= DC, then ri ∩ rj is a rectangle, i.e. the interior of ri ∩ rj is
nonempty;

• If θij = TPP, then (ri, rj) is in d⊗ eq or d⊗ d or eq⊗ d or eq⊗ eq;

• If θij = NTPP, then ri is contained in the interior of rj , i.e. (ri, rj) ∈
d⊗ d;

• If θij = EQ, then ri = rj .

At first glance, the notion of compatible rectangles seems very strong. For
two rectangles ri and rj , it requires the x- or y-projections of ri and rj not to
be related by the IA relations meet, start, finish, nor by their converses. The
following theorem partially justifies the appropriateness of the notion, where
{viαijvj}ni=1 is a scenario of a network {viβijvj}ni=1 in a qualitative calculus A
if αij is a basic relation in A which is contained in βij .

Theorem 6.1. Let Ntop be an RCC8 network, and let Ndir be a DIR49 net-
work. Suppose N dir is satisfiable. Then N dir has a satisfiable scenario N ′

dir =
{viδ′ijvj}

n
i,j=1 such that each δ′ij has the form βx

ij ⊗ βy
ij, where βx

ij , β
y
ij ∈ {b, o, d,

eq, di, oi, bi}.

Proof. See Appendix A.
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The next theorem confirms that, for a satisfiable basic RCC8 network Ntop,
we can first find an approximate solution by using rectangles {ri}ni=1, and then
get the exact solution {a∗i }

n
i=1 such that each a∗i is exactly bounded by ri, i.e.

MBR(a∗i ) = ri.

Theorem 6.2. Let Ntop = {viθijvj}ni,j=1 be a satisfiable basic RCC8 network.
Suppose {ri}

n
i=1 is a collection of rectangles that are compatible with Ntop. Then

we have a solution {a∗i }
n
i=1 of Ntop such that each a∗i is a bounded region and

MBR(a∗i ) = ri for any 1 ≤ i ≤ n.

Proof. The proof is similar to that given for RCC8 in [20]. We defer it to
Appendix B.

6.2 Separating Ĥ8 from DIR49

In this subsection we prove the separation theorem for Ĥ8 and DIR49. Let
Ntop = {viθijvj}ni,j=1 be a path-consistent RCC8 network over Ĥ8, and let

Ndir = {viδijvj}ni,j=1 be a DIR49 network. Suppose N top and N dir are satis-

fiable. We construct an RCC8 basic network N ∗
top that refines N top. Then we

show there is a basic ERA network N ∗
dir such that

• N ∗
dir refines N dir; and

• N ∗
dir has a rectangle solution {ri}

n
i=1 which is compatible with N ∗

top.

By Theorem 6.2 we know N ∗
top ⊎ N

∗
dir, hence Ntop ⊎ Ndir, is satisfiable.

We use the quadratic algorithm proposed by Renz [33] to construct N ∗
top.

For each relation θ in Ĥ8, we assign a basic relation ~(θ) as follows:

~ : Ĥ8 → Btop (20)

~(θ) =





DC, if DC ⊆ θ;
EC, else if EC ⊆ θ;
PO, else if PO ⊆ θ;
TPP, else if TPP ⊆ θ;
TPP∼, else if TPP∼ ⊆ θ;
θ, else.

Lemma 6.2 ([33]). Let Ntop be a path-consistent network over Ĥ8. Then the
basic RCC8 network N ∗

top = {vi~(θij)vj}ni,j=1 is satisfiable.

We next show that the satisfiable RCC8 basic networkN ∗
top also refinesN top.

To this end, we need the following lemma.

Lemma 6.3. For an RCC8 relation θ ∈ Ĥ8 and a DIR49 relation δ, if θ[δ] 6= ∅

and δ[θ] 6= ∅, then ~(θ) = ~(θ[δ]).

Proof. See Appendix C.
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As a corollary, we have

Lemma 6.4. Let Ntop = {viθijvj}ni,j=1 be a path-consistent RCC8 network

over Ĥ8, and let Ndir = {viδijvj}ni,j=1 be a DIR49 network. Write N ∗
top for

the scenario of Ntop as constructed in Lemma 6.2. Suppose N top and N dir are
satisfiable. Then N ∗

top is also a scenario of N top.

By the above lemma, it is easy to see that N top is satisfiable if and only if
N ∗

top is one of its scenarios. Having found a satisfiable scenario for N top, we

next show that there is a rectangle solution to N dir that is compatible with
N top.

Lemma 6.5. For Ntop, Ndir, and N ∗
top as above. If N dir is satisfiable, then it

has a rectangle solution {ri}ni=1 that is compatible with N ∗
top.

Proof. By Theorem 6.1 we knowN dir has a satisfiable scenarioN ∗
dir = {viδ

∗
ijvj}

such that each δ∗ij has the form α⊗ β with α, β ∈ {b, o, d, eq, di, oi, bi}.
Suppose I = {ri}ni=1 is a rectangle solution of N ∗

dir. Clearly, no two rectan-
gles in I meet at boundaries, i.e. (ri, rj) 6∈ EC for all i, j. In other words, for
ri and rj in I, we have either ri ∩ rj = ∅ or ri ∩ rj is a rectangle.

We show I is compatible with N ∗
top. To this end, we need to show that

I satisfies the four conditions listed in Definition 6.1. Note that (ri, rj) is an
instance of δ∗ij ⊆ δij ⊆ ERA(θij).

• If θ∗ij 6= DC, then θij ∩ DC = ∅. By Corollary 5.1, no basic rectan-
gle relation contained in ERA(θij) is an MDC relation. Therefore, by
(ri, rj) ∈ δ∗ij ⊆ ERA(θij) we know ri ∩ rj is nonempty, hence a rectangle.

