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Abstract
Volume rendering is a key technique in scientijic visualization that lends itselfto signijicantexploitable paral-
lelism. The high computational demantJsof real-time volurne rendering and continued technological advances
in the area of VL$/ give. impetus to the development of special-purpose volume rendering architectures. This
paper presents anti characterizes three recently developed volurne rendering engines which are based on the
ray-casting method. A taxonomy ofthe algorithmic variants ofray-casting and details of each ray-casting ar-
chitecture arediscussed. The paper then compares the machinefeatures and provide/an outlook onfuture de-
velopments in the area ofvolurne rendering hardware.
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1 Introduction

Volume visualization is concerned with the representation, manipulation and display of volumetrie data, typi-
cally represented by a 3D grid of scalar values. Volume visualization has.become a key factorin the understand-
ing of the large amounts of scientific data generated in a variety of disciplines. Examples include sampled data
from biomedical and geophysical measurements, and simulli.teddata from finite element models or computa-
tional fluid dynamies (see [7] Chapter 7). Another source of 3D data are volumetrie geometrical objects syn-
thesized with volume graphics techniques [9]. Direct volume rendering algorithms are employed to reveal the
internal structure of the data [7]. However, their high computational expense limits interactivity andreal-time
frame rates. The main computational aspects of volume rendering are the massive amount of data to be pro-
cessed resulting in high storage, memory bandwidth, and arithmetic performance requirements. For example,
projection of a 2563 16-bit per voxel dataset at 30 frames per second requires 32MBytes of storage, a memory
transfer rate of IGBytes per second, and roughly 50 billion instructionsper second (assuming 100 instructions
per voxel per projection).
Two strategies have been developed to address this challenge. Tbe rllSt makes use of massively parallel mul-

tiprocessor architectures to achieve rapid image production rates [20][25][26][28]; The second strategy aims at
the development of co-processors or special-purpose rendering engines that separate real-time' image genera-
tion from general-purpose processing (see [7] Chapter 6). This paper presents and compares three special-pur-
pose architectures that were recently developed to meet the requirements of real-time direct volume rendering.
All three architectures implement ray-casting, a volume rendering technique that offers high image quality

and maximum flexibility in the choice of viewing parameters [15]. However, the approaches differ greatly in
overall machine architecture, processing strategy, performance, and supported dataset resolutions. It is our goal
in this paper to reveal the similarities and fundamental differences of these special-purpose ray-casting archi-
tectures and to offer an outlook on future trends in special-purpose hardware for volume rendering. Tbe next
section describes ray-casting and classifies it into different algorithmic variants, namely object order ray-cast-
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ing, image order ray-casting, and a mixture of the two approaches that wecall hybrid ray-casting. The object
order approach is implemented by VIRIM, developed at the University ofMannheim, Germany, and presented
in Section 3. VOGUE, developed at the Universit;yofTübingen, Germany, implements image order ray-casting
and is discussed in Section 4. The third architecture, Cube-3, developed at the State University of New York at

. Stony Brook, U.S.A., implements a hybrid between these two methods and is presented in Section 5. Section 6
summarizes and.compares the main features ofthese approaches, and in Section 7 we take a look at the future
of special,.purpose volume rendering hardware.

2 Ray-Casting Algorithms

Ray-casting is a powerful volume rendering technique that offers high image quality wltile allowing for algo-
rithmic optimizations which significantly reduce image generation times. [I6][ 17). Rays are cast frointhe view-
ing position into the volume data. At evenly spaced locations along each ray, the data is interpolated using
values of surrounding data point voxels. Central differences of voxels around the sam pie point yield a gradient
as surface normal approxim~tion. Using the gradient and interpolated sampie value, a local shading model is
applied and a sampie opacity is assigned: Finally, all sampies along the ray are composited into pixel values to
produce an image [15]. Figure 1 shows the classification ofray-casting algorithms into three categories:
o Object order ray-casting: The volume is transformed to be aligned with the view direction prior to ray-

casting, such that the resample locations coincide with integer grid points [3].
o Image order ray-casting: A ray is sent from each pixel and the volume is resampled at sampie points

along the ray[15].
o Hybrid ray-casting: An intermediate image aligned with one of the volume faces is produced and then

transformed to the view direction [14][25][27].

