\

N-Buffers for efficient depth map query

Xavier Décoret

» To cite this version:

Xavier Décoret. N-Buffers for efficient depth map query. Computer Graphics Forum, 2005, 24 (3).
inria-00510154

HAL 1d: inria-00510154
https://inria.hal.science/inria-00510154
Submitted on 13 Oct 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00510154
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2005 / M. Alexa and J. Marks

Volume 24 (2005), Number 3

(Guest Editors)
N-Buffers for efficient depth map query
Xavier Décoret
ARTIS GRAVIR/IMAG INRIAT
Abstract

We introduce the N-buffer as a tool for multiresolution depth map representation. This neighborhood buffer en-
codes the value and position of local depth extrema at different scales in an image cube, in contrast to the image
pyramid. The resulting increase in storage space is largely compensated by the following benefits: objects of any
size can be culled in constant time against an occlusion map using four depth lookups; visibility-like queries can
be performed in vertex and fragment programs; N-buffers can be computed very efficiently with graphics hard-
ware. We present three applications of this datastructure, and in particular a novel approach for shadow volume

acceleration.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

In the context of real-time rendering, it is crucial to avoid
rendering objects that do not contribute to the final im-
age. Occlusion culling refers to techniques that can quickly
identify those objects that are not visible from the current
viewpoint. Among the many methods for computing visibil-
ity [COCSDO02, PT02] occlusion maps are simple yet effec-
tive. A set of potential occluders such as portals [LG9S5], pre-
computed virtual occluders [KCCOOO0] or simply a subset
of the scene’s objects are scan-converted to produce a depth
value at every pixel. Objects are then scan converted and vis-
ibility is tested on pixels using a depth comparison. To avoid
doing all tests at pixel level, Zhang et al. maintain multi-
scale versions of the Z-buffer for hierarchical scan conver-
sion and depth comparisons [ZMHHO97]. Similarly, Hey et
al. render in front-to-back order and use a low resolution
grid that maintains visibility for large areas and is updated
in a lazy manner [HTPO1]. An interesting approach was also
proposed by Ho et al. [HW99] : summed area tables are used
to quickly determine if the projection of an object is com-
pletely “covered” by the occluders. If yes, the depth test is

T ARTIS is a research team in the GRAVIR/IMAG laboratory, a
joint unit of CNRS, INRIA, INPG and UJF

(© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

performed only on those pixels of a row that has local maxi-
mum depth.

Occlusion maps are particularly easy to use because
every current graphic card implements an efficient z-
buffer. Efficiency comes from the rasterization power of
specialized GPUs. Various optimizations such as Fast
Z-clear, Z compression [Mor0O] or recently proposed
ones [AMNO3] can further improve performance. Origi-
nally designed for hidden surface removal, Z-buffer has
been recently exposed to programmers through occlu-
sion queries [OQO03] which makes hardware-accelerated
culling very efficient [HSLMO02, BWPP04]. Because they
are so efficiently implemented, Z-buffers have also found
other applications [TPKOI] such as the generation of
shadow maps [Wil78], culling and clamping of shadow
volumes [LWGMO04] or determination of level of de-
tails [ASVNBOO]. Depth maps are present in other areas of
Computer Graphics. They are used to model height fields for
terrain rendering, or model details with displacement map-
ping and relief texturing [OBMO00, PNCO05].

In this paper, we present a novel hierarchical representa-
tion of depth maps called N-buffers that allows querying of
the depth within a region in a very simple manner. It is par-
ticularly well suited for an implementation of visibility-like
queries within GPU programs. After presenting the principle
in section 2, we will present three applications in section 3

Xavier Décoret / N-Buffers

that will be used to discuss the advantages and limitations of
N-buffers in section 4.

2. Description of N-buffers

An N-buffer is a sequence of depth maps similar to an image
pyramid [Wil83] except that all levels have the same reso-
lution. Level 0 is a standard depth map. A pixel at level i
stores the maximum depth of the pixels in a neighborhood of
size i in level 0. Different definitions of neighborhood can be
used. For the moment, we define the neighborhood of size i
of pixel (x,y) to be the 2" x 2" grid of pixels whose lower left
corner is located at (x,y). Figure 1 shows an example of the
four first levels of an N-buffer. Because all levels have the
same resolution, an N-buffer can be built from a depth map
of any size; for this definition of neighborhood, the number
of levels is the log of the largest side of the initial depth map.