• If θ∗ij = TPP, then TPP ⊆ θij ⊆ P. By Corollary 5.1, ERA(θij) =
(sdfeq) ⊗ (sdfeq). By the property of δ∗ij and (ri, rj) ∈ δ∗ij ⊆ ERA(θij),
we know (ri, rj) must be an instance of one of the four rectangle relations
d⊗ eq, d⊗ d, eq⊗ d, or eq⊗ eq.

• If θ∗ij = NTPP, then θij = NTPP. By Lemma 5.2, ERA(NTPP) =
d⊗ d. Since (ri, rj) ∈ δ∗ij , we also have (ri, rj) ∈ d⊗ d.

• If θ∗ij = EQ, then θij = EQ. By Lemma 5.2, ERA(EQ) = eq⊗ eq. Since
(ri, rj) ∈ δ∗ij , we also have (ri, rj) ∈ eq⊗ eq, i.e. ri = rj .

Therefore, I is a rectangle solution of N dir that is compatible with N ∗
top.

As a consequence of the above results, we have the following theorem.

Theorem 6.3. Let Ntop = {viθijvj}ni,j=1 be a path-consistent RCC8 network

over Ĥ8, and let Ndir = {viδijvj}ni,j=1 be a DIR49 network. Then Ntop ⊎ Ndir

is satisfiable iff N top and N dir are independently satisfiable.
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Proof. Suppose N top and N dir are satisfiable. Since Ntop is a path-consistent

network over Ĥ8, we can construct a basic RCC8 network N ∗
top = {viθ∗ijvj}

n
i,j=1

as in Lemma 6.2. By Lemma 6.4 we know N ∗
top is a scenario of N top, i.e. θ

∗
ij is

contained in θij [δij ] for all i, j.
By Lemma 6.5 we know N dir has a solution {ri}ni=1 that is compatible with

N ∗
top. In other words, N ∗

dir and {ri}ni=1 satisfy the conditions of Definition 6.1.
Therefore, by Theorem 6.2, we can find a solution {ci}ni=1 of N

∗
top which satisfies

MBR(ci) = ri for i = 1, · · · , n. So {ci}
n
i=1 is also a solution of N dir. Therefore,

Ntop ⊎Ndir is satisfiable.

Remark 6.1. For a path-consistent RCC8 network Ntop over Ĥ8 and a DIR49
network Ndir, to determine if the joint network Ntop ⊎ Ndir is satisfiable, by
the above theorem, we first compute N top and N dir, and then check if they
are satisfiable independently. Ideally, we wish N dir is also a DIR49 network.
But by applying the rules like “NTPP enforces d⊗d” (Lemma 5.2) constraints
in N dir may be outside DIR49. This is not a problem. What we want is to
solve the joint constraint network efficiently and do not care how and in which
calculus the problem is solved.

By using the rules like “NTPP enforces d ⊗ d,” we obtain the bi-closure
of a joint network. Then, we need only compute if the two separated networks
are satisfied independently. This reasoning process is carried in RCC8 and in
ERA. Note that there are complete methods for solving the satisfaction problem
in both RCC8 and ERA. The joint satisfaction problem defined over Ĥ8 and
DIR49 could therefore be solved by Theorem 6.3.

For an RCC8 network Ntop over Ĥ8 and a DIR49 network Ndir, recall that
Ntop ⊎ Ndir is bipath-consistent if and only if it is bi-closed and both Ntop and
Ndir are path-consistent. Moreover, if Ntop⊎Ndir is bi-closed, then N top = Ntop

and N dir = Ndir.
The following theorem shows that Bipath-Consistency separates Ĥ8 and

DIR49.

Theorem 6.4. For an RCC8 network Ntop over Ĥ8 and a DIR49 network
Ndir, suppose N ′

top ⊎N
′
dir is a bipath-consistent joint network that is equivalent

to Ntop⊎Ndir. Then Ntop⊎Ndir is satisfiable if N ′
top and N ′

dir are independently
satisfiable.

Proof. Since constraints in N ′
dir may be outside DIR49, we cannot apply Theo-

rem 6.3 directly. But N ′
top and Ndir satisfy the condition of Theorem 6.3. This

means N ′
top ⊎ Ndir is satisfiable if and only of the two component networks of

its bi-closure are independently satisfiable.
We next compute the bi-closure of N ′

top ⊎ Ndir. Suppose Ntop = {θij}ni,j=1,
Ndir = {δij}ni,j=1, and N

′
top = {θ′ij}

n
i,j=1, N

′
dir = {δ′ij}

n
i,j=1. We haveN ′

top⊎N
′
dir

is bi-closed due to its bipath-consistency. This means that θ′ij = θ′ij [δ
′
ij ] and

δ′ij = δ′ij [θ
′
ij ] for any i, j. Note that θ′ij ⊆ θij and δ′ij ⊆ δij for any i, j. We have

θ′ij = θ′ij [δ
′
ij ] = θ′ij ∩RCC(δ′ij) ⊆ θ′ij ∩RCC(δij) = θ′ij [δij ] (21)

δ′ij = δ′ij [θ
′
ij ] = δ′ij ∩ERA(θ′ij) ⊆ δij ∩ERA(θ′ij) = δij [θ

′
ij ]. (22)
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Set Ñtop = {θ′ij [δij ]}
n
i,j=1 and Ñdir = {δij [θ′ij ]}

n
i,j=1. Clearly, Ñtop ⊎ Ñdir is the

bi-closure of N ′
top⊎Ndir. By Equations 21 and 22 we knowN ′

top refines Ñtop and

N ′
dir refines Ñdir. Under the assumption that N ′

top and N ′
dir are satisfiable, we

know Ñtop and Ñdir are satisfiable. By Theorem 6.3, this implies N ′
top ⊎ Ndir,

hence Ntop ⊎ Ndir, is satisfiable.