,, ..,. ., . . .,. . .... ..
,'.~..'x\ \\ .

\'''''~''~'''' .\ Y> .
• '." y' •..........w'\.

\\\\\\, . , ' ,, . , .. . , .. . .. .. .
Viewplane

a) Object Order
Ray-Casting

b) Image Order
Ray-Casting

~ ~j)71\ 1\ ~ ~ i, .. .. .

c) Hybrid
Ray-Casting

Figure 1. Ray-Casting Taxonomy

The object order approach is also called data-parallel volume rendering since operations on the volume seman-
tically involve all voxels at once. For efficiency, the transformation of the volume is typically decomposed ioto
a set of affine transforms requiring shear/scale operations along orthogonal axes [6]. The resulting regular data
access to voxels leads to high performance implementations on massively parallel architectures [24][26].

VIRIM [5] implements obJect order ray-casting in a flexible and programmable fashion. The hardware con-
sists of two separate hardw~ units, the first being responsible for 3D resampling of the volume using lookup
tables to implement different interpolation schemes. The second unit performs the ray.-casting according to user
programmable lighting and viewing parameters. The underlying Heidelberg Raytracing model [19] allows for
arbitrary parallel and perspective projections. VIRIM is discussed in Section 3.
In image order algorithms. the volume is Jeft in its original coordinate system and rays are cast from the image.. .



plane. Traditional implementations pre-compute a color and opacity volume from the original dataset [3]. Col-
ors are assigned by using the local gradient as surface nonnal approximation and by perfonning a local shading
calculation. A user definable transfer function assigns opacity values based on the data and gradient values [15].
This results in two new datasets, one that holds the color of the shaded sampies, and a classified volume that
holds sampie opacities. For image generation, rays are then cast into these two datasets.
However, any change in classification or shading parameters requires the qpacity and color arrays 10 be re-

computed. Storing the gradients and gradient magnitudes of all voxels for fast classification and shading be-
comes prohibitive for higher resolution datasets. Thus, the algorithm does not allow for interactive exploration
and visualization of dynamically changing datasets.
A simple modification to the algorithm allows to operate directly on the original dataset and to perfonn shad-

ing and classification during ray traversal. The original data is resampled along the ray using tri-linear interpo-
lation. Tbe sampie gradient iscomputed. usirig central differences of neighboring voxels. Shading and
classification are perfonned bas~ on the reeonstructed sampie value and the local gradient.
This approach is taken by VOGUE, a compact, modular, and extensible hardware implementation of image

order ray-casting [11][12][13]. For each pixel aray is defined by the host computer and sent to the accelerator.
The VOGUE module autonomously processes the complete ray, consisting of evenly spaced resample loca-
tions, and returns the fmal (sub-)pixel color of thatray 10 the host. Several such modules can be combined to
yield higher perfonnance implementations. VOGUE is discussed in Seetion 4.
Many methods have been developed 10 avoid computations in transparent regions of the volume by encoding

areas with high-opacity voxels into hierarchical data struetures [2][16][18]. These data structures must be ac-
cessed once for every ray, leading to multiple traversalsand to redundant computation. The achievable data re-
duction is dataset deperident, and if a ~ide range of sampies must be examined (e.g., temperature distributions)
almost no reduction is possible. Image order methods generally lead to redundant data accesses due to the non-
unifonn mapping of sampies onto voxels, since voxels may contribute 10 more than one ray sampie or may be
involved in multiple gradient calculations.
To get a mapping of ray-samples onto the volume which is one-to-one, hybrid algorithms transfonn the vol.