Construction. It is quite straightforward that level i + 1 of
an N-buffer can be built from level i using the formula:

lipifey] —max(max(hlx Ll y+27),
max (l[x+ 2", y], i[x+2',y+2']))

Although a very efficient software implementation can be
derived (the formula shows in particular that the level can be
built in two passes: a horizontal and a vertical one), today’s
graphic hardware can perform this computation much faster,
by evaluating the above formula in a fragment program.

Here is the algorithm described in OpenGL. Level 0
is obtained by copying the depth map into a texture, us-
ing glCopyTexSubImage. An offscreen buffer is then
used. Its projection and modelview matrices are set to
identity, its viewport matches the main window’s one, the
color mask is set to false, depth test is set to always pass.
We render a square (from —1 to 1) with unit texture co-
ordinates (from O to 1). Texture repeat mode is set to
GL_CLAMP_TO_BORDER with border color set to 0. The
fragment program of Figure 2 is activated. Finally, we copy
the contents of the offscreen depth buffer into a texture and
proceed to next level. This algorithm is a simple generaliza-
tion of GPU based matrix reduction as described in [BP04].

Query. The N-buffer is designed to retrieve in a simple
manner the maximum depth within an axis-aligned rectan-
gular region of a depth map. For such a region R defined by
(x,y) and (x+Ax,y +Ay), we retrieve the appropriate level
by finding the smallest i such that 2' > max(Ax,Ay) By con-
struction, we then know that every pixel in R is at a depth
less or equal than the depth stored in /;[x,y].

Of course, approximating R with a single power-of-2
sided square is often wasteful. It is possible to achieve
a tighter approximation by covering R with four smaller
power-of-2 sided squares, as shown in Figure 3. Maximum
depth within R is then retrieved with four lookups in the ap-
propriate level, at the coordinates of the lower left corners

void main(float4d t : TEXCOORDO,
out float z : DEPTH,
uniform sampler2D prevlLevel,

uniform float3 1)

float za = tex2D(prevlevel,t.xy);

float zb = tex2D(prevlevel,t.xy+l.xz);
float zc = tex2D(prevlevel,t.xy+l.xy);
float zd = tex2D(prevlevel,t.xy+l.zy);

z = max(max(za,zb),max(zc,zd));;

Figure 2: Cg program to compute level i from level i — 1

of each square. Since the N-buffer stores maxima, the over-
lapping of squares is not an issue. The code for choosing the
placement of the four boxes is straightforward. It is just a
five-way branch that encodes the 5 cases in Figure 3. Note

2 3
2.3

2 3
Q 2 2|13
bounding box 0 1 0 oll1

Figure 3: The five ways to cover a 2D bounding box B with
4 power-of-two-sided squares. Each grey block shows the
bounding box in thick blue line, the coverage by a single
square and by 4 sub-squares. (left) B covers all quadrants of
bounding power-of-two-sided square. (middle) B covers two
quadrants. (right) B covers two quadrants on less that half
their height (top) or half their width (bottom).

S =N (W

that in the rightmost cases of Figure 3, the middle schemes
could also have been applied, but they are not as tight. Note
also that for the middle and right top schemes, we could have
placed the sub-squares aligned with the top or with the bot-
tom of the bounding box. We chose top because in many
scenes, objects are lying on a surface (e.g. a terrain) so the
visibility of an object does not change if the object is ex-
tended a little bit toward the bottom.

Itis possible to quantify the improvement of this enhanced
coverage. We measured the number of extra pixels covered
using one square and using four squares for all possible rect-
angle sizes and positions. The results are shown on Figure 4.
In particular, when |log(Ax) | = [log(Ay)], the extra cover-

(© The Eurographics Association and Blackwell Publishing 2005.

