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Abstract. Triangle strips have been widely used for efficient rendgrihis NP-complete to test whether a given
triangulated model can be represented as a single triatrigdeso many heuristics have been proposed to partition
models into few long strips. In this paper, we present a ngerithm for creating a single triangle loop or strip from
a triangulated model. Our method applies a dual graph ngcigorithm to partition the mesh into cycles, and
then merges pairs of cycles by splitting adjacent trianglesn necessary. New vertices are introduced at midpoints
of edges and the new triangles thus formed are coplanar kéihparent triangles, hence the visual fidelity of the
geometry is not changed. We prove that the increase in thédauof triangles due to this splitting is 50% in the
worst case, however for all models we tested the increasdesaghan 2%. We also prove tight bounds on the
number of triangles needed for a single-strip represamtati a model with holes on its boundary. Our strips can be
used not only for efficient rendering, but also for other agtions including the generation of space filling curves
on a manifold of any arbitrary topology.

1 Introduction

Constructing strips from an input set of triangles has beeadve field of research in computer graphics
and computational geometry, motivated by the need for efftciendering in the former and by traveling
salesman and Hamiltonian path problems in the latter. Ticadilly, triangle stripification research has been
pursued along two extreme problem statements. At one eadnplut model is considered unchangeable
and algorithms are designed to test whether there is a Hamatt path in the triangulation or to find as
few strips as possible from the model. At the other end, tpatitriangulation is completely ignored, and a
new triangulation is imposed on the input vertices in ordeautive at a single strip triangulation even if it
requires addition of new vertices. The work presented hiteenpts to bridge the gap by finding a single strip
triangulation from the input triangulation by splittingetinput triangles if necessary while guaranteeing that
the geometry of the input model is also retained.

Our motivation goes beyond the rendering requirement aedrétical aspects of Hamiltonian paths.
The advantages of having a single triangle strip representaf a model enables a plethora of other geo-
metric and topological algorithms to be applied on the molethis paper, we show one such application
— generating space filling curves on manifolds of arbitraqyotogy — using the total linear ordering of
triangles given by a Hamiltonian cycle.

Triangle stripification algorithms can be categorized dasetheir input requirements. The first category
of algorithms takes only the vertices of the model as input famds a triangulation that would generate a
single strip. The second category takes edges of a polygonpas and triangulates the interior of the
polygon, with or without the addition of Steiner vertices create triangle strip(s) that covers the polygon.
Typically, these two categories work only with data sets gulame or a height field. The third category
takes triangles of the model as input and tries to build loiaggjle strips, not necessarily a single strip, only
using the input set of triangles. The third category work\2D surfaces embedded in 3D. The algorithm
presented in this paper is a combination of all the abovestba¢egories and creates a single triangle strip
from the model. In the triangle strip generated by our mettadidinput vertices are used as in the first
category, Steiner vertices and hence more triangles aredaaisl in the second category, and finally, the
geometry of the input triangulation is retained as in thedthategory.
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Fig. 1. Single cycle triangulation of the genus-two sculpture niadigh 50780 input and 51780 output
triangles.

1.1 Related Work

It follows from Steinitz’ theorem and known results on NRywgaleteness of the Hamiltonian cycle prob-
lem for cubic 3-connected planar graphs [GJT76] that it isHdRd to find a single strip, even for a model
consisting of a triangulated convex polyhedron, and knowporential-time algorithms for Hamiltonian
cycles are not sufficient to find single strips for models ofethan 100 triangle$ [EppP3]. Therefore, many
algorithms simply attempt to find as few a strips as possitamfthe input triangulation. SGI developed a
program [AHB90] that produces generalized triangle stigisg a heuristic that begins and ends strips on
faces with few neighbors, so as to reduce the number of eblaiangles. The classic STRIPE algorithm
[ESV9€] makes a global analysis of the input triangle meshing to find patches that can be efficiently
striped. Velho et al.[IVAEG99] build and maintain triangteigs incrementally while creating a triangle
mesh simultaneously. Chow [Chd97] builds strips by reusiiregpoints added to previous strips as often as
possible. Snoeyink and Speckmahn [SS97] propose a stipaficalgorithm specially designed for trian-
gulated irregular network (TIN) models using the spanniegg of the dual graphs of TIN models. Xiang
et al. [XHM99] decompose spanning trees of the dual graphtimdngle strips. The tunneling method for
triangle strips in continuous level of detail meshes is pegal by Stewarf [SteD1]. Taking this a step further,
Shafae and Pajarola [SR03] propose dynamic triangle stuipagement for view-dependent mesh simplifi-
cation and rendering algorithms. Demaine etlal. [DEJ relaxed the definition of a triangle strip, to allow
adjacent triangles in the strip to share only a single vertetead of an edge, and showed that any model
consisting of triangles meeting edge-to-edge (possibtii moundary) admits such a relaxed strip. Bogom-
jakov and Gotsmar [BG02] investigate the ordering of triaagn order to reduce the number of vertex
cache misses and develop methods to find triangle sequédratgsdserves the property of locality. Triangle
strips are also important in geometric compression andnésion and is a by-product of these algorithms
[Ros99.TG9B]. Here again, the input triangulation is uyuabt modified.

