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AGGREGATE CERTAINTY ESTIMATORS
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Selecting an effective method for combining the votes of base inducers in a multiclassifier system can have
a significant impact on the system’s overall classification accuracy. Some methods cannot even achieve as high
a classification accuracy as the most accurate base classifier. To address this issue, we present the strategy of
aggregate certainty estimators, which uses multiple measures to estimate a classifier’s certainty in its predictions
on an instance-by-instance basis. Use of these certainty estimators for vote-weighting allows the system to achieve
a higher overall average in classification accuracy than the most accurate base classifier. Weighting with these
aggregate measures also results in higher average classification accuracy than weighting with single certainty
estimates. Aggregate certainty estimators outperform three baseline strategies, as well as the methods of modified
stacking and arbitration, in terms of average accuracy over 36 data sets.
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1. INTRODUCTION

In the late eighteenth century, the Marquis de Condorcet composed the Essay on the
Application of Analysis to the Probability of Majority Decisions. It outlined the concept now
known as the “Condorcet Jury Theorem,” the idea that, if each member of a group has a greater
than 50% chance of making a correct decision, the probability that a plurality of voters will
make the correct decision increases as voters are added. The essay was originally intended to
provide a theoretical argument for the benefits of democracy. However, the concept also has
application in the field of supervised learning. In theory, a group of classifiers should be better
suited to the task of classification. The base classifiers need not even be highly accurate. As
long as each classifier can exhibit a better-than-random performance, an ensemble of these
classifiers should be able to take advantage of the expertise of each to assign more accurate
classifications. Schapire (1990) demonstrated how a collection of “weak” classifiers—ones
that perform only slightly better than random guessing—can be combined to produce a
classifier with arbitrarily high accuracy. This provided the theoretical basis for his well-
known AdaBoost algorithm, (Freund and Schapire 1996; Schapire and Singer 1998). Other
researchers have proposed similar ensemble-creation strategies, ranging from the simple
strategy of bagging (Breiman 1996) to random forests (Breiman 2001) and Bayesian model
averaging (Hoeting et al. 1999).

Rokach (2010) outlines four basic building blocks of an ensemble: a labeled training
set, a base inducer, a diversity generator, and a combiner. A number of strategies can be
used in selecting the base inducers and generating diversity. For example, with the adaptive
mixture of local experts strategy (Jacobs et al. 1991), a gating network determines the
probability of selecting the output of one of the base inducers. Delegating (Ferri, Flach,
and Hernandez-Orallo 2004) is an approach where a base inducer assigns the final class
label to a given instance only if it has highcertainty in that particular class. If it is less
confident, the instance is delegated to another base inducer. Diversity can be generated by
selecting different subsets of the training set for use in training each of the base inducers.
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With bagging (Breiman 1996), instances are drawn randomly with replacement from the
original training set to create a new set with which to train the base inducers. The AdaBoost
algorithm (Freund and Schapire 1996; Schapire and Singer 1998) takes into account which
instances were misclassified by previously constructed base inducers when selecting data for
training subsequent ones. Multiclassifier systems address the problem of diversity generation
by using different algorithms for training their base inducers. For example, Ho, Hull, and
Srihari (1994) use four different algorithmic approaches to character recognition and discuss
methods of combining their outputs.

This work focuses on the fourth aspect outlined by Rokach: combining the outputs of
the base inducers. It investigates the possibility that the same principle of combining weak
classifiers to produce a strong one can also be applied to the weighting strategies used when
combining the votes of those classifiers. While, as in the case of Naı̈ve Bayes, there is
often a standard method for estimating confidence in a classifier’s predictions, certainty in
classification can be estimated in a variety of ways. If each of these methods can demonstrate
even a slight tendency for assigning higher certainly values to correctly classified instances
as opposed to incorrectly classified instances, they could theoretically be combined to create
a more accurate measure of certainty, much as weak inducers in an ensemble can be combine
to form a stronger classifier.

These multiple measures are incorporated into the strategy of aggregate certainty esti-
mators. With this technique, the votes of classifiers are weighted by certainty as determined
on an instance-by-instance basis. Each classifier is trained using a different algorithm on
the same training data set. Then, each instance in the test set is assigned a class value and
an overall certainty rating for that classification by each of n classifiers. Multiple factors
are taken into consideration when determining this overall certainty rating. For example, six
different certainty estimators are used to calculate certainty in the prediction of a decision
tree classifier. A given instance would receive six certainty ratings, reflecting properties such
as the purity of the leaf node in which it was classified and the number of instances classified
at that leaf. These six numbers are then aggregated to produce an overall certainty rating
for the decision tree’s classification of this particular instance. A similar method is used to
calculate an overall certainty rating for each of the classifiers. The class label assigned to the
instance is then calculated by summing the weights for each possible label and selecting the
class label with the maximum total.

The technique of aggregate certainty estimators is shown to achieve higher average
classification accuracy over 36 data sets than the standard combination strategies employed
by Bagging and Boosting as well as the SelectBest strategy of allowing the most accurate
classifier in the system to make all the classifications. It also outperforms Arbitration (Ortega,
Koppel, and Argamon 2001) and the Stacking algorithm presented by Dzeroski and Zenko
(2004) in terms of average classification accuracy.

Section 2 of this work provides an overview of related research. Section 3 outlines the
aggregate certainty estimators algorithm. Section 4 presents certainty estimators for five
common classification algorithms. Section 5 provides results comparing aggregate certainty
estimators with standard voting, voting by accuracy, the SelectBest strategy, Arbitration,
and Modified Stacking. Section 6 outlines conclusions and suggests options for further
research.

2. RELATED WORK

One common method of combining votes of base classifiers on an instance-by-instance
basis is to use posterior class probabilities (Rokach 2010). However, most traditional
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classifiers are not naturally designed to output these probabilities. Thus, statistical or heuris-
tic estimates of how certain a given classifier should be in its classification of an instance
can prove useful.

For example, Provost and Domingos (2003) found that using a simple Laplace correction
improves probability-based rankings. Specific pruning strategies and bagging techniques also
resulted in ranking improvement. Ferri, Flach, and Hernandez-Orallo (2003) found that the
performance of these trees could further be improved by using different splitting criteria and
a new smoothing technique that considers all the nodes along the classification path from
root to leaf. These types of techniques have also been applied to rule-based classifiers. For
example, Dzeroski, Cestnik, and Petrovski (1993) used the m-estimate to smooth probabilities
and make predictions more effective.

While Naı̈ve Bayes classifiers naturally produce a probability distribution for all class
values, Domingos and Pazzani (1997) found that the power of the Naı̈ve Bayes classifier
lies more in the ordering of the classes than the actual probabilities predicted. They found
that the classifier performs surprisingly well, even when the prior assumption of feature
independence is clearly not met. Other researchers, He and Xiaoqing (2007), introduce a
number of smoothing methods that can improve these probability estimates, resulting in
more accurate and stable estimates than those that can be achieved with Laplace smoothing.

