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Abstract

Aiming at robust surface structure recovery, we extend the powerful optimization technique of variational shape
approximation by allowing for several different primitives to represent the geometric proxy of a surface region.
While the original paper only considered planes, we also include spheres, cylinders, and more complex rolling-
ball blend patches. The motivation for this choice is the fact that most technical CAD objects consist of patches
from these four categories. The robust segmentation and global optimization properties which have been observed
for the variational shape approximation carry over to our hybrid extension. Hence, we can use our algorithm to
segment a given mesh model into characteristic patches and provide a corresponding geometric proxy for each
patch. The expected result that we recover surface structures more robustly and thus obtain better approximations
with a smaller number of primitives, is validated and demonstrated on a number of examples.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid and
object representations

1. Introduction

Recovering the inherent structure and finding a faithful ap-
proximation of a given surface’s geometry have always been
challenging tasks in computer graphics research. Due to the
steadily increasing availability and complexity of geomet-
ric models, better understanding of the underlying surface
structures and characteristic geometric features becomes
more and more critical nowadays. Accurately recovered sur-
face structures will provide best blueprints for most geome-
try processing tasks which require optimal surface approx-
imations, like multiresolution modeling, optimal domains
for subdivision modeling, remeshing, high quality LODs,
progressive compression, hybrid shape representations, etc.
Moreover, traditional CAD applications including reverse
engineering and rapid prototyping can benefit from such rep-
resentations as well.

In this paper we present an automatic and robust surface
structure recovery algorithm (cf. Fig. 1) which extends the
powerful optimization technique of variational surface ap-
proximation [CSAD04]. In addition to planes, we allow for
higher order surface elements like spheres, cylinders and
more complex rolling-ball blend patches to embrace a new
hybrid variational framework. By this, surface structures can

Figure 1: The face model (16K faces, left) approximated by
5 spherical (middle) and 5 planar (right) proxies. Our hybrid
scheme can more faithfully separate the distinct face parts
like the forehead, the eyes, the cheeks and the nose.

be recovered very elegantly and more robustly than with typ-
ical reverse engineering processes [VMC97], especially for
mechanical CAD models which inherently consist of clear
geometry structures. Moreover, as a side product of the im-
proved structure recovery, our hybrid approximation method
typically provides a higher approximation quality compared
to the standard variational approximation scheme in particu-
lar when a very coarse segmentation is utilized.
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Figure 2: The rocker arm model (60K faces) approximated from left to right, by 150,75,30 planar and 30 hybrid proxies. Top
row shows their respective partitioning (gray color for planes, red for spheres, green for cylinders and blue for blend patches),
middle row: approximation results via vertex projection onto the corresponding proxies and bottom row: remeshed outputs
with 578,498,508 and 496 triangles respectively and absolute maximum Hausdorff errors 0.18, 0.23, 0.26 and 0.19. Note the
drastical decrease of the approximative quality when fewer planar proxies are used (center right), comparing to more favorable
results of our hybrid scheme (far right) where most geometric structures can be captured with only 30 proxies.

1.1. Related Work

Many approaches have been proposed trying to find the op-
timal structure to approximate a given surface’s geometry,
with certain constraints either on the approximation toler-
ance or the target complexity. Unfortunately, this optimiza-
tion problem has been proven to be NP-hard [AS94], which
is also the reason why most approaches employ heuristics
based on local geometry characteristics.

There are quite a lot well-studied mesh simplification and
decimation methods, some of which address the above ap-
proximation problem by incrementally performing atomic
decimation operators like vertex removal or (half)edge col-
lapse according to a certain priority ordering [Hop96,GH97,
Gar99,GGK02,LRC∗03]. The resulting coarse mesh already
reveals in some sense the structure of the original dense
mesh and can function, e.g., as the base mesh of a mul-
tiresolution surface representation. An alternative approach
are the ‘dual” methods to mesh simplification, i.e. the face
clustering approximations [KT96,She01,GWH01,SSGH01,
SWG∗03, MK05], where progressive region merging opera-
tors are applied in the same greedy way to create a set of face
clusters for geometric segmentation.