Recall that applying PCA is sufficient for deciding satisfiability for the RCC8
subclass Ĥ8, and for the ERA subclass H ⊗ H, where H is the ORD-Horn
subclass of IA. We have the following corollary.

Corollary 6.1. Let Ntop be an RCC8 network over Ĥ8, and let Ndir be a DIR49
network over H7⊗H7, where H7 is the intersection of H and the interval algebra
IA7. Then deciding the satisfiability of Ntop ⊎Ndir is of cubic complexity.

Proof. It is of quadratic complexity to compute N ∗
top and N dir. Note that N dir

is a rectangle network over H⊗H, and applying PCA in RCC8 and ERA is of
cubic complexity.

7 Further Discussions

In this section we show how the above separation theorem can be exploited to
solve the general joint satisfaction problem over RCC8 and ERA.

7.1 Beyond Ĥ8

Theorem 6.3 requires that all topological constraints are in Ĥ8, which is one of
the three maximal tractable subclasses (Ĥ8, Q8, C8) identified in [33].

For Q8, a separation theorem can be obtained in a similar way. Given a
path-consistent RCC8 network Ntop over Q8, and a DIR49 network Ndir, let
N ∗

top be the scenario of Ntop as specified in [33, Lemma 20]. Then, similarly to

Lemma 6.5, we can find a rectangle solution of N dir that is compatible with
N ∗

top, given that N top and N dir are satisfiable.
It is still unknown whether C8 is separable from DIR49. A separation the-

orem cannot be obtained by using a refinement mapping as for the other two
subclasses. We do not regard this as a serious problem. This is because, for the
purpose of backtracking, the three maximal tractable subclasses play almost the
same role, and knowing one is separable is good enough to reduce the branching
factor of the backtracking algorithm.

Moreover, if we confine ourselves to the less expressive cardinal direction
calculus DIR9, then we have the desired separation theorems for all these sub-
classes. The proof is similar to that for Ĥ8 and DIR49. The interested reader
may also consult Li [21] for more information.

The following example shows that, however, if Ntop contains constraints not

in Ĥ8, the joint network Ntop ⊎Ndir may be unsatisfiable even when both N top

and N dir are satisfiable.

26



✒

❘✲
v1 v3

v2

N,PO T,Ni

DC,N

✒

❘✲
v1 v3

v2

p ⊗ (sdf)
eq ⊗ eq

eq ⊗ eq

eq ⊗ eq
pi ⊗ (sdf)∼

(sdf) ⊗ (sdf)

✒

❘✲
v1 v3

v2

PO T

DC,N

✒

❘✲
v1 v3

v2

eq ⊗ eq

eq ⊗ eqeq ⊗ eq

(sdf) ⊗ (sdf)

✒

❘✲
v1 v3

v2

PO T

N

✒

❘✲
v1 v3

v2

eq ⊗ eq

eq ⊗ eqeq ⊗ eq

Figure 8: RCC8 network N 3
top and DIR49 network N 3

dir (first row), and their

bi-closures N
3

top and N
3

dir (second row), and the equivalent path-consistent
networks of the latter two (last row), where T, N and Ni stand for TPP, NTPP

and NTPP∼, respectively.

Example 7.1 (RCC8 and DIR49). Take V = {v1, v2, v3}, N 3
top = {viθijvj}3i,j=1

and N 3
dir = {viδijvj}3i,j=1 are, respectively, the following two networks. (see

Fig. 8)

• θ12 = NTPP ∪PO, θ23 = TPP ∪NTPP∼, θ13 = DC ∪NTPP;

• δ12 = b⊗(sdf)∪eq⊗eq, δ23 = bi⊗(sdf)∼∪eq⊗eq, δ13 = (sdf)⊗(sdf)∪eq⊗eq.

By computing θij = θij [δij ] and δij = δij [θij ], we obtain N
3

top = {viθijvj}3i,j=1

and N
3

dir = {viδijvj}
3
i,j=1 as follows.

• θ12 = PO, θ23 = TPP, θ13 = DC ∪NTPP;

• δ12 = eq⊗ eq, δ23 = eq⊗ eq, δ13 = (sdf)⊗ (sdf) ∪ eq⊗ eq.

It is easy to see that N 3
top is path-consistent, and both N

3

top and N
3

dir are

satisfiable. But N
3

top ⊎N
3

dir is unsatisfiable. This is because, by applying PCA

(separately) to these two networks, we refine θ13 = DC ∪NTPP to NTPP,
and refine δ23 = (sdf)⊗ (sdf) ∪ eq⊗ eq to eq⊗ eq. But NTPP ∩ eq⊗ eq = ∅.

7.2 Beyond DIR49

So far, we have provided a complete method for deciding if a joint network of
RCC8 and DIR49 constraints is satisfiable. But Figures 4 and 5 also show that
we have no complete method to decide if a joint network of basic RCC8 and
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ERA constraints is satisfiable. In this subsection, however, we show that our
results for DIR49 can also be exploited to provide approximate solutions to joint
networks of RCC8 and ERA constraints.

Let Ntop ⊎Ndir = {viθijvj}ni,j=1 ⊎{viδijvj}
n
i,j=1 be a joint network of RCC8

and ERA constraints. Having no complete method for determining if the joint
network is satisfiable, we generalize each ERA constraint δij to a DIR49 con-

straint δ̃ij , which is the smallest DIR49 relation containing δij . We call δ̃ij
the generalization of δij in DIR49. Write Ñdir = {viδ̃ijvj}ni,j=1. We call Ñdir

the generalization of Ndir in DIR49, and call Ntop ⊎ Ñdir the generalized joint
network. It is clear that a solution to Ntop ⊎ Ndir is also a solution to the
generalized joint network.