Xavier Décoret / N-Buffers

5

o]

NN NN NN NN oo o

- NN NN N NN e o @
ENIINY PN NN F N N RS N
N o oo w o ;o
- N o o oo w o ;o
EOIINY FNFNF NN ENF N R)
- N O OO W o ;o
B I N N N N N N e
- N O OO W o ;o
- N o o oo o o wla o
SO AN N NN N S E
- NN NN NN N w o o
NN NN NN NN oo o
O R i R i R iR ST S T |
N O oo oo oo g
N OO oo o e o g
N OO oo oo e oo g
N oo oo oo o o g o
N OO oo e e o g
N O oo oo o o g o
NN NN NN NN oo o®

5
6
6
6
6
6
6
6
2

~N N NN NN N ® ® o »
L R R - T RS T]
o o oo oo oo v o ;g
o o o oo oo o v oo
o o oo oo oo v o ;g
o o o oo oo o oo o
~N N NN NN N ® ® o »
~N N NN NN N o ® o ®
~N N NN NN N ® ® o »
~N N NN NN N ® ® o »
~N N N ©® ® ® ®» ® ® ® ®
o o o oo oo o o oo
o o o oo oo o v o ;g
~N N N ©® ® ® ® ® ® ™ ®
~N N N ©® ® ® ® ® ® ® ®
~N N N ® ® ® ® ™ ® ™ ™
~N N N ©® ® ® ® ® ® ® ™
~N N N ® ® ® ® ™ ® ™ ™
~N N N ©® ® ® ® ® ® ® ™
~N N N ® ® ® ® ™ ®® ®
~N N N ©® ® ® ® ™ ® ™ ™

5
5
5
6
6
6
6
6
Ll
6
6

Figure 1: (a) Level 0 of an N-buffer is a depth map. (b) A pixel (boxed in red) in level 1 stores the maximum depth of the 2 X 2
pixels north and east of it (shown on left image). (c) At level 2 it stores the maximum depth of 4 X 4 pixels (boxed in purple). (d)
At level 3 it stores the maximum depth of 8 X 8 pixels (boxed in yellow).

[100% otwn

— 50%otwn

#of extra pixels covered

Figure 4: A point (i, j) in image represents a box of dimen-
sions i X j in an image of size w X h. We cover this box
with four (left) squares or one (right) square. We measure
the number of pixels in squares that are not in the box and
indicate it using false colors.

_ Ootwn

age is null because the box can be covered exactly with four
squares (leftmost case on Figure 3).

3. Applications

N-buffers are useful for many algorithms. In this section, we
present three example applications of N-buffers.

3.1. Occlusion culling

A straightforward application is culling objects against an
occlusion map. To render a view of a scene, we first select
candidate occluders. We chose the heuristic that selects those
objects that were visible at previous frame [BWPP04]. We
render these occluders in the observer’s view and build an
N-buffer with the content of the depth buffer as described in
section 2. We then test every object, including the selected
occluders, against the N-buffer in the following way.

For every object E, we find an axis-aligned bounding box
in image space of E by projecting its bounding volume.
That is, we find pixels (x,y) and (x+ Ay,y + Ay) and depth
z such that the rasterization of E would produce fragments
(x',y',2) such thatx” € [x,x+A],y' € [y,y+A,]andz' > z.
Using the N-buffer as previously described, we query the
maximum depth zp within the box in the occlusion map. If

(© The Eurographics Association and Blackwell Publishing 2005.

zo < z we can safely conclude that E is not visible. Finally,
we render the objects determined to be visible, unless they
were already rendered as occluders.

The benefit of N-buffers here is that it drastically reduces
the number of depth comparisons required by a classical
occlusion-query based or a hierarchical occlusion maps ap-
proach. Indeed, whatever the size and location of the projec-
tion of a tested occludee, the visibility query requires exactly
4 depth comparisons. In counterpart, the computation of the
N-buffer levels has a fixed cost that depends only on the
viewport’s resolution and is independent of the scene com-
plexity, notably the number of tested occludees. These facts
will be discussed in detail in section 4.

Finally, N-buffers performs more conservative culling be-
cause we test axis-aligned regions where occlusion queries
exactly test the projection of occludees bounding boxes.
Moreover, we compare the z min of the bounding boxes with
the z max of a region so a group of occluders will hide only
objects that are behind their back ghost polygon, as defined
by Heo [HKWOO], that is, the intersection of their joined
shadow frusta and the closest plane parallel to the image
plane that is entirely behind the occluders. For example, a
sphere inside a slightly larger sphere would not be found as
hidden. Up to that limit, N-buffers perform implicit occluder
fusion in image space, so that a dense forest of trees with
very small leaves would hide an object in the distance.