Surface remeshing techniques are another family of sur-
face approximation approaches that can adapt to the under-
lying surface structures. They commonly re-sample the ge-
ometry carefully with well-shaped surface elements (often
triangles or quads) in either isotropic or anisotropic fash-
ion [KVLS99, GVSS00, BK01, AMD02, SAG03, ACSD∗03,
MK04]. Although delicate information like sharp features or
curvature lines can be used to guide the remeshing process,
the approximation quality often can not be guaranteed es-
pecially for very coarse scale approximations. In addition, a
global minimization of some specific error metric can hardly
be achieved in this kind of schemes.

Recently, the powerful optimization technique of varia-
tional shape approximation was proposed in [CSAD04]. The
approximation task is casted as a discrete, variational ge-
ometric partitioning problem which is driven by minimiz-
ing the global approximation error. As we will extend this
scheme, a more detailed description will be given in Sec-
tion 2. The variational framework is simple yet effective and
elicits a provable good trade-off between conciseness and
geometric distortion. However, its structure recovery power
and the approximation capability are somewhat limited by
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the restriction to planar elements, yielding unfavorable re-
sults as the number of proxies gets very small.

We extend the standard variational approximation method
by allowing for more different primitives (e.g. spheres and
cylinders) to represent the local geometry of a surface re-
gion. In this sense, our work is also closely related to reverse
engineering [VMC97,PR98,BKV∗02,PLH∗04], which con-
verts raw 3D data points into concise and explicit geometry
representations. While for reverse engineering the segmenta-
tion phase and the surface fitting phase are usually separated,
we merge both of them in the variational framework, i.e.,
segmentation and fitting are alternatingly improved driven
by Lloyd iteration [Llo82], hence leading to an automatic
process and better recovery of surface structures.

2. Variational Surface Approximation

In the following we give a more detailed description of the
variational surface approximation scheme [CSAD04] in or-
der to set up the notations for our discussion. Trying to find
an optimal piecewise-linear approximation of the input ge-
ometry, two major phases, partitioning and fitting, are re-
peated alternatively based on Lloyd’s clustering idea to min-
imize the total approximation error. Variational geometric
partitioning is first applied to the input mesh M. Each re-
gion Ri in the partitioning R will contain a set of triangles
{Ti} with barycenters {gi} (note we can use gi to fit sur-
faces based on triangles rather than vertices). Then each Ri
is approximated by a planar shape proxy Pi = (xi,ni), where
xi and ni represent the “average” point and normal. After the
fitting phase, the proxy set P = {Pi} approximates the whole
geometry. As an alternative to the standard L2 error metric,
the normal-based L2,1 metric is also used to evaluate the par-
tition quality as well as to guide the fitting. For more details,
the reader is referred to the original paper [CSAD04].

The second ingredient of the variational surface approx-
imation framework is geometric re-partitioning where each
triangle is assigned to the best fitting proxy. The two steps,
fitting and re-partitioning, are iterated utile convergence.
This global optimization procedure is easy to implement and
usually leads to better results compared to those obtained by
greedy approaches. The strengths of variational shape ap-
proximation are twofold. Locally, the iterative technique is
very sensitive to anisotropic bending of the surface which
leads to an almost perfect alignment of the surface partition
to the principle curvature directions. Globally, the technique
reliably detects and merges flat regions which can be approx-
imated by a single planar proxy.

The goal of our extension to this technique is to add more
shape detection power such that higher order shape primi-
tives like spherical or cylindrical regions can be properly re-
covered as well. We achieve this by integrating other classes
of proxy geometries while leaving the rest of the algorithm
almost unchanged. The resulting hybrid variational shape
approximation techniques proves to converge to high-quality

partitionings and faithful shape approximations even when
the number of proxies is very small (cf. Fig. 2).

3. Hybrid Variational Surface Approximation

Aiming at accurate surface structure recovery, we derive our
hybrid scheme from the standard variational surface approx-
imation. In addition to the standard planar surface elements,
we also employ other higher order primitives like spheres,
cylinders and more complex rolling-ball blend patches, in
the variational framework (cf. Fig. 2 and 3). As hybrid sur-
face elements lead to more geometric fidelity, we can recover
more surface structures while using much fewer primitives
(e.g., fewer regions in the partitioning). This results in more
flexibility and even better blueprints for subsequent geome-
try processing tasks.