Unlike Bayesian models, multilayer perceptrons do not calculate class probabilities
explicitly, but Ruck et al. (1990) provide a proof that the activation outputs of a multilayer
perceptron approximate these probabilities. Richard and Lippman (1991) also found that the
accuracy of these probability estimates depended on the network complexity, the amount of
training data, and how well the training data represented true a priori class probabilities.

In addition, while combining votes of base inducers according to class probabilities may
be an intuitive method, other methods benefit from taking additional factors into considera-
tion. For example, Dolev, Leshem, and Yagel (2010) focus on attributes of the data set when
determining how to weight votes. Their algorithm assumes a percentage of corrupted data,
and they statistically analyze the data and attempt to remove corrupted data by identifying
outliers in the distributions. The estimated distribution parameters are also used to deter-
mine the likelihood of feature values in the training set and a corresponding certainty level
for leaf nodes in a decision tree where these training set instances are classified. Carney,
Cunningham, and Bhagwan (1999) focus on the variances among the distributions of base
classifier output when determining how votes should be combined. Ali and Pazzani (1996)
compare simple voting to three other evidence combination methods. “Bayesian Combi-
nation” approximates the optimal Bayes approach, taking into account both accuracy on
training data set and posterior probabilities when weighting rule output. The “Distribution
Summation” method takes into account the number of training instances covered by a given
rule. “Likelihood Combination” takes both coverage and training set accuracy into account
when assigning weights.

In most cases in literature, estimates of certainty are calculated using a single measure,
and improvements are aimed at finding ways to smooth and improve this single measure’s
accuracy. Certainty measures may take into account variables such as the inherent properties
of a classifier, how classifiers behave in an overall system, or distributions of attributes in
a data set. However, given the variety of things that may be considered when estimating
certainty of classification, it stands to reason that an algorithm could greatly benefit from
taking multiple variables into account. The certainty estimators incorporated in this work
include traditional class probability estimators, but also consider other features discussed by
researchers such as data set coverage and distributions of base classifier outputs.

To demonstrate the usefulness of our proposed weighting system, we compare the tech-
nique of aggregate certainty estimators to other methods that weight votes of base classifiers
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FIGURE 1. Values calculated for a component classifier during training of aggregate certainty estimators.

on an instance-by-instance basis. Arbitration (Ortega et al. 2001) creates a “referee” to deter-
mine the certainty that a learning model has in its classification of the various subdomains of
a given problem. Information about both the misclassification of instances and the classifiers
themselves is used in the development of the metalearner referees. Stacking (Wolpert 1992)
makes use of a metalevel learning algorithm that discovers the best way to combine outputs
from the base-level classifiers.

Dzeroski and Zenko (2004) found that the accuracy of an ensemble over a data set is often
no better than the accuracy of one of the classifiers contributing to the ensemble. To justify
the overhead of creating an ensemble, the ensemble should be able to perform better than a
strategy of simply selecting the best classifier by cross-validation. In the algorithms Dzeroski
and Zenko explore, only their Modified Stacking strategy was able to consistently achieve
this level of performance. We demonstrate that our strategy of aggregate certainty estimators
also tends to outperform the single most accurate base classifier in a given ensemble.

3. AGGREGATE CERTAINTY ESTIMATORS

Let C1 . . . Cn be classifiers constructed using instances from a training set A. For each
classifier Ci , m predefined certainty estimators are used to calculate certainty estimates. For
a given instance k in the training set, a vector hk

i of m certainty values is calculated, with hk
i j

being the value assigned to instance k by the j th certainty estimator of classifier Ci .
For each classifier Ci , let ŷi be the predictions of Ci over the training set A, with ŷk

i
being the class label assigned by classifier Ci when instance k appeared in a test fold during
cross-validation on the training set. Let y be a vector of the target values for the training
instances, and zi be a vector describing ŷi = y. In other words, if ŷk

i = yk , then zk
i = 1; if

not, zk
i = 0. For each classifier Ci , let ri be a vector of correlation values, where ri j is the

correlation between zi and hi j . The values in ri are then scaled to sum to one. Figure 1
outlines the values calculated for each classifier in the ensemble.
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FIGURE 2. Values calculated by aggregate certainty estimators to evaluate an unlabeled instance.

For each unlabeled instance x , let ŷx
i be the class label assigned to instance x by

classifier Ci . Let hx
i be a vector of certainty values calculated for the classification of

instance x by classifier Ci . These values will be used in determining how much weight
the overall ensemble should assign to the classification ŷx

i . To make the values assigned
by the various estimators more uniform among the classifiers, hx

i j is normalized using the
maximum and minimum values from the vector hi j of values calculated for training set
instances.

Let w x
i be the dot product of hx

i and ri . This aggregate measure is then used to weight ŷx
i .

The class label assigned to x by the overall ensemble is calculated by summing the weights
for each possible label and selecting the class label with the maximum total. Figure 2 outlines
the values calculated for unseen instances. The strategy of aggregate certainty estimators is
outlined in Figure 3.

As concrete example, six measures were used to describe certainty of classification by a
rule-based classifier in our experiments. These measures include such factors as the purity
of classification of training set instances covered by the rule and the number of instances
covered. These six numbers were then averaged to produce an overall certainty measure.
In a similar fashion, overall certainty measures are calculated for each of the five learning
algorithms incorporated in the multiclassifier system. These measurements are calculated
for both training set and test set instances.

This means that for a training set with 135 instances (e.g., the iris data set using 10-fold
cross-validation), a 135 × 5 matrix would be generated, with one row for every instance in
the training set and one column for every classifier incorporated in the overall system. A
correlation value would then be calculated between each column of the matrix and a column of
“1”s and “0”s that described whether each of the training set instances was correctly classified
in cross-validation experiments on the training set (e.g., train a rule-based classifier on
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1.Train each of n classifiers C1...Cn using training set A.
A. Determine the following for each classifier Ci:

1. For each instance k in A:

a. Calculate vector hk
i of certainty values using m estimators specific to Ci

b. Calculate ŷk
i , the prediction of class label by Ci when k appeared in a test fold

during cross-validation on A

c. Identify yk , the target value for instance k
2. Define zi to be a vector describing ŷi

= y
3. Calculate vector ri of correlation values where rij is the correlation between zij and hij

(Scale each value in ri: rij = rij /Σm
j=1rij so that values sum to one)

2. For an unlabeled instance x:

A. For each classifier Ci:

1. Determine ŷx
i , the class value of x as predicted by Ci

2. Create vector hx
i of certainty values using m estimators specific to Ci

(Scale each value in hx
i : hx

ij = (hx
ij − minij )/(maxij − minij ) where

maxij and minij are the maximum and minimum hk
ij values from the training set)

3. wx
i = hx

i · ri

B. Class value for x = argmaxy∈Y (Σn
i=1δ(y, ŷx

i )wx
i )

δ(y, ŷi) =
1 when ŷi = y
0 otherwise

FIGURE 3. Aggregate certainty estimators.