urne into an intennediate coordinate system which allows efficient projections onto a face ofthe volume. This
distorted image is then warped (2D.transfonned) onto the view plane. Tbe intemlediate volume transfonnation
typically involves a shear and, for perspeetive projections, a scale of the original slices of the dataset [14].
Using this factorization, Yagel and Kaufman [27] describe a template based ray-casting scheme to simplify

path generation for rays through the volume, and Cameron and Underill [1] efficiently reduce data communi-
cation in a SIMD parallel processor. Schröder and Stoll [25] use the idiom of line drawing and achieve sub-
second rendering times for a 1283 dataset on a Princeton Engine of 1024 processors. Lacroute and Levoy [14]
recently reported on a fast implementation using a shear-warp tranSfonnation, and were able to achieve inter-
active rendering times for 2563 datasets on a graphics workstation. .
Most of these implementations require a pre-processing step to calculate the gradient field or to generate color

and opacity volumes, thereby inheriting the disadvantages discussed above. To avoid any pre-computations, a
modified hybrid ray-casting algorithm has been developed forCube-3 [21][22]. Cube-3 is a high-perfonnance
architecture that uses a special memory organization allowing simultaneous access to n voxels parallel to a main
axis of the nJ volume dataset. This memory system allows for the storageof high-resolution datasets without
any duplication of the original data, and eriables the real-time visuaIiZation of dynamically changing volume
data. caIIed 4D (spatial-temporal) visualization. Cube-3 is discussed in Seetion 5.

3 Object Order Ray-Casting: VIRIM

VIRIM is an object order ray-casting engine currently being assembled and tested at the University of Mann-
heim [5]. It provides a flexible resampling method and freely programmable shading. The hardware ofVIRIM
consists of several modules, each composed of a geometry unit for volume rotation, resampling, and gradient
computation and a ray-casting unit for the final image generation.



The VIRIM system has been designed toachieve 10Hz frame rates for 8 million voxels using the Heidelberg
Raytracing algorithrn [19]. In contrast 10 many other direct volume rendering algorithms, the Heidelberg Ray-
tracing model allows shadowing (see Figure 2b). Shadows are generated by considering that incident light is
absorbed when cast iIito the volume. Two light sources are placed at 0° and 45° with respect to the viewing
direction. At each sarnple point along these paths, light is partially absorbed and reflected towards the viewer
using the Phong shading model. X- and Y-gradients are estimated with a 2D Sobel operator [4]. The final image
is composited in front-to-back order, whereby the light is attenuated a second time on its way to the viewer.

3. 1 General Architecture

The basic approach taken in VIRIM is the division between volume resampling, performed by the geometry
units, and the subsequent image generation, performed by the ray-casting units (see Figure 2a). This division is
fostered by the different data access patterns ofthese units. Oue to the object order approach, the geometry unit
requires access to the whole origin~1 dataset for the resampling of a possibly rotated, translated, and zoomed
data volume. The ray-casting unit, on the other hand, requires access 10 the resampled data ooly along the major
viewing directions ..
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Figure 2. a) VIRIM General Architecture. b) Principle ofthe Heidelberg Raytracer

3.2 Geometry Unit
In a software implementation, 80 percent of the computation time per projection are required for geometry op-
erations, perspective and gradient calculations, and resampling using VIRIM's basic visualization algorithm .
. The geometry unit contains special-purpose hardware for these operations .and one unit can generate 26 to 36
million transformed locations per secondusing true 30 resampling. The maximal original dataset size for 16-
bit vaxeis is 2563 for the currently used 4Mbit ORAMs and 512x512x256 for 16Mbit DRAMs. The maximal
size of the resarnpled dataset is limited to 5123 by the gradient buffer size.
For each scanline of light rays, the starting point of the ray and the veetor to the next resarnple loeation are

stored. Address generation hardware generates the positions of the sampling points, whereby the rounded X-,
Y-, Z-eomponents denote the addresses ofthe neighbors in the original dataset.