The hardness of finding Hamiltonian paths can be eased by wémi@tions of the problem statement.
For example, algorithms presented [in JAHM$96] avoid Detgutriangulation of the planar point set and
create a Hamiltonian path triangulation. Further, theg akinput a planar simple polygon, and check using
its visibility graph whether there exists a single strigmgulation of the polygon’s interior. If not, such a
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Fig. 2. (a) The given triangulation. Assume that the boundary edgesdjacent to each other as shown by
dotted arrows and all the boundary triangles share a comradaxy The mesh shown is a manifold with
genus 0. (b) The dual degree three graph and a perfect mgitshawn by dark edges. (c) If we remove all
the matched edges we get disjoint cycles consisting of onigaiched edges. Two such cycles, one with
unfilled and the other with filled graph nodes are shown. Theruof these cycles cover all the given vertices
in the dual graph and hence the triangles in the given messeltlisjoint cycles are connected to each other
by matched edges. We construct a spanning tree of thesentlisygles and hence choose matched edges
that connect these cycles. (d) The triangle pair correspgrnid chosen matched edges in the tree are split
creating two new triangles. Matching is toggled around tewe mertices resulting in a triangulation with a
Hamiltonian cycle of unmatched edges as shown in the figure.
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Fig. 3. (a) An example of a graph of disjoint cycles of unmatched sdfjbese cycles are connected to each
other by matched edges. (b) A spanning tree of cycles isartet using selected matched edges. (c) These
matched edges are split to create a Hamiltonian cycle.

triangulation is produced using Steiner vertices. They pfsve that computing a Hamiltonian triangulation
for planar polygons with holes is NP-hard. The QuadTIN mét[ifALOZ] triangulates an irregular terrain
point data set by adding Steiner vertices at quad-tree otag@roduce a dynamic view-dependent triangu-
lation that can be traversed as a single strip. Given a dasehdl mesh of a manifold, Taubin [Tau02] splits
each quadrilateral into triangles and orders them into glesistrip. Unlike the above methods that take a
guadrangulation or points on a plane or a height field as jautmethod uses the triangulation of mani-
folds of arbitrary topology. Further, even by adding newrtgles, our algorithm does not change the input
geometry (in terms of visual fidelity), whereas the abovehoes$ prescribe a completely new triangulation
that includes the input point set.

1.2 New Results

Our main result is a new method for subdividing a triangulateodel and finding a single triangle strip
in the subdivided model. We show theoretically that thishodtis guaranteed not to increase the number
of triangles in the model by more than 50%, but in our expenithi¢he increase was at most 2%. In order
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to estimate how tight our worst case bounds are, we alsoromhst lower bound, consisting of an infinite
family of triangulated models in which any method for sulidiivg the model to produce a single triangle
strip must increase the number of triangles by at least 5.4%.

We also consider the problem of producing a single strip idisiding a model having a triangulated
boundary with holes. For such a model, witlriangles, we show a tight bound of 3-4log,n+ O(1) on
the number of triangles in the resulting strip. Therefotartsng with a watertight model is of considerable
benefit in stripification.