Figure 3: The fandisk model (13K faces) approximated with
24 hybrid proxies. Left two are partitioning outputs and right
the remeshing result with 168 triangles.

To compose our new variational approximation scheme,
in the following, we will first present the definitions of the
new hybrid surface elements and then explain how they can
be embedded into the standard framework. Error metrics will
be modified correspondingly and finally diverse surface fit-
ting techniques are discussed.

New Surface Elements In order to faithfully approximate
a local surface region Ri, we use the following elements as
basic shape proxies:

• Planes Pi = (xi,ni).
• Spheres Si = (ci,ri), ci for sphere center and ri for radius.
• Cylinders Ci = (xi,di,ri), xi a point on the axis, di its di-

rection and ri radius.
• Rolling-ball blend patch Bi = (ci(t),ri), ci(t) the center

trajectory and ri the ball radius. Specifically ci(t) is a uni-
form quadratic B-Spline curve plus two rays extending on
the two ends in its tangent directions .

The motivation for this choice is mainly due to the fact that
most technical CAD objects consist of patches from these
four categories. Accordingly, the full proxy set now will
be P = {Pi}∪ {Si}∪ {Ci}∪ {Bi}. While obtaining higher
approximation power, we still note that, except the blend-
ing patch element, the other two new surface primitives
have similar memory consumptions as planes and hence will
not bring more overhead to the approximation setting. Even
though the cylinder is just a special case of the rolling-ball
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blend patch, we keep both of them for compactness reasons,
since cylinders need less data than blend patches.

New Elements Embedding We can embed the above proxy
geometries into the variational framework with modified er-
ror metrics (explained below). Otherwise the geometric par-
titioning phase is kept untouched.

The major changes appear in the proxy fitting phase. For
each partitioned region Ri, we compute not only the best
fitting plane Pi, but at the same time the best fitting sphere
Si, cylinder Ci and blend patch Bi. From those fitted basic
elements, we choose the one as the optimal shape proxy SPi
that minimizes the following fitting energy:

E(Ri,SPi) = ∑
Ti∈Ri

L∗(Ti,SPi).

where L∗ refers to the L2 or L2,1 metric.

To start the Lloyd iteration, we set all initial elements to
be planes and perform a flood-based partitioning. The initial
seeds can be randomly selected or by farthest point initial-
ization as in [CSAD04]. Then in the first proxy fitting phase,
better new types of surface elements can possibly be found
and the iteration can continue.

Since the fitting algorithms for the new surface elements
are more complex and thus slower, we use progressive par-
titioning In our implementation to speed up the whole pro-
cess, i.e. we only use planes for fitting in the first iterations
until the partitioning is close to stable (e.g., the change of
approximation errors becomes very small for two consecu-
tive iterations, this is also the terminating condition for the
whole procedure). Then we also allow spheres and cylinders
to fit surface regions and continue the iterations. Finally we
permit the rolling-ball blend patches in the iterations to reach
the final stable geometric partitioning.

Modified Metrics For the L2 distance metric, the exten-
sion to the new proxy shapes is straightforward: let Ti =
(v1,v2,v3) be a triangle of area |Ti| in the region Ri asso-
ciated with a shape proxy SPi = Pi | Si |Ci | Bi and d1,d2,d3
be the distances of vertices v1,v2,v3 to the proxy SPi. Then
the L2 metric can be locally approximated by the exact so-
lution for linear proxies [CSAD04],

L2(Ti,SPi) =
1
6
(d2

1 +d2
2 +d2

3 +d1d2 +d1d3 +d2d3)|Ti| (1)

The only non-trivial question is how to compute the dis-
tance d(v,Bi) from a vertex to a rolling-ball blend proxy.
Here we first calculate the distance d(v,ci(t)) to the cen-
ter trajectory, and then subtract from it the radius ri, thus
d(v,Bi) = |d(v,ci(t))− ri|.