(1)

A dedicated memory system inside each geometry unit allows data access rates of up to 640MBytes per seeond
(40MHzx8 neighborsx2Byteslvoxel) using commercial DRAMs. This high data rate is achieved by accessing
the 8 voxel neighbors conflict free and by using the Fast Page Mode, alternate memory bank read-out, a l-enuy
cache for storing previously used data voxels, and a controller that returns 0 when the address lies outside of
the data cube.

Rotation using baekward mapping is performed by weighted interpolation among the 8 voxel. neighbors of
the resampling loeation. Before interpolation, the voxel values are mapped onto density values using a density
lookup table (LUT). This feature allows simple grey value segmentation that is a valuable tool for the visual-
ization of biomedieal data without prior segmentation.

A special feature ofVIRIM is that the interpolation weights are precaleulated and stored in weight memories
C!fsize 256Kx 16. Bach weight is addressed by three 6-bit fraetional parts, one per eoordinate, of the resampling
location. 6 bits resolution turned out to be sufficient to make artifacts, originating from the discreteness of the
weights, invisible to the viewer. Different interpplation filters like tri-linear interpolation or a local approxima-
tion of a sinc(x) can be used in order to improvethe resampling quality.

After interpoiation a gradient'hardware estimates the X- and Y-eomponent of the gradient using 20 Sobel fil-
ters.

1 [1 21JWi,i = 8' 0 0 0
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Data resolution and aceuracy of all calculations are 16 bits'for dertsity and gradient values. AUmemories and
LUTs can be aceessed by the host system so that they can be reloaded in real-time.

3. 3 Ray-Casting Unit

Using the sampie and gradient values of the rotated dataset, the ray-easting unit generates the fmal image. In
order to allow maximum flexibility, VIRIM uses programmable digital signal proeessors (DSPs) for this task.
Any shading model can be implemented provided that all data for the ealculations remain in one sampie plane.
The sampie density and gradient values are transmitted from the geometry to the ray-easting units over a bus

with a peak transfer rate of 240MBytes per second at 4OMHz.Baeh DSP receives its values from a first-in-first-
out (FIFO) buffer that ean be aecessed asynehronously. This mechanism decouples fast geomeuy units from
slower DSPs. For the Heidelberg Raytraeing algorithm, a geometry unit is about a factor of 16 fasterthan a DSP.
Within 15 clock eycles the DSPs compute the interaetion of light and material for each volume element One

or more scanlines of the resulting projection are ealculated per DSP and stored in local memory.
A local master CPU on the board colleetsall sean lines of the final image from the DSP memories and trans-

.fers the results to the host system. If required,all intra-DSP eommunication is carried out via this loeal master
CPU. However, for our eurrent visualization model no eommunieation between DSPs is neeessary.

3. 4 Performance Estimation

The performance of VIRIM is estimated under the eondition that the Heidelberg Raytracing algorithm is used.
One VIRIM module consists offour boards of size 36x39cm2, and four modules fit into one erate. '

#ofModules Dataset Size Frame Rate

256x256x128 2.5Hz

4 256x256x128 10Hz
8 256x256x256 10Hz

Table 1: VIRIM Performance Estimation



4 Image Order Ray-Casting: VOGUE

VOGUE is a compact and scalable image order ray-casting unit (11)[12][13] which provides interactive ren-
dering speed at moderate hardware costs. Real-time perfonnance can be achieved by operating multiple units
in parallel. The basic unit consists cf the volwne memory and just fou.r VLSI chips. Nevertheless it provides
arbitrary perspective projections (e.g., for waIk-throughs), Phong shading, a freely movable point light source,
depth-cueing, and interactive, non-binary classification using opacity and color transferfunctions.
Rather than using pre-shaded and pre-segmented datasets, all processing is perfonned on the fly on the orig-

inal voxels. For each resampling location a specific set of neighboring voxels is read out from which the func-
tion value, the local gradient and the gradient magnitude are computed. Function value and gradient magnitude
are then used as pointers into ~everallookup tables, which hold the classification transfer function (opacity a),
the color assignment (RGB), and material properties (such as the specular reflection coefficient ks) for shading.
Each sampie is Phong shaded and the intensities of all points along a ray are composited in front-to-back order
according to their opacity.