3.2. Particle culling

Modelling with particles is widely used for effects like fire,
explosions, etc. To enhance visual appearance, particles are
usually rendered as screen-space axis aligned quads with an
appropriate texture. To release the CPU from the burden of
computing these quads, the particles can be rendered with
the ARB_point_sprite. The CPU sends only 3 coordi-
nates per particle to the GPU which computes and rasterizes
the quad. These coordinates can even be stored on the GPU
(e.g using vertex buffer objects) and animated within a ver-
tex shader.

Xavier Décoret / N-Buffers

Using point sprites however, increases the fill rate and
one might want to perform culling on particles, especially
for a large number of particles where most are occluded by
other parts of the scene. Unfortunately, culling point sprites
is tricky. If one just tests the visibility of the particle’s point,
then popping will be observed near the silhouettes of oc-
cluders, since part of the particle’s sprite is visible before its
center comes into view (and conversely). On the other hand,
testing the visibility of the sprite requires computing its ex-
tents which ruins the benefits and simplicity of use of the
point sprite extension.

The benefit of N-buffers for this application is that
because the number of depth comparisons is fixed, it
can be done very easily in a vertex shader that sup-
ports texture lookups (which is the case of latest genera-
tion of cards). In comparison, using hierarchical occlusion
maps [ZMHH97, GKM93] is much more complex, because
a point sprite may straddle boundaries of the image pyramid.
The code would involve tests with a varying number of depth
comparisons.

Moreover, since point sprites are always screen space
aligned squares, we can cover them with exactly 4 power-
of-2 sided squares whose positions can be pre-computed for
given point sprites sizes. If this size is itself a power of 2,
we can even use the direct covering approach which reduces
to a single depth comparison. Finally, since point sprites are
typically not wider than 32x32, only the first few levels of
the N-buffer need to be computed.

3.3. Shadow volume clamping

Knowing the maximum depth within an area of an occlu-
sion map can be used to perform shadow volume culling
and clamping, as coined by Loyd [LWGMO04]. Indeed, the
shadow volume of a shadow caster does not need to ex-
tend to infinity; it can be clamped as long as it contains the
shadowed regions. We propose the following algorithm. The
scene is viewed by an observer, O, and lit by a spot light,
L. The part of the scene visible from O is called the visi-
ble surface. We project the visible surface twice (details fur-
ther in the section) from light view, once with depth test
GL_LEQUAL and once with GL_GEQUAL. We read back
the two depth buffers. They form what we call the min/max
litmaps. A lexel in the min (resp. max) litmap thus records
for the corresponding light ray the distance to the closest
(resp. furthest) point on the visible surface. We then project
each shadow caster in the light view, with depth buffer write
disabled, and track the minimum (resp. maximum) of the
minimum (resp. maximum) distances of the covered lexels
in the appropriate litmap. These two values define the extents
of the shadow volume. Figure 5 shows some configurations
for the extents of a shadow caster.

Generation of litmaps. The litmaps can be obtained very
easily by dualizing the standard shadow map approach. We

render in light view the scene as lit by a virtual light placed
at the observer’s position. But instead of setting “shadowed”
fragments’ color to black, we discard them by setting their
depth outside range [0, 1]. The algorithm outline is the fol-
lowing. We read back the depth buffer from the camera’s
view in virtual shadow map obsDepthMap. We also record
the combined projection and modelview matrices of the ob-
server obsMtx. Then we render the scene in light’s view.
For each incoming fragment, we compute the distance to ob-
server and compare it with the corresponding value in ob—
sDepthMap using projective texture mapping with matrix
obsMtx. If it is further, the fragment is discarded by setting
its depth to 2.0. Figure 6 illustrates this process.

Figure 6: Two examples of litmaps. (right) observer view of
the scene (left) the visible surface reprojected in light view
forms the litmap. For clarity, the color buffer is shown but
only the depth buffer is actually relevant.

Finding extents. This is where N-buffers comes into play.
Once the litmaps are rendered, we construct the N-buffer
levels as described in section 2. For the min part of the
litmap, we change the program of Figure 2 so that it com-
putes the minimum depth within neighborhoods. Then, for
each shadow caster K, we project its vertices (or the vertices
of a bounding volume if the shadow caster is too complex)
in light’s view. We compute a 2D axis aligned bounding box
of these projections and retrieve the minimum and maximum
depth z,i, and zmax Within that box as described in section 3.

