
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

D.S.H. ROSENTHAL

IW 217/82

THE GKS INPUT FACILITIES AND HOW TO USE THEM

Preprint

~
MC

DECEMBER

kruislaan 413 1098 SJ amsterdam

Plvlnted at .the Ma.thema-tlc.ai. Centlt.e., 413 Klr.u.i..6laa.n, Alm,.teJc.dam.

The Ma:thema.tlc.a.l. Centlr.e , 6ounded .the 11-.th 06 Feb.JtWVr.y 1946, .u, a. non­
pJc.o6U -ln.6.tU:u.t-lon a.hn.lng a:t .the. pJc.omoUon 06 pWte. ma:thema.tlC-6 a.nd .lt1'
a.ppli.c.a:t.lon6. 1.t .u, .6pon601ted by .the Ne.thvr.i.aJu.ll, Gove1tnment .thlwugh .the
Ne.thvri.a.nd6 0Jtga.ru.za:ti..on 601t .the Adva.nc.ement 06 PUite RueaJLC.h (Z.W.O.).

CR Categories and Subject Descriptors: 1.3.4 [Computer Graphics]: Graphics Utilities - graphics
packages; 1.3.6 [Computer Graphics]: Methodology and Techniques - device independence;
interaction techniques

ABSTRACT

The GKS Input Facilities
and

How To Use Them

David S. H. Rosenthal

The input facilities of GKS, the draft intem~tional standard for 2-D graphics software, are
presented from an application programmer's viewpoint. The basic concepts are reviewed, concen­
trating on the differences between GKS and earlier systems.

These input facilities can be used in three distinct styles. One provides high portability by
sacrificing control over details of the user interface. Another can exploit hardware capabilities by
sacrificing portability. A third can provide portability and control over the user interface, at the
cost of extra application code. All three styles are described, and illustrated with skeleton applica­
tions.

General Terms: Standardization

This paper will be submitted for publication.

1. Introduction

"Its so simplle, so very simple,
that only a child can do it."

Tom Le:hrer, New Math.

GKS[2], the draft international standard
for 2-D graphics software, provides a set of
input facilities based on the virtual input dev­
ice concept[9], and broadly compatible with
earlier device-independent graphics systems[?].
The differences that do exist are due in part to
the special features of the GKS output pipe­
line, and in part to the refinements of the vir­
tual input device: model introduced during the
international review of GKS.

The concepts underlying the GKS input
facilities will be reviewed. These input facili­
ties can be used Jin three distinct styles:

A style providing high portability but
sacrificing control over details of the
user interface.

A style capable of exploiting
hardware capabilities but
sacrifices portability.

special
which

A style made possible by the combina­
tion of GKS' LOCATOR device with its
multiple window-viewport capabilities.
This provides both portability and con­
trol over the user interface, at the cost
of extra application code.

All three styles are described, and illustrated
with skeleton applications.

This paper is intended only as an introduc­
tion to GKS' iinput facilities. For general
information on the system, the reader is
referred to [I], and for a detailed discussion of
the input facilities to [4].

2. Simple Usage

An application using GKS obtains input
from one or moire logical input devices. GKS
simulates these Iogical devices using whatever
physical input de:vices are available.

When an application using GKS needs to
obtain input from the operator, the program­
mer is faced with two questions:

What kind of input value is required?

How should the operator supply it?

The first question determines the appropri­
ate device class, and the second the appropri­
ate device attributes. These concepts will now
be reviewed.

2.1. Device aasses

GKS divides its logical input devices into
classes according to the type of the input value
that the device returns. The GKS classes, and
the corresponding data types, are set out in
Table 1.

Table I - GKS Device Classes

Class Returns

LOCATOR Single Position in World Coordinates
Normalisation Transformation ID

STROKE Sequence of World Coordinate Positions
Normalisation Transformation ID

VALUATOR Single Real Number

CHOICE Non-negative Integer

PICK Single Segment Name
Pick Identifier

STRING Sequence of Characters

These data types are the basic units from
which GKS interaction sequences are built.