2 Hamiltonian Cycle Stripification

In this section we describe our algorithm to create a Hamidto cycle from the given triangulation. The
fundamental technique we use to arrive at a Hamiltonianeagch perfect matching algorithm. rAatching

in a graphG = (V,E) is a subset M of the edges E such that no two edges in M sharera@oend node. A
perfect matching Mh G is a matching such that each nodézak incident to an edge M. (See Figurgl2(b).)
For a bridgeless graph in which every vertex has degree, ttirere always exists a perfect matching [Pet91].
Such a matching can be found in tif@&n) for planar graph< [BBDLU1] 0©(nlog*n) in general, where

is the number of input vertices; the latter bound can be éuritimproved tcO(nIog3nIog logn) using recent
results of ThorupIThaoCO0]. In our case, we are interestetiendual graphs of triangulated manifolds; such
graphs are bridgeless (in fact, 3-connected) and have @ld¢igree. A perfect matching in this dual graph
will pair every triangle with exactly one of its adjacentimgles.

Given a perfect matching for a degree three graph, therenar@&inmatched edgescident on every
graph vertex. The set of all unmatched edges forms a callecfidisjoint cycles, the union of which covers
the complete vertex set of the graph (Figlite 2). These dispicles are adjacent to each other across
matched edges. Let us construct a graph calledyhke graphin which the nodes correspond to the disjoint
cycles of this collection, and two nodes share an edge wieerleg corresponding two cycles are adjacent
to each other across a matched edge. From the cycle-graptgnst&ruct a spanning tree of cycles (Figure
[B). Considering this graph as the dual of our triangulatibwe, disjoint cycles are triangle strips (loops)
and the matched edges in the tree are adjacent triangle Aaishown in FigureBl2(d) arid 3(c), we split
each of these matched triangle pairs corresponding to thehedhedges in the tree, to form a single cycle
connecting all the triangles in the manifold.

If kis the number of disjoint cycles then we nd&d- 1) matched edges to form a spanning tree (Figure
[3). Triangle pairs corresponding to thege- 1) matched edges have to be split introducirig 2 1) new
triangles. Since the number of triangles in each cycle dabadess than thre& < 3. This worst case
scenario results in+ 22 = 1.66n triangles in the Hamiltonian cycle.

2.1 Eliminating Three-Cycles

As discussed above, the worst case for our algorithm arigesvthe cycles of unmatched edges have
length exactly three. We eliminate the possibility of ocence of such three-cycles, improving our worst-
case guarantees on the number of subdivisions, using tlegvfioty observation. Cycles consisting of three
triangles are formed only if there exists a configurationhoéé mutually adjacent triangles surrounding a
degree-three vertex as shown in Figiire 4(a). We temporsiriplify the mesh by repeatedly removing the
central vertex from each such configuration, replacing thdiguration by a single triangle (Figuté 4(b));
in the dual graph of the mesh, this corresponds AYatransformation in which a three-cycle is contracted
to a single point. It is not a concern that this simplificatimay lead to self-intersecting geometry in the
mesh. We can test whether any triangle belongs to a thrde-byexamining a constant number of nearby
triangles, so the total time for this transformation is éine
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Fig. 4. (a) A configuration of three triangles surrounding a dedheee vertex. (b) From the input mesh,
all degree-three vertices are removed before finding thehirag. The typical result after the matching is
shown here. (c) The removed triangles are reinserted wiphoppiate matching between them. This local
change does not change the matching outside the configuratitis process results in a perfect matching
such that the unmatched edges have no three-cycles.

Once all three-cycles are removed, we then apply Peterfetsem to find a perfect matching in the
simplified mesh. A typical result after such a matching isvain Figure[4(b). We then add the removed
three-triangle configurations back one at a time into thiatdthed’ mesh as shown in Figufe 4(c). At each
step, two of the triangles in the configuration are matchezhtth other, so that globally we retain a perfect
matching with no three-cycles among the unmatched edges.

By means of this optimization, we are able to prove the foltmgaresult.

Theorem 1. For any triangulated model with n triangles, we can find ineim(nlog3nloglogn) a subdi-
vision of the model, and a single triangle strip for the swiglon, in which the subdivision has fewer than
3n/2 triangles. If the model has the topology of the sphere thertitthe for finding a single strip subdivision
can be further improved to @).