To compute the L2,1 error metric, the normal information
Ni of a shape proxy SPi near a triangle Ti with normal nT
and barycenter gi is required, i.e., Ni = ni for planes Pi, Ni =
gi − ci for spheres Si, and Ni = gi − c⊥ for cylinders Ci and
blend patches Bi where c⊥ is the projection of gi onto the

axis of the cylinder or onto the center trajectory of the blend
patch. Note that Ni has to be normalized and its direction
might have to be flipped (Ni =−Ni) when for most triangles
Ti in the region Ri, (nT ·Ni) < 0 holds. Finally the L2,1 error
can be computed as follows:

L2,1(Ti,SPi) = ‖nT −Ni‖
2|Ti|. (2)

Surface Element Fitting In practice we find that, though
fitting a plane according to the L2,1 metric is fairly simple
as pointed out in [CSAD04], it is not clear how this can
be extended to our new types of shape proxies, since for
spheres and cylinders, the normals do not change under scal-
ing which implies that the radius of the proxy cannot be de-
termined. Hence we will always use the L2 metric to guide
the fitting step for both metrics and fortunately it works well
for all of our test scenarios. The specific fitting techniques
will be presented in the following sections.

Figure 4: A surface patch (orange) approximated with a
sphere (left) and a cylinder (right).

3.1. Sphere Fitting

We use the robust least-square method of [Pra87] for sphere
fitting (cf. Fig. 4). The sphere is represented implicitly as

f (x,y,z) = A(x2 + y2 + z2)+Bx+Cy+Dz+E = 0.

For each region Ri, we have to find a sphere that best ap-
proximates the barycenters {gi} which are weighted by the
corresponding triangle area |Ti| to compensate for irregu-
lar sampling. The solution can be found by minimizing the
quadratic form

F(A,B,C,D,E) = ∑
i

[ f (gi)]
2|Ti|,

under the constraint

Q(A,B,C,D,E) = B2 +C2 +D2 −4AE = 1

which enforces a unit gradient of F near the sphere’s surface.

For this, only a 5×5 general eigensystem has to be solved
by using Lagrange multipliers. Usually the point set {gi}
will not degenerate to a line or a single point due to the tele-
porting mechanism in the variational partitioning, and hence
we always get a proper solution. Once the parameters are
computed, the approximating sphere Si = (ci,ri) is specified
by the coefficients A, ...,E.
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3.2. Cylinder Fitting

To geometrically fit a cylinder Ci to the region Ri, we first
use the curvature tensor field Γ [CSM03] to determine the
direction di of the cylinder axis. A robust statistical analysis
is applied to the minimum curvature directions {γmin} mea-
sured at all vertices in Ri to get the average direction γ̄ and
their deviation ∆γ. If the deviation ∆γ is larger than some
threshold, the region is considered isotropic thus there is no
need to further approximate it with an anisotropic cylinder.
Otherwise, we let di = γ̄ and continue the fitting procedure.

We project the barycenters {gi} onto the plane P passing
through the origin O with normal di (cf. Fig. 5). We create a
local frame Ψ on P and the projections {g⊥i } are fitted with a
2D circle (c∗i ,r∗i ) to finalize the geometric scale the cylinder
(cf. Fig. 4). This can be computed in a similar way as the
sphere fitting by minimizing

F(A,B,C,D) = ∑
i
[ f (g⊥i )]2|Ti|,

under the constraint

Q(A,B,C,D) = B2 +C2 −4AD = 1,

where

f (x,y) = A(x2 + y2)+Bx+Cy+D = 0

is the circle representation.
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Figure 5: Cylinder fitting. Barycenters are projected to a
plane (left) and a 2D circle is fitted (right).

3.3. Rolling-Ball Blend Patch Fitting

Compared to the above methods, fitting a rolling-ball blend
patch is more complicated and hence we need to derive
a heuristic. We present here a three step fitting algorithm
which is summarized in Fig. 6.

(1) Fit a curve h(t) to the barycenters {gi} of the region Ri.
h(t) is defined as a uniform quadratic B-Spline curve with
double end-knots:

h(t) =
n

∑
k=0

Nk,2(t)pk, 0 ≤ t ≤ 1.