Lemma 7.1. A joint network of RCC8 and ERA constraints is satisfiable only
if its generalized joint network is.

In other words, if the generalized joint network is not satisfiable, neither is
the original one. So our separation theorems for DIR49 also provide a partial
(though not complete) method for determining if a joint network of RCC8 and
ERA constraints is satisfiable.

It is possible that the generalized joint network Ntop ⊎ Ñdir is satisfiable,
but Ntop ⊎ Ndir itself is not. Even for this case, it is still possible to get an
approximate solution to Ndir.

Note that the general joint satisfaction problem (JSP) over RCC8 and ERA

can be reduced to the special JSP over basic constraints by backtracking.
We only consider the case when both Ntop and Ndir are basic networks. In

the remainder of this subsection, we assume that

• Ntop ⊎ Ndir is bi-closed and both Ntop and Ndir are satisfiable;

• the generalized joint network Ntop ⊎ Ñdir is satisfiable.

Suppose the basic ERA network Ndir = {viβx
ij⊗βy

ijvj}
n
i,j=1. We assert that

there is a solution of Ntop that is almost a solution of Ndir in the sense that will
become clear soon.

We introduce a mapping τ : Bint → {b, o, d, eq, di, oi, bi} as follows:

τ(λ) =





o, if λ ∈ {m, o};
d, if λ ∈ {s, f, d}
di, if λ ∈ {si, fi, di}
oi, if λ ∈ {mi, oi}
λ, otherwise

We call τ(λ) the τ -version of λ. Clearly, each basic interval relation has a unique
τ -version.

Write Ns = {viτ(βx
ij) ⊗ τ(βy

ij)vj}
n
i,j=1. Since Ndir = {viβx

ij ⊗ βy
ijvj}

n
i,j=1 is

satisfiable, by Lemma A.2 of Appendix B, we know Ns is also satisfiable. We
assert that any rectangle solution {ri}

n
i=1 of Ns is compatible with the basic

RCC8 network Ntop.
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Figure 9: Illustrations of ε-instances of the IA relationmeets, where the leftmost
is an instance of meets, the middle and the right pairs are instances of overlaps,
but the middle is more like an instance of meets than the right.

Lemma 7.2. Suppose {ri}ni=1 is a rectangle solution of Ns. Then {ri}ni=1 is
compatible with Ntop.

Proof. Since Ns = {viτ(βx
ij)⊗ τ(βy

ij)vj}
n
i,j=1 and τ(βx

ij), τ(β
y
ij) ∈ {b, o, d, eq, di,

oi, bi}, the intersection of two rectangles ri and rj is either empty or a rectan-
gle. It is then straightforward to show that {ri}ni=1 is compatible with Ntop.
For example, if θij 6= DC, then by Lemma 5.2, ERA(θij) contains no MDC

relation. Since Ntop ⊎ Ndir is bi-closed, we know δij ⊆ ERA(θij). This implies
that δij = βx

ij ⊗ βy
ij contains no MDC relation. By Figure 6, this is possible if

and only if βx
ij , β

y
ij 6∈ {b, bi}. Moreover, by the definition of the τ -version of an

IA relation, we know τ(βx
ij), τ(β

y
ij) 6∈ {b, bi}. By Figure 6 again, τ(βx

ij)⊗ τ(βy
ij)

is not an MDC relation, i.e. ri ∩ rj 6= ∅. Therefore, ri ∩ rj is a rectangle.

As a corollary, we have

Theorem 7.1. Ntop has a solution {ai}ni=1 which is also a solution of Ns and

Ñdir.

Proof. Suppose {ri}
n
i=1 is a rectangle solution of Ns. By Theorem 6.2 we have a

solution {ai}ni=1 of Ntop such that MBR(ai) = ri for each i. By the definition of
the ERA relations and the assumption that (ri, rj) ∈ τ(βx

ij)⊗ τ(βy
ij), we know

(ai, aj) is also an instance of the ERA relation τ(βx
ij)⊗ τ(βy

ij). This shows that

{ai}ni=1 is also a solution of Ns. Moreover, since Ns is a scenario of Ñdir, we

know {ai}ni=1 is also a solution of Ñdir.

Although a solution of Ns is usually not a solution of Ndir, we can find a
solution of Ns that is almost a solution of Ndir. The idea is to approximate
a relation βx ⊗ βy by its τ -version τ(βx) ⊗ τ(βy). Take m ⊗ m for example.
Although an instance of o⊗o = τ(m)⊗ τ(m) does not belong to m⊗m, if ri∩rj
is very small when compared with ri and rj , then it is reasonable to say that
(ri, rj) is almost an instance of m⊗m.

We formalize this idea by introducing the notion of an ε-instance for interval
and rectangle relations (cf. Figure 9). To this end, we introduce a measure of
the likeliness of an α instance to be a τ(α) instance, where α is a basic IA
relation.

Definition 7.1. For a basic IA relation α, and an instance (I, J) of τ(α), we
define χα(I, J) as follows, where we assume I = [u−, u+], J = [v−, v+]:
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• If α = m, then τ(α) = o. By (I, J) ∈ o, we know u− < v− < u+ < v+.
Define χm(I, J) = (u+ − v−)/min{u+ − u−, v+ − v−}.

• If α = s, then τ(α) = d. By (I, J) ∈ d, we know v− < u− < u+ < v+.
Define χs(I, J) = (u− − v−)/(u+ − u−).

• If α = f, then τ(α) = d. By (I, J) ∈ d, we know v− < u− < u+ < v+.
Define χf(I, J) = (v+ − u+)/(u+ − u−).