The simplest way for the application to
access these devices is via the REQUEST func­
tions, one for each class. The REQUEST

VALUATOR function would be declared in
PASCAL as:*

procedure RequestValuator (
wsid: WorkstationID;
dev : DeviceNumber;

var stat : RequestStatus;
var val : real) ;

Invoking RequestValuator causes GKS to
activate the dev-th VALUATOR device on
workstation wsid, wait for the operator to
input a value using it, and return OK in stat
and the value in val. The operator may refuse
to supply a value, by using the "break" facil­
ity. t In this case, stat will be NONE and val

* In the examples, GKS function and procedure
names are in this font. Other functions and pro­
cedures are assumed to be defined elsewhere in the
application, possibly using other GKS functions.
t GKS insists that this facility is available, but does

will be unchanged.

The REQUEST functions for the other
classes differ only in the type of val; for exam­
ple, the REQUEST LOCATOR function would .be
declared as:
procedure llequestLocator (

wsid: WorkstationID;
dev : DeviceNumber;

var stat : RequestStatus;
var val : Location);

The programmer can choose freely among
the logical device classes, without sacrificing
portability, because the standard insists that at
least one device in each class must be avail­
able. The implementor of a GKS system must
provide suitable simulations for each of these
classes on the hardware available at each site.
For example, one site might simulate a
VALUATOR using a control knob, another
using a mouse to point at a bar, and a third
by means of digits typed on the keyboard.

2.2. Using Device Oasses

To illustrate typical uses for each of the
device classes, consider a simple draughting
application. It allows the operator to draw
lines of various types, define symbols, store
them in a library, select and place them in the
drawing, and annotate the drawing with text
in various fonts and sizes.

The application operates in several modes,
say drawing, annotating, setting parameters,
storing symbols, and recalling symbols. The
top level will use a CHOICE device to select the
operating mode:

not specify how it is to be implemented. On the
UNIX GKS[S], a break is performed by typing the
end-of-file character.

selectmode : = I; { device to use }
repeat begin

RequestChoice(ws, selectmode, stat, newmode);
if (stat = OK) then

case (newmode) of
DRAWING:

DoDrawing;
ANNOTATING:

DoAnnotating;
SETTING:

DoSetting;
STORING:

DoStoring;
RECALLING:

DoRecalling;
end;

end until (stat<> OK);

2

Note how the CHOICE device in effect returns
an element from an enumerated type.

DoSetting, implementing the parameter
setting mode will use a CHOICE device to select
the parameter to affect, and perhaps a v ALU A­

TOR to acquire the new value. For example:
repeat begin

RequestChoice(ws, selectparam, statl, param);
if (stat == OK) then

case (param) of

LINEWIDTH:

end;

RequestValuator(ws, setlinewidth,
stat2, linewidth);

end until (stat < > OK);

Note how this implements a hierarchical menu
system, with the "break" facility used to pop
up a level.

DoDrawing, implementing the drawing
mode, would use a STROKE device to obtain
the connected chains of lines:

repeat begin
RequestStroke(ws, getlines, stat, newline);
if (stat = OK) then begin

StoreLine(newline);
DrawLine(newline);
end;

end until (stat < > OK);

DoAnnotating, implementing the annota­
tion mode, would use two devices, a STRING

device to obtain the text, and then a LOCATOR

to position it. The LOCATOR would be
invoked repeatedly to allow the operator to

"shuffle" the label into place, before
confirming the position using the "break".

repeat begin
RequestString(ws, getchars, statl, label);
if (statl = OK) then repeat begin

RequestLocator(ws, getposn, stat2, where);
if (stat2 = OK) then

ShowLabel(label, where, TEMPORARY)
end until (stat2 < > OK);
ShowLabel(label, where, PERMANENT)

end until (stat! <> OK);