134 test set instances and determine if the resulting classifier could correctly label the 135th
instance of the training set1).

In our example, five certainty measures would also be calculated for each test set instance.
Each measure would then be multiplied by the correlation value for its respective classifier.
These values would then be used to weight the predictions from each classifier. For example,
assume the following for a given instance:

Classification Certainty estimator Correlation value

Decision tree iris-setosa 0.93 0.15
Rule-based classifier iris-setosa 0.84 0.10
Instance-based classifier iris-virginica 0.23 0.36
Naı̈ve Bayes classifier iris-virginica 0.87 0.45
Multilayer perceptron iris-setosa 0.66 0.22

Summing the votes for iris-setosa: 0.93 ∗ 0.15 + 0.84 ∗ 0.10 + 0.66 ∗ 0.22 = 0.3687.
Summing the votes for iris-virginica: 0.23 ∗ 0.36 + 0.87 ∗ 0.45 = 0.4743. Finding the max-
imum value, the overall system would assign the label of ”iris-virginica” to this particular
instance.

1 In the experiments described in this paper, hold-one-out cross-validation was used to generate this column, simply to
provide a higher degree of accuracy in evaluating the measures. In practice, cross-validation with a low number of folds could
generate this column at much less expense in terms of computation time.
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4. MULTIPLE CERTAINTY ESTIMATORS

This section contains the information about the certainty estimators used to predict
certainty in classifications for each of five different algorithms. The five algorithms used in
this work were selected because they are representative of standard classes of algorithms
used in machine learning. Many of the certainty estimators presented here could be adapted
for use with similar machine learning algorithms. The algorithms used in this work are
implemented using Weka open source code (Witten and Frank 2005). Default settings are
used for each of the algorithms to allow for easier reproduction of results. These settings
allowed for reasonable performance of the base classifiers on the test data sets.

While we have tried to select diverse models to represent the spectrum of machine
learning algorithms, the technique of aggregate certainty estimators could be applied to
ensembles with any number and type of base-level classifiers. The systems of the five base-
level classifiers discussed here are designed simply to present the concept. One classifier of
each type is used for parsimony and to avoid skewing the ensemble in favor of any particular
classifier.

Efficacy of the various certainty estimators is evaluated using 36 data sets taken from
the UCI Repository (Hettich, Blake, and Merz 1998). Table 1 provides information about
these data sets. Data sets were selected so as to achieve variety in number of instances,
attributes, attribute types, and output classes. The data sets range from 90 to 2,310 instances,
5 to 70 attributes, and 2 to 24 output classes. Roughly, a third of the data sets feature
discrete attributes, another third have real-valued attributes, and the remaining data sets have
a mixture of discrete and real-valued attributes. Ten of the data sets contain missing values.
In the case of discrete attributes, missing values were replaced by the most common value for
the given attribute. For data sets with real-valued attributes, unknown values were replaced
with the average value for the attribute.

To evaluate the certainty measures for each of the algorithms studied, 10-fold cross-
validation experiments were conducted for each of the data sets. Instances were marked
as correctly or incorrectly classified based on the classifier’s ability to classify the instance
when it appeared in the test set. This correctness of classification is compared to the certainty
measure assigned to each instance by each of the certainty estimators. Please note that the
correct/incorrect labels assigned to test instances and used for the purposes of evaluating
the certainty measures are independent of the correct/incorrect labels assigned to instances
during training.

Just as base inducers must exhibit at least slightly better-than-random performance to
provide benefit to an ensemble, we specify a baseline measure of performance for our
certainty estimators.

Graphs such as the one in Figure 4 were constructed for each of the measures studied.
This graph shows the number of instances receiving a given certainty value that were correctly
and incorrectly classified. While real-valued, unbinned certainty estimates are used in the
actual classification experiments, for clarity in graphing, certainties are grouped in discrete
bins (e.g., certainty values from 0.5 to 0.59 are all graphed as 0.5). The bar on the left for
each bin represents the number of instances receiving this certainty value that were correctly
classified. The bar on the right represents the number of instances that were incorrectly
classified. For the purity certainty estimator, the far right-hand bin in the graph shows that
out of all 36 data sets, 5,128 instances receiving a certainty value of 1.0 were correctly
classified, and 863 instances receiving this certainty value were incorrectly classified.

We fit a trend line to the percentage of correctly classified instances in each of the various
bins using least-squares regression. Each measure included in our experiments satisfies the
minimum requirement that this trend line has a positive slope. Intuitively, this indicates that
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TABLE 1. Information for Data Sets.

Number of Number of Output Attribute Missing
instances attributes classes type attributes?

anneal 898 39 6 Mixed no
audiology 226 70 24 Discrete yes
balance-scale 625 5 3 Real no
bupa 345 7 2 Real no
car 1,728 7 4 Discrete no
cmc 1,473 10 3 Mixed no
colic 368 23 2 Mixed yes
credit-a 690 16 2 Mixed yes
credit-g 1,000 21 2 Mixed no
dermatology 366 35 6 Mixed yes
diabetes 768 9 2 Real no
ecoli-c 336 8 8 Real no
glass 214 10 7 Real no
haberman 306 4 2 Real no
heart-disease 294 14 5 Mixed yes
heart-statlog 270 14 2 Real no
hepatitis 155 20 2 Mixed yes
ionosphere 351 35 2 Real no
iris 150 5 3 Real no
lymph 148 19 4 Mixed no
monks 432 7 2 Discrete no
postop 90 9 3 Discrete no
primary-tumor 339 18 22 Discrete yes
segment 2,310 20 7 Real no
sonar 208 61 2 Real no
soybean 683 36 19 Discrete yes
spect 267 23 2 Discrete no
tic-tac-toe 958 10 2 Discrete no
vehicle 846 19 4 Real no
vote 461 17 2 Discrete no
vowel 990 14 11 Mixed no
wine 178 14 3 Real no
wisconsin-cancer 286 10 2 Discrete yes
yeast 1,484 9 10 Real no
yugoslavia-cancer 699 10 2 Real no
zoo 101 17 7 Discrete no

the measure is more likely to assign a high certainty value to a correctly classified instance
as opposed to an incorrectly classified one. Figure 5 shows such a line for the decision tree
purity certainty estimator.

Each subsection contains information about the various algorithms and the certainty
estimators used for each. A table outlining the correlation between the various certainty
estimators and correctness in test set classification is also included.
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FIGURE 4. Decision tree purity certainty estimator—treatment of correct and incorrect instances.