Image quality and rendering speed can be balancedaccording to the users requirements. In the fastest oper-
ation mode the sampie value S is tri~linearly interpolated from Vo ... V7 (see Figure 3a), whereas the gradient
components are approximated by G:x =Pr Po, Gy =Pr P2 and G:.=Ps- P4' Oue to the eight-port memory
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4. 1 General Architecture
The algorithmic steps are mapped in a straight-forward way onto a pipelined architecture as shown in Figure 4a.

Ray Parameters: Staning Point. Vecoor10 nexl Resample Location.
Dislance 10Observer and Incremenr.' Rendering Mode. Clip Planes

VoluMem
8 independent Banics oe 8 Units each

Color.
specular
Reflection
Coefficient

Opacity

a)

OneVOGUE
Unit

Bidirectional Link

For clarity, only three boundary layelS of VOGUE units.
and only three ring-connections are shown. A total of 192
bidirectiona1links are used. Each unit needs basic routing
capabilities. since no diagonal connections are provided.

b)

Figure 4: a) VOGUE Hardware Architecture. b) Parallelization Structure

After having obtained all ray parameters from the host,the address sequencer (ASQ), a VLSI unit. sequentially
generates all raypoints. For each of them, up to seven sets of eight addresses are passed to the memory system.
The volume memory (VoluMem), which has a capacity of 256MBytes for 5123 16-bit voxels. consists of eight
independent memory banks and delivers eight voxels per access. The reconstructorand extractor (REX). a
VLSI chip, performs the tri-linear reconstruction and computes the gradient and gradient magnitude in all ren-
dering modes. Sampie value and gradient magnitude then address severallookup tables to yield the sampie col~
or (RGB) and its material properties (opacity a, k;s). The cascadable shading unit COLOSSUS implementsthe
unrestricted Phong illumination model (non-parallel light, perspective projection) for a single point light source
and performs depth-cueing. The compositing unit COMET finally sums up the intensities ohll points on a ray
and passes the pixel color to the frame-buffer.

4. 2 Parallel Operation 0/Multiple Units
The dataset is divided into subvolumes. which are distributed across different units. Each unit processes a given
ray as long as it traverses through its own subvolume. Onexit. the properties defining the ray at this point are
sent to the neighboring unit Ideally the number of rays which can be processed simultaneously equals the num-
ber of units. A special data distribution scheme has been developed which removes the gaps between the sub-
volumes by replicating a certain set of boundary voxels [12]. A multi-master bus can be used for up to eight
engines. requiring a bandwidth of 640MB/s for an eight-fold speedup. For a larger number of units we propose
a ring-connected cubic network as shown in Figure 4b for 4x4x4 units. Simulations show that each link needs
a transfer bandwidth of about 27MByte/s. giving a total transfer rate of about 5.2GBytesls.

4. 3 Performance Estimation
A performance estimation depending on rendering mode and dataset size is given in Table 2.



#ofUnits Size Frame Rate / Fastest Mode Frame Rate / 4-Access Mode Frame Rate /7-Access Mode

1 2563 205Hz O.6Hz O.3Hz
8 2563 20Hz 4Hz 2Hz
64 5123 20Hz 4Hz 2Hz

Table 2: VOGUE Performance Estimation

5 Hybrid Ray-Casting: Cube-3

Cube-3 was developed at the State University ofNew Yorkat Stony Brook for arbitrary parallel and perspective
projections of high-resolution volumetrie datasets [21][22]. The Cube-3 hybrid ray-casting algorithm requires
at most one memory access to each voxel per projection without any pre-processing or data dependent optinti-
zations. Consequently, it allows for the real-time 4D visualization of dynamically changing datasets, for exam-
pie, of the in-situ fluid flow.in rocks. Tbe hamware contains a specially organized and fully distributed memory
system that provides enough throughput for the visualization of 5123 16-bit per voxel datasets at 30 frames per
second.