• If α ∈ {mi, si, fi}, then define χα(I, J) = χα∼(J, I), where α∼ is the con-
verse of α.

• If α ∈ {b, o, d, eq, di, oi, bi}, then τ(α) = α.
Define χα(I, J) = 0.

Note that as χα(I, J) tends to zero, then the more the instance (I, J) appears
to be an instance of α. Using this measure, we next define the ε-instance of a
basic interval relation α.

Definition 7.2 (ε-instances). For a basic interval relation α, and an instance
(I, J) of τ(α), we say (I, J) is an ε-instance of α if χα(I, J) < ε. For a basic
rectangle relation βx⊗βy, we say an instance (I1× I2, J1×J2) of τ(β

x)⊗ τ(βy)
is an ε-instance of βx ⊗ βy if (I1, J1) and (I2, J2) are, respectively, ε-instances
of βx and βy.

The next lemma then shows that Ns = {viτ(β
x
ij) ⊗ τ(βy

ij)vj}
n
i,j=1 has a

rectangle solution which is almost a solution of Ndir = {viβx
ij ⊗ βy

ijvj}
n
i,j=1.

Note that we assume Ndir is satisfiable.

Lemma 7.3. For any ε > 0, Ns has a rectangle solution {ri}ni=1 such that
(ri, rj) is an ε-instance of βx

ij ⊗ βy
ij for all i, j.

Proof. We need only to prove thatN x
s = {viτ(βx

ij)vj}
n
i,j=1 (N

y
s = {viτ(β

y
ij)vj}

n
i,j=1,

resp.) has an interval solution {I∗i }
n
i=1 ({J∗

i }
n
i=1, resp.) such that (I∗i , I

∗
j )

((J∗
i , J

∗
j ), resp.) is an ε-instance of βx

ij (βy
ij , resp.). Take N x

s as an example.
Without loss of generality, we assume βx

ij 6= eq for i 6= j.
Suppose {Ii = [s2i−1, s2i]}ni=1 is a solution to a basic interval network N =

{viλx
ijvj}

n
i,j=1. We first prove that N has a solution {I∗i }

n
i=1 that is canonical

[43] in the following sense:

• an endpoint of each interval I∗i is an integer between 0 and 2n− 1;

• if k ≥ 1 is an endpoint of some interval, then k − 1 is also an endpoint.

Clearly, each satisfiable basic interval network has a unique canonical solution.
Write M = {sk}2nk=1 for the set of endpoints of all Ii. For s ∈ M , define its

level l(s) as follows:

• l(s) = 0 if for any t ∈M , s ≤ t;

• l(s) = k + 1 if for any t ∈M , t < s only if l(t) ≤ k.
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It is straightforward to see that l : M → {0, 1, · · · , 2n− 1} is an order isomor-
phism, i.e. l(s) ≤ l(t) if and only if s ≤ t. Set I∗i = [l(s2i−1), l(s2i)]. It is also
straightforward to show that {I∗i }

n
i=1 is the canonical solution of N .

Now we return to N x
s = {viτ(βx

ij)vj}
n
i,j=1. Suppose {Ii = [s2i−1, s2i]}ni=1

is a canonical solution of N x
s and suppose {I ′i = [t2i−1, t2i]}

n
i=1 is a canonical

solution of N x
dir = {viβx

ijvj}
n
i,j=1. Write M = {sk}2nk=1 and M ′ = {tk}2nk=1. Since

τ(βx
ij) ∈ {b, o, d, oi, di, bi} for all i 6= j, we know M = {1, 2, · · · , 2n} and sk 6= sp

for any k 6= p.
For each 1 ≤ k ≤ 2n, define f(sk) = tk + sk

4nε, where 0 < ε < 1. Then
f : {sk}nk=1 → {f(sk)}

n
k=1 is an order isomorphism, i.e. f(sk) ≤ f(sp) if and

only if sk ≤ sp. We first note that sk ≤ sp implies tk ≤ tp. If sk ≤ sp, then
f(sk) = tk + sk

4nε ≤ tp +
sp
4nε = f(sp). On the other hand, if sk > sp, then

tk ≥ tp and f(sk) = tk + sk
4nε > tp +

sp
4nε = f(sp).

Set I∗i = [f(s2i−1), f(s2i)]. Then {I∗i }
n
i=1 is also a solution to N x

s . Moreover,
we can show that χα(I

∗
i , I

∗
j ) < ε for any i, j, where α = βx

ij . Take α = s as
an example. In this case, we have (Ii, Ij) ∈ d, and (I ′i, I

′
j) ∈ s. In terms of

endpoints, we have s2j−1 < s2i−1 < s2i < s2j and t2j−1 = t2i−1 < t2i < t2j .

Since f(s2i−1− f(s2j−1) = t2i−1 +
s2i−1

4n ε− t2j−1−
s2j−1

4n ε =
s2i−1−s2j−1

4n ε < ε/2,

and f(s2i)−f(s2i−1) = t2i+
s2i
4n ε−t2i−1+

s2i−1

4n ε = (t2i−t2i−1)+
s2i−s2i−1

4n ε ≥ 1,
we know χs(I

∗
i , I

∗
j ) < ε. This means (I∗i , I

∗
j ) is an ε-instance of s = βx

ij . In this
way, for any i, j, we can show (I∗i , I

∗
j ) is an ε-instance of βx

ij .

This lemma shows that Ns has a solution that is almost a solution of Ndir.
By Lemma 7.2 and Theorem 6.2, the following theorem is immediate.

Theorem 7.2. Suppose Ntop⊎Ndir is a bipath-consistent joint network of basic

RCC8 and ERA constraints. If the generalized joint network Ntop ⊎ Ñdir is

satisfiable, then for any ε > 0, Ntop ⊎ Ñdir has a solution {ai}ni=1 such that
(MBR(ai),MBR(aj)) is an ε-instance of βx

ij ⊗ βy
ij for all i, j.