Proof. As discussed above, we find a perfect matching in the dualeofriput model, such that the un-
matched edges form cycles with no three-cycle. Therefoeretcan be at mosit/4 cycles,n/4 — 1 edges
selected in the spanning tree of the cycle graph, &ng42- 1) subdivisions. The total number of triangles is
thus at most 8/2— 2. The processes of removing and restoring three-triarggiigurations, and of finding
a spanning tree for the cycle graph and using it to select @f setbdivisions to perform, all take only linear
time, so the total time is bounded by the algorithm for findiegfect matchings. O

Although this worst case upper bound on additional numbdriafngles is 50% of the input number
of triangles, in practice additional triangles is less tR&6. We achieve this result after using the further
optimization described below. The results on lower boundadditional triangles for both manifolds and
manifolds with boundaries are given in the Appendix.

2.2 Merging Cycles Around Nodal Vertices

The goal of this optimization is to increase the length ofdtsfoint cycles by merging many cycles without
any triangle splits. Assume that we have already constlucferfect matching, and partitioned the triangles
of the input mesh into disjoint cycles. We classify a meslexaras anodal vertexf it satisfies the following
conditions:v,, the number of triangles incident ans even and the total number of unique disjoint cycles
that these incident triangles belong to‘gis An example of a nodal vertex with six incident triangles and
three unique incident cycles is shown in Figllre 5. The neagidod of every nodal vertex is modified such
that the matched and unmatched triangle pairs are togghesinferges all the incident cycles into one cycle.
Examples of non-nodal vertices are shown in Fidtire 6.
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Fig. 5.(a) A nodal vertex with (six) even number of incident trisggnd triangles belonging to three unique
cycles. (b) By switching the matched and unmatched edddhgeak cycles can be merged to a single cycle.

Fig. 6. Examples of non-nodal vertices. In both the examples, theresix incident triangles but only two
unique cycles.

If we use a union-find data structure to keep track of whiciniggles belong to which cycles, we can
test whether any mesh vertex is nodal using a number of umdmgueries proportional to the degree of the
vertex, so the total time for the optimization@na(n)) wherea is the extremely slowly growing inverse
Ackermann function.

Once this optimization is performed, we form the cycle gratthe remaining cycles, construct a
spanning tree, and use the tree to guide triangle subdigsas before. This optimization step typically sig-
nificantly reduces the number of subdivisions that must bfopaed, but we have no theoretical guarantees
on its performance. The results of these optimizations ciowa models are shown in Talilke 1.

3 Matching Implementation Details

We describe the implementation details only for the penfestching phase of our algorithm, since the other
parts of the algorithm are straightforward.

Rather than using the theoretically efficient but somewloamex O(nlog3nlog logn) algorithm to
construct perfect matchings in the dual graphs of our modetsused a general purpose graph maxi-
mum matching algorithm, Edmonds’ blossom-contractiorodllgm [Edm6%]. This algorithm repeatedly
increases the size of a matching by one edge, each time pémfpa breadth-first search using a union-find
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Model |Input Tris|Output Trig% Increase
Torus 400 406 15
Sphere 480 484 0.8
Goblet 1000 1016 1.6
Eight 1536 1554 1.1
Sculpture 50780 51780 1.9
Fandisk 12946 13134 1.4
Horse 96966 98552 1.6
Shoe 156474  15898( 1.6

Table 1. Results of our algorithm on different models. Note that therease in number of triangles is
consistently less than 2% of the input number of triangles.

Fig. 7. Depending on the direction of the cycle, two ways of subdingda triangle are shown. Triangle
vertices are assumed to be ordered in counter-clockwisetdin. The space curve will pass through the
edge centers and centroids of the triangles as shown. Rexsthdivisions would yield denser curves and
eventually would fill the space of the given triangle.

data structure to keep track of certain contracted subgraphedblossomsTherefore, if the number of
repetitions i, the total time i<O(kna(n)).

In our application of this matching algorithm, the numbeedges in the resulting matchings is always
exactlyn/2, so if we applied Edmonds’ algorithm starting from an empstching we would take more than
guadratic time, imposing strong limits on the size of the sisdve could handle. To reduce this time penalty,
we precede Edmonds’ algorithm by a greedy matching phas® tieedegree-one reductiorenddegree-
two reductionsdescribed by Karp and Sipsér [KS81] and Magun [Mag98]. Theedy matching phase
typically matches 99.9% of the triangles of our input modsignificantly reducing the time requirements
for our perfect matching algorithm.