The number (n+1) of control points pk is restricted to 15 in
most cases the suppress oscillations as shown in Fig. 7. The
initial parameterization {ui} for {gi} is computed by pro-
jecting gi to a least-square line L∗ approximating the point

Figure 6: Rolling-ball blend patch fitting. A surface patch
(top left) is first fitted with a B-Spline curve (bottom left,
blue) then a set of circles is found (top right, centers in
black) and finally the center trajectory is fitted with another
B-Spline curve (bottom right).

set {gi} [Jol86]. Then a fitting routine is used to find the
positions of pk by minimizing the following least-squares
functional:

f ({pk}) = ∑
i
‖h(ui)−gi‖

2.

Since the initial parameter values may not be distributed uni-
formly, and because the tangent directions at the end points
of the fitted curve tend to point towards the barycenters
with parameters 0 or 1, we add linear constraints with large
weights ω at these two ends (ω ∗ (p0 − 2p1 + p2) = 0 and
ω∗(pn−2−2pn−1 +pn) = 0) into the above system to com-
pensate for the instability (cf. Fig. 8).

(2) Fit a set of circles {(ci,ri)}. First we compute corrected
parameter values ti for each barycenter gi, such that: [gi −
h(ti)] ⊥ h′(ti). Then we sort {gi} according to {ti} and for
each subsequence gi · · ·gi+m (m is usually 30), we project
them to a plane Qi defined by the point h((ti + ti+m)/2) and
the normal h′((ti + ti+m)/2). A 2D circle is fitted similarly
to Section 3.2 and mapping it back to 3D we get a circle
bi = (ci,ri) within the same 3D plane Qi.

(3) Fit the trajectory c(t) to the circle centers. We first have
to check the validity of these circles by computing the aver-
age radius r̄ and its deviation ∆r. If ∆r is larger than some
threshold, there would be no consistent blending patch for
the region Ri and we stop the fitting procedure. Otherwise,
we simply fit another B-Spline curve, the center trajectory
c(t), to the centers {ci} and set the final radius of the blend
patch to ri = r̄.

As the center trajectory c(t) is only a finite curve with
two endpoints, it is easy to imagine that during the parti-
tioning phase, the rolling-ball blend patch could not grow at
these ends. Hence we extrapolate the blend patch by extend-
ing two rays at the two ends of c(t) in tangent direction. By
this an infinitely extended cylinder is added to make region
growing possible. This strategy also recalls the importance
of the linearity constraint shown in Fig. 8.
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Figure 7: A surface patch fitted by B-Spline curves (blue)
with 10 (left) and 40 (right) control points (red). More con-
trol points leads to jaggy curves and thus to an incorrect
parameterization for rolling-balls fitting.

Figure 8: Portion of a cylinder patch fitted by a B-Spline
curve (blue, 15 control points) without (left) and with (right)
linearity constraint at the end points. Note the improved
quality of final fitted center trajectory (orange).

4. Results

By adopting more types of surface primitives, our hybrid
variational surface approximation scheme can accurately re-
cover more surface structures and geometric details. As a
side product, it also can offer higher approximation quality
than the original variational method if the number of proxies
is fixed, especially for technical CAD models. To compare
our results with other previous work, we first introduce two
comparison criteria:

Remeshing Quality The segmentation which emerges
from the hybrid variational approximation can be exploited
to control a decimation algorithm such that it generates
coarse meshes (as remeshing output) which reflect the global
structure of the input mesh very well. We prefer this method
over the original one in [CSAD04] because it proves to be
robust even in situations when the number of proxies is ex-
tremely low.

Our decimation algorithm for surface remeshing is a very
simple variant of the standard QEM technique [GH97]. All
we have to do is to multiply the priority values by a factor F
which depends on the status of the corresponding vertex, i.e.,
F = 1 for vertices in the interior of a region, F = 100 for ver-
tices on region boundaries, and F = 1000 for anchor vertices
which belong to the boundary of three or more regions. Al-
though this decimation technique turns out to produce fairly
good meshes, in general we use this remeshing procedure
mainly to generate coarse triangle meshes which allow us to
compare our results to the results obtained by [CSAD04].