The same conclusion also holds if constraints in Ntop are all taken from

the maximal tractable subclass Ĥ8 of RCC8. In general, the joint satisfaction
problem can be approximately determined by backtracking over Ĥ8 and Brec.

8 Related Work

Although most early work on qualitative spatial reasoning focused on single
aspect of spatial relations, there are several works which deal with representation
and reasoning about combined spatial information.

Hernández [16, 17] developed formalisms combining orientation information
with topological relation or qualitative distance. Nabil et al. [27] proposed
a unified representation of topological and directional relationships, based on
Allen’s Interval Algebra [1] and Chang’s 2D string symbolical representation
of pictures [3]. A similar work is also reported in Huang and Lee [18], where
the authors proposed a formalism for encoding topological and directional in-
formation in a picture. We note that the direction relations defined there are
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exactly the same as those defined by Goyal and Egenhofer [14]. The formalism
proposed in the conference version of this paper has been incorporated in the
investigation of description logics with spatial operators [11].

The reasoning aspect of the combination of multiple kinds of spatial infor-
mation has also been investigated by several researchers. Sharma [37] systemat-
ically studied inference problems concerning the derivation of the topological or
directional relationship by given two relationships of the same or different type.
An example is as follows. Suppose a is a proper part of b and b is north of c.
Then what kind of topological or directional relationship could hold for a and
c? Reasoning problems like this correspond to the joint satisfaction problems
which involve at most three variables.

As a comparison, Sistla et al. [39, 38] considered joint satisfaction problems
which involve arbitrary number of variables but are over a limited set of spatial
relations. They considered connected objects in the three-dimensional space,
and defined a set of part-whole relations (disjoint, in, overlap) and a set of
three-dimensional cardinal directions (left of, right of, above, below, in-front-of,
behind). Sistla et al. proposed a sound and complete rule-based system for
determining if an arbitrary set of such constraints is satisfiable as connected
objects in three-dimensional space, where several constraints concerning the
same pair of variables may appear at the same time. As for two-dimensional
space, they showed that the rule-based system is incomplete for connected plane
regions. But it is straightforward to show that the rule-based system is com-
plete when instantiations are taken from the universe of bounded (connected or
disconnected) plane regions.

Write T for the set of part-whole relations disjoint, in, overlap, and write
D for the set of cardinal directions left of, right of, above, below. Clearly, T
is a subset of RCC5 (hence of RCC8), and D is a subset of DIR9 (hence of

ERA). Write T̂ (D̂, resp.) for the smallest subclass of RCC8 (ERA, resp.)
containing T (D, resp.) which is closed under converse and intersection. Then,
the contribution of Sistla et al. can be rephrased as providing a complete method
for determining the JSPs over T̂ and D̂.

Compared with Ĥ8 and DIR49, this constraint language is very small. More
important, the topological part (T̂ ) makes no further topological distinction
between, e.g. tangential proper part (TPP) and non-tangential proper part

(NTPP); and the directional part (D̂) does not support negation and disjunc-
tion of constraints, i.e. constraints such as not left of and either right of or
above are not allowed in their constraint language.

Another attempt to combining topological and directional information was
reported in [19], where the author introduced a hybrid calculus that combines
DIR9 with RCC5. A preliminary result was obtained, which asserts that the
satisfaction problem of basic networks in the hybrid calculus can be decided in
polynomial time. This is equivalent to say that the joint satisfaction problem of
basic RCC5 and DIR9 networks can be decided in polynomial time. The work
reported in the current paper is more general.

The Bipath-Consistency algorithm was first introduced by Gerevini and
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Renz [12], where they discussed the combination of topological and relative size
information, and proved that Bipath-Consistency is complete for the JSPs
over any maximal tractable subclass of RCC8 and the qualitative size calculus
QS. In this paper we gave a characterization of bipath-consistency in terms of
bi-closure and path-consistency, and hence generalized the algorithm to cope
with two arbitrary qualitative calculi.

Remark 8.1. Recently, Wölfl and Westphal [42] also investigated the combina-
tion of binary qualitative constraint calculi in general, where they empirically
compared the (tight combination) approach that develops a new hybrid calcu-
lus with the (loose combination) approach of Gereveni and Renz [12]. Note
the latter approach is also known the joint satisfaction problem in this paper.
Our research in this paper is mainly concerned with the loose combination of
topological and directional constraints, while the early work of Li [19] provided
an example of a tight combination.

9 Conclusion and Future Work

In this paper, we have investigated computational complexity of reasoning with
the combination of a topological relation calculus (RCC8 Algebra) and a direc-
tional relation calculus (Extended Rectangle Algebra ERA). We first showed by
examples thatBipath-Consistency is incomplete for solving the JSP over even
basic RCC8 and ERA constraints topological constraints from directional con-
straints as one key problem for solving the joint satisfaction problem over RCC8
and ERA, and then proved that for two maximal tractable subclasses of RCC8
(Ĥ8 or Q8) and a subalgebra of ERA (DIR49) Bipath-Consistency sepa-
rates topological constraints in polynomial time from directional constraints.
Therefore, the joint satisfaction problem of a network of constraints over Ĥ8 (or
Q8) and DIR49 can be reduced in polynomial time to two simple satisfaction
problems in RCC8 and ERA.

The fact that Ĥ8 (or Q8) is separable from DIR49 implicitly suggests that
the interaction between RCC8 and DIR49 is weak. Naturally, if the interaction
between two calculi is very strong, then it will be hopeless to get a clear separa-
tion between them. Moreover, just like the interaction between the qualitative
size calculus and RCC8 [12], DIR49 relations interact with RCC5 more than
RCC8.3 This is because we often ignore the boundary of regions in DIR49.