5. 1 Cube-3Algorithm
Figure 5a shows an outline ofthe Cube-3 algorithm. In order.to fetch every voxel only once per projection from
the cubic frame buffer (CFB), discrete voxel-rays are generated from the continuous rays using a 3D variation
of Bresenham's line drawing algorithm [10]. This algo,rithmguarantees constant stepping by a distance of one
along the major axis (e.g., Z) of the viewing direetion. The steps in the two non-major directions (e.g., X and
Y) are stored in lookup tables, so called templates [27]. Each new discrete ray is generated using these tem-
plates, thereby avoiding any overlap ofvoxels between neighboring discrete rays [25].
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Figure 5. a) Cube-3 Algorithm Overview. b) Cube-3 General Architecture. (CFB: Cubic Frame Buffer:
PRP: Projection Ray Plane: ABC Buffer: Above. Below and Current Buffer; TRIUN: Tri-linear Inter-

polation Unit; VCU: Voxel Combination Unit) .

The di"screterays are cast from each pixel on the base-plane. which is the volume face that is most perpendicular
to the viewing direction. All discrete rays belonging to a scanline of the base-plane form a plane in the daraset.
We call this (possibly slanted) plane of discrete ray sampies the Projection Ray Plane (PRP). The algorithm
projects a distoned intermedilite image onto the base-plane. A warping of the base-plane projection onte the
viewingplane produces the final image.



. .
Two discrete PRPs (top and bottom PRP iJi Figure Sa) are used to generate the sampie values of the original
continuous rays. A sheared tri-linear interpolation isperformed using the voxels of neighboring discrete rays
from the top and from the bouom PRP [22]. The resulting values yield a continuous plane of ray sampies. Three
such continuous planes are stored in the above, below, andcurrent (ABC) samplebuffers for gradient estima-
tion and shading. In order to evaluate the gradient at a certain resample location, we use central differences be-
tween the sampies of rays on the immediate left, right, above and below, and along the current ray [22]. This
allows to share already computed ray sampies between neighboring rays and avoids any additional access to
voxels in the CFB.
The sampies of the rays are shaded and opacities are assigned using a user controllable transfer function. The

shaded rays are composited into a final pixel color using one of several projection schemes, such as first or last
opaque projection, maximum voxel value, weighted summation, or compositing. The final base-plane pixel val-
ue is transmitted to the host where it is 20 transformed and interpolated into the fmal view plane image.

5. 2 General Architecture

The Cube.,.3arehitecture is highly parallel and pipelined and allows for the visualization of 5123 16-bit per voxel
datasets at 30 frames per second. Figure Sb shows a diagram of the overall design.
The CFB of an n1dataset is organized in n dual-access memory modules, each storing n2 voxels. A special

30 skewed organization enables the confliet-free access to any beam of n voxels [8]. A beam is a discrete ray
of voxels parallel to a primary axis afthe CFB. A voxel with space coordinates (x,y, z) is being mapped onto
the k-th module by:

k = (x + y + z) mod nOS k, x, y, z Sn - 1 (3)

The intern al mapping (i,j) within the module is given by: i=x, j=y. Since two coordinates are always constant
along any beam, the third coordinate guarantees that voxels from any beam reside in different memory modules.
PRPs are fetehed accof(iing to the discrete ray-templates as a sequence of voxel beams. The beams are stored

in discrete ray buffers that are part of the TRILIN units shown in Figure Sb.A high-bandwidth global bus (Fast
Bus) aligns all discrete rays in each PRP parallel to a main axis of the 2D buffers (see Figure 5a). Using a 2D
skewing similar to that of the CFB memory, the 20 buffers support conflict-free storage of beams coming from
the CFB and conflict-free retrieval ofaxis-aligned discrete rays.
Consecutive discreterays are fetehed each clock cycle and placed into n tri-linear interpolation units (TRI-