Vertex to Proxy Projection We not only project anchor
vertices onto surface proxies as [CSAD04], but instead we
map all vertices of the input mesh onto the geometric prox-
ies that they are associated with. Projections of those vertices
shared by several proxies are averaged accordingly. This op-
erator is used to compare the pure geometric information
captured by the surface proxies which are no longer planar
in our case.

Figure 2 shows a complete comparison using above two
quality criteria. We always use the L2,1 metric if not other-
wise specified. The original variational approximation could
not provide plausible results when the number of proxies is
chosen too low. In contrast, hybrid approximation can re-
cover more surface structures and geometric details than the
standard variational approximation even when only one fifth
of the proxies are used (30 hybrid proxies vs. 150 planar
ones). Based on the well recovered surface structure, our hy-
brid scheme can also produce remeshed approximations with
higher quality compared to the original method.

The global optimization properties for the variational
shape approximation naturally carry over to our hybrid ex-
tension. To demonstrate this, we compare our scheme to
QEM mesh simplification [GH97] in Fig. 9. It is obvious
that both in terms of visual quality as well as approximation
error, our scheme performs better than the greedy approach.

Figure 9: The rocker arm model remeshed based on 30 hy-
brid proxies (left, 496 faces) and decimated by QEM [GH97]
(right, 500 faces) with respective Hausdorff errors 0.19 and
0.23. The bottom row shows the color coded error plots.
Note that our hybrid approximation result preserves more
surface features and geometric structures.

More complicated examples are shown in Fig. 10 and
Fig. 11 for technical CAD models where the color coding
scheme is same as in Fig. 2. Notice how well the original
surface’s geometric structures are recovered and expressed
by only 50 or 29 hybrid proxies respectively. Although we
are targeting at CAD models as our primary application, we
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Figure 10: A CAD model (110K faces, top); its hybrid vari-
ational partitioning with 50 proxies (middle right); approx-
imation via vertex projection (middle left) and remeshed to
500 triangles (bottom). Almost all geometric information is
preserved with only 50 hybrid proxies.

Figure 11: From left to right, top to bottom are respectively
the original input model (58K faces), its hybrid variational
partitioning with 29 proxies, the approximation via vertex
projection and the remeshed model with 400 triangles.

Figure 12: A torso model (80K faces, left), its hybrid par-
titioning with only 22 proxies (middle) and the recovered
structures with approximation via vertex projection (right).

Figure 13: The hybrid partitioning of the bunny model (70K
faces) with 31 proxies (left) and the recovered structures with
approximation via vertex projection (right).

also tested our algorithm with more organic mesh models
as shown in Fig. 12 and Fig. 13. It is interesting to see that
equally good structure recovery capability can be observed.

Due to the increased number of surface primitive types
and their more involved surface fitting algorithms with pro-
gressive partitioning, our hybrid method needs about 3–5
times more running time than the original scheme. However
all datasets shown in the paper have been processed in less
than 3 minutes. This seems worthwhile because the higher
computational costs are traded for better surface structure
recovery and higher approximation quality.

5. Conclusions

Dedicated to faithfully and reliably recovering surface struc-
tures, we have extended the powerful optimization tech-
nique of variational shape approximation by allowing dif-
ferent types of surface primitives to represent the local ge-
ometry of clustered regions. In addition to planes, we also
include spheres, cylinders, and more complex rolling-ball
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blend patches to form a new hybrid variational framework.
In addition to the robust segmentation and global optimiza-
tion properties which have been observed for the standard
variational approximation scheme already, our hybrid ex-
tension can better extract the geometric configurations and
hence produce better approximations with fewer primitives.
This mostly automatic and high quality structure recovery
property has been verified by the partitioning and approxi-
mation results for various mechanical and organic objects.

Future work can be extended in many directions. As in
some rare cases, the variational framework still needs some
user interaction (e.g. manual teleporting) to converge to the
optimal result, we want to exploit more sophisticated heuris-
tics to arrive at a fully automatic scheme. Finding the blend
regions is sometimes difficult and our current blend patch
fitting procedure is relatively slow. Last but not least, once
having the variational partitioning and their respective hy-
brid proxies, we want more applications to benefit from it,
like compact representations, remeshing, compression, opti-
mal multiresolution models, and so on.
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