FIGURE 5. Decision tree purity certainty estimator—percentage of correctly classified instances per bin.

4.1. Decision Tree—J48

To demonstrate the effectiveness of multiple certainty measures, we provide a case study
with the measures used for decision trees. The J48 algorithm is the Weka implementation of
the C4.5 algorithm (Quinlan 1993), an extension of the ID3 decision tree algorithm (Quinlan
1986). Six different certainty estimators are used to predict certainty in this algorithm’s
classification of a given instance:2

(i) The number of instances with the predicted class at the leaf node when the given
instance is classified (the purity of classification at that node).

2 For a more rigorous presentation of these and all other certainty estimators mentioned in this paper, please see the
Appendix.



 COMPUTATIONAL INTELLIGENCE

TABLE 2. Decision Tree Certainty Estimators and Correlation with Correctly Classified Instances.

Certainty estimator Correlation

1. Purity of classification 0.219
2. Instances at leaf node 0.167
3. Level of leaf node 0.199
4. Information gain along path −0.072
5. Correctly classified instances 0.280
6. Correctly classified voters 0.248
Aggregate certainty estimator 0.292

(ii) The number of instances at the leaf node.
(iii) The level of the tree at which the given instance is classified.
(iv) The average of the information gain statistics along the classification path (normalized

by maximum possible information gain for a given data set).
(v) The percentage of instances at the leaf node that were correctly classified in hold-one-

out cross-validation experiments on the training set.
(vi) The percentage of instances at the leaf nodes with the predicted class for that node that

are correctly classified in hold-one-out cross-validation on the training set.

The first certainty estimator is a standard method for predicting certainty in the classifi-
cation of a decision tree (Witten and Frank 2005). The second and third provide an effective
complement to the first by providing information about the amount of overfit, and thus how
much the first should be trusted. The fourth certainty estimator provides information about
how effectively a given attribute is able to split the data at each level of the decision tree,
assuming that strong attributes will lead to more confident classifications. The fifth identifies
how effective the classifier is at classifying the instances in this particular section of the
data. The sixth certainty estimator provides information about how effectively the classifier
was able to classify the instances specifically contributing to the classification of the given
instance.

Figure 6 provides information about the behavior of each certainty estimator on the data
sets shown in Table 1. For example, the graph in the top left of the figure displays information
about the certainty estimator measuring purity of classification at the leaf node of a decision
tree.

Table 2 shows the correlation between correctness of classification and values pro-
vided by each certainty estimator. One can infer from this and Figure 6 that the purity of
classification measure and the two certainty measures concerned with correctly classified
instances appear to be better predictors of correctness of classification for test instances.
However, the other certainty estimators do provide additional information that may be use-
ful, particularly when taken into consideration with the more accurate certainty-predicting
measures.

For example, with the haberman data set, a majority of the correctly classified instances
were assigned a certainty rating of 0.82 by the purity certainty estimator. The few in-
stances receiving higher certainty ratings were all misclassified. However, the misclassified
instances that received deceptively high certainty ratings from the purity certainty estimator
were generally found in leaf nodes that contained only a few instances. Thus, they received
lower certainty ratings both from the certainty estimator that measured the percentage of
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FIGURE 6. Decision tree certainty estimators treatment of correct and incorrect instances.

instances at the leaf node and the one that measured the level of the tree. A combination of
these certainty estimators is better at predicting whether or not an instance from this data set
will be correctly classified.

Table 2 shows that, on average, the certainty estimator relating to information gain was
slightly negatively correlated with correctness of classification. However, this measure proved
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effective on selected data sets. For example, on the hepatitis data set, correlation between
the information gain certainty estimator and correctness of training set classification was
0.153, while correlation with the purity of classification estimator was only 0.091. Overall
accuracy of the aggregate certainty estimators strategy on the hepatitis data set as evaluated
by 10-fold cross-validation was 85.16% when the information gain estimator was included,
and only 84.52% when it was excluded. The inclusion of this certainty estimator resulted
in an improvement in accuracy of aggregate certainty estimators on 16 of the 36 data sets
studied. It reduced accuracy on only three of the data sets.

Similar patterns can be seen for the certainty estimators presented for all of the algorithms
studied. For each of the estimators studied, higher certainty values generally corresponded
with a higher percentage of correctly classified instances. More specifically, a trend line
fit to a percentage of correct instances for each binned certainty estimator had a positive
slope (e.g., Figure 5); instances assigned the highest certainty measure were more likely
to be correctly classified than instances assigned the lowest certainty measure for each of
the estimators studied. This is true even for certainty estimators that exhibit low average
correlation with correctness of classification. However, in each case, the aggregate certainty
estimator was significantly more correlated with correctness of classification than each of
the individual estimators.

The Friedman test indicates that there are significant differences among the correlations
of the various certainty measures. (92.45 ∼ χ2, DF = 6, p <= 0.0001). The Bonferroni–
Dunn post-hoc test indicates that the differences in average ranks between aggregate certainty
estimator and five of the six other estimators exceed the critical difference for significance at a
certainty level of 95% (adjusted α = 0.05

7−1 , critical difference = 1.319, mean rank differences:
2.750, 2.438, 1.921, 4.781, 0.953, 2.031).

4.2. Multilayer Perceptron Trained with Backpropagation

In contrast, we also present an explanation of the certainty estimators used for the
multilayer perceptron. One of the most common methods of training a multilayer perceptron,
backpropagation incrementally changes the weights between nodes when these weights are
responsible for the misclassification of instances during training (Rumelhart, Hinton, and
Williams 1986). These experiments use a multilayer perceptron with a single hidden. The
following are considered in trying to predict certainty in classification by the multilayer
perceptron:

(i) The activation output for the selected classification.
(ii) The difference between the highest and second highest activation outputs.

(iii) The percentage of the five neighbors nearest in activation output that were correctly
classified in hold-one-out cross-validation on the training set.

(iv) The percentage of the five neighbors nearest in activation output of the hidden layer
that were correctly classified in hold-one-out cross-validation on the training set.

(v) The average difference in activation output between the selected classification and
its five nearest neighbors compared to the average of this statistic computed for all
instances.

(vi) The average difference in hidden-layer activation output between the selected classifi-
cation and its five nearest neighbors compared to the average of this statistic computed
for all instances.

The first and second certainty estimators provide information about the certainty of a
given classification and certainty relative to other possible classifications. The third and
fourth provide information about how confident the classifier is on this region of the input
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TABLE 3. Multilayer Perceptron Certainty Estimators and Correlation with Correctly Classified Instances

Certainty estimator Correlation

1. Activation output 0.053
2. Highest minus second 0.051
3. Correctly classified neighbors 0.295
4. Correctly classified neighbors (hidden layer) 0.266
5. Average distance to neighbors 0.239
6. Average distance to neighbors (hidden layer) 0.157
Aggregate certainty estimator 0.310

space. All the instances in the training set are considered, and the five with output vector most
similar to the instance in question are then used to calculate the certainty estimator. The third
certainty estimator uses the outputs from the standard output nodes to identify the nearest
neighbors. The fourth certainty estimator uses the outputs from the hidden nodes. The fifth
and sixth certainty estimators provide information about how similar a given instance is to
previously seen instances, based on the assumption that the classifier will be more effective
at predicting a class value for an instance similar to one that it has seen before. Figure 7
shows the behavior of these certainty measures on data set instances.