DoRecalling, implementing the symbol
placing mode, would again use two devices.
The symbol to be placed would be selected
from a display of the defined symbols using a
PICK device, and then a LOCATOR device
would be used to determine the position of a
series of instances in the drawing:

repeat begin
RequestPick(ws,. getsymbol, stat!, symb);
if (statl = OK) then repeat begin

RequestLocator(ws, getposn, stat2, where);
if (stat2 = OK) then

PlaceSymbol(symb, where)
end until (stat2 < > OK);

end until (statl <> OK);

3. Advanced Usage

GKS systems provide one of three levels of
output capability:

minimal output (0)

full outplllt, basic segmentation (1)

full outplllt, full segmentation (2)

and one of three levels of input capability:

no input (a)

synchronous input (b)

asynchronous input (c)

The previous section has described the use of
the level (b) facilities. They are called syn­
chronous because, when a REQUEST function is
invoked, execution of the application is
suspended until the input is available. The
input devices are active only when the applica­
tion is inactive, and vice versa .

The previous section concentrated on the
interface between the application program and
the logical devices. GKS also provides some
control over of the interface between the

3

operator and the logical devices. The major
factor controlling this interface is clearly the
hardware a GKS implementation uses to simu­
late the logical devices, and this cannot be
standardised. Nevertheless, G KS has
abstracted certain attributes common to physi­
cal devices and also provided a route for indi­
vidual, non-standard attributes to be accessed.

3.1. Device Attributes

The device attributes are accessed via INI­

TIALISE functions, one for each class. For
example, the INITIALISE LOCATOR function
would be declared as:

procedure InitialiseLocator(
wsid: WorkstationID;
dev : DeviceNumber;
init : Location;
pet : PromptEchoType;
area : DCRectangle;
stuff: DeviceDataRecord);

Invoking lnitia/iseLocator sets the atributes of
the dev-th LOCATOR on workstation wsid to
the values given. The effects of the various
attributes are as follows.

!nit is an initial value for the device. If
possible, the device should behave as if the
operator had input this value before being
given control of the device. An example of
the use of init is in DoRecalling:

repeat begin
RequestPick(ws, getsymbol, stat!, symb);
if (statl = OK) then repeat begin

InitialiseLocator(ws, getposn, where,);
RequestLocator(ws, getposn, stat2, where);
if (stat2 = OK) then

PlaceSymbol(symb, where)
end until (stat2 < > OK);

end until (statl <> OK);

Re-setting the initial value to the last value
received ensures that, if the hardware can do
it, the LOCATOR will re-appear in the same
place it was left.

Pet and area work together to give control
over the appearance of the logical device. For
each class, a number of Prompt/Echo types
are defined by the standard, and others may
be provided by the implementor. The types
for LOCATOR are shown in Table 2. Note that
an implementation is only required to provide

Table 2 - LOCATOR Prompt/Echo Types

Type Effect

l use a device-dependent technique

2 use a crosshair intersecting at the LOCA-
TOR

3 use a tracking cross at the LOCATOR

4 use a rubber-band line from init to the LO-
CATOR

5 use a rubber rectangle with diagonal from
init to the LOCATOR

6 show a digital display of the LOCATOR
coordinates within the rectangle area

type 1, other types may not be available.

Stuff is a data record that an implementa­
tion may use to pass parameters to non­
standard device functions. For example, a
common technique on bitmap displays is to
vary the shape of the icon displayed at the
cursor to provide information to the operator.
This could be supported by including in the
data record a cell array defining the shape of
the cursor. Extensions of this kind are useful,
but not portable.

The INITIALISE functions for other classes
differ only in the type of init, and in the fields
defined for the data record. Other classes
define other Prompt/Echo types, such as text
menus for the CHOICE class, or digit displays
for the VALUATOR class.

3.2. Asynchronous Input

The level (c) facilities provide for the appli­
cation and its input devices to be active simul­
taneously. Each device may be in one of two
modes.