LINs). Overlapping voxels of neighboring discrete rays can be shared between neighboring TRILIN units. The
interpolated continuous ray sampies are stored in ABC buffers and the gradients at each sampie location are
estimated. The interpolatedsample and gradient values are forwarded to shading units (Shaders), where a user
controlIed look-up table of transfer function values assigns each sampie an associated opacity value. Tbe color
value at each sampie location is calculatedaccording to a local illumination model.
The n shading units are the leaves of a folded and circular binary tree that contains a hierarehical pipeline of

n-l primitive computation nodes called voxel combination units (VCU). This tree, called the ray projection
cone (RPC), takes one ray of opacity and color samples and generates one projected pixel value per dock cyde.
The RPC implements all of the projection schemes mentioned above. The resulting pixel of the base-plane is
transmitted to the host where it is 20 warped and stored in the frame-buffer.

5. 3 Performance Estimation
Achievable frame rates ofCube-3 are Iimited only by the data-transferrate on the Fast Bus due to the fully pipe-
Iined implementation of all units. Table 3 gives some examples of performance depending on bus clock fre-
quencies. A Cube-3 implementation for 30 projections per second of a 5123 16-bit dataset requires 8 custom
boards and a specially fabricated bus backplane.
We are currently developing the Cube-4 arehitecture which overcomes the global voxel cOmInunication bot-

tleneck ofthe Fast Bus. Cube-4 has local and fixed data and control connections between processing elements
. while still preserving the algorithmic features of Cube-3. Preliminary information is available in [23].



Bus Frequency Dataset Size Frame Rate
8MHz 1283 30Hz
33MHz 2563 30Hz
66MHz .5123 15Hz
I2SMHz 5123 30Hz

Table 3: Cube-3 Performance Estimation

6 Comparison

VIRIM, VOGUE and Cube-3 represent different solutions for volume ray~asting acceleraters which are
strongly characterized by their main target specifications, i.e. fIexibility for VIRIM, compactness for VOGUE
and high rendering speed for Cube-3. A comparative summary is given in Table 4.
VIRIM offers fIexibility and versatilil}' for a large variel}'of application areas. Using object order ray -casting,

the architecture provides a farm of OSP processois for the ray-casting portion of the algorithm. Fixed functions,
. such as the reconstructio.n of arbitrarily oriented slices through the volume, are assigned to dedicated hardware
units for maximum speed. The programmable ray-casting processors allow the user to implement different vi-
sualization models and to balance image qualil}' versus rendering speed. .
The VOGUE project aims at making interactive volume visualization available in single-user workstations.

An efficient image order ray-casting algorithm is direcdy mapped onte a pipelined architecture, yielding a com-
pact and modular design. Higher rendering performance can be achieved by distributing subvolumes of the
dataset among several basic units interconnected by a high-speed network. This moduIarity allows the user to
trade machine size for performance. .

Rendering high-resolution datasets at high projeetion rates is the primary goal of Cube-3. A special memory
organization and a highly parallel and pipelined machine architecture yield the required high performance. The
use of a hybrid ray-casting algorithm allows for exploitation of coherency and successfully solves the tradition-
8I memory access botdeneck. The resulting real-time projection rates make new applications such as 40 vol-
ume visualization possible.

To sustain the high-memOIj' bandwidth requirements of volume rendering, all three architectures employ
memory interleaving. VIRIM and VOGUE use a similar eight-fold interleaving to simultaneously access eight
neighboring voxels out of the dataseL A specially skewed.and 512-fold interleaved memory in Cube.3 allows
for the conflict free retrieval of 512 voxels parallel to a main axis of the volume dataset.
Another characteristic cf all three approaches is a pipelined architeeture for high sustained rendering perfor-

mance. The pipeline stages ofVIRIM and VOGUE are processing single ray sampies. VIRIM employs a OSP
farm in the shading and classification stage, whereas VOGUE maintains a fully pipelined architecture for these
operations. The architecture ofCube-3 is ray-oriented, and each pipeline stage processes all sampie values be-
longing to a ray simultaneously.