As illustrated by the graphs in Figure 7, all of these heuristics tend to assign a 1.0
certainty rating to a large number of correctly classified instances. The number of correctly
classified instances at each certainty rating tends to taper off as the ratings become lower.
On average, the heuristics for this classifier were more highly correlated with each other
than the heuristics for other classifiers. However, an examination of the certainty ratings
assigned to individual instances in the data sets shows that there is enough variation that each
heuristic does provide some extra information to a classifier. The biggest jump in correlation
with correctness of classification between individual certainty measures and an aggregate
certainty estimator was seen with the multilayer perceptron.

Table 3 reports how values assigned by these certainty measures correlate with correct-
ness of classification. The Friedman test indicates that there are significant differences among
the correlations of the various certainty measures. (127.99 ∼ χ2, DF = 6, p <= 0.0001).
The Bonferroni–Dunn post-hoc test indicates that the differences in average ranks between
aggregate certainty estimator and five of the six other estimators exceed the critical difference
for significance at a certainty level of 95% (adjusted α = 0.05

7−1 , critical difference = 1.216,
mean rank differences: 4.329, 4.529, 0.943, 1.643, 1.871, 2.786).

4.3. Rule-Based Classifier—Decision Table

These experiments use one of Weka’s rule-based classifiers called a Decision Table
(Kohavi 1995). This algorithm selects a set of attributes to be used in determining classi-
fication, and produces a classification for each combination of observed values for these
attributes. The following attributes are taken into consideration when trying to predict cer-
tainty in this algorithm’s classification of a given instance:

(i) The number of instances with the predicted class covered by the rule.
(ii) The number of antecedents in the rule.

(iii) The number of instances covered by the rule.
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FIGURE 7. Multilayer perceptron certainty estimators treatment of correct and incorrect instances.

(iv) The percentage of instances covered by the rule that were correctly classified in hold-
one-out cross-validation experiments on the training set.

(v) The percentage of instances covered by the rule with the predicted class for that rule
that were correctly classified in hold-one-out cross-validation on the training set.

(vi) Whether or not this instance is covered by a rule.
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TABLE 4. Rule-Based Classifier Certainty Estimators and Correlation with Correctly Classified Instances.

Certainty estimator Correlation

1. Purity of classification 0.147
2. Number of antecedents −0.004
3. Number of instances covered 0.110
4. Correctly classified instances 0.139
5. Correctly classified voters 0.102
6. Instance is covered by rule 0.217
Aggregate certainty estimator 0.240

The rationale for these certainty estimators is similar to the rationale for the decision
tree certainty estimators. The first is a standard measure of certainty. The second and third
assess the probability of overfit or underfit. The fourth and fifth measure the effectiveness
and strength of classification. They indicate how effectively the decision table was able to
classify instances that would end up in this region and how effectively the most pertinent
instances in this region can be classified. The sixth certainty estimator indicates whether or
not a rule was found in the table that covered the given instance to be classified. Table 4 shows
how values assigned by these certainty measures correlate with correctness of classification.

The Friedman test indicates that there are significant differences among the correlations
of the various certainty measures. (55.96 ∼ χ2, DF = 6, p <= 0.0001). The Bonferroni–
Dunn post-hoc test indicates that the differences in average ranks between aggregate certainty
estimator and all six other estimators exceed the critical difference for significance at a
certainty level of 95% (adjusted α = 0.05

7−1 , critical difference = 1.523, mean rank differences:
1.917, 4.542, 2.583, 2.208, 2.874, 2.208).

4.4. Instance-Based Classifier

With the instance-based k-nearest-neighbor algorithm, an instance is classified based
on the classifications of the k instances nearest that instance (Cover and Hart 1967). These
experiments use the five-nearest-neighbor version of the algorithm. Attribute values are
normalized, and standard rather than distance weighted voting is used. Six different options
are used to predict certainty in this algorithm’s classification of a given instance:

(i) The percentage of the first five neighbors that have the same classification as the
predicted class for those five neighbors.

(ii) The difference between the distance weighted vote of the predicted class and the
distance weighted vote of the next highest class.

(iii) The average distance from this instance to its first five neighbors (normalized and
subtracted from one).

(iv) The percentage of the first five neighbors that were correctly classified in hold-one-out
cross-validation on the training set.

(v) The percentage of neighbors with the predicted class that were correctly classified in
hold-one-out cross-validation on the training set.

(vi) A comparison of 3-NN, 5-NN, and 7-NN classifications of a given instance.

The first and second certainty estimators indicate the general certainty in a classification,
and how confident that classification is relative to other possible classifications. The third
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TABLE 5. Instance-Based Classifier Certainty Estimators and Correlation with Correctly Classified
Instances.

Certainty estimator Correlation

1. Neighbors in agreement 0.325
2. Highest minus second 0.343
3. Average distance to neighbors 0.114
4. Correctly classified neighbors 0.276
5. Correctly classified voters 0.198
6. 3-NN versus 5-NN versus 7-NN 0.242
Aggregate certainty estimator 0.358

measures how close the neighbors are to the individual instance, making the assumption
that an instance closer to other instances is more likely to be correctly classified. The fourth
and fifth certainty estimators measure the classification accuracy of instances in this region
and the accuracy on instances contributing to the classification of the instance in question.
The last certainty estimator indicates the effectiveness of using this particular number of
neighbors to classify the given instance. Table 5 reports correlation between values assigned
by these measures and correctness of classification.

The Friedman test indicates that there are significant differences among the correlations
of the various certainty measures. (99.96 ∼ χ2, DF = 6, p <= 0.0001). The Bonferroni–
Dunn post-hoc test indicates that the differences in average ranks between aggregate certainty
estimator and four of the six other estimators exceed the critical difference for significance at
a certainty level of 95% (adjusted α = 0.05

7−1 , critical difference = 1.261, mean rank differences:
1.257, 0.571, 4.114, 2.143, 3.143, 2.971).