Our implementation of the matching portion of our strip fimglialgorithm is written in Python, a rel-
atively slow interpreted language. On an 800 MHz Apple P&sek, our code took approximately three
minutes to find a perfect matching for the 90K-triangle haremiel and took approximately seven minutes
to find a perfect matching for the 150K shoe model. We expexdtdignificant additional speedups could be
obtained by rewriting our code in a faster compiled language by incorporating the more sophisticated
greedy matching heuristics described by Madgun [Mag98].

4 Applications

Hamiltonian strip triangulation has many applicationsendering. One such application we elaborate here
is a procedural method to generate space filling cujves @ag®the manifolds. Space filling curves are
ideal for hierarchical indexing of a higher dimensional apavith a single parameter curve. They have
tremendous applications in many fields and are used to sa@lkieus problems on 2D images including
contact searchindg [DHIOQ], parallelizing finite element grid generation_[BZ00litef-core visualization



Fig. 8. A double torus with multiple iterations of space filling cas/

algorithms for massive mesh simplificatidn_[LFP02] and vodunanderind[PEC1], mesh indexing IN$96],
image compressior_[PWDO0], dithering IBV95], half-tonirdW93], etc. Interesting applications of space
filling curves in designing geometric data structures ataitdel in [ARR97]. Popular space filling curves
include Hilbert curves and Lebesgue’s curves. A methodgseg by Bartholdi and Goldsmdn [BGO01] pro-
poses a space filling curve on a vertex connected triangulatiere we introduce a space filling curve that
fills any (edge connected) triangulated manifold of anyteaby topology. We believe that this procedu-
ral method to fill the surface with a single space-filling @iwould enable researchers to do many of the
geometric operations listed above, directly on the surtd@D objects.

Since the cycle produced by our triangle strip method cotrersvhole model, a curve passing through
the triangles of the strip, in order, would cover the wholededolf this curve fills each triangle on its way,
it fills the space of any 2-manifold. Like any other spacerfilicurve, we define our curve by recursive
subdivision of the triangle. The subdivision should ensbet the new vertices converge to the vertices and
centroid of the triangle. Hence edges have to be split by ubeigision. To ensure consistent subdivision
of all the triangles and continuity of the curve across glanboundaries, we impose a direction to the
Hamiltonian cycle and also orient the manifold. Based os dhiection of the cycle and the orientation of a
triangle, we define two cases of subdivisions of the triaregeshown in Figurig 7. For any given point on the
manifold’s surface, each level of subdivision reduces thendter of the triangle containing that point by a
constant factor, so the subdivision process produces itirtlitea curve that passes arbitrarily close to the
point and is therefore truly space-filling curve. Resultswbdivision and space filling curves over multiple
iterations are shown in Figur€$ 8. As far as we know, thisesfitst procedural method to produce space
filling curves on manifolds of arbitrary topology.

5 Conclusion

We have presented a new algorithm to strip the given triaatiguil of a manifold into a single cycle covering
all the input triangles. In the process we split a small nundbgairs of adjacent triangles at the midpoint
of their common edges. This addition of triangles will maintthe geometric visual fidelity of the original
model. We have proven theoretical bounds on the output $itesoalgorithm, and also shown experimen-
tally that in practice the algorithm performs much bettertlthe theoretical bounds would suggest. We also
presented one of the many applications of Hamiltonian cy@egulation, namely, generating space filling
curves on 2-manifolds with arbitrary topology.

There are many future directions to this project. In thisrenir project, we have not considered the
swap operations used in triangle strip rendering. New perfatching algorithms that would take these
constraints into account have to be developed. Total linedering of triangles is another powerful tool,
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Fig. 9. Horse model with 96966 input and 98552 output triangles.disknmodel with 12946 input and
13134 triangles. Goblet with 1000 input and 1016 outpunhgias shown here with two iterations of space
filling curve.

but the Hamiltonian cycle provided by our algorithm is mdrart a total linear ordering, so perhaps some
reduction in output size can be achieved by finding a patleassbf a cycle. We believe that the existence
of, and a procedural method to generate, a Hamiltonian dxialegulation will spark varied interests in the
research community.
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APPENDIX: Lower Bound Analysis

Although we proved a worst case bound of 50% on the incread®inumber of triangles of a model due
to our subdivision process, our experimental results stawihcreases of only 2% are more typical, and
indicate to us that it may be possible to significantly imgrour worst case bound. How much improvement
is possible? To test this, we provide here a lower bound, sigpihe existence of models in which no
subdivision method for producing single triangle strips t& guaranteed to achieve better than a 5.4%
increase in the number of triangles.