Shadowing. If zmax < zZmin We know that K does not cast a
shadow visible by the observer and we proceed to the next
caster. Otherwise, we build the two planes perpendicular to
the light direction and at distances corresponding to z,,;, and
Zmax - We finally run through the silhouette edges and build
shadow volume by projecting each edge on the two planes.
If the edge is further to the light than the min plane (case
(a),(c) and (e) of Figure 5), we do not project it on the min
plane. For the shadow volume to be correct, we must cap it
by also projecting the shadow caster on the two planes.

(© The Eurographics Association and Blackwell Publishing 2005.

Xavier Décoret / N-Buffers

A e

(a) (b)

4. Results and discussion

‘We implemented the three applications on a Pentium 2.4Ghz
with an NVidia GeForce FX 6800 using OpenGL and Cg
1.3. This section presents statistics along with analysis and
discussion.

4.1. N-buffer generation

The computation cost of the N-buffer depends only on the
resolution of the the initial depth map (level 0). As opposed
to image pyramids, this resolution does not need to be a
power of 2. We wrote a test application that renders a ro-
tating cube in the z-buffer, builds all levels of the N-buffer
and records the computation time. As shown in Table 1, it

resolution 2562 5122 640 x 480 10242

nb levels 8 9 10 10

time (ms) 2 8 10 31

Table 1: N-buffer computation time at various resolutions

is compatible with real-time applications. It shows that the
hardware already has the ability to perform the N-buffers
construction efficiently. Our claim is that dedicated hard-
ware could do even better. It would also adress some tech-
nical problems faced when using the GPU for something it
is not exactly meant for. For example, our implementation
uses a texture per level of the N-buffer which requires tex-
ture binding switches. To adress this, we also implemented a
version with a single texture and levels packed horizontally.
Unfortunately, it currently does not work for width greater
than 256 pixels as it seems very wide textures are not sup-
ported. Indeed you can allocate a 2048 x 2048 texture but not
a 8192 x 512 one although they amount to the same number
of pixels.

(© The Eurographics Association and Blackwell Publishing 2005.

o

(d) (e

Figure 5: Shadow volume extents for a selected shadow caster (highlighted in yellow). (a) Both the object and its shadow are
visible, the shadow volume encompasses both. (b,c) Either the object or its shadow are hidden, the volume encloses only what’s
visible. (d) Neither the object nor its shadow are visible, the shadow volume can be dropped, indicated by red lines. (e) Our
approach cannot detect intermediate occluders and extends shadow volumes to the furthest visible surface points.

y

4.2. Occlusion culling

We implemented occlusion culling with N-buffers in a walk-
through and compared it to an implementation of the same
algorithm but using hardware occlusion queries to test the
visibility of bounding boxes. We found that currently occlu-
sion queries are generally faster. The first reason is that com-
puting the projection of bounding boxes in image space and
covering them with tiles adds some extra load on the CPU.
The second reason is that querying the N-buffers is currently
not optimized. Since the levels are stored in textures on the
GPU, we cannot easily query them. Here is what we do.
‘When processing the bounding boxes, we queue the 4 pixels
that must be queried in list L; where i is the level at which
they must be queried. Then, when we construct level i of the
N-buffer, we query every pixel (x,y) € L; with glRead-
Pixels(x,y,1,1).Those pixel readbacks are quite inef-
ficient, and even if they are not numerous (4 times the num-
ber of tested occludees), they incur a penalty that defavors N-
buffers. In comparison, occlusion queries are very efficiently
implemented by the hardware and can be issued concur-
rently to the rendering. Wimmer et al. [BWPP04] recently
showed how to efficiently interleave occlusion queries with
rendering, in a hierarchical manner to achieve high perfor-
mance. In their approach, N-buffer would not be suited since
the occlusion map evolves during rendering which would re-
quire costly level updates.