4.5. Naı̈ve Bayes Classifier

The Naı̈ve Bayes classifier uses Bayesian logic to predict class values for each instance
based on the probabilities of the attribute values for that instance (Lang 1995; Mitchell 1997).
The following are considered when trying to predict certainty in classification of a given
instance by the Naı̈ve Bayes classifier:

(i) Probability of the class value predicted by the Naı̈ve Bayes classifier.
(ii) The distance between the predicted probability and the probability of the second most

likely class value for the instance.
(iii) The distance between the predicted probability and the sum of the probabilities for the

remaining class values.
(iv) The average probability across the data set of each attribute value in the instance.
(v) The percentage of the five neighbors nearest in probability that were correctly classified

in hold-one-out cross-validation on the training set.
(vi) The percentage of the nearest five neighbors with the same class value as this instance

that were correctly classified in hold-one-out cross-validation on the training set.

The first certainty estimator is used because it is the standard way of predicting the
certainty of a Naı̈ve Bayes classifier. The second and third certainty estimators are at-
tempts to gain more information about how confident the classifier is in its ordering. The
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TABLE 6. Naı̈ve Bayes Classifier Certainty Estimators and Correlation with Correctly Classified Instances.

Certainty estimator Correlation

1. Probability of class value 0.303
2. Highest minus second 0.298
3. Highest minus remaining 0.303
4. Value probability averages 0.075
5. Correctly classified neighbors 0.371
6. Correctly classified voters 0.306
Aggregate certainty estimator 0.394

fourth certainty estimator addresses the fact that attribute values with lower representation
in a data set may be less effective at contributing to a correct classification. The fifth cer-
tainty estimator is aimed at determining how confident the classifier is in this region of
the input space. With this certainty estimator, the output probabilities of all the instances
in the training data are taken into consideration. The five instances with output probabil-
ities closest to those of the instance in question are then located, and the certainty esti-
mate is calculated by observing the percentage of these five instances that were correctly
classified in hold-one-out cross-validation on the training set. The sixth certainty estima-
tor focuses specifically on neighbors with the same classification as the given instance.
Table 6 shows how values assigned by these certainty measures correlate with correctness
of classification.

The Friedman test indicates that there are significant differences among the correlations
of the various certainty measures. (56.59 ∼ χ2, DF = 6, p <= 0.0001). The Bonferroni–
Dunn post-hoc test indicates that the differences in average ranks between aggregate certainty
estimator and five of the six other estimators exceed the critical difference for significance at a
certainty level of 95% (adjusted α = 0.05

7−1 , critical difference = 1.244, mean rank differences:
1.542, 1.917, 1.417, 3.528, 0.777, 2.097).

5. RESULTS AND DISCUSSION

In this section, the technique of aggregate certainty estimators is compared with a number
of different ensemble combining strategies. Overall accuracy for each method is calculated by
using 10-fold cross-validation and averaging accuracy over each of the 10-folds. Two sets of
experiments are conducted. The first set demonstrates advantages of the aggregate certainty
estimators. The strategy of aggregate certainty estimators is shown to be more effective
than the strategy of weighting by single certainty estimators. The second set of experiments
compares aggregate certainty estimators to a number of baseline ensemble creation strategies.
Specifically, aggregate certainty estimators are also shown to be competitive with other vote
weighting strategies, the SelectBest method, and the methods of Arbitration and Modified
Stacking.

5.1. Results

To motivate the need for multiple certainty estimators, the accuracies of different en-
sembles created with single certainty estimators are tested. Three different options are given
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for selecting single certainty estimators. The first alternate ensemble is created by using
certainty estimators traditionally used in predicting certainty in a classification:

* Decision Tree: Purity of classification.
* Rule-based classifier: Purity of classification.
* Instance-based classifier: Neighbors in agreement.
* Naı̈ve Bayes classifier: Probability of class value.
* Multilayer perceptron: Activation output.

The next ensemble is also constructed using single certainty estimators to predict cer-
tainty. However, in this case, an attempt is made to select more effective certainty estimators.
For this ensemble, each algorithm uses the measure most highly correlated with whether or
not an instance was correctly classified as the method for predicting certainty:

* Decision tree: Correctly classified instances.
* Rule-based classifier: Instance is covered by rule.
* Instance-based classifier: Highest minus second.
* Naı̈ve Bayes classifier: Correctly classified neighbors.
* Multilayer perceptron: Correctly classified neighbors.

In addition, the Weka source code provides a way of calculating a probability distribution
over possible classes for each instance classification. In most cases, Weka’s method of
calculating the probability distribution is similar to the first certainty estimator for each
classifier presented in this work. Weka makes a few modifications and refinements to these
measures. For a third comparison ensemble, the probability distributions predicted by Weka
are used to weight the votes of each of the five classifiers.

All these techniques are then compared to the aggregate certainty estimators’ strategy
of using a larger set of measures to predict certainty. The resulting predictive accuracies, as
shown in Table 7, demonstrate the utility of using more certainty estimators.

An application of the Friedman test reports significant differences in accuracy among
the classifiers. (14.19 ∼ χ2, DF = 3, p <= 0.003). The Bonferroni–Dunn post-hoc test
reveals that the differences in average ranks between aggregate certainty estimators and two
of the three other methods exceed the critical difference for significance at a certainty level of
95% (adjusted α = 0.05

4−1 , critical difference = 0.89, mean rank differences: 1.01, 0.85, 0.92).
An algorithm-by-algorithm comparison between the various strategies using the Wilcoxon
signed-rank test shows that aggregate certainty estimators outperform the other three
algorithms at a certainty level of 99% (p values<=0.0001, 0.001, 0.001).

In the next set of experiments, aggregate certainty estimators are compared with several
different baseline methods. Once again, overall accuracy for each method is calculated by
using 10-fold cross-validation and averaging accuracy over each of the 10-folds. The first
is a standard voting method where each classifier in an ensemble votes on the classification
of an instance and the votes are weighted equally. The second baseline method weights the
votes by the overall accuracy of the classifier on the training data for a given fold of the
experiments. The third baseline method, identified here as the SelectBest method, chooses
the classifier in the ensemble that achieved the highest accuracy on the training data and uses
that classifier alone on the test data.

Aggregate certainty estimators is also compared to the method of Stacking found to be
most effective by Dzeroski and Zenko (2004). In this method, identified as Modified Stacking
in the following analyses, the output probabilities of each of the component classifiers are
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TABLE 7. Comparison of Predictive Accuracies of Aggregate Certainty Estimators with Single Certainty
Measure Ensembles.