For our purposes this weakness is a not serious problem. Particularly, for
RCC8 and ERA, we take the view that “topology matters, metric refines [9].”
For a satisfiable joint network of basic RCC8 and ERA constraints, we can
always find an instantiation that satisfies all topological constraints and almost
satisfies all directional constraints. We believe this is good enough for most
practical applications.

Although Bipath-Consistency is incomplete for the JSP of RCC8 and
ERA, this does not mean that reasoning with RCC8 and ERA is undecidable.

3One exception is the rule that aNTPPb implies (MBR(a),MBR(b)) ∈ d⊗ d.
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Recently, Liu et al. [26] proved that the JSP for basic RCC8 constraints and
basic ERA constraints is still tractable. More work is needed in this direction
to discover larger tractable subclasses.

Another possible weakness of this paper lies in the use of rectangle relations
to approximate direction between two arbitrarily shaped regions. This is over
simplistic for many real-world applications. The cardinal direction calculus
(CDC) of Goyal and Egenhofer [14] is a very expressive spatial language for
directions, and its computational complexity has just been investigated very
recently [40, 43]. For basic RCC8 constraints and basic CDC constraints, Liu
et al. [26] proved that the joint satisfaction problem is already NP-Complete.
Therefore, approximative but efficient methods similar to the one proposed in
Section 7.2 of this paper will be very useful to cope with combined RCC8 and
CDC constraints.

Since Bipath-Consistency separates (to a certain extent) topological in-
formation from both directional (DIR49) and qualitative size information, it is
natural to extend the results obtained here and that in [12] to cope with the
combination of relations in the three calculi RCC8, ERA, and QS. We remark
that such a combination is straightforward since there is no direct interaction
between ERA and QS constraints.
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A Proof of Theorem 7.1

Recall τ : Bint → {b, o, d, eq, di, oi, bi} is defined as follows:

b̂ = b, m̂ = ô = o, ŝ = d̂ = f̂ = d, êq = eq, êq = eq, ŝi = d̂i = fî = di, (23)

where for convenience we write β̂ for τ(β), the τ -version of β. For a basic IA

network N = {xiλxj}1≤i,j≤n, write N̂ for the basic IA network {xiλ̂xj}ni,j=1,
called the τ -version of N . Then we have the following interesting result.

Lemma A.1. A basic IA network N is satisfiable only if its τ-version N̂ is.

Proof. If N involves only three variables (a triangle), the proof is straightfor-

ward. So each sub-network of N̂ involving three variables are satisfiable. In
general, recall that a basic IA network is satisfiable if and only if it is path-
consistent. This implies that each triangle in N̂ is path-consistent. By definition
of path-consistency, the whole network is path-consistent, hence satisfiable.
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For a basic rectangle relation δ = α ⊗ β we call α̂ ⊗ β̂ the τ -version of δ,
denoted by δ̂. For example, the τ -version of eq⊗ s is eq⊗ d.

Lemma A.2. A basic RA network is consistent only if its τ-version is.

The definition of τ -version can be extended to non-basic relations in a natural
way. Let α be an IA or RA (non-basic) relation, the τ -version of α, denoted by
α̂, is defined as

α̂ =
⋃
{β̂ : β is a basic relation and β ⊆ α}.

The τ -version of an IA or RA network is defined similarly.

Lemma A.3. An IA or RA network is satisfiable only if its τ-version is.

For an IA or RA relation α, we say α is τ -closed if it contains its τ -version,
i.e. α̂ ⊆ α. Similarly, an IA or RA network is τ -closed if all its constraints are
τ -closed.

The following lemmas are easy to check.

Lemma A.4. For an RCC8 relation θ, ERA(θ) is τ-closed, where ERA(θ) is
the smallest ERA relation which contains θ.

Lemma A.5. Each DIR49 relation is τ-closed.

Since the intersection of two τ -closed relations is also τ -closed, by the above
lemmas we have

Lemma A.6. For an RCC8 relation θ and a DIR49 relation δ, δ[θ] is τ-closed,
where δ[θ] = δ ∩ ERA(θ).

The next theorem follows directly from Lemma A.3.

Theorem A.1. Let N = {viδijvj}ni,j=1 be a τ-closed RA network. If N is
satisfiable, then it has a satisfiable scenario N ′ = {viδ′ijvj}

n
i,j=1 such that each

δ′ij has the form λx
ij ⊗ λy

ij , where λx
ij , λ

y
ij ∈ {b, o, d, eq, di, oi, bi}.

Proof. By Lemma A.3, the τ -version of N is also satisfiable. This implies it has
a satisfiable scenario N ′ which satisfies the above condition.

Recall that an RA network is satisfiable if and only if its corresponding ERA

network is (see Lemma 3.1). As a corollary of Theorem A.1 and Lemma A.6,
we have

Theorem A.2 (Theorem 7.1). Let Ntop be a path-consistent RCC8 network,
and let Ndir be a DIR49 network. Suppose N dir is satisfiable. Then N dir

has a satisfiable scenario N ′
dir = {viδ′ijvj}

n
i,j=1 such that each δ′ij has the form

λx
ij ⊗ λy

ij , where λx
ij , λ

y
ij ∈ {b, o, d, eq, di, oi, bi}.

Proof. Because N dir is τ -closed, the conclusion follows directly from Theo-
rem A.1.
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B Proof of Theorem 7.2

Theorem B.1 (Theorem 7.2). Let Ntop = {viθijvj}ni,j=1 be a satisfiable RCC8
basic network. Suppose {ri}

n
i=1 is a collection of rectangles that are compatible

with Ntop. Then we have a solution {a∗i }
n
i=1 of Ntop such that each a∗i is a

bounded region and MBR(a∗i ) = ri for any 1 ≤ i ≤ n.