In SAMPLE mode, the device runs continu­
ously, but input values are only supplied when
the application asks (or polls) for them, using
one of the SAMPLE functions:

procedure SampleLocator(
wsid: WorkstationlD;
dev : DeviceNumber;

var val : Location);

SAMPLE mode provides the ability to han­
dle many active devices simultaneously, with

4

the computer supplying the timebase. It
would be appropriate, for example, to access
the controls of a video game:

while GoOn do begin

end;

SampleLocator(ws, playerl, wherel);
newposition(playerl, wherel)
SampleCboice(ws, playerl, actionl);
newaction(player l, action l);
SampleLocator(ws, player2, where2);

sleep(delay)

In EVENT mode, the application reads
input values from a queue. The device runs
continuously, adding input values to the queue
whenever it is triggered to do so. The applica­
tion obtains the value from the head of the
queue with the function:
AwaitEvent(

time: real;
var wsid: WorkstationlD;
var class : DeviceClass;
var dev : DeviceNumber);

to discover what kind of device caused the
event, and then the appropriate GET function,
for example:
GetLocator(
var val : Location);

EVENT mode again provides the ability to
handle many devices simultaneously, but with
the operator supplying the timebase. It can be
used to implement mode-free applications,
using different devices to select different
operations:

while GoOn do begiIJL
AwaitEvent(timeout, ws, class, dev);
case (class) of

end;

TIMEOUT:
DoHelp;

LOCATOR:
begin

GetLocator(where);
DoPosition(where)

end;
VALUATOR:

end

begin
GetValuator(much);
Do Value(much)

end;

The mode of a device is initially REQUEST,

but may be changed by the SET MODE func­
tions, one for each class. The SET LOCATOR

MODE function would be declared as:

procedure SetLocatorMode(
wsid: WorkstationID;
dev : DeviceNumber;
mode : DeviceMode;
echo: boolean);

4. Alternative Style

Many graphics terminals, particularly
current personal workstations, provide a key­
board and a pointing device, such as a mouse,
a tablet, or a trackball. They do not provide
the large numbers of button boxes, control
knobs, and joysticks that are common with
more expensive terminals. A GKS application
wanting tight control over the user interface
can, therefore, assume that at least the LOCA­

TOR class will be closely related to the
hardware.

So far, an important point about GKS'
LOCATOR and STROKE classes has been
obscured. It is their relationship to the GKS
output pipeline. Output is described in a
world coordinate system (WC), and is
transformed to a normalised device coordinate
system (NDC) to determine its placement on
the display surface. Many previous systems
have provided only one such normalisation
transformation, but GKS provides many (see
Figure 1).

5

This is nor-
malisation

This is transforma-
normalisa- tion 2.
tion This is
transfor- normalisa-
mation I. tion

transfor-
mation 3.

Figure 1 - GKS LOCATOR Input

The value returned by a LOCATOR or a
STROKE device consists not merely of world
coordinates, but also the identity of the nor­
malisation transformation used to re-transform
them from NDC.

type
Location = record

end;

tran : TransformID;
posn : WCoord;

If the operator Locates in the left side of the
screen in Figure 1, the tran field will contain
1, whereas from the lower right it will contain
3. This extra information allows for an alter­
native, window-based style of GKS application
that centres its interaction on the pointing
device. Example 6 in Annex F of the GKS
document illustrates this style.

Magnified Overall
View View

Gap
New View

Figure 2 - GKS Example 6

A picture is being composed from positions
input by a LOCATOR. Two Locations are used
to define each line. The whole picture is
displayed on the right side of the screen while

on the left side it is possible to display a sub­
area at greater magnification (see Figure 2).
Updates to the picture can be made in either
drawing area with the left hand picture being
used for detailed drawing. A Location defines
which area is be:ing used for inputting data as
well as the data value itself.

To redefine the display in the left hand
window, a LOCATOR input is required in a
command area, containing NEW VIEW, at the
bottom of the display area. The next two
LOCATOR inputs define the lower left and
upper right of the sub-area to be displayed on
the left region. To cause a move to a new
sequence of connected lines, a LOCATOR input
is required in another command area, contain­
ing GAP, also at the bottom of the display
area. The "break" facility is always used to
terminate the series of interactions.

repeat begin
RequestLocator(ws, pointer, stat!, wherel);
if (statl = OK) then case (wherel.tran) of
OVERALL, MAGNIFIED:

{ Either part of line or of New View }
case (i) of
0:

AddPoint(where l);
l: begin

end;

where2 : = where l;
InitialiseLocator(ws, pointer,

wherel, RubberRect, data);
i := 2

2: begin

end
end;

NiewView(wherel, where2);
i := 0

GAP:
{ Hit in G~tp command }
BreakLine;

NEWVIEW:

end

{ Hit in N~:w View command }
i: = I;

end until (stat! <> OK);

This window-oriented style of interaction
fits well with modem hardware[6], but also fits
into current developments in interaction sup­
port software[3, 8). It provides close control
over the details of the user interface, without
sacrificing portability, but in effect requires the
application to implement the logical input

6

devices it needs itself, using mainly the LOCA­

TOR.

5. Comparison of Styles

An application intended to be highly port­
able, and cheap to develop, can ensure this by
using:

only REQUEST mode input.

at most one device in each class.

the default device attributes, in particu­
lar the default prompt/ echo type.

When these programs are transported, they
may encounter sites where not all devices are
present on a single workstation; some may be
supported on additional, input-only worksta­
tions. Allowance for this should be made in

1 the code.

An application can use knowledge about a
particular configuration to exploit hardware
capabilities (at the expense of portability) by
using:

a range of prompt/ echo types,
corresponding to those supported by
the hardware.

extra, unspecified entries in the data
record to address specific hardware dev­
ice attributes.

several devices in one class, correspond­
ing to several hardware devices.

SAMPLE and EVENT modes, if the
operating system supports them.

An application can provide detailed control
over the user interface without sacrificing por­
tability by assuming that at least a hardware
pointing device will be available, and using the
LOCATOR device as a basis for constructing its
own logical input devices. The use of multiple
normalisation transformations can assist this;
providing the pointing device with a built-in
selection device, and permitting a window­
oriented style of interaction.

Acknowledgements

My grateful thanks to Dr. van der List and
the whole staff of the Traumatology Dept.,
Wilhelmina Gasthuis, Amsterdam, who coped
with a broken ankle and a bedside terminal
with equal aplomb.

REFERENCES

[1] P. R. Bono, J. L. Encarna~ao, F. R. A.
Hopgood, and P. J. W. ten Hagen, "GKS
- The First Graphics Standard," IEEE
Computer Graphics and Applications 2(5),
pp.9-23 (July 1982).

[2] ISO, "Graphical Kernel System (GKS) -
Functional Description," ISO DP 7942
(January 1982).

[3] D. H. H. Ingalls, "The Smalltalk Graphics
Kernel," BYTE, pp.168-194 (August 1981).

[4] D. S. H. Rosenthal, J. C. Michener, G.
Pfaff, R. Kessener, and M. Sabin, ''The
Detailed Semantics of Graphics Input Dev­
ices," Computer Graphics 16(3), pp.33-38
(July 1982).

[5] D. S. H. Rosenthal and P. J. W. ten
Hagen, "GKS in C," Proceedings of Euro­
graphics, Manchester (September 1982).

[6] D. S. H. Rosenthal, "Managing Graphical
Resources," Computer Graphics 16(4)
(1982).

[7] SIGGRAPH-ACM (GSPC), "Status
Report of the Graphics Standards Planning
Committee," Computer Graphics 13(3)
(August 1979).

[8] J. J. Thomas and G. Hamlin (eds),
"Graphical Input Interaction Techniques:
Workshop Summary," Computer Graphics
16(4) (December 1982).

[9] V. L. Wallace, "The Semantics of Graphics
Input Devices," Computer Graphics 10(1)
(Spring 1976).

7

1 7