Traditional Highest Aggregate
certainty correlation Weka confidence

Data set estimators estimators outputs ensembles

anneal 99.44 99.33 99.22 99.33
audiology 79.20 80.53 80.09 78.32
balance-scale 88.00 89.76 90.08 89.92
bupa 70.44 68.70 69.28 71.01
car 97.28 96.53 96.41 97.74
cmc 54.04 52.21 53.43 53.50
colic 83.97 84.51 83.97 84.24
credit-a 85.07 85.22 85.65 86.23
credit-g 75.60 74.60 75.20 75.40
dermatology 97.81 97.81 97.81 97.27
diabetes 76.43 76.43 76.56 76.56
dcoli-c 85.71 87.20 87.20 87.50
dlass 71.03 71.03 71.50 71.50
haberman 74.51 71.90 74.18 73.86
heart-h 83.33 80.95 82.99 82.99
heart-statlog 84.82 83.70 83.33 84.82
hepatitis 82.58 83.87 81.29 85.16
ionosphere 92.59 92.31 92.02 93.16
iris 94.67 95.33 96.00 96.00
lymph 84.46 83.11 83.11 85.14
monks 99.77 99.54 99.77 99.54
postop 67.78 68.89 70.00 71.11
primary-tumor 45.72 46.31 46.90 46.02
segment 97.32 97.49 97.40 97.49
sonar 82.69 84.62 82.69 83.65
soybean 95.17 95.02 94.58 94.14
spect 84.27 83.52 83.90 85.39
tic-tac-toe 92.80 94.26 93.42 94.68
vehicle 71.63 74.82 74.47 74.94
vote 95.66 95.88 95.88 96.31
vowel 91.41 94.55 94.04 95.05
wine 97.75 98.32 97.19 97.75
wisconsin-cancer 73.43 74.48 73.08 75.52
yeast 59.77 60.31 59.97 60.78
yugoslavia-cancer 96.28 96.42 96.57 96.42
zoo 96.04 96.04 96.04 97.03
Average: 83.57 83.76 83.76 84.32

given as input to a set of model trees. Each tree is designed to make a binary decision about
a given possible output class, and the ensemble assigns a value to the instance according to
which model tree has the highest positive certainty in its prediction. Table 8 shows the results
of these comparisons.
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TABLE 8. Comparison of Predictive Accuracies of Aggregate Certainty Estimators with Additional Baseline
Strategies.

Aggregate
Standard Accuracy Select Modified certainty

Data set voting weighted best Arbitration stacking estimators

anneal 99.22 99.33 98.89 99.22 99.11 99.33
audiology 78.76 79.20 78.76 80.09 75.66 78.32
balance-scale 89.28 89.60 89.92 89.44 95.52 89.92
bupa 68.99 69.28 67.25 66.38 57.10 71.01
car 96.30 96.30 98.73 96.18 99.13 97.74
cmc 53.70 52.89 52.61 56.14 50.44 53.50
colic 83.97 83.97 83.70 82.34 82.07 84.24
credit-a 85.65 85.65 84.78 85.51 84.64 86.23
credit-g 75.30 75.30 75.30 75.00 73.30 75.40
dermatology 97.81 97.81 96.18 97.00 96.72 97.27
diabetes 76.56 76.56 74.35 77.34 71.22 76.56
ecoli-c 86.31 87.20 86.61 86.31 84.82 87.50
glass 71.50 73.36 70.09 67.76 71.50 71.50
haberman 74.18 74.18 74.84 71.57 71.90 73.86
heart-h 82.99 82.99 84.35 81.29 80.27 82.99
heart-statlog 83.70 83.70 81.48 84.44 79.26 84.82
hepatitis 81.29 81.29 83.23 83.87 81.94 85.16
ionosphere 92.02 92.02 88.32 92.02 93.16 93.16
iris 95.33 96.00 90.00 96.00 95.33 96.00
lymph 81.76 81.76 77.70 82.43 83.11 85.14
monks 99.77 99.77 100.00 100.00 100.00 99.54
postop 70.00 70.00 70.00 70.00 71.11 71.11
primary-tumor 48.08 47.49 51.03 47.49 37.46 46.02
segment 97.32 97.49 96.32 96.84 97.40 97.49
sonar 82.69 82.69 83.65 81.73 86.06 83.65
soybean 94.44 94.14 92.83 94.88 93.85 94.14
spect 83.90 83.90 83.52 83.15 79.40 85.39
tic-tac-toe 93.32 93.32 98.96 96.56 99.79 94.68
vehicle 75.65 75.65 79.20 74.47 80.73 74.94
vote 95.88 95.88 96.10 96.53 97.18 96.31
vowel 93.64 94.65 96.06 94.95 96.67 95.05
wine 97.19 97.19 97.75 97.19 96.63 97.75
wisconsin-cancer 73.43 73.43 75.18 73.43 74.48 75.52
yeast 59.70 59.70 58.42 60.45 57.62 60.78
yugoslavia-cancer 96.57 96.57 97.00 95.99 97.43 96.42
zoo 95.05 95.05 92.08 95.05 93.07 97.03
Average: 83.65 83.76 83.48 83.58 82.92 84.32

Again, the Friedman test reports significant differences in accuracy among the classifiers.
(15.51 ∼ χ2, DF = 5, p <= 0.008). An application of the Bonferroni–Dunn post-hoc
test reveals that the differences in average ranks between aggregate certainty estimators
and four of the remaining five methods exceed the critical difference for significance at a
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certainty level of 95% (adjusted α = 0.05
6−1 , critical difference = 1.14, mean rank differences:

1.21, 0.88, 1.24, 1.31, 1.43). An algorithm-by-algorithm comparison between the various
strategies using the Wilcoxon signed-rank test shows that aggregate certainty estimators
outperform the other five algorithms at a certainty level of 99% (p values< = 0.001, 0.003,
0.014, 0.003, 0.008).

5.2. Discussion

Aggregate certainty estimators are able to achieve higher average classification accuracy
than any of three standard baseline strategies over the 36 data sets studied. A comparison
between Tables 7 and 8 shows that using single certainty estimators in weighting the votes of
an ensemble can allow the ensemble to make improvements in average predictive accuracy.
Two of the three single certainty estimator ensembles can achieve higher average classification
accuracy than a baseline strategy of standard voting. However, the use of these single certainty
estimator values is not sufficient to create an ensemble that can produce a higher average
predictive accuracy on a level that is statistically significant, so investigation into additional
certainty estimators is warranted.

The higher average accuracy of aggregate certainty estimators does come with a higher
cost of computation, but for two-thirds of the certainty estimators, the increase in computa-
tional complexity is only linear in regards to the size of the data set. The other one-third of
the certainty estimators requires a cross-validation strategy in the training set. The computa-
tional complexity for these certainty estimators could be reduced substantially by reducing
the number of folds used in the calculations.

6. CONCLUSION AND FUTURE WORK

This work presents a viable new method of combining the outputs of base inducers
in a multiclassifier system using multiple certainty estimators to predict certainty in the
classification of a given instance. A number of certainty estimators designed for this task
are proposed for each of five different types of classifiers. Aggregate measures are shown
to be more highly correlated with whether an instance is correctly classified than any of the
individual measures. The strategy of aggregate certainty estimators, which employs all of the
certainty estimators presented, is shown to achieve a higher average classification accuracy
over 36 data sets than five alternate ensemble strategies.