Therefore, without hardware support, N-buffer based oc-
clusion culling can not compete with occlusion queries.
However, if added to the hardware together with API support
for querying the levels, they could bring significant perfor-
mance increases. In order to evaluate the expected gains, we
conducted the following experiment. During a walkthrough
in a complex city model, we measured the number of depth
tests performed when using occlusion queries (viewport of
512 x 512, back face culling enabled) and when using N-
buffers. We made the measurement with and without hier-
archical culling based on a hierarchy of bounding volumes.
Results are reported in Table 2. The first observation is that
N-buffer performs much fewer depth tests, about 3 orders

Xavier Décoret / N-Buffers

OQ w/ hier. 0Q NB w/ hier. NB

#tests 1100000 200 000 350 500

Table 2: Average number of depth comparisons with occlu-
sion query (0Q) and with N-buffers (NB) with and without
bounding volumes hierarchy.

of magnitude. This ratio increases with the number of tested
occludees. With Occlusion Query, the cost (number of depth
comparisons) of tests is output sensitive: it depends on the
screen projection of the tested objects. Conversely, with N-
buffer, the cost is fixed and is equal to 4 times the number of
tested object (we used frustum culling [AMOO] so this num-
ber is not constant during the walkthrough). Of course, we
must account for the number of fragments rasterized for the
computations of the levels of the N-buffer. So we think of N-
buffers as “factorizing” depth comparisons into a fixed-cost
part independent of the number of tested objects, and a very-
low-cost part repeated for each tested object. Consequently,
benefit can be expected only if there is a large number of
tested objects.

The second observation is surprising: with occlusion
queries, hierarchical visibility culling incurs quite many
more depth comparisons. The reason is that for visible
nodes, several bounding boxes are rasterized, some of
them (the higher ones in the hierarchy) covering a large
region on screen. In consequence, it can be more effi-
cient to directly test all leaf nodes. Of course it is highly
scene/hierarchy/viewpoint dependent and is hard to pre-
dict/optimize. The key point is that the cost of testing a node
can be higher than the cost of testing all its children. Con-
versely, N-buffers have the nice property that testing a node
is always cheaper than testing its children because the cost
of a test is constant. Therefore, unless everything is visible,
we will observe gains when using a hierarchy.

In the light of these results, we think that N-buffers might
be of interest if incorporated in graphic cards. It would re-
quire some extra memory to store the levels and a specialized
component to perform their updates after a change in the z-
buffer (note that when a pixel is changed, only the pixels
on its left and below must be updated in the N-buffer; note
also that low resolution N-buffers could also be used mod-
ulo some simple adaptations). Before rasterizing a primitive,
the GPU could then do 4 depth comparisons in the appropri-
ate level to check if the primitive is not completely hidden,
thus saving rasterization and potentially many depth compar-
isons. This might prove beneficial when many objects with
a large screen projection are actually hidden. Moreover, it
would be better for parallelism since every query is done in
a constant number of operations.

4.3. Particles

Particle culling is another example of the potential perfor-
mance gain of hardware N-buffers could achieve. For N par-
ticles typically rendered as 16 x 16 sprites, the number of
depth tests is 256N if rasterization is used. With N-buffers it
is simply NV; that is 256 times less. Moreover, as discussed
earlier, N-buffer is the only way to do culling within the
vertex program and without breaking the point-sprite exten-
sion. To show the feasibility, we implemented point-sprite
culling. We first render the scene, build the N-buffer and
render the particles, enabling the point sprite extension and
using a vertex shader for culling sprites. However, our im-
plementation suffers from current performance limitation of
the Linux drivers for texture lookups in vertex programs so
the frame rate is 3Hz for 607 particles with culling while we
get 100Hz without culling.

4.4. Shadow volume clamping

We implemented shadow volume clamping and tested it on
two scenes: a model of a city and a terrain with towers and
birds flying above. Figure 7 shows some frames. We mea-

Figure 7: Shadow volume clamping on towers and city
scenes. (left) clamped shadow volumes. (right) resulting
shadows.

sured along recorded path the number of fragments raster-
ized with or without shadow clamping and the time required
to render shadow volumes. In the city scene, the average fill
rate without clamping is 20M pixels and decreases to 512
000 pixels with clamping (window size is 640 x 480) that is
only 2.5%. The same ratio is observed for the terrain scene.
For other simpler scenes, we observed an average ratio of
20%.

In the city scene, the benefits of culling and clamping are
due to the fact that the shadows of many shadow casters are
not visible so shadow casters are discarded. In the terrain
scene, the benefit comes from the birds that cast shadows on

(© The Eurographics Association and Blackwell Publishing 2005.

Xavier Décoret / N-Buffers

the ground but are not visible from the observer’s position.
In that case, the shadow volume is tight around the shadow
on the ground instead of extending through the whole screen.