Proof. The proof is similar to that given for RCC8 (cf. [32, 20, 22]). First, we
define l(i), the ntpp-level of vi, inductively as follows:

• l(i) = 1 if there is no j such that θji = NTPP;

• l(i) = k+1 if there is a variable vj such that (a) l(j) = k and θji = NTPP;
and (b) θmi = NTPP implies l(m) ≤ k for any variable vm.

For each rectangle ri, we write eil (Eil, resp.) (l = 1, 2, 3, 4) for the four edge
(corner points, resp.) of ri. Moreover, for each edge eil, we choose n points P j

il

(1 ≤ j ≤ n) such that

• if i 6= i′ or j 6= j′ or l 6= l′, then P j
il and P j′

i′l′ are distinct;

• no P j
il is a corner point of any rectangle rk.

Furthermore, for i 6= j, if θij is EC or PO, we choose two new points Qij and
Qji in the interior of ri ∩ rj such that Qij and Qji are not in any edge of any

rectangle rk. Set N to be the set of all these points Eil, P
j
il, Qij , and set δ1 > 0

to be the smallest distance between two points in N .
For a point P in N , and an edge eil of a rectangle ri, if P is not in eil,

then d(P, eil) ≡ min{d(P, P ′) : P ′ ∈ eil}, the distance from P to eil, is nonzero.
Therefore the distance from any point P in N to any edge eil with P 6∈ eil is
bigger than a positive real number, say δ2.

Choose δ > 0 smaller than both δ1 and δ2. For each point P in N , construct
a system of concentric disks {p(1), · · · , p(n)} as in Figure 10, where p(i) is a disk
centered at P with radius ri such that 0 < r1 < r2 < · · · < rn < δ/4. If
θij = EC and P = Qij , then write q−ij and q+ij for the left and right halves of

the disk q
(1)
ij .

Now we construct n bounded regions {a∗i }
n
i=1 as follows.

• ai = ri ∩
⋃4

k=1 p
(1)
il ;

• a′i = ai ∪
⋃
{q

(−)
ij ∪ q

(+)
ji : θij = EC} ∪

⋃
{q

(1)
ij ∪ q

(1)
ji : θij = PO};

• a′′i = a′i ∪ {a
′
k : θki is TPP or NTPP};

• a∗i = a′′i ∪
⋃
{p(l(i)) : P ∈ N and (∃j)[θji = NTPP and p(1) ∩ a′′j 6= ∅]}.

Then {a∗i }
n
i=1 is a solution of Ntop. Moreover, we have ri = MBR(a∗i ).
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p(1)

p(2)

· · ·· · ·

p(n)

✰

p− p+

·
·
·

·
·
·

Figure 10: An illustration of the NTPP-chain centered at P .

C Proof of Lemma 7.3

Lemma C.1 (Lemma 7.3). For an RCC8 relation θ ∈ Ĥ8 and an ERA relation
δ, if θ[δ] 6= ∅ and δ[θ] 6= ∅, then ~(θ) = ~(θ[δ]).

Proof. We prove this case by case.

• If DC ⊆ θ, we assert that DC is contained in RCC(δ), hence in θ[δ] =
θ∩RCC(δ). This is because, by Lemma 5.3, DC is contained in RCC(δ′]
for any basic ERA relation δ′. By definition of ~ we know ~(θ[δ]) = DC.

• If DC ∩ θ = ∅ but EC ⊆ θ, we assert that EC is contained in RCC(δ),
hence contained in θ[δ]. This is because, by Lemma 5.3, EC is contained
in each RCC(δ′] for any basic ERA relation δ′ that is not an MDC

relation. Moreover, since θ[δ] = θ∩RCC(δ) is nonempty, RCC(δ) 6⊆ DC.
This implies that δ contains a non-MDC basic ERA relation. Therefore
EC ⊆ RCC(δ).

By definition of ~ we know ~(θ[δ]) = EC.

• If (DC ∪ EC) ∩ θ = ∅ but PO ⊆ θ, we assert that PO is contained in
RCC(δ), hence contained in θ[δ]. This is because, by Lemma 5.3, PO is
contained in each RCC(δ′] for any basic ERA relation δ′ that is neither
an MDC nor an MEC relation. Moreover, since θ[δ] = θ ∩ RCC(δ)
is nonempty, RCC(δ) 6⊆ DC ∪ EC. This implies that δ contains a basic
ERA relation that is neither MDC nor MEC. Therefore PO ⊆ RCC(δ).

By definition of ~ we know ~(θ[δ]) = PO.

• If (DC ∪ EC ∪ PO) ∩ θ = ∅ but TPP ⊆ θ, we assert that TPP is
contained in RCC(δ), hence contained in θ[δ]. This is because for a basic
ERA relation δ′, by Lemma 5.3, TPP is contained in RCC(δ′) if and
only if δ′ is an MTPP or MNTPP or MEQ relation. Since θ is in
Ĥ8, it must be contained in P. Furthermore, since θ[δ] = θ ∩RCC(δ) is
nonempty, P ∩ RCC(δ) 6= ∅. This is possible only if δ contains a basic

37



ERA relation that is either MTPP or MNTPP or MEQ. In each case,
we have TPP ⊆ RCC(δ).

By definition of ~ we know ~(θ[δ]) = TPP.

• The case when (DC ∪EC ∪PO) ∩ θ = ∅ but TPP∼ ⊆ θ is similar.

• For all the other cases, we know θ must be a basic relation. Since θ ⊇
θ[δ] 6= ∅, we know θ[δ] = θ. That is, we also have ~(θ[δ]) = ~(θ) in this
case.

This ends the proof.
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