The certainty estimators presented in this work explore some of the strengths and weak-
nesses of a given classifier on a given data set. This information could result in the devel-
opment of new algorithms. For example, a new instance-based classifier might be developed
in which only instances that were correctly classified in hold-one-out cross-validation would
be allowed to vote on the classification of an unseen instance. The probabilities output by
a Naı̈ve Bayes classifier might be altered slightly based on information gained through cer-
tainty estimators like the ones presented here. Insights gained by observing the behavior of
the certainty estimators on various data sets may help target areas of improvement to increase
classification accuracy of individual classifiers.
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APPENDIX

Tables A1–A5 offer more rigorous presentations of how the estimators are calculated.
When calculating certainty measures for training set instances to determine correlation
values, “training set” in these formulas refers to the instances used for training in hold-one-
out cross-validation and “test instance” refers to the instance being held out (e.g., if 135
instances of the iris data set were being used to evaluate the other 15 instances in 10-fold
cross-validation, measures for the 135 training set instances would be calculated using 134
of them as a “training set” subset and the remaining instances as a “test instance”). When
calculating certainty measures for the test instances, “training set” in these formulas refers
to the standard cross-validation training set (e.g., the entire set of 135 iris instances) and
“test instance” refers to the instances in the fold being evaluated (e.g., the remaining 15 iris
instances).

TABLE A1. Certainty Estimators for Decision Tree.

1. Purity of Classification: p
m

p : number of training set instances with predicted class
at leaf node where test instance is classified

m : number of training set instances at leaf node where test instance is classified

2. Instances at Leaf Node: m
n

m : number of training set instances at leaf node where test instance is classified
n : number of instances in the training set

3. Level of Leaf Node : (k−v)
k

k : maximum number of levels in the tree
v : level of leaf node where test instance is classified

4. Information Gain along Path:
∑v

1 gi ∗ 1
v ∗ 1

h

gi : information gained by splitting on the selected attribute at level i in the tree
v : level of leaf node where test instance is classified
h : maximum possible information gain for given training set

Information gain for an attribute A given data set S is defined as follows:
InformationGain(A) = Entropy(S) − �

|A|
i=1

|Si |
|S| Entropy(Si )
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TABLE A1. Continued.

5. Correctly Classified Instances: q
m

q : number of training set instances at leaf node where test instance is classified
that were correctly classified in cross-validation on the training set

m : number of training set instances at leaf node where instance is classified

6. Correctly Classified Voters: r
p

r : number of training set instances with predicted class
at leaf node where test instance is classified
that were correctly classified in cross-validation on the training set

p : number of training set instances with predicted class
at leaf node where test instance is classified

TABLE A2. Certainty Estimators for Rule-Based Classifier.

1. Purity of Classification: p
m

p : number of training set instances with predicted class
covered by the rule applying to the test instance

m : number of training set instances covered by the rule applying to the test instance

2. Number of Antecedents: (k−v)
k

k : maximum number of antecedents in any rule of the table
v : number of antecedents in the rule applying to the test instance

3. Number of Instances Covered: m
n

m : number of training set instances covered by the rule applying to the test instance
n : number of instances in the training set

4. Correctly Classified Instances: q
n

q : number of training set instances covered by the rule applying to the test instance
that were correctly classified in cross-validation on the training set

n : number of training set instances covered by the rule applying to the test instance

5. Correctly Classified Voters: r
p

r : number of training set instances with predicted class
covered by the rule applying to the test instance
that were correctly classified in cross-validation on the training set

p : number of training set instances with predicted class
covered by the rule applying to the test instance

6. Instance is Covered by Rule:

{
1.0 : A rule in the table applies to the test instance
0.0 : No rules in the table apply to the test instance



AGGREGATE CERTAINTY ESTIMATORS 

TABLE A3. Certainty Estimators for Instance-Based Classifier.

1. Neighbors in Agreement: p
m

p : number of neighbors with predicted class
m : number of neighbors considered (5)

2. Highest Minus Second: w1 − w2

w1 : distance-weighted vote which determines the predicted class
w2 : distance-weighted vote of the next highest class

3. Average Distance to Neighbors: 1 − c
d

c : average distance to five neighbors
d : average distance to all instances in training set

4. Correctly Classified Neighbors: q
m

q : number of neighbors that were correctly classified in cross-validation on the training set
m : number of neighbors considered (5)

5. Correctly Classified Voters: r
p

r : number of neighbors with predicted class that were correctly classified
in cross-validation on the training set
p : number of neighbors with predicted class

6. 3-NN vs. 5-NN vs. 7-NN:

⎧⎨
⎩

1.0 : 3-NN and 7-NN match 5-NN classification
0.5 : one matches
0.0 : neither matches

TABLE A4. Certainty Estimators for Naı̈ve Bayes Classifier.

1. Probability of Class Value: b1

bi : i th ordered value of label assigned to test instance (ranked by probability)

2. Highest Minus Second: b1 − b2

bi : i th ordered value of label assigned to test instance (ranked by probability)

3. Highest Minus Remaining b1 − ∑n
3 bi

bi : i th ordered value of label assigned to test instance (ranked by probability)

4. Value Probability Averages (�m
i=1(vi/n))/m

vi : number of training set instances that have the i th attribute value in common with the test set instance
n : number of instances in the training set
m : number of attributes in any instance

5. Correctly Classified Neighbors: q
m

q : number of neighbors that were correctly classified in cross-validation on the training set
m : number of neighbors considered (5)
Note: Neighbors are calculated based on similarity of predicted probability

6. Correctly Classified Voters: r
p

r : number of neighbors with predicted class that were correctly classified
in cross-validation on the training set

p : number of neighbors with predicted class

Note: Neighbors are calculated based on similarity of predicted probability.



 COMPUTATIONAL INTELLIGENCE

TABLE A5. Certainty Estimators for Multilayer Perceptron.

1. Activation Output: a1

a1 : highest activation output

2. Highest Minus Second: a1 − a2

a1 : highest activation output
a2 : second highest activation output

3. Correctly Classified Neighbors: p
m

p : number of neighbors that were correctly classified in cross-validation on the training set
m : number of neighbors considered (5)

Note: Neighbors are calculated based on similarity of activation outputs

4. Correctly Classified Neighbors (Hidden Layer): ph

m

ph : number of neighbors that were correctly classified in cross-validation on the training set
m : number of neighbors considered (5)

Note: Neighbors are calculated based on similarity of hidden layer activation outputs

5. Average Distance to Neighbors 1 − c
d

c : average distance to five neighbors
d : average distance to all instances in training set

Note: Neighbors are based on similarity of output layer activation

6. Average Distance to Neighbors (Hidden Layer) 1 − ch

dh

ch : average distance to five neighbors
dh : average distance to all instances in training set

Note: Neighbors are based on similarity of hidden layer activation outputs.