Our approach does shadow volume culling and clamp-
ing in a unified way. However, the clamping is less effi-
cient than in [LWGMO04] as we construct only a single slice.
On the other hand, the slice is found in a direct and simple
way, where their approach requires either CPU-based inter-
val arithmetic or multiple occlusion queries. We also believe
that the litmap construction is an interesting contribution for
retrieving Potential Shadow Receivers. Still, we did not try
to optimize our implementation to compete with CC shadow
volumes in term of rendering speed. Rather, our purpose was
to show that the N-buffer representation can potentially save
fill rate, either directly (occlusion culling, particle culling) or
indirectly (shadow volume clamping).

5. Conclusion and Future work

We presented a novel representation for depth maps. It al-
lows query for the maximum (or minimum) depth within a
rectangular region in constant time, no matter the rectangle’s
position and size. We showed that it can drastically reduce
the number of depth tests compared to rasterization based
approaches. The constant time property is particularly inter-
esting since it makes visibility-like queries available in ver-
tex or fragment programs. Indeed, querying depth extrema
over a region could be done by rasterizing the region and us-
ing some to-be-proposed extension similar to the histogram
one. However, such functionalities could not be called dur-
ing the rendering of other primitives, that is within a ver-
tex/fragment shader.

Our belief is that with the trend of porting many algo-
rithms to the GPU (e.g. shadow quad generation [BS03],
ray-tracing), being able to represent depth maps in an access-
efficient manner will open new possibilities. In the future,
we plan to investigate such applications as heightfield ray-
tracing [PNCO5].

On a more theoretical note, N-Buffer is a representation
that allows both multi-scale and localized analysis of a dis-
crete signal, in our case a depth map. For that reason, it is
related to the theory of Wavelet Zoom [MalO1] and we plan
to express it in this formalism. We also want to study other
“neighborhood bases”, and in particular to consider not only
squares but rectangles, similar to the idea of RIP-maps men-
tionned in [KLK100].

References

[AMOO0] Ulf Assarsson and Tomas Moller. Optimized
view frustum culling algorithms for bound-
ing boxes. Journal of Graphics Tools: JGT,

5(1):9-22, 2000. 6

(© The Eurographics Association and Blackwell Publishing 2005.

[AMNO3]

[ASVNBO0]

[BPO4]

[BSO03]

[BWPPO4]

[COCSDO02]

[GKM93]

[HKWO00]

[HSLMO02]

[HTPOI1]

[HW99]

Timo Aila, Ville Miettinen, and Petri Nord-
lund. Delay streams for graphics hardware.
ACM Transactions on Graphics, 22(3):792—
800, 2003. 1

Carlos Anddjar, Carlos Saona-Vdzquez, Isabel
Navazo, and Pere Brunet. Integrating oc-
clusion culling with levels of detail through
hardly-visible sets. In Comp. Graphics Forum
(Proc. of Eurographics), volume 19(3), pages
499-506, 2000. 1

Ian Buck and Tim Purcell. GPU Gems, chapter
Ch. 37: A toolkit for Computations on GPUs,
page 626. Addison-Wesley, 2004. 2

Stefan Brabec and Hans-Peter Seidel. Shadow
volumes on programmable graphics hardware.
In Computer Graphics Forum, volume 3-22 of
EUROGRAPHICS Conference Proceedings.
Blackwell Publishers, 2003. 7

Jif{ Bittner, Michael Wimmer, Harald Piringer,
and Werner Purgathofer. Coherent hierarchi-
cal culling: Hardware occlusion queries made
useful. Computer Graphics Forum (Proceed-
ings of Eurographics "04), (3), 2004. 1, 3,5

Daniel Cohen-Or, Y. Chrysanthou, Claudio
Silva, and Fredo Durand. A survey of visibility
for walkthrough applications. IEEE Trans. on
Visualization and Comp. Graphics, 2002. 1

Ned Greene, Michael Kass, and Gavin Miller.
Hierarchical z-buffer visibility. In Proceedings
of the 20th annual conference on Computer
graphics and interactive techniques, pages
231-238. ACM Press, 1993. 4

JunHyeok Heo, Jacho Kim, and KwangYun
Wohn. Conservative visibility preprocessing
for walkthroughs of complex urban scenes. In
Proceedings of the ACM symposium on Virtual
reality software and technology, pages 115—
128. ACM Press, 2000. 3