In contrast to Cube-3, which already exhibits the largest possible degree of parallelism. VIRIM and VOGUE
offer different approaches for tlte parallel operation of multiple units. To circumvent data dependency problems.
VIRIM replicates the entire volume memory in each parallel geometry unit. VOGUE panitions the dataset and
distributes the subvolumes over multiple units, thereby allowing for a high degree of modularil}'.

7 Outlook

Although great efforts are currendy undertaken to reduce the algorithmic complexity of volume visualization
towards high-sp~ed software implementations. the evolution of surface-oriented graphics shows that in the long
ron hardware accelerators are the ultimate solution. In this paper we discussed three differentarchitectures.
which have the limited memory bandwidth as their central design aspect in common. A huge amount of data
must be read out of the memory and transferred to computationaI units before it is finally reduced to a single



VIRIM VOGUE Cube-3
Algorithm Object order ray-casting Image order ray-casting Hybrid ray-casting
. Overall Separate geometly and ray- Single. compact module Highly parallel architecture.
architecture casting (image generation) containing volume memory specialIy skewed volume mem-

units and fourVLSI chips ory. ray-projection cone
Interpol ation Programmable interpolation Tri-Linear Interpolation Tri-Linear Interpolation

using aLUT
Shading Two fIxed light sources. Up to four movable point light Single, movable paralIellight

2D Sobel X- andY-gradient sources, Phong shading, fast 8- source, Gouraud or Phong
estimation, shading models voxel or high-quality 56-voxel shading, ABC gradient estima-
(inc. Phong) programmable gradient estimation tion using 10 or 12 sampies

from neighboring rays
Parallelism 16 programmable DSPs per Up to 64 basic units intercon- Fully distributed and skewed

ray-casting uniL 1.geometry nected by 5.2GB/sec ring- cubic frame buffer, high-
llI)d1 ray-casting unit per mod- conneeted cubic networlc, each speed 8GB/sec bus inter-
ule, 4 modules per crate, high- unit fully pipel~ned,dataset conneetion, ring-conneeted .
bandwidth interconnection bus, pattitioned insubcubes with ray-projeetion cone, fully
rcplicated dataset in each replicated boundary voxels pipelined architeeture

geometry unit
Dataset size 2563, 16 bits per voxel 5123, 16"bitspervoxel 5123, 16 bits per voxel
Performance .10Hz for 256x256x 128, 2.5Hz for 2563 using 1 unit, 30Hz for 5123,

using 4 modules 20Hz for 5123using 64 units at 125MHz bus dock
Operational Prototype assembled, Proposed architecture, Propo~ed architecture, simula-
Status undergoing testing softWaresimuiation tion in software and Verilog

Table 4: Architectural Features ofVlRlM. VOGUE and Cube-3

pixel: Therefore, the future trends in hardware-supported volwne visualization might be strongly influenced by
the just emerging logic-embedded memory technology. The 256Mbit-DRAM will appear weil within this de-
eade, and then a 2563 dataset of 16-bit voxels will fit on a single chip. The most obvious thing to do then is to
place the computational units needed for the visualizationon the memory chip as weil, and to exploit the enor-
mous internal bandwidth while drastically reducing the required extemal bandwidth. For example, integrating
eight parallel memory subsystems and a tri-linear interpolator on thesame, ehip could reduce the required ex-
.ternal bandwidth by a factor of eight.lf we succeed in plaeing the entire visualization pipeline on a single chip
(e.g. by using different algorith~, or by placing only a subvolume on a deviee), eommunication bandwidth
requirements as weil as the size and costs of a voxel graphies system eould be reduced by orders of magnitude.

Moreover, with the advent of even higher integrated memorydeviees (the IGbit chip has.already heen pre-
sented), true cubic frame buffers holding volume datasets as weil asvoxelized surface-definedobjects will be
feasible. Sinee ray-tracing volumetrie datasets is not affected by the complexity ofthe scene [9], thiseould rep-
resent a great step towards real-time rendering with global illumination models.
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