Lower Bounds for Manifolds

The starting point of our lower bound is a result of Holton dfidkay [HM88], that there exist non-
Hamiltonian 3-connected 3-regular planar graphs with 38ices. The dual of such a graph is a mesh
of 38 triangles that can be realized as a convex polyhedrantfzat has no cyclic strip of triangles. By
connecting many such meshes together, we form a more géowealbound.
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Fig. 10. Recursive triangulations of reguléd- 2)-gons, and their dual complete trees.

Theorem 2. There exists an infinite family of triangulated convex petifa, such that any single triangle
strip formed by subdividing an n-triangle polyhedron in faenily must have at lea89n/37— 4 triangles
in the strip.

Proof. Let H be the planar dual of the Holton-McKay grapH;is a planar 3-connected graph with 38
triangular faces. For anly let A be any planar 3-connected graph witfaces, all of which are triangles,
and form a grapl®y by replacing each triangle @ by a copy ofH. Gy is thus a planar 3-connected graph
with n= 37k faces, all of which are again triangles, so it can be realimea convex polyhedron with triangle
faces. The family described by the theorem consists of ode golyhedron for eacy.

Now consider any single triangle strip formed by subdividinangles ofGy. With the exception of
at most two copies ofl (the copies containing the start and end of the strip) theangimg k — 2 copies
of H must either be entered and exited exactly once by the stiptfaerefore contain a subdivided edge in
the interior of the copy, sincEl has no cyclic triangle strip) or be entered and exited mase tince (and
therefore contain two subdivided edges on the trianglelzat replaced by a copy &1). Thus, the total
number of subdivided edges in the strip €&y is at leask — 2. Each subdivided edge increases the number
of triangles in the strip by two, so the total number of trikasgn the strip is at least 893- 4 = 39n/37— 4.

O

Lower Bounds for Manifolds with Boundaries

Although our main results concern watertight models, wesmmr briefly for completeness the case of
models with incomplete boundaries; we refer to any breakérboundary of a model ashmle

Theorem 3. There exists an infinite family of triangulated models, hgwhe topology of a sphere with a
single hole, such that any single triangle strip formed blydviding an n-triangle model in the family must
have at leas8n— 4log,n— O(1) triangles.

Proof. Form modelM by triangulating a regulaf3- 2)-gon, so that there are- 2< outer triangles sur-
rounding a central reguldB- 2€)-gon, which is triangulated recursively to form a copyMif_;. As a base
case for the recursion, I8ty be a single equilateral triangle. Figlird 10 depicts thetfirgte model$/1y, My,
andMy in this sequence. As shown in the figure, the dual grap¥,d6 a tree withn, = 3(2K— 1) 4 1 nodes,
corresponding to the same number of triangles in the middeThe longest path in this tree has length 2

Now, consider any single triangle strip formed by subdivigMy. Any interior edge oMy that is not
along the path from the start triangle to the end triangldefstrip must be crossed an even number of times
by the strip, so all but R of the edges are subdivided and the total number of subdivédiges is at least
ng — 1—2k. As in the previous theorem, each subdivision increasesuh&er of triangles by two, so the
total number of triangles in the strip must be at leagt-32 — 4k = 3ny — 4log, nk — O(1). O

Finally, we show that the bound of Theor&in 3 is tight.

Theorem 4. Any connected n-triangle model with holes can be subdivideidrm a triangle strip with
3n—4log,n+ O(1) triangles in the strip.
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Proof. (sketch) LetT be any spanning tree of the dual graph of the model, anelbetan edge ifT such
that the two subtrees on each sideefich have at leaay/3 triangles in them; such an edge can be found by
stepping from edge to edge towards the largest subtreethatdondition is met. Then, the pathformed

by connecting the leaves farthest fran each subtree has at least Jog3+ log,2n/3 = 2log,n— O(1)
edges. Form a multigrag¥l by doubling each edge af except for the edges . M has even degree except
at the endpoints d?, so it has an Euler path that starts and ends at the endpobiRtiéfeve add a new vertex

at the midpoint of each internal edge Dfexcept for the edges iR, and subdivide each triangle of the
model appropriately, this Euler tour can be transformed @ntriangle strip. There ame— 2log,n+ O(1)
new vertices, so the total number of triangles in the strignis 4log,n+ O(1). O
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