Karl Hillesland, Brian Salomon, Anselmo
Lastra, and Dinesh Manocha. Fast and sim-
ple occlusion culling based on hardware depth
querie. Tr02-039, UNC-CH, 2002. 1

Heinrich Hey, Robert F. Tobler, and Werner
Purgathofer. Real-Time occlusion culling with
a lazy occlusion grid. In Rendering techniques
(Proceedings of Eurographics Workshop on
Rendering ’01, pages 217-222,2001. 1

Poon Chun Ho and Wenping Wang. Occlusion
culling using minimum occluder set and opac-
ity map. In 1V ’99: Proceedings of the 1999

[KCCO00]

[KLKT00]

[LGY5]

[LWGMO04]

[MalO1]

[Mor00]

[OBMO00]

[0Q03]

[PNCO5]

[PT02]

Xavier Décoret / N-Buffers

International Conference on Information Visu-
alisation, page 292. IEEE Computer Society,
1999. 1

Vladlen Koltun, Yiorgos Chrysanthou, and
Daniel Cohen-Or. Virtual occluders: An ef-
ficient intermediate PVS representation. In
Proc. of Eurographic Rendering Workshop,
2000. 1

Allison W. Klein, Wilmot Li, Michael M.
Kazhdan, Wagner T. Corréa, Adam Finkel-
stein, and Thomas A. Funkhouser. = Non-
photorealistic virtual environments. In Pro-
ceedings of the 27th annual conference on
Computer graphics and interactive tech-
niques, pages 527-534. ACM Press/Addison-
Wesley Publishing Co., 2000. 7

David Luebke and Chris Georges. Portals and
mirrors: simple, fast evaluation of potentially
visible sets. In Proc. of the 1995 Symposium
on Interactive 3D Graphics, pages 105-106,
1995. 1

Brandon Lloyd, Jeremy Wendt, Naga Govin-
daraju, and Dinesh Manocha. Cc shadow
volumes. In Proceedings of the Eurograph-
ics Symposium on Rendering. Eurographics,
2004. 1,4,7

Stéphane Mallat. A Wavelet Tour of Signal
Processing. Academic Press, 2001. 7

Steve Morein. Ati radeon—hyperz technol-
ogy. In SIGGRAPH/Eurographics Graph-
ics Hardware Workshop 2000, Hot3D session,
2000. 1

Manuel M. Oliveira, Gary Bishop, and David
McAllister. Relief texture mapping. In SIG-
GRAPH ’00: Proceedings of the 27th an-
nual conference on Computer graphics and
interactive techniques, pages 359-368. ACM
Press/Addison-Wesley Publishing Co., 2000.
1

ARB_occlusion_gquery opengl extension
specification. http://oss.sgi.com,
2003. 1

F. Policarpo, M. Oliveira Neto, and J. Comba.
Real-time relief mapping on arbitrary polygo-
nal surfaces. In Proceedings of ACM Siggraph
Interactive 3D Graphics and Games, 2005. 1,
7

Ioannis Pantazopoulos and Spyros Tzafestas.
Occlusion culling algorithms: A comprehen-
sive survey. Journal of Intelligent and Robotic
Systems, 35(2):123-156, 2002. 1

[TPKO1]

[Wil78]

[Wil83]

[ZMHH97]

Theoharis Theoharis, Georgios Papaioannou,
and Evaggelia-Aggeliki Karabassi. The magic
of the Z-buffer: A survey. In V. Skala, editor,
WSCG 2001 Conference Proceedings, pages
379-386,2001. 1

Lance Williams. Casting curved shadows on
curved surfaces. In Proceedings of the 5th
annual conference on Computer graphics and
interactive techniques, pages 270-274. ACM
Press, 1978. 1

Lance Williams. Pyramidal parametrics. In
Proceedings of the 10th annual conference
on Computer graphics and interactive tech-
niques, pages 1-11. ACM Press, 1983. 2

Hansong Zhang, Dinesh Manocha, Tom Hud-
son, and Kenneth E. Hoff. Visibility
culling using hierarchical occlusion maps. In
Proceedings of the 24th annual conference
on Computer graphics and interactive tech-
niques, pages 77-88. ACM Press/Addison-
Wesley Publishing Co., 1997. 1,4

(© The Eurographics Association and Blackwell Publishing 